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Abstract

Signal decomposition and multiscale signal analysis provide many useful tools for time-
frequency analysis. We proposed a random feature method for analyzing time-series data
by constructing a sparse approximation to the spectrogram. The randomization is both in
the time window locations and the frequency sampling, which lowers the overall sampling
and computational cost. The sparsification of the spectrogram leads to a sharp separation
between time-frequency clusters which makes it easier to identify intrinsic modes, and thus
leads to a new data-driven mode decomposition. The applications include signal represen-
tation, outlier removal, and mode decomposition. On benchmark tests, we show that our
approach outperforms other state-of-the-art decomposition methods.

Keywords Sparse random features - Signal decomposition - Short-time Fourier transform

Mathematics Subject Classification 42A99 - 65T99

1 Introduction

Time-frequency analysis is an important tool for analyzing and leveraging information
from signals. Various time-frequency approaches lead to a particular decomposition of
signals into important time-varying features which can illuminate intrinsic behaviors, be
used for analytics, or assist in smoothing the signal. For example, the classical short-time
Fourier transform (STFT) extracts a time-varying representation by localizing the signal
in time using a finite window length and applying the Fourier transform to each localized
segment. Since the window length is fixed, the resulting analysis leads to a uniform time-
frequency resolution. The continuous wavelet transform (CWT) constructs a representation
of the signal using a variable time window by scaling the mother wavelet and thus leads
to a multiscale representation of the signal. Modern techniques focus on addressing sev-
eral issues with signal decompositions, specifically, data-driven representations that better
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reflect the signal’s intrinsic behavior, sharpen/localize the spectrogram, and are robust to
noise, outliers, or non-uniform sampling.

The empirical mode decomposition (EMD) [24] is an adaptive time-frequency method
for analyzing and decomposing signals, and has been shown to be useful in a wide range of
signal processing applications. In particular, EMD decomposes a given signal into intrin-
sic mode functions (IMFs) which carry information at varying frequency scales by detect-
ing local extrema and estimating upper and lower envelopes. This effectively partitions the
spectrum into certain frequency bands which are represented by the learned IMFs. EMD
suffers from some problems including mode mixing, i.e., the appearance of similar fre-
quency information shared between distinct IMFs, and sensitivity to noise and sampling.
The ensemble EMD (EEMD) [47] learns the IMFs using an ensemble of the given signal
perturbed by random (Gaussian) noise. This helps to mitigate the mode mixing issue by
leveraging results on EMD applied to white noise [13]. However, the approximated signals
often retain aspects of the noise and the perturbations may lead to a different IMF decom-
position. In [45], the complete EEMD with adaptive noise (CEEMDAN) added different
(synthetic) noise to the stages of the decomposition, which led to more stable results. Since
EEMD-based approaches average over several applications of EMD, they often come with
an increased cost. In [23], the signal was represented using an IMF-like form and its time-
varying parameters are optimized using a total variational penalty on the third derivative of
the coefficients. The variational mode decomposition (VMD) [11] decomposes the signal
into a sum of IMFs using an optimization problem (implemented by the split Bregman
or ADMM method [19]). The IMFs are obtained simultaneously within the optimization
process and the resulting decompositions are more stable to noise than the standard EMD
approaches.

The synchrosqueeze transform (SST) [10] improves the CWT by calculating instantane-
ous frequencies and “squeezing” them through a reassignment algorithm, namely, shifting
them to the center of the time-frequency region [2]. This leads to sharper time-frequency
representations than the STFT and CWT which are often limited by the finite sampling
lengths and can create spectral smearing. In addition, the sharpening essentially prunes
the unnecessary wavelet coefficients, thus leading to a sparser representation. Various
SST-based methods have been proposed using other signal transforms such as the S-trans-
form [25] and the wavelet packet transform [50]. The empirical wavelet transform (EWT)
[16] combines aspects of EMD with the wavelet transform. The main idea behind EWT
is to partition the Fourier domain and build empirical wavelet filters from the segmented
spectrum. This was done by identifying the local maxima of the amplitude in the Fou-
rier domain and partitioning the regions to separate the maxima [27]. In [17], the authors
proposed a fast scale-space algorithm to automatically detect meaningful modes from a
histogram without assuming the knowledge about the number of modes. The EWT was
extended to two dimensions for applications in imaging and can be related to other wave-
let-like transforms [18].

In this work, we propose a signal representation and decomposition algorithm based on
a sparse random feature approximation [20] to the continuous STFT. The previous para-
graph summarized several successful signal decomposition techniques, some of which
are developed directly from a continuous transform (e.g., STFT, SST, CWT, etc.) or more
generally a signal-frequency decomposition form (e.g., EMD and the related methods). In
this work, we represent the signal using the continuous STFT and develop a randomized
approach for approximation of the continuous integral formulation without needing to
resolve the time-frequency domain. The methods are related to the random feature models,
which are used in regression, classification, and more generally supervised learning.
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Random feature models (RFMs) are a randomized nonparametric approximation used
in interpolation and regression problems [36-38]. It can be viewed as a kernel-based
approach or as a class of artificial neural networks. Specifically, the standard RFM archi-
tecture consists of a two-layer fully connected neural network whose single hidden layer
is randomized and not trained [5, 29, 32, 36, 37]. The only layer that is trained is the
output layer thus yielding a linear training model. There is a wide range of theoretical
results for RFMs used in interpolation or regression [3, 20, 26, 31, 38, 39i 41, 4{)]. In
[37], N random features are used to yield a uniform error bound of O(N~2 + m™2) for
target functions in a certain class when the RFM is trained using Lipschitz loss func-
tions. For the L2 loss, if the number of features scales like N ~ \/E log m where m is the

number of data points, then the test error is bounded by O(m_%) [39], see also [26]. This
result requires that the target function f is in the associated reproducing kernel Hilbert
space (RKHS) and some additional assumptions on the kernel. By analyzing the struc-
ture of the RFM with respect to the dimension d and the parameters N and m, results
found in [9, 31] showed that regression using the RFM often achieves their minimal risk
in the overparameterized region, where the number of random features exceeds the num-
ber of data samples.

