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Abstract

Signal decomposition and multiscale signal analysis provide many useful tools for time-

frequency analysis. We proposed a random feature method for analyzing time-series data 

by constructing a sparse approximation to the spectrogram. The randomization is both in 

the time window locations and the frequency sampling, which lowers the overall sampling 

and computational cost. The sparsification of the spectrogram leads to a sharp separation 

between time-frequency clusters which makes it easier to identify intrinsic modes, and thus 

leads to a new data-driven mode decomposition. The applications include signal represen-

tation, outlier removal, and mode decomposition. On benchmark tests, we show that our 

approach outperforms other state-of-the-art decomposition methods.

Keywords Sparse random features · Signal decomposition · Short-time Fourier transform

Mathematics Subject Classification 42A99 · 65T99

1 Introduction

Time-frequency analysis is an important tool for analyzing and leveraging information 

from signals. Various time-frequency approaches lead to a particular decomposition of 

signals into important time-varying features which can illuminate intrinsic behaviors, be 

used for analytics, or assist in smoothing the signal. For example, the classical short-time 

Fourier transform (STFT) extracts a time-varying representation by localizing the signal 

in time using a finite window length and applying the Fourier transform to each localized 

segment. Since the window length is fixed, the resulting analysis leads to a uniform time-

frequency resolution. The continuous wavelet transform (CWT) constructs a representation 

of the signal using a variable time window by scaling the mother wavelet and thus leads 

to a multiscale representation of the signal. Modern techniques focus on addressing sev-

eral issues with signal decompositions, specifically, data-driven representations that better 

 * Giang Tran 

 giang.tran@uwaterloo.ca

1 University of Waterloo, Waterloo, ON, Canada

2 University of British Columbia, Vancouver, BC, Canada

3 University of California, Los Angeles, CA, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s42967-023-00273-x&domain=pdf


880 Communications on Applied Mathematics and Computation (2024) 6:879–906

1 3

reflect the signal’s intrinsic behavior, sharpen/localize the spectrogram, and are robust to 

noise, outliers, or non-uniform sampling.

The empirical mode decomposition (EMD) [24] is an adaptive time-frequency method 

for analyzing and decomposing signals, and has been shown to be useful in a wide range of 

signal processing applications. In particular, EMD decomposes a given signal into intrin-

sic mode functions (IMFs) which carry information at varying frequency scales by detect-

ing local extrema and estimating upper and lower envelopes. This effectively partitions the 

spectrum into certain frequency bands which are represented by the learned IMFs. EMD 

suffers from some problems including mode mixing, i.e.，the appearance of similar fre-

quency information shared between distinct IMFs，and sensitivity to noise and sampling. 

The ensemble EMD (EEMD) [47] learns the IMFs using an ensemble of the given signal 

perturbed by random (Gaussian) noise. This helps to mitigate the mode mixing issue by 

leveraging results on EMD applied to white noise [13]. However, the approximated signals 

often retain aspects of the noise and the perturbations may lead to a different IMF decom-

position. In [45], the complete EEMD with adaptive noise (CEEMDAN) added different 

(synthetic) noise to the stages of the decomposition, which led to more stable results. Since 

EEMD-based approaches average over several applications of EMD, they often come with 

an increased cost. In [23], the signal was represented using an IMF-like form and its time-

varying parameters are optimized using a total variational penalty on the third derivative of 

the coefficients. The variational mode decomposition (VMD) [11] decomposes the signal 

into a sum of IMFs using an optimization problem (implemented by the split Bregman 

or ADMM method [19]). The IMFs are obtained simultaneously within the optimization 

process and the resulting decompositions are more stable to noise than the standard EMD 

approaches.

The synchrosqueeze transform (SST) [10] improves the CWT by calculating instantane-

ous frequencies and “squeezing” them through a reassignment algorithm, namely, shifting 

them to the center of the time-frequency region [2]. This leads to sharper time-frequency 

representations than the STFT and CWT which are often limited by the finite sampling 

lengths and can create spectral smearing. In addition, the sharpening essentially prunes 

the unnecessary wavelet coefficients, thus leading to a sparser representation. Various 

SST-based methods have been proposed using other signal transforms such as the S-trans-

form [25] and the wavelet packet transform [50]. The empirical wavelet transform (EWT) 

[16] combines aspects of EMD with the wavelet transform. The main idea behind EWT 

is to partition the Fourier domain and build empirical wavelet filters from the segmented 

spectrum. This was done by identifying the local maxima of the amplitude in the Fou-

rier domain and partitioning the regions to separate the maxima [27]. In [17], the authors 

proposed a fast scale-space algorithm to automatically detect meaningful modes from a 

histogram without assuming the knowledge about the number of modes. The EWT was 

extended to two dimensions for applications in imaging and can be related to other wave-

let-like transforms [18].