One family of approaches to learn RFMs in the overparameterized regime is based on
imposing a sparsity prior in the number of features. In [20], the #! basis pursuit denois-
ing problem was used to obtain a low complexity RFM (measured in terms of the num-
ber of active random features), see also [12]. The test error scales like the standard RFMs
and improves when the target function has fast decay relative to the random features [9,
20]. In [40], a hard ridge-based thresholding algorithm, called HARFE, was proposed to
iteratively obtain sparser RFMs by solving a sparse ridge regression problem [4, 22, 28,
30, 48]. A random feature pruning method called the SHRIMP algorithm was proposed in
[49]. The approach iteratively prunes an overparameterized RFM by alternating between
a thresholding step and a regression step and was shown to perform well on both real and
synthetic data. As noted in [49], RFMs with sparsity priors can also be motivated by the
lotto ticket hypothesis, which asserts the existence of small subnetworks within overparam-
eterized neural network who match or improve on the accuracy of the full network [15].

1.1 Our Contributions
Some of our main algorithmic and modeling contributions are as follows.

e We propose a randomized sparse time-frequency representation, which extends and
further develops the sparse random feature method [20, 40]. Specifically, our model
allows for the use of compressive sensing-like techniques to spectrogram analysis
with a less restrictive “basis”, i.e., the random feature space. In addition, the rand-
omization allows for non-equally spaced points in both time and frequency.

e We show that our approach produces a mode decomposition with less mode mixing,
better separation of modes, and fewer Gibbs phenomena than other state-of-the-art
approaches. The sparsity prior sharpens the spectrogram, which leads to a clearer sepa-
ration between modes and allows for simple clustering of the time-frequency regions.

e  Our method can also be used for outlier or corruption removal, in particular, removing
nonlinear and highly correlated noise from the data (see Sect. 3.5). One application is
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for data-assisted modeling for scientific discovery, where our approach can be used to
guide one to a particular structure or waveform with prior templates or information.

e OQOur approach does not require that the time series is obtained from equally spaced
time points, which makes it applicable for a wider range of datasets where standard
approaches fail. In fact, the method does not depend strongly on the sampling pro-
cess, unlike other state-of-the-art approaches.

2 Sparse Random Feature Representation for Time-Series Data

The proposed method builds from the continuous STFT. That is, we represent a signal
f€L'([0,T]) by

1) = / " FOW(t - 1)dr = / " / ) a(w, 7) W(t — ) exp (iwf)dowdr,

where « is the transform function and W is a (positive) window function such that
/_o; W(t — r)dr = 1. The assumptions are that the transform function is band-limited,
i.e., a(w, ) =0 for all |w| > B, and that for a fixed r the support of a(w, 7) is small. Note
that since f € L'([0, T]), the transform is bounded, i.e., there exists an M > 0 such that
|a(w, )| < M for all (w, 7). Let N be the number of total random features used in the
approximation of the integral above. In particular, using the RFM, we approximate the
integrals using N = N|N, random features with N, being the number of random frequen-
cies and N, being the number of random windows:

N, N

oo B
f0y= / / a(w,7) W(t = 7) exp (iwndwdz & D" Y ¢, W(t—17,) exp (ioy, 1),
—oo J—B

k=1 k=1

where {wkl}kle[N,] and {Tkz}k7€[N2] are independent of each other and are drawn i.i.d.

w,, ~ U0, Bl and 7, ~ UIO, T). The goal is to learn a representation of the target signal f
using m sampling points {#,},¢[,; C [0,T]. The sampling points can either be equally
spaced in time or can be drawn i.i.d. from a probability measure u(¢) along the interval
[0, T]. The given output measurements y, are y, = f(¢,) + e¢,, where the noise or outliers
{es} zpn are either bounded by constant £ > 0, i.e., |e,| < E for all £ € [m], or are random
Gaussian. Note that if e, ~ M0, c?) and m > 2log (6‘1), then the noise terms e, are
bounded by E = 2¢ for all # € [m] with probability exceeding 1 — 6.
We reindex (k;, k,) so that the N random feature functions take the form

@;(t) 1= W(t — ;) exp (iw;1)

with the new index j € [N]. Thus the approximation becomes

N
fO =Y ¢ ), 1)
J=1
where the coefficients c; have also been reindexed. The training problem becomes learn-
ing coefficients c; so the approximation Z c; @;(t,) is close to the given data y,. Let
A e C™N be the random feature matrix whose elements are defined as a,; = ¢;(t,),
c=[c;,,cylT, and y = [y, -+, y,,]T. By assumption, the time-frequency representation
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is sparse. So we learn ¢ by solving an #' regularized least squares problem. Following [20],
a sparse random feature model can be trained with the #! basis pursuit denoising problem
[6,7,14]:

ot = argmin [c||;, st [[Ac—y], < n\/ﬁ, )
ceCV
where 7 is a user-defined parameter that is related to the noise bound E. It can be shown
that certain random feature matrices are well-conditioned to sparse regression when trained
using Eq. (2) [9, 20]. When the input data are contaminated by large noise (such as the
gravitational distortion data in Sect. 3.5), we solve the unconstrained #! optimization prob-
lem (LASSO) [21, 44]:

. 1
o = arcgegllm Mlell, + %”AC —yllg. (3)
Although the unconstrained #! optimization problem is equivalent to the basis pursuit
denoising problem under a mapping between A > 0 and v > 0 [14]. Empirical tests for
this particular application showed that the LASSO form was more forgiving while tuning
parameters. We expect that this is a consequence of the specific choice of algorithms more
than the specific formulation.

2.1 Sparse Random Feature Representation Algorithm

In the algorithm, we replace the complex exponential by a sine function with a random
phase y; and the window function is defined by the Gaussian with a fixed variance A%

(= T,')z .
qu(t) =exp| — : sm(Zna)jt + y/j), 4)

2A2

where 7; ~ UuQo, T), w; ~ UQ, o,,,,), and v~ U(0, 2r). Given a set of time points {tf

. . . . }f €[m]’
we define the random short-time sinusoidal feature matrix A = [a, g€ R™N by

t, — Tj)2

A2 ) sin(2nw;t, + w;).

ap; = ¢j(tf) = exp <—

While the standard approaches assume that data is obtained from an evenly spaced time
series, we do not place any restrictions on the sampling of the time points (except that
they are distinct). This is an important distinction compared to other signal decomposition
approaches. In particular, we optimize the coefficients ¢ using a sparse optimization prob-
lem given by Eq. (2), with the random short-time sinusoidal feature matrix, which can be
shown to lead to well-conditioned training even in the low data limit [9, 20]. As an added
benefit, the random sampling of time points reduces the computational and storage cost,
which depends on the number of samples and the number of features. The reconstruction
algorithm is summarized in Algorithm 1.
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Algorithm 1 Sparse Random Feature Representation for Time-Series Data

Input: Samples {(t¢,y¢)};",, number of random features N, maximum frequency wmax, window
size A, noise level r € [0,1]. Let y = [y1,- -+, Y] -

Algorithm:
Draw random time shifts, frequencies, and phases (independent of the data)

{7 wj i Ly ~ U0, T % U0, winax) x U0, 27] .
Construct the random short-time sinusoidal feature matrix
) (te — TV'>2 . . ]
A = [pi(te)] = [exp <_TZI sin(27wjty + ;)| € R™N.
Solve: ¢! = argmin|c|, s.t. [|[Ac—yl, <o =7yl
ceRN
Output: Coefficient vector cf and the sparse random feature representation for the time-series:

N

F=>" & ¢;0).

j=1

2.2 Sparse Random Mode Decomposition (SRMD)

In this section, we discuss how to utilize the learned coefficients ¢ to decompose the signal
into meaningful modes. It is based on the observation that the sparse optimization extracts
a sparse time-frequency representation, which has the added benefit of forming a simple
decomposition due to the sharpening of the spectrogram. Specifically, we first collect all pairs
(7}, w;) corresponding to the non-zero learned coefficient <> and denote the support set by

S :={(5,w) |j € N], ¢ #0}.

We then partition S into clusters using the clustering method DBSCAN. The learned coef-
ficients are grouped based on those clusters and these groups define the corresponding
IMFs. An advantage of DBSCAN is that we do not need to specify the number of extracted
modes, which is useful for blind source separation. We discuss in Sect. 3 how to merge
modes together if the number of modes is given. The sparse random mode decomposition
(SRMD) algorithm is summarized in Algorithm 2.

Algorithm 2 SRMD for Time-Series Data

Input: Samples {(t¢,y¢)}j2,, number of random features N, maximum frequency wmax, window
size A, noise level 7 € [0,1], frgscale € R, DBSCAN hyperparameters ¢ and min_samples.
Lety = [y1,- -, ym]"-

Algorithm:
Apply Algorithm 1 to obtain S = {(7j,w;) | j € [N], cg #0}.
Scale input points to obtain S= {(75,@;) | j € [N], cj #0, & = frgscale - w;}.
Partition S into clusters Sy, ..., Sk using DBSCAN. Let

Iy ={j € [N]| (7j,@;) € Sk}, k=1,--- K.

Output: K modes
w®) =Y o), k=1,... K

J€lk
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3 Numerical Experiments

In this section, we verify the applicability and consistency of SRMD on five decomposi-
tions and signal representation examples, including three challenging synthetic time-series
from [10, 11] and two real time-series (musical and gravitational distortion datasets). In
Sect. 3.1, we display the learned coefficients obtained from Algorithm 2 in the time-fre-
quency space (spectrogram) and plot the corresponding modal decomposition (i.e., clus-
ters) using DBSCAN. While more sophisticated clustering algorithms can be used, one
of the benefits of our algorithm is that it produces a sparse spectrogram that can be more
easily clustered when the original signal has sharp time-frequency bands or groups. We
also compare our approach with some of the state-of-the-art intrinsic mode decomposition
methods, including the EMD [24], ensemble EMD (EEMD) [47], complete EEMD with
adaptive noise (CEEMDAN) [45], EWT [16], and VMD [11]. Additionally, in Sect. 3.2,
we compare our method to the spectrogram produced by the short-time Fourier transform
(STFT), CWT, and SST [10]. In Sect. 3.3, we investigate the robustness of our method
with respect to noise and the stability of our reconstruction and decomposition results with
respect to the randomness of the random feature. In particular, we generate a musical time
series using two modes (flute and guitar) and thus can compare our method to the ground
truth modes when the data has unknown acquisition and background noise. As an applica-
tion to data-assisted scientific discovery, we show that our approach can extract an approxi-
mate waveform for the merging event of two black holes without the need for templates
(based on the LIGO dataset). More experiments on benchmark examples are shown in the
Appendixes.

All tests were performed using Python and our codes as well as the corresponding
audio files for the musical example are available on GitHub'. PyEMD [34, 35] was
used to test EMD and the related methods, while ewtpy and vmdpy [8] were used to
test EWT and VMD, respectively. The hyperparameters used in all methods are chosen
to optimize their resulting outputs and are based on the suggested parameters from the
papers’ methods or documentation. More precisely, for EMD, EEMD, and CEEMDAN,
the threshold values on standard deviation, on energy ratio, and on scaled variance per
IMF check are std_thr = 0.1, energy_ratio_thr = 0.1, and svar_thr = 0.01, respec-
tively. For EEMD and CEEMDAN, the number of noise-perturbed ensemble trials is
set to trials = 100. For VMD, we set the balancing parameter of the data-fidelity con-
straint alpha = 50, the time-step of the dual ascent fau = 1, the convergence tolerance
tol = 107, and all frequencies o are initialized randomly.