In this work, we propose a signal representation and decomposition algorithm based on 

a sparse random feature approximation [20] to the continuous STFT. The previous para-

graph summarized several successful signal decomposition techniques, some of which 

are developed directly from a continuous transform (e.g., STFT, SST, CWT, etc.) or more 

generally a signal-frequency decomposition form (e.g., EMD and the related methods). In 

this work, we represent the signal using the continuous STFT and develop a randomized 

approach for approximation of the continuous integral formulation without needing to 

resolve the time-frequency domain. The methods are related to the random feature models, 

which are used in regression, classification, and more generally supervised learning.
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Random feature models (RFMs) are a randomized nonparametric approximation used 

in interpolation and regression problems [36–38]. It can be viewed as a kernel-based 

approach or as a class of artificial neural networks. Specifically, the standard RFM archi-

tecture consists of a two-layer fully connected neural network whose single hidden layer 

is randomized and not trained [5, 29, 32, 36, 37]. The only layer that is trained is the 

output layer thus yielding a linear training model. There is a wide range of theoretical 

results for RFMs used in interpolation or regression [3, 20, 26, 31, 38, 39, 41, 46]. In 

[37]，N random features are used to yield a uniform error bound of O(N
−

1

2 + m
−

1

2 ) for 

target functions in a certain class when the RFM is trained using Lipschitz loss func-

tions. For the L2 loss, if the number of features scales like N ∼

√

m log m where m is the 

number of data points, then the test error is bounded by O(m
−

1

2 ) [39], see also [26]. This 

result requires that the target function f is in the associated reproducing kernel Hilbert 

space (RKHS) and some additional assumptions on the kernel. By analyzing the struc-

ture of the RFM with respect to the dimension d and the parameters N and m, results 

found in [9, 31] showed that regression using the RFM often achieves their minimal risk 

in the overparameterized region, where the number of random features exceeds the num-

ber of data samples.

One family of approaches to learn RFMs in the overparameterized regime is based on 

imposing a sparsity prior in the number of features. In [20], the �1 basis pursuit denois-

ing problem was used to obtain a low complexity RFM (measured in terms of the num-

ber of active random features), see also [12]. The test error scales like the standard RFMs 

and improves when the target function has fast decay relative to the random features [9, 

20]. In [40], a hard ridge-based thresholding algorithm, called HARFE, was proposed to 

iteratively obtain sparser RFMs by solving a sparse ridge regression problem [4, 22, 28, 

30, 48]. A random feature pruning method called the SHRIMP algorithm was proposed in 

[49]. The approach iteratively prunes an overparameterized RFM by alternating between 

a thresholding step and a regression step and was shown to perform well on both real and 

synthetic data. As noted in [49], RFMs with sparsity priors can also be motivated by the 

lotto ticket hypothesis, which asserts the existence of small subnetworks within overparam-

eterized neural network who match or improve on the accuracy of the full network [15].

1.1  Our Contributions

Some of our main algorithmic and modeling contributions are as follows.

• We propose a randomized sparse time-frequency representation, which extends and 

further develops the sparse random feature method [20, 40]. Specifically, our model 

allows for the use of compressive sensing-like techniques to spectrogram analysis 

with a less restrictive “basis”, i.e., the random feature space. In addition, the rand-

omization allows for non-equally spaced points in both time and frequency.

• We show that our approach produces a mode decomposition with less mode mixing, 

better separation of modes, and fewer Gibbs phenomena than other state-of-the-art 

approaches. The sparsity prior sharpens the spectrogram, which leads to a clearer sepa-

ration between modes and allows for simple clustering of the time-frequency regions.

• Our method can also be used for outlier or corruption removal, in particular, removing 

nonlinear and highly correlated noise from the data (see Sect. 3.5). One application is 
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for data-assisted modeling for scientific discovery, where our approach can be used to 

guide one to a particular structure or waveform with prior templates or information.

• Our approach does not require that the time series is obtained from equally spaced 

time points, which makes it applicable for a wider range of datasets where standard 

approaches fail. In fact, the method does not depend strongly on the sampling pro-

cess, unlike other state-of-the-art approaches.

2  Sparse Random Feature Representation for Time‑Series Data

The proposed method builds from the continuous STFT. That is, we represent a signal 

f ∈ L1([0, T]) by

where � is the transform function and W is a (positive) window function such that 

∫ ∞

−∞
W(t − �)d� = 1 . The assumptions are that the transform function is band-limited, 

i.e., �(�, �) = 0 for all |�| > B, and that for a fixed � the support of �(�, �) is small. Note 

that since f ∈ L1([0, T]) , the transform is bounded, i.e., there exists an M > 0 such that 

|�(�, �)| ⩽ M for all (�, �) . Let N be the number of total random features used in the 

approximation of the integral above. In particular, using the RFM, we approximate the 

integrals using N = N
1
N

2
 random features with N

1
 being the number of random frequen-

cies and N
2
 being the number of random windows:

where 
{

�
k

1

}

k
1
∈[N

1
]
 and 

{

�
k

2

}

k
2
∈[N

2
]
 are independent of each other and are drawn i.i.d. 

�
k1
∼ U[0, B] and �

k2
∼ U[0, T] . The goal is to learn a representation of the target signal f 

using m sampling points {t
�
}
�∈[m] ⊂ [0, T] . The sampling points can either be equally 

spaced in time or can be drawn i.i.d. from a probability measure �(t) along the interval 

[0, T]. The given output measurements y
�
 are y

�
= f (t

�
) + e

�
 , where the noise or outliers 

{e
�
}
�∈[m] are either bounded by constant E > 0 , i.e., |e

�
| ⩽ E for all � ∈ [m] , or are random 

Gaussian. Note that if e
�
∼ N(0, �2) and m ⩾ 2 log

(

�
−1
)

 , then the noise terms e
�
 are 

bounded by E = 2� for all � ∈ [m] with probability exceeding 1 − �.