For the hyperparameters used in SRMD, we need to choose (@,,,,, A, N) to generate
the random feature matrix A, the noise-level parameter # for the SPGL1 algorithm, and
frgscale, min_samples, and ¢ for the DBSCAN. We used the following values unless
stated otherwise. The maximum possible frequency w,,, is set to the Nyquist rate,

Oppax = 2 the window size is set to A = 0.1, and the number of randomly generated
2T

features N can range from 5m to 50m depending on the complexity of the signal. The
basis pursuit parameter used in SPGLI is set to n\/E = 0.06]|yippullo, which should
yield a reconstruction error of 6%. Also, since the time points and the frequencies are at
different scales, we multiply all learned frequencies by frqscale, which is set by

default to frgscale =

before applying the clustering algorithm on the learned

max

! https://github.com/Giang TTran/SparseRandomModeDecomposition
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time-frequency pairs. The radius of a cluster’s neighborhood in time-frequency space €
is chosen based on the structure of the groups of modes in the spectrogram, noting that
a larger value for € yields fewer clusters. When frgscale is set to the default value, we
used € = 0.27T as a starting guess. Lastly, we set the number of modes in a neighborhood
required to be considered a core point min_samples = 4 or 5.

In EWT, VMD, and SRMD, the number of intrinsic modes is specified for each
experiment. For visualization and comparison, when the number of learned modes
agrees or exceeds the number of true modes, we pair the learned and true modes based
on the minimum ¢, distance. In particular, let {y}f““ed}szl be the learned modes and
{ yg”e }]’: _, be the true modes. Then we pair the true and the learned modes by reindexing
the learned modes using

learned-reindexed . __ : learned true
Y i=argmin ||y — y L,
ke[K]

for all p € [P]. The remaining learned modes that are not paired are then combined into the
learned mode with the highest error. The pairs (ylpe‘"“ed'rei“de"ed, Y€y with p € [P] are used
to compute the relative errors of our SRMD. In practice when the ground truth modes are
not known, if there are n more learned modes than true modes, we merge mode n + 1 with
the mode that has the smallest £, norm. The remaining modes are discarded. This is based
on the assumption that the number of modes is known and their £, norms are comparable.
For comparison with EMD, EEMD, and CEEMDAN, their extra modes are merged in the
order they are extracted, i.e., the merging is based on their frequency scaling. This avoids
the need to fine-tune their hyperparameters. This is based on the rationale that the excess
modes occur from over-decomposition and that the mode with the highest error could be
improved by merging the excess modes back together. Although the merging step may not
be necessary for some applications, we use it to conduct a fair comparison on benchmark
tests. Lastly, we plot the magnitude of the non-zero entries of the learned coefficient vector
¢ on the spectrogram. Note that all non-zero coefficients can be re-assigned to a positive
value after shifting the phase of the corresponding basis term. This leads to a sparse spec-
trogram representation of the signal.

3.1 Discontinuous Time-Series

The first example is from [10], where the input signal y(r) =y, () + y,(t) + y;(t) for
t € [0,2] is a composition of a linear trend y, (), a pure harmonic signal y,(#), and a har-
monic signal with a nonlinear instantaneous frequency y;(?):

y1(0) =7t 1o 54(0),
¥2() = cos(40mt) 11 54 (D), )

y3() = cos<‘§1 (@nt - 10y’ — 2 — 10)’) + 20m(z — 1)) Li1.29(0)s
where 1/(-) denotes the indicator function over the interval 7. The input signal has a sharp
transition at t = %. The number of modes is fixed at 3 for this experiment. The dataset con-

tains m = 320 points equally spaced in time from [0, 2] and the total number of random
features in SRMD is set to N = 50m = 16 000. For DBSCAN, we set the minimum number
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of core points in a cluster to min_samples = 3 and the maximum distance between any two
points in a neighborhood is set to € = 0.1.

Figure 1 shows that SRMD can decompose the discontinuous signal with minimal mode
mixing, i.e., a clear separation between the three modes. In particular, the three learned
SRMD modes are close to the ground truth modes with the errors mainly occurring at
the point of discontinuity ¢ = f—l (see also Fig. 2). It may be possible to avoid the error at
the discontinuity with a choice of basis better suited to jumps such as the function associ-
ated with Haar wavelets (i.e., the square function) instead of the sine function. Even so,
Fig. 2 shows that the SRMD output using the sine function, whose wavelet equivalent is
not well-suited to discontinuities, is still sufficient for our method to outperform existing
methods. Moreover, the representation and clustering plots of Fig. 1 show that the sparse
spectrogram and modal decomposition are indeed sharp and well-separated. This is a better
separation than the various STFT and CWT, and their synchro-squeezed versions shown in
Figs. 1, 2, and 6 of [10]. Additionally, SRMD has the advantage of locating the individual
regions that define each mode in the time-frequency domain. This could be done with a
synchro-squeezed version of STFT or CWT by extracting a thin region around the instan-
taneous frequency curves. However, the reconstruction accuracy is not guaranteed. Specifi-
cally, using the synchro-squeezed approach, the selected regions may exclude areas of the
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Fig. 1 Example from Sect. 3.1. Top left: magnitude of non-zero learned coefficients. Top right: clustering
of non-zero coefficients into three modes. Middle row from left to right: reconstructed signal (in blue) and
the three extracted modes matching the colors of the top right clusters. Last row: error of the reconstruction
and the three modes compared to the ground truth
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Fig.2 Example from Sect. 3.1. Comparing different methods on the discontinuous time-series example
(Eq. (5)). Top to bottom rows are our proposed method (SRMD), EMD, EEMD, CEEMDAN, EWT, and
VMD. The first column shows the noiseless ground truth (in black) and the learned signal representation (in
blue). The remaining three columns are the first, second, and third modes where the true IMFs are plotted in
black and the learned IMFs are in blue
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Table 1 Relative ¢,-errors (%) between the reconstructed signal and the noiseless ground truth signal and
between the learned modes and the true modes for the experiments detailed in Sect. 3.1

Example Relative error E-SRMD EMD EEMD CEEMDAN EWT VMD

Sect. 3.1 Reconstruction 6.4 0 172.5 0 9 04
Mode 1 11.0 19.7 187.2 14.2 24.1 12
Mode 2 33.1 109.9 774 101.1 88.3 70.5
Mode 3 384 111.1 93.3 111.2 119.3 86.7

For SRMD, we run an ensemble SRMD following the idea from EEMD. That is, we run SRMD 100 times
and for each mode. We compute the error between the averaged learned mode and the true one. The small-
est errors for each learned mode are highlighted in blue

time-frequency domain that contain important information, or double count intersecting
regions like in Eq. (6).

In Fig. 2, the input signal and the three true intrinsic modes are shown in black, while
the extracted modes from our and the other five methods are shown in blue. Comparing the
errors, EMD and CEEMDAN reconstruct the signal with machine precision (the error is on
the order of 10~'%), VMD has a reconstruction error of only 0.4%, while EEMD and EWT
have poor signal reconstruction. One possible reason for the errors in EEMD and EWT
is that these methods do not guarantee that the sum of the reconstructed intrinsic modes
equals the original signal. In terms of signal decomposition, the VMD and EWT extract
the linear trend well (the second column of the last two rows in Fig. 2) while their learned
second and third modes agree with the corresponding ground truth ones on the time inter-
val ¢t € [0, 1] but create a false oscillatory pattern on the remaining interval z € [1,2]. This
indicates that the decomposition produced by the EWT and VMD approaches experiences
a non-trivial amount of mode mixing. The remaining methods used in this comparison
are unable to extract the true mode behaviors. The relative £,-errors between the learned
modes and the true modes and between the reconstructed signal and the noiseless ground
truth signal of our SRMD, as well as various state-of-the-art intrinsic mode decomposition
methods, are summarized in Table 1. Specifically, in Table 1 we take the average of each
mode over 100 trials to generate an ensemble version of SRMD (referred to E-SRMD),
showing that the average over the modes is robust.

3.2 Instantaneous Frequencies of Intersecting Time-Series

For the second example, we use a challenging benchmark test from [10]:

yi(@® = cos(t2 +1+ cos(t)),

¥o(t) = cos(8¢), 6)

where the true signal is given by
y(@) =y,@) +y,(), te€]0,10].

The instantaneous frequencies of those two modes y,(#) and y,(?) (see the definition in [10])
are given by w = (2t + 1 —sint) and w = 8, respectively. Thus intersect at about * =~ 3.38.
This example shows our method’s ability to obtain instantaneous frequencies and to deal
with over-segmentation. For example, we expect large magnitudes of the coefficients to be
near the instantaneous frequency curves and in phase.
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Fig.3 Example from Sect. 3.2. First row displays the results of our method: a plot of the magnitude of
the learned coefficients (top left) and a plot of the clusters (top right). Dots with a black outline indicate
coefficients that DBSCAN labeled as noise and are re-labeled with the nearest cluster (in scaled frequency
space). The true instantaneous frequencies of the two true IMFs are solid lines in black. The second row
plots a zoom-in (frequency range [0,4 Hz]) of the absolute values of the STFT and its synchrosqueezed
version. The third row plots a zoom-in of the absolute values of the CWT and its synchrosqueezed version

The dataset contains m = 1 600 equally spaced in time points from [0, 10] and we set
N =10m = 16000. Also, we set w,,,,, = 5, since all frequencies are less than 5 Hz. Note
that this scale is the physical frequency in Hz whereas the formula for the modes in this
example is given in the angular frequency unit rad/s, thus we set frgscale= 2n rather
than 1. The maximum distance between any two points in a neighborhood in the DBSCAN
clustering algorithm is set to € = 2.0.

The spectrograms plot the pairs {(7;,w,)}; that are retained by the sparse optimiza-
tion in SRMD, after discarding the pairs associated with zero coefficients, and seem to
reveal the instantaneous frequencies of the full input signal as indicated in the first row
of Fig. 3. Moreover, our method obtains a clearer spectrogram than the STFT, CWT, syn-
chrosqueezed transforms based on wavelets (Fig. 8 in [10]), modified STFT [43], and CWT
[42] (see Fig. 3). For the STFT and its synchrosqueezed results (second row), a Gaussian
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window with standard deviation 0.75 seconds = 60 samples, Fourier transform width
of 512 samples, and hop-size of 1 are used. The standard deviation was chosen to match
the window size used in our method. For the CWT and its synchrosqueezed version (third
row), 232 scales were chosen between 3.8 samples (& 21 Hz) and 512 samples (~ 0.16 Hz)
with logarithmic spacing (the default settings of the package ssqueezepy, see also [33]),
and so the maximum scale matches the Fourier transform width in the STFT used. Recall
that the formula used to convert between scales and frequencies is: frequency = “":z]%‘“e
To have a fair comparison, the Morlet wavelet was used since it utilizes a Gaussian win-
dow. In the Appendixes, we display the results of merging modes, when the number of
learned modes obtained from DBSCAN is greater than the number of true modes (see
Figs. 8 and 9 in Sect. 1). More comparisons on the intersection time series signal are also
shown in Appendix A (see Fig. 10).

3.3 Pure Sinusoidal Signals with Noise

In this example, we decompose a noisy signal into three modes where the noise level has a
larger amplitude than one out of the three modes. The input signal is defined as [11]

y(t) = cos(4nt) + 4—1‘ cos(48nt) + % cos(576mt) +, €~ N(0,0.1). @)

The hyperparameters are set to @,,, =500, A =2s, m =1000, N =50m, r = 15%,
threshold =0, € = 1.5 (for DBSCAN), min_samples =4, and frgscale = 1. Before
training, the signal is extended from the domain [0, 1] to [—1, 2] by an even periodic exten-
sion. The numbers of data points m and features N are thus scaled by a factor of 3 during
the training phase. To verify the stability of SRMD with respect to the randomness of the
random feature matrix, we run SRMD 100 times. For each time, we compute the relative
error between the noiseless ground truth and the reconstructed signal as well as the relative
errors between the true modes and the corresponding learned modes, under the assump-
tion that the number of learned modes is given (which is three for this example). We report
(mean, std) of SRMD’s relative errors as well as the relative errors of benchmark methods
in Table 2. More tests for this example are shown in Appendix B. Our methods provide the
smallest relative errors of the extracted modes for both cases.