We reindex (k1, k2) so that the N random feature functions take the form

with the new index j ∈ [N] . Thus the approximation becomes

where the coefficients cj have also been reindexed. The training problem becomes learn-

ing coefficients cj so the approximation 
∑N

j=1
cj �j(t�) is close to the given data y

�
 . Let 

A ∈ ℂ
m×N be the random feature matrix whose elements are defined as a

�,j = �j(t�) , 

c = [c1,⋯ , c
N
]T , and y = [y1,⋯ , y

m
]T . By assumption, the time-frequency representation 

f (t) = ∫
∞

−∞

f (t)W(t − �)d� = ∫
∞

−∞
∫

∞

−∞

�(�, �)W(t − �) exp (i�t)d�d�,

f (t) = ∫
∞

−∞
∫

B

−B

�(�, �)W(t − �) exp (i�t)d�d� ≈

N2
∑

k2=1

N1
∑

k1=1

ck1,k2
W(t − �k2

) exp (i�k1
t),

�j(t) ∶= W(t − �j) exp (i�jt)

(1)f (t) ≈

N
∑

j=1

cj �j(t),
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is sparse. So we learn c by solving an �1 regularized least squares problem. Following [20], 

a sparse random feature model can be trained with the �1 basis pursuit denoising problem 

[6, 7, 14]:

where � is a user-defined parameter that is related to the noise bound E. It can be shown 

that certain random feature matrices are well-conditioned to sparse regression when trained 

using Eq. (2) [9, 20]. When the input data are contaminated by large noise (such as the 

gravitational distortion data in Sect. 3.5), we solve the unconstrained �1 optimization prob-

lem (LASSO) [21, 44]:

Although the unconstrained �1 optimization problem is equivalent to the basis pursuit 

denoising problem under a mapping between � > 0 and � > 0 [14]. Empirical tests for 

this particular application showed that the LASSO form was more forgiving while tuning 

parameters. We expect that this is a consequence of the specific choice of algorithms more 

than the specific formulation.

2.1  Sparse Random Feature Representation Algorithm

In the algorithm, we replace the complex exponential by a sine function with a random 

phase �j and the window function is defined by the Gaussian with a fixed variance Δ2:

where �j ∼ U(0, T),�j ∼ U(0,�max), and �j ∼ U(0, 2π). Given a set of time points 
{

t
�

}

�∈[m]
 , 

we define the random short-time sinusoidal feature matrix A = [a
�,j] ∈ ℝ

m×N by

While the standard approaches assume that data is obtained from an evenly spaced time 

series, we do not place any restrictions on the sampling of the time points (except that 

they are distinct). This is an important distinction compared to other signal decomposition 

approaches. In particular, we optimize the coefficients c using a sparse optimization prob-

lem given by Eq. (2), with the random short-time sinusoidal feature matrix, which can be 

shown to lead to well-conditioned training even in the low data limit [9, 20]. As an added 

benefit, the random sampling of time points reduces the computational and storage cost, 

which depends on the number of samples and the number of features. The reconstruction 

algorithm is summarized in Algorithm 1.

(2)c
♯ = argmin

c∈ℂN

‖c‖1, s.t. ‖Ac − y‖2 ⩽ �
√

m,

(3)c
♯ = argmin

c∈ℂN

�‖c‖
1
+

1

2m
‖Ac − y‖2

2
.

(4)�j(t) = exp

(

−
(t − �j)

2

2Δ2

)

sin(2π�jt + �j),

a
�,j = �j(t�) = exp

(

−
(t
�
− �j)

2

2Δ2

)

sin(2π�jt� + �j).
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T

2.2  Sparse Random Mode Decomposition (SRMD)

In this section, we discuss how to utilize the learned coefficients c♯ to decompose the signal 

into meaningful modes. It is based on the observation that the sparse optimization extracts 

a sparse time-frequency representation, which has the added benefit of forming a simple 

decomposition due to the sharpening of the spectrogram. Specifically, we first collect all pairs 

(�j,�j) corresponding to the non-zero learned coefficient c
♯

j
 , and denote the support set by

We then partition S into clusters using the clustering method DBSCAN. The learned coef-

ficients are grouped based on those clusters and these groups define the corresponding 

IMFs. An advantage of DBSCAN is that we do not need to specify the number of extracted 

modes, which is useful for blind source separation. We discuss in Sect.  3 how to merge 

modes together if the number of modes is given. The sparse random mode decomposition 

(SRMD) algorithm is summarized in Algorithm 2.

T

S ∶= {(�j,�j) ∣ j ∈ [N], c
♯

j
≠ 0}.
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3  Numerical Experiments

In this section, we verify the applicability and consistency of SRMD on five decomposi-

tions and signal representation examples, including three challenging synthetic time-series 

from [10, 11] and two real time-series (musical and gravitational distortion datasets). In 

Sect. 3.1, we display the learned coefficients obtained from Algorithm 2 in the time-fre-

quency space (spectrogram) and plot the corresponding modal decomposition (i.e., clus-

ters) using DBSCAN. While more sophisticated clustering algorithms can be used, one 

of the benefits of our algorithm is that it produces a sparse spectrogram that can be more 

easily clustered when the original signal has sharp time-frequency bands or groups. We 

also compare our approach with some of the state-of-the-art intrinsic mode decomposition 

methods, including the EMD [24], ensemble EMD (EEMD) [47], complete EEMD with 

adaptive noise (CEEMDAN) [45], EWT [16], and VMD [11]. Additionally, in Sect. 3.2, 

we compare our method to the spectrogram produced by the short-time Fourier transform 

(STFT), CWT, and SST [10]. In Sect.  3.3, we investigate the robustness of our method 

with respect to noise and the stability of our reconstruction and decomposition results with 

respect to the randomness of the random feature. In particular, we generate a musical time 

series using two modes (flute and guitar) and thus can compare our method to the ground 

truth modes when the data has unknown acquisition and background noise. As an applica-

tion to data-assisted scientific discovery, we show that our approach can extract an approxi-

mate waveform for the merging event of two black holes without the need for templates 

(based on the LIGO dataset). More experiments on benchmark examples are shown in the 

Appendixes.

All tests were performed using Python and our codes as well as the corresponding 

audio files for the musical example are available on GitHub1. PyEMD [34, 35] was 

used to test EMD and the related methods, while ����� and ����� [8] were used to 

test EWT and VMD, respectively. The hyperparameters used in all methods are chosen 

to optimize their resulting outputs and are based on the suggested parameters from the 

papers’ methods or documentation. More precisely, for EMD, EEMD, and CEEMDAN, 

the threshold values on standard deviation, on energy ratio, and on scaled variance per 

IMF check are ���_��� = 0.1 , ������_�����_��� = 0.1 , and ����_��� = 0.01 , respec-

tively. For EEMD and CEEMDAN, the number of noise-perturbed ensemble trials is 

set to trials = 100 . For VMD, we set the balancing parameter of the data-fidelity con-

straint alpha = 50 , the time-step of the dual ascent tau = 1 , the convergence tolerance 

tol = 10
−6 , and all frequencies � are initialized randomly.

For the hyperparameters used in SRMD, we need to choose (�
max

,Δ, N) to generate 

the random feature matrix A , the noise-level parameter � for the SPGL1 algorithm, and 

�������� , ���_������� , and � for the DBSCAN. We used the following values unless 

stated otherwise. The maximum possible frequency �
max

 is set to the Nyquist rate, 

�
max

=

m

2T
 , the window size is set to Δ = 0.1 , and the number of randomly generated 

features N can range from 5m to 50m depending on the complexity of the signal. The 

basis pursuit parameter used in SPGL1 is set to �
√

m = 0.06‖yinput‖2 , which should 

yield a reconstruction error of 6% . Also, since the time points and the frequencies are at 

different scales, we multiply all learned frequencies by �������� , which is set by 

default to �������� =

T

�
max

 before applying the clustering algorithm on the learned 

1 https:// github. com/ Giang TTran/ Spars eRand omMod eDeco mposi tion

https://github.com/GiangTTran/SparseRandomModeDecomposition
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time-frequency pairs. The radius of a cluster’s neighborhood in time-frequency space � 

is chosen based on the structure of the groups of modes in the spectrogram, noting that 

a larger value for � yields fewer clusters. When �������� is set to the default value, we 

used � = 0.2T  as a starting guess. Lastly, we set the number of modes in a neighborhood 

required to be considered a core point ���_������� = 4 or 5.

In EWT, VMD, and SRMD, the number of intrinsic modes is specified for each 

experiment. For visualization and comparison, when the number of learned modes 

agrees or exceeds the number of true modes, we pair the learned and true modes based 

on the minimum �
2
 distance. In particular, let {ylearned

k
}K

k=1
 be the learned modes and 

{ytrue

p
}P

p=1
 be the true modes. Then we pair the true and the learned modes by reindexing 

the learned modes using

for all p ∈ [P] . The remaining learned modes that are not paired are then combined into the 

learned mode with the highest error. The pairs (ylearned-reindexed
p

, y
true
p

) with p ∈ [P] are used 

to compute the relative errors of our SRMD. In practice when the ground truth modes are 

not known, if there are n more learned modes than true modes, we merge mode n + 1 with 

the mode that has the smallest �
2
 norm. The remaining modes are discarded. This is based 

on the assumption that the number of modes is known and their �
2
 norms are comparable. 

For comparison with EMD, EEMD, and CEEMDAN, their extra modes are merged in the 

order they are extracted, i.e., the merging is based on their frequency scaling. This avoids 

the need to fine-tune their hyperparameters. This is based on the rationale that the excess 

modes occur from over-decomposition and that the mode with the highest error could be 

improved by merging the excess modes back together. Although the merging step may not 

be necessary for some applications, we use it to conduct a fair comparison on benchmark 

tests. Lastly, we plot the magnitude of the non-zero entries of the learned coefficient vector 

c on the spectrogram. Note that all non-zero coefficients can be re-assigned to a positive 

value after shifting the phase of the corresponding basis term. This leads to a sparse spec-

trogram representation of the signal.

3.1  Discontinuous Time‑Series

The first example is from [10], where the input signal y(t) = y
1
(t) + y

2
(t) + y

3
(t) for 

t ∈ [0, 2] is a composition of a linear trend y
1
(t) , a pure harmonic signal y

2
(t) , and a har-

monic signal with a nonlinear instantaneous frequency y
3
(t):

where 1
I
(⋅) denotes the indicator function over the interval I  . The input signal has a sharp 

transition at t =
5

4
 . The number of modes is fixed at 3 for this experiment. The dataset con-

tains m = 320 points equally spaced in time from [0, 2] and the total number of random 

features in SRMD is set to N = 50m = 16 000 . For DBSCAN, we set the minimum number 

ylearned-reindexed

p
∶= argmin

k∈[K]

‖ylearned

k
− ytrue

p
‖

2

(5)

⎧⎪⎪⎨⎪⎪⎩

y1(t) = πt 1[0,5∕4)(t),

y2(t) = cos(40πt) 1[0,5∕4)(t),

y3(t) = cos

�
4

3

�
(2πt − 10)3 − (2π − 10)3

�
+ 20π(t − 1)

�
1(1,2](t),



887Communications on Applied Mathematics and Computation (2024) 6:879–906 

1 3

of core points in a cluster to min_samples = 3 and the maximum distance between any two 

points in a neighborhood is set to � = 0.1.