Table2 Relative #,-errors (%) between the reconstructed signal and the noiseless ground truth signal and
between the true modes and the corresponding learned modes for experiments in Sect. 3.3

Example Relative error SRMD EMD EEMD CEEMDAN EWT VMD

Sect. 3.3 Reconstruction (1.6,0.6) 14.1 14.3 14.1 13.6 5.3
Mode 1 (1.0, 0.6) 25.6 25.4 25.8 2.5 2.3
Mode 2 (3.2, 1.3) 112.5 110.8 111.8 59.1 12.1
Mode 3 (13.6, 6.5) 148.1 122.2 143.8 100.5 53.9

For SRMD, we run 100 times and for each time, we compute the relative errors between the learned modes
and the true ones. The results in the SRMD column are (mean, std) of the relative errors
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Fig.4 Example from Sect. 3.4. Zoomed in plots. Original signal is sampled at 44.1 kHz, equally-spaced
downsampling is at 2.8 kHz (circles), and random downsampling (solid triangles) by a factor of 16

3.4 Musical Example

We use our method to decompose a two-second clip of a guitar and flute playing simultane-
ously. The representation into sparse random features is performed identically as before,
but the clustering is performed by splitting spectrogram with a frequency above and below
the frequency cutoff of 480 Hz. This cutoff is chosen from the visual information provided
by the plot of nonzero random features’ time-shift and frequency. This is similar to tra-
ditional signal processing techniques that rely on STFT to observe and isolate regions in
time-frequency space. Our method has the advantage of finding a sparse representation so
individual harmonics are better defined and the signal is denoised in the process.

We examine the decomposition results of our method in two cases when the input sig-
nal is either equally-spaced downsampling or random downsampling. An illustration of the
sampled data in both cases is presented in Fig. 4, where the original full signal is sampled
at 44.1 kHz, the equally-spaced downsampling is at 2.8 kHz, and the random sampling has
1/16th as many points as the original full signal. The hyperparameters of our method are
m=5107, N=10m, A = 0.03, and r = 10%. For the equally spaced downsampling, we
set w,,, = 2.8kHz/2 = 1378 Hz (the Nyquist frequency), whereas the random sampling
uses twice this with o, = 2.8 kHz.

The zoomed-in plots of the learned signals and modes from the equally-spaced and ran-
dom downsampled data (by a factor of 16) are plotted in Fig. 5. The results indicate that our
method works well even when the given data is sampled randomly. Moreover, random sam-
pling allows for higher frequencies in the flute to be captured since we are not limited by the
typical Nyquist rate. In this case, the maximum frequency of the features generated is twice
as high as the equally sampled, while maintaining the same number of generated features.

In Fig. 6, we plot the magnitude of learned non-zero coefficients (top left) and the clus-
tering of those coefficients into two modes (top right), the reconstruction signal and the two
learned modes (second row), as well as the corresponding errors (third row). The learned
audio files (stored on GitHub?) are close to the ground truth.

3.5 Gravitational Data

For a data-assisted discovery problem, we apply our method to a space-time distor-
tion dataset which was the first to observe gravitational waves [1]. The noisy input data
is preprocessed in the same way as in [1], which consists of whitening, filtering, and

2 https://github.com/Giang T Tran/SparseRandomModeDecomposition
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Fig.5 Example from Sect. 3.4. Zoomed-in plots of the learned signals and modes (blue) using SRMD as
compared to the original fully sampled signal (black). Left: results using equally-spaced data. Right: results
using random samples. The input signal is downsampled by a factor of 16

downsampling steps. The preprocessing steps are necessary to enhance the nonlinear wave
structure hidden under a layer of biases and noise that cannot immediately be seen from the
data directly outputted by the instruments. In addition, we also normalize the input data by
dividing the signal by the maximum value in order since the original signal is on the order
of 10~'°. The goal is to obtain an approximation to the waveform that captures the merging
event and to denoise the signal. The hyperparameters for our method are set to m = 861,
N=20m, A=0.01, and w,,,, =2048Hz. The parameter for the LASSO algorithm is
A =12. The top 3% or 5% largest non-zero coefficients show the merging and ringdown
events in Fig. 7. For comparison, we show the numerical relativity curves, i.e., the space-
time distortion measure on the gravitational interferometer.

3.6 Parameter Tuning and Limitations
We have shown that SRMD can better capture the correct modal separation. But for a full
comparison, we discuss one of the potential difficulties over the other mode decomposition

and signal representation approaches. In particular, the method has several parameters that
the user needs to tune for the particular problem. The tunable hyperparameters are the
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Fig.6 Example from Sect. 3.4. Results of our method with randomly downsampled input by a factor of
16. First row: magnitude of the non-zero learned coefficients (left), two learned clusters (right). Second
row: learned signal (blue, left) and the learned flute and guitar modes (middle and right). Last row: error
between the learned signals and the downsampled input

random feature matrix parameters (@, A,N), the optimization parameter n for the
SPGLI1 algorithm (or 4 in LASSO), and DBSCAN’s parameters min_samples, and €. The

which does not need tuning. This value

frequency is rescaled by frgscale =
max
rescales the frequency-time domain to improve the performance of the clustering algo-

rithm. As a general rule-of-thumb, we set the maximum w scale to w,,,, = T which can

be tuned but was not necessary on the experiments in this work. The main “free” hyperpa-
rameters are N, 7, A, and €. In the experiments, the number of randomly generated features
N varied between 5m to 50m, based on [9, 20]. In practice, while one could perform a
coarse-scale search, i.e., running the algorithm with a set of possible N in the range pro-
vided and evaluating the solution, the results are consistent within a large range of N due to
the sparse solver. For the basis pursuit parameter (in SPGL1), we used n\/E = 0.06/1yinpucl2s
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Fig.7 Example from Sect. 3.5. Left column: the largest 3% (first row) and 5% (second row) learned
nonzero coefficients overlayed on an STFT in the time-frequency domain. Right column: corresponding
learned signals (blue) and numerical relativity data (black). Time is given as seconds after September 14,
2015, at 09:50:45 UTC

which seem to consistently yield a reconstruction error of 6%. We must allow for some
error so that we can obtain a sparse representation, i.e., balancing regularity and represen-
tation, but the choice of relative error is data-dependent.