Figure 1 shows that SRMD can decompose the discontinuous signal with minimal mode 

mixing, i.e., a clear separation between the three modes. In particular, the three learned 

SRMD modes are close to the ground truth modes with the errors mainly occurring at 

the point of discontinuity t =
5

4
 (see also Fig. 2). It may be possible to avoid the error at 

the discontinuity with a choice of basis better suited to jumps such as the function associ-

ated with Haar wavelets (i.e., the square function) instead of the sine function. Even so, 

Fig. 2 shows that the SRMD output using the sine function, whose wavelet equivalent is 

not well-suited to discontinuities, is still sufficient for our method to outperform existing 

methods. Moreover, the representation and clustering plots of Fig. 1 show that the sparse 

spectrogram and modal decomposition are indeed sharp and well-separated. This is a better 

separation than the various STFT and CWT, and their synchro-squeezed versions shown in 

Figs. 1, 2, and 6 of [10]. Additionally, SRMD has the advantage of locating the individual 

regions that define each mode in the time-frequency domain. This could be done with a 

synchro-squeezed version of STFT or CWT by extracting a thin region around the instan-

taneous frequency curves. However, the reconstruction accuracy is not guaranteed. Specifi-

cally, using the synchro-squeezed approach, the selected regions may exclude areas of the 

Fig. 1  Example from Sect.  3.1. Top left: magnitude of non-zero learned coefficients. Top right: clustering 

of non-zero coefficients into three modes. Middle row from left to right: reconstructed signal (in blue) and 

the three extracted modes matching the colors of the top right clusters. Last row: error of the reconstruction 

and the three modes compared to the ground truth
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Fig. 2  Example from Sect.  3.1. Comparing different methods on the discontinuous time-series example 

(Eq. (5)). Top to bottom rows are our proposed method (SRMD), EMD, EEMD, CEEMDAN, EWT, and 

VMD. The first column shows the noiseless ground truth (in black) and the learned signal representation (in 

blue). The remaining three columns are the first, second, and third modes where the true IMFs are plotted in 

black and the learned IMFs are in blue
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time-frequency domain that contain important information, or double count intersecting 

regions like in Eq. (6).

In Fig. 2, the input signal and the three true intrinsic modes are shown in black, while 

the extracted modes from our and the other five methods are shown in blue. Comparing the 

errors, EMD and CEEMDAN reconstruct the signal with machine precision (the error is on 

the order of 10
−16 ), VMD has a reconstruction error of only 0.4% , while EEMD and EWT 

have poor signal reconstruction. One possible reason for the errors in EEMD and EWT 

is that these methods do not guarantee that the sum of the reconstructed intrinsic modes 

equals the original signal. In terms of signal decomposition, the VMD and EWT extract 

the linear trend well (the second column of the last two rows in Fig. 2) while their learned 

second and third modes agree with the corresponding ground truth ones on the time inter-

val t ∈ [0, 1] but create a false oscillatory pattern on the remaining interval t ∈ [1, 2] . This 

indicates that the decomposition produced by the EWT and VMD approaches experiences 

a non-trivial amount of mode mixing. The remaining methods used in this comparison 

are unable to extract the true mode behaviors. The relative �
2
-errors between the learned 

modes and the true modes and between the reconstructed signal and the noiseless ground 

truth signal of our SRMD, as well as various state-of-the-art intrinsic mode decomposition 

methods, are summarized in Table 1. Specifically, in Table 1 we take the average of each 

mode over 100 trials to generate an ensemble version of SRMD (referred to E-SRMD), 

showing that the average over the modes is robust.

3.2  Instantaneous Frequencies of Intersecting Time‑Series

For the second example, we use a challenging benchmark test from [10]:

where the true signal is given by

The instantaneous frequencies of those two modes y
1
(t) and y

2
(t) (see the definition in [10]) 

are given by � = (2t + 1 − sin t) and � = 8 , respectively. Thus intersect at about t∗ ≈ 3.38 . 

This example shows our method’s ability to obtain instantaneous frequencies and to deal 

with over-segmentation. For example, we expect large magnitudes of the coefficients to be 

near the instantaneous frequency curves and in phase.

(6)

{

y1(t) = cos
(

t
2 + t + cos(t)

)

,

y2(t) = cos(8t),

y(t) = y1(t) + y2(t), t ∈ [0, 10].

Table 1  Relative �
2
-errors (%) between the reconstructed signal and the noiseless ground truth signal and 

between the learned modes and the true modes for the experiments detailed in Sect. 3.1

For SRMD, we run an ensemble SRMD following the idea from EEMD. That is, we run SRMD 100 times 

and for each mode. We compute the error between the averaged learned mode and the true one. The small-

est errors for each learned mode are highlighted in blue

Example Relative error E-SRMD EMD EEMD CEEMDAN EWT VMD

Sect. 3.1 Reconstruction 6.4 0 172.5 0 9 0.4

Mode 1 11.0 19.7 187.2 14.2 24.1 12

Mode 2 33.1 109.9 77.4 101.1 88.3 70.5

Mode 3 38.4 111.1 93.3 111.2 119.3 86.7
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The dataset contains m = 1 600 equally spaced in time points from [0, 10] and we set 

N = 10m = 16 000 . Also, we set �
max

= 5 , since all frequencies are less than 5 Hz. Note 

that this scale is the physical frequency in Hz whereas the formula for the modes in this 

example is given in the angular frequency unit rad/s, thus we set frqscale= 2π rather 

than 1. The maximum distance between any two points in a neighborhood in the DBSCAN 

clustering algorithm is set to � = 2.0.