The sensitive tunable parameters are the window size A and the clustering algorithm.
The window size is set to A = 0.1 as default but does require some trial-and-error to match
the complexity of the signal’s frequency spread. The clustering neighborhood scale ¢ and
the core points min_samples also require user tuning. While we started with e = 0.2T as
an initial guess, the clustering component of the algorithm can have a small usable param-
eter range. In the Appendixes, we provide two examples where the output may not be rea-
sonable when the hyperparameters A or the DBSCAN hyperparameter € are not sufficiently
tuned.

Some additional limitations of this approach are as follows. If the random sampling
of the time-frequency domain does not properly cover the true frequencies, then the
method will perform poorly. This could be the case when one uses a very small number
of features, but it is often avoided by the suggested parameter discussion above. The
choice of w,,,, is to match the Nyquist sampling rate, which can be lowered if one has
prior information on the maximum frequency in the data. This can be an issue in some
datasets, but when prior information is limited then a large time-frequency range would
result in an increase in the computational cost. When the time-frequency domain has
clustered sparse regions, SRMD is robust since we leverage the sparse random feature
approach.
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4 Summary

We proposed a random feature method for approximating signals using a sparse time-fre-
quency representation. The model can be used for signal representation, denoising (includ-
ing outlier or corruption removal), and methods. The sparsification of the spectrogram
leads to a clearer separation between clusters and thus an adaptive mode decomposition.
Compared to other state-of-the-art mode decomposition approaches, the SRMD is able to
mitigate the issue of mode mixing, provide better separation between intersecting or over-
lapping spectrograms, and can capture jumps with fewer Gibbs artifacts. In our experi-
ments, we showed that the active (non-zero entries) of the sparse random feature coeffi-
cients concentration around the instantaneous frequencies and thus can provide additional
physical information for use in diagnostics and data-driven analysis. One important dis-
tinction from other approaches is that SRMD is independent of the sampling process, thus
data can be obtained in a random or non-uniform fashion. In addition, one can extend the
coherence-based results [19] or the restricted isometry property for random features [9] to
show that the learned model using the SRMD algorithm has a small generalization error.

Appendixes

As additional examples, we include more comparison results on the intersection time series
signal described in Sect. 3.2 as well as the experiments on a noisy signal where the noise
level has a larger amplitude than one of the modes (see Sect. 3.3) and on an overlapping
and noisy signal (see Sect. 3).

Appendix A: Comparing Different Methods on the Intersecting Time Series Example

In this section, we present our reconstructed signals as well as our learned modes from the
challenging intersecting time series in Sect. 3.2. Specifically, applying the DBSCAN on the
extracted time-frequency pairs {(7;, ®;)}; yields three clusters denoted by green triangles,
orange circles, and orange squares (see Fig. 3 (right figure in the first row)). The corresponding
learned modes are plotted in Fig. 8. To reduce the decomposition to two modes, we keep the
mode with the largest £,-norm and combine the two learned modes with the smallest £,-norm
to construct the second mode, which is shown in Fig. 9. Our proposed algorithm provides a
reasonable extraction of modes where the errors between the learned modes and the true ones
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Fig.8 Example from Sect. 3.2. The three modes from SRMD associated with the clusters: orange circles,
green triangles, and orange squares from Fig. 3 (left to right)

@ Springer



Communications on Applied Mathematics and Computation (2024) 6:879-906 897

2 1.0 “ 2

5 i " H' 1
g ! 05\ | \\ !
5 o \ U \\‘ || A
&0 3 00 | j w g 0
5 = L]V ‘ s
o -1 =05 | || '” -1
[+4 ‘\ |

> -1.0 V 5

0 5 10 0 5 10 0 5 10
Time Time Time
0.3 1.0 1.0

=
o
° 02
@ § 0.5 é 0.5
'5 0.1 o >
- wn w
S 00 - 00 ~ 0.0
7 3 3
2 0.1
S g -05 2 -05
g -02

-0.3 —1:0 -1.0

0 5 10 0 5 10 0 5 10

Fig. 9 Example from Sect. 3.2. Decomposition results of our proposed SRMD method into two modes.
First row: noiseless ground truth signal (in black) with the learned signal (in blue) of the full signal (top)
and the two learned modes. Last row from left to right: errors between noiseless ground truth and the
learned representation, between the true modes and the extracted modes

are almost zero everywhere, except on a time-shift region corresponding to the intersection of
instantaneous frequencies. As seen in Fig. 10, the other approaches have difficulty obtaining
the two modes, likely due to the intersecting of frequencies in the spectrogram.

In Fig. 10, we compare the reconstruction and the decomposition results of our method
versus those obtained from some of the state-of-the-art intrinsic mode decomposition
methods (EMD, EEMD, CEEMDAN, EWT, and VMD) on the intersecting time series sig-
nal given in Sect. 3.2.