The spectrograms plot the pairs {(�j,�j)}j that are retained by the sparse optimiza-

tion in SRMD, after discarding the pairs associated with zero coefficients, and seem to 

reveal the instantaneous frequencies of the full input signal as indicated in the first row 

of Fig. 3. Moreover, our method obtains a clearer spectrogram than the STFT, CWT, syn-

chrosqueezed transforms based on wavelets (Fig. 8 in [10]), modified STFT [43], and CWT 

[42] (see Fig. 3). For the STFT and its synchrosqueezed results (second row), a Gaussian 

Fig. 3  Example from Sect.  3.2. First row displays the results of our method: a plot of the magnitude of 

the learned coefficients (top left) and a plot of the clusters (top right). Dots with a black outline indicate 

coefficients that DBSCAN labeled as noise and are re-labeled with the nearest cluster (in scaled frequency 

space). The true instantaneous frequencies of the two true IMFs are solid lines in black. The second row 

plots a zoom-in (frequency range [0, 4 Hz] ) of the absolute values of the STFT and its synchrosqueezed 

version. The third row plots a zoom-in of the absolute values of the CWT and its synchrosqueezed version
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window with standard deviation 0.75 seconds = 60 samples , Fourier transform width 

of 512 samples, and hop-size of 1 are used. The standard deviation was chosen to match 

the window size used in our method. For the CWT and its synchrosqueezed version (third 

row), 232 scales were chosen between 3.8 samples ( ≈ 21 Hz) and 512 samples ( ≈ 0.16 Hz) 

with logarithmic spacing (the default settings of the package ssqueezepy, see also [33]), 

and so the maximum scale matches the Fourier transform width in the STFT used. Recall 

that the formula used to convert between scales and frequencies is: frequency =

sample rate

scale
 . 

To have a fair comparison, the Morlet wavelet was used since it utilizes a Gaussian win-

dow. In the Appendixes, we display the results of merging modes, when the number of 

learned modes obtained from DBSCAN is greater than the number of true modes (see 

Figs. 8 and 9 in Sect. 1). More comparisons on the intersection time series signal are also 

shown in Appendix A (see Fig. 10).

3.3  Pure Sinusoidal Signals with Noise

In this example, we decompose a noisy signal into three modes where the noise level has a 

larger amplitude than one out of the three modes. The input signal is defined as [11]

The hyperparameters are set to �
max

= 500 , Δ = 2s , m = 1000 , N = 50m , r = 15% , 

��������� = 0 , � = 1.5 (for DBSCAN), ���_������� = 4 , and �������� = 1 . Before 

training, the signal is extended from the domain [0, 1] to [−1, 2] by an even periodic exten-

sion. The numbers of data points m and features N are thus scaled by a factor of 3 during 

the training phase. To verify the stability of SRMD with respect to the randomness of the 

random feature matrix, we run SRMD 100 times. For each time, we compute the relative 

error between the noiseless ground truth and the reconstructed signal as well as the relative 

errors between the true modes and the corresponding learned modes, under the assump-

tion that the number of learned modes is given (which is three for this example). We report 

(����, ���) of SRMD’s relative errors as well as the relative errors of benchmark methods 

in Table 2. More tests for this example are shown in Appendix B. Our methods provide the 

smallest relative errors of the extracted modes for both cases.

(7)y(t) = cos(4πt) +
1

4
cos(48πt) +

1

16
cos(576πt) + �, � ∼ N(0, 0.1).

Table 2  Relative �
2
-errors (%) between the reconstructed signal and the noiseless ground truth signal and 

between the true modes and the corresponding learned modes for experiments in Sect. 3.3

For SRMD, we run 100 times and for each time, we compute the relative errors between the learned modes 

and the true ones. The results in the SRMD column are (����, ���) of the relative errors

Example Relative error SRMD EMD EEMD CEEMDAN EWT VMD

Sect. 3.3 Reconstruction (1.6, 0.6) 14.1 14.3 14.1 13.6 5.3

Mode 1 (1.0, 0.6) 25.6 25.4 25.8 2.5 2.3

Mode 2 (3.2, 1.3) 112.5 110.8 111.8 59.1 12.1

Mode 3 (13.6, 6.5) 148.1 122.2 143.8 100.5 53.9
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3.4  Musical Example

We use our method to decompose a two-second clip of a guitar and flute playing simultane-

ously. The representation into sparse random features is performed identically as before, 

but the clustering is performed by splitting spectrogram with a frequency above and below 

the frequency cutoff of 480 Hz. This cutoff is chosen from the visual information provided 

by the plot of nonzero random features’ time-shift and frequency. This is similar to tra-

ditional signal processing techniques that rely on STFT to observe and isolate regions in 

time-frequency space. Our method has the advantage of finding a sparse representation so 

individual harmonics are better defined and the signal is denoised in the process.

We examine the decomposition results of our method in two cases when the input sig-

nal is either equally-spaced downsampling or random downsampling. An illustration of the 

sampled data in both cases is presented in Fig. 4, where the original full signal is sampled 

at 44.1 kHz, the equally-spaced downsampling is at 2.8 kHz, and the random sampling has 

1/16th as many points as the original full signal. The hyperparameters of our method are 

m = 5 107 , N = 10 m , Δ = 0.03 , and r = 10% . For the equally spaced downsampling, we 

set �
max

= 2.8 kHz∕2 = 1 378 Hz (the Nyquist frequency), whereas the random sampling 

uses twice this with �
max

= 2.8 kHz.

The zoomed-in plots of the learned signals and modes from the equally-spaced and ran-

dom downsampled data (by a factor of 16) are plotted in Fig. 5. The results indicate that our 

method works well even when the given data is sampled randomly. Moreover, random sam-

pling allows for higher frequencies in the flute to be captured since we are not limited by the 

typical Nyquist rate. In this case, the maximum frequency of the features generated is twice 

as high as the equally sampled, while maintaining the same number of generated features.

In Fig. 6, we plot the magnitude of learned non-zero coefficients (top left) and the clus-

tering of those coefficients into two modes (top right), the reconstruction signal and the two 

learned modes (second row), as well as the corresponding errors (third row). The learned 

audio files (stored on GitHub2) are close to the ground truth.

3.5  Gravitational Data

For a data-assisted discovery problem, we apply our method to a space-time distor-

tion dataset which was the first to observe gravitational waves [1]. The noisy input data 

is preprocessed in the same way as in [1], which consists of whitening, filtering, and 

Fig. 4  Example from Sect.  3.4. Zoomed in plots. Original signal is sampled at 44.1 kHz, equally-spaced 

downsampling is at 2.8 kHz (circles), and random downsampling (solid triangles) by a factor of 16

2 https:// github. com/ Giang TTran/ Spars eRand omMod eDeco mposi tion

https://github.com/GiangTTran/SparseRandomModeDecomposition
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downsampling steps. The preprocessing steps are necessary to enhance the nonlinear wave 

structure hidden under a layer of biases and noise that cannot immediately be seen from the 

data directly outputted by the instruments. In addition, we also normalize the input data by 

dividing the signal by the maximum value in order since the original signal is on the order 

of 10
−19 . The goal is to obtain an approximation to the waveform that captures the merging 

event and to denoise the signal. The hyperparameters for our method are set to m = 861 , 

N = 20 m , Δ = 0.01 , and �
max

= 2 048 Hz . The parameter for the LASSO algorithm is 

� = 12 . The top 3% or 5% largest non-zero coefficients show the merging and ringdown 

events in Fig. 7. For comparison, we show the numerical relativity curves, i.e., the space-

time distortion measure on the gravitational interferometer.

3.6  Parameter Tuning and Limitations

We have shown that SRMD can better capture the correct modal separation. But for a full 

comparison, we discuss one of the potential difficulties over the other mode decomposition 

and signal representation approaches. In particular, the method has several parameters that 

the user needs to tune for the particular problem. The tunable hyperparameters are the 

Fig. 5  Example from Sect. 3.4. Zoomed-in plots of the learned signals and modes (blue) using SRMD as 

compared to the original fully sampled signal (black). Left: results using equally-spaced data. Right: results 

using random samples. The input signal is downsampled by a factor of 16
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random feature matrix parameters (�
max

,Δ, N) , the optimization parameter � for the 

SPGL1 algorithm (or � in LASSO), and DBSCAN’s parameters ���_������� , and � . The 

frequency is rescaled by �������� =

T

�
max

 which does not need tuning. This value 

rescales the frequency-time domain to improve the performance of the clustering algo-

rithm. As a general rule-of-thumb, we set the maximum � scale to �
max

=

m

2T
 which can 

be tuned but was not necessary on the experiments in this work. The main “free” hyperpa-

rameters are N, � , Δ , and � . In the experiments, the number of randomly generated features 

N varied between 5m to 50m, based on [9, 20]. In practice, while one could perform a 

coarse-scale search, i.e., running the algorithm with a set of possible N in the range pro-

vided and evaluating the solution, the results are consistent within a large range of N due to 

the sparse solver. For the basis pursuit parameter (in SPGL1), we used �
√

m = 0.06‖yinput‖2 , 

Fig. 6  Example from Sect.  3.4. Results of our method with randomly downsampled input by a factor of 

16. First row: magnitude of the non-zero learned coefficients (left), two learned clusters (right). Second 

row: learned signal (blue, left) and the learned flute and guitar modes (middle and right). Last row: error 

between the learned signals and the downsampled input
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which seem to consistently yield a reconstruction error of 6% . We must allow for some 

error so that we can obtain a sparse representation, i.e., balancing regularity and represen-

tation, but the choice of relative error is data-dependent.

The sensitive tunable parameters are the window size Δ and the clustering algorithm. 

The window size is set to Δ = 0.1 as default but does require some trial-and-error to match 

the complexity of the signal’s frequency spread. The clustering neighborhood scale � and 

the core points ���_������� also require user tuning. While we started with � = 0.2T  as 

an initial guess, the clustering component of the algorithm can have a small usable param-

eter range. In the Appendixes, we provide two examples where the output may not be rea-

sonable when the hyperparameters Δ or the DBSCAN hyperparameter � are not sufficiently 

tuned.