Appendix B: Comparison Results on Pure Sinusoidal Signals with Noise

In this section, we present our reconstructed signals as well as our learned modes from
the challenging noisy tri-harmonic signal described in Sect. 3.3. In particular, in Fig. 11,
we plot the time-frequency pairs associated with non-zero coefficients (top left), the clus-
tering of those non-zero coefficients (top right), the reconstruction signal and the three
learned modes (second row), and the corresponding errors (third row). Our method can
extract the first two learned modes with high accuracy. Note that both VMD (see [11])
and our method (see Fig. 11) have difficulty in extracting the weak and high-frequency
mode y;(f) = 1—16005(5761:[). Nevertheless, our method can identify the frequencies of
all three modes. More precisely, the median frequencies of the three learned clusters are
1.99, 24.03, and 288.02 Hz, which are very close to the ground truth frequencies 2, 24,
and 288 Hz.
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«Fig. 10 Example from Sect. 3.2. Comparing different methods on the intersecting time-series example.
Top to bottom rows are SRMD, EMD, EEMD, CEEMDAN, EWT, and VMD. The first column displays
the noiseless ground truth (in black) and the learned signal representation (in blue). The remaining two col-
umns are the two modes, where the true IMFs are plotted in black and the learned IMFs are in blue

Appendix C: Overlapping Time-Series with Noise
In this experiment, we investigate an example with overlap. The input signal y(¢) is the
summation of two modes y, () = F ! {Y,}(®) and y,(t) = F~ ! {Y,}(¢) with overlapping fre-

quencies and is contaminated by noise:

r”ytrue”2
vm

Here F~! {Y;} denotes the inverse Fourier transform of Y; fori = 1,2, where

YO =Y +e=yO) + 1) +€, €~ 0, (C1)
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Fig. 11 Example from Sect. 3.3. First row: the noisy input signal. Second row: magnitude of non-zero
learned coefficients (left) and learned clusters (right). Third row from left to right: reconstructed signal
(in blue) and the three extracted modes (in blue) versus the corresponding noiseless signal and modes (in
black). Last row: error of the reconstruction and the three IMFs compared to the ground truth
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Fig. 12 Example from Appendix C. Ground truth (left) and noisy input with r = 25% (right)

for k € Z and ¢ € [0, 1]. Note that the modes y,(#) and y,(f) produce Gaussians in the
Fourier domain centered at k = 16 and 20 Hz, respectively. The leading term, me ik,
centers the wave packets to t = 0.5s where m = 160 is the total number of samples. For
the SRMD algorithm, the hyperparameters to generate the basis are set to w,,, =40,
N =20,m = 3200, and A = 0.2. The hyperparameter for the DBSCAN algorithm is set to
=15

The noiseless and noisy time series with r = 25% are shown in Fig. 12. All recon-
struction and decomposition results will be compared against the true signal (or modes)
Vieue (), ¥1 (1), and y,(r). We compare our results with other methods applied to noisy signals
with different noise ratios r = 5%, 15%, and 25%. From the results in Fig. 13, we see that
only VMD and our method properly reconstruct and decompose the noisy signal. Moreo-
ver, when the noise level r is small (5%), the VMD approach produces comparable results
with our method. When r increases, our method is still able to capture the intrinsic modes
and denoise the input signal. On the other hand, the VMD is able to identify some aspects
of the two intrinsic modes but is polluted by noise, see Figs. 14 and 15.

The clusters of the non-zero coefficients obtained by SRMD applied to the noisy signal
with the noise levels r = 5%, 15%, and 25% are shown in Fig. 16. Note that the clusters sur-
round the two Gaussian peaks (16 Hz and 20 Hz) that define the true input signal. The other
features obtained by the SRMD provide slightly corrects to the overall shape to ensure the
reconstruction error is below the specified upper bound. This implies one has the flexibility
in choosing the width and number of random features since additional features can be used
to ensure the reconstruction is reasonable.

Appendix D: Example on Parameter Tuning and Limitations

As we discuss in Sect. 3.6, the window size A and the clustering neighborhood scale
are sensitive tunable parameters. For example, in the discontinuous time-series example
(see Sect. 3.1), if € =0.06 (instead of 0.1), the non-zero learned coefficients align with
the true instantaneous frequencies. However, the learned modes are not reasonable due to
wrong clusters (see Fig. 17). On the other hand, if € = 0.15, although the non-zero learned
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Fig. 13 Example from Appendix C. Decomposition results with r = 5% noise using six different meth-
ods. Top to bottom rows: SRMD, EMD, EEMD, CEEMDAN, EWT, and VMD. First column: the noiseless
ground truth (black) and the learned signal (blue). Middle and last columns: the first and second ground
truth IMFs (black) with the learned IMFs (blue)
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Fig. 14 Example from Appendix C. Decomposition results with » = 15% noise using SRMD (first row)
and VMD (second row). First column: the noiseless ground truth (black) and the learned signal (blue). Mid-
dle and last columns: the first and second ground truth IMFs (black) with the learned IMFs (blue)
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Fig. 15 Example from Appendix C. Decomposition results with » = 25% noise using SRMD (first row)
and VMD (second row). First column: the noiseless ground truth (black) and the learned signal (blue). Mid-
dle and last columns: the first and second ground truth IMFs (black) with the learned IMFs (blue)
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Fig. 16 Example from Appendix C. First column: magnitude of non-zero learned coefficients for noisy
signals with r = 5%, 15% , and 25%. Second column: two learned clusters (green and orange)

coefficients still align with the true instantaneous frequencies, Algorithm 2 can not extract
the mode since the clustering part is not able to cluster the set S.

Finally, if we choose the window size A too big or too small, the non-zero learned coef-
ficients may not align well with the instantaneous frequencies or make it difficult to cluster
(see Fig. 18).
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Fig. 17 Example from Sect. 3.1 with DBSCAN hyperparameter £ = 0.05.  First row from left to right:
magnitude of non-zero learned coefficients used for DBSCAN and clustering of non-zero coefficients into
three modes. Second row from left to right: three extracted modes
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Fig. 18 Example from Sect. 3.1 with various window sizes A. From left to right: clustering of non-zero
coefficients (the true instantaneous frequencies are in black) for A = 0.02 (left) and A = 0.2
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