Some additional limitations of this approach are as follows. If the random sampling 

of the time-frequency domain does not properly cover the true frequencies, then the 

method will perform poorly. This could be the case when one uses a very small number 

of features, but it is often avoided by the suggested parameter discussion above. The 

choice of �
max

 is to match the Nyquist sampling rate, which can be lowered if one has 

prior information on the maximum frequency in the data. This can be an issue in some 

datasets, but when prior information is limited then a large time-frequency range would 

result in an increase in the computational cost. When the time-frequency domain has 

clustered sparse regions, SRMD is robust since we leverage the sparse random feature 

approach.

Fig. 7  Example from Sect.  3.5. Left column: the largest 3% (first row) and 5% (second row) learned 

nonzero coefficients overlayed on an STFT in the time-frequency domain. Right column: corresponding 

learned signals (blue) and numerical relativity data (black). Time is given as seconds after September 14, 

2015, at 09:50:45 UTC 
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4  Summary

We proposed a random feature method for approximating signals using a sparse time-fre-

quency representation. The model can be used for signal representation, denoising (includ-

ing outlier or corruption removal), and methods. The sparsification of the spectrogram 

leads to a clearer separation between clusters and thus an adaptive mode decomposition. 

Compared to other state-of-the-art mode decomposition approaches, the SRMD is able to 

mitigate the issue of mode mixing, provide better separation between intersecting or over-

lapping spectrograms, and can capture jumps with fewer Gibbs artifacts. In our experi-

ments, we showed that the active (non-zero entries) of the sparse random feature coeffi-

cients concentration around the instantaneous frequencies and thus can provide additional 

physical information for use in diagnostics and data-driven analysis. One important dis-

tinction from other approaches is that SRMD is independent of the sampling process, thus 

data can be obtained in a random or non-uniform fashion. In addition, one can extend the 

coherence-based results [19] or the restricted isometry property for random features [9] to 

show that the learned model using the SRMD algorithm has a small generalization error.

Appendixes

As additional examples, we include more comparison results on the intersection time series 

signal described in Sect. 3.2 as well as the experiments on a noisy signal where the noise 

level has a larger amplitude than one of the modes (see Sect. 3.3) and on an overlapping 

and noisy signal (see Sect. 3).

Appendix A: Comparing Different Methods on the Intersecting Time Series Example

In this section, we present our reconstructed signals as well as our learned modes from the 

challenging intersecting time series in Sect. 3.2. Specifically, applying the DBSCAN on the 

extracted time-frequency pairs {(�j,�j)}j yields three clusters denoted by green triangles, 

orange circles, and orange squares (see Fig. 3 (right figure in the first row)). The corresponding 

learned modes are plotted in Fig. 8. To reduce the decomposition to two modes, we keep the 

mode with the largest �
2
-norm and combine the two learned modes with the smallest �

2
-norm 

to construct the second mode, which is shown in Fig. 9. Our proposed algorithm provides a 

reasonable extraction of modes where the errors between the learned modes and the true ones 

Fig. 8  Example from Sect.  3.2. The three modes from SRMD associated with the clusters: orange circles, 

green triangles, and orange squares from Fig. 3 (left to right)
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are almost zero everywhere, except on a time-shift region corresponding to the intersection of 

instantaneous frequencies. As seen in Fig. 10, the other approaches have difficulty obtaining 

the two modes, likely due to the intersecting of frequencies in the spectrogram.

In Fig. 10, we compare the reconstruction and the decomposition results of our method 

versus those obtained from some of the state-of-the-art intrinsic mode decomposition 

methods (EMD, EEMD, CEEMDAN, EWT, and VMD) on the intersecting time series sig-

nal given in Sect. 3.2.

Appendix B: Comparison Results on Pure Sinusoidal Signals with Noise

In this section, we present our reconstructed signals as well as our learned modes from 

the challenging noisy tri-harmonic signal described in Sect. 3.3. In particular, in Fig. 11, 

we plot the time-frequency pairs associated with non-zero coefficients (top left), the clus-

tering of those non-zero coefficients (top right), the reconstruction signal and the three 

learned modes (second row), and the corresponding errors (third row). Our method can 

extract the first two learned modes with high accuracy. Note that both VMD (see [11]) 

and our method (see Fig. 11) have difficulty in extracting the weak and high-frequency 

mode y
3
(t) =

1

16
cos(576πt) . Nevertheless, our method can identify the frequencies of 

all three modes. More precisely, the median frequencies of the three learned clusters are 

1.99, 24.03, and 288.02 Hz, which are very close to the ground truth frequencies 2, 24, 

and 288 Hz.

Fig. 9  Example from Sect.  3.2. Decomposition results of our proposed SRMD method into two modes. 

First row: noiseless ground truth signal (in black) with the learned signal (in blue) of the full signal (top) 

and the two learned modes. Last row from left to right: errors between noiseless ground truth and the 

learned representation, between the true modes and the extracted modes
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Appendix C: Overlapping Time-Series with Noise

In this experiment, we investigate an example with overlap. The input signal y(t) is the 

summation of two modes y
1
(t) = F

−1{Y
1
}(t) and y

2
(t) = F

−1{Y
2
}(t) with overlapping fre-

quencies and is contaminated by noise:

Here F−1{Y
i
} denotes the inverse Fourier transform of Y

i
 for i = 1, 2 , where

(C1)y(t) = ytrue(t) + � = y1(t) + y2(t) + �, � ∼ N

�
0,

r‖ytrue‖2√
m

�
.

(C2)Y1(k) = me−iπk

(

e
−

9(k−16)2

32 − e
−

9(k+16)2

32

)

, Y2(k) = me−iπk

(

e
−

9(k−20)2

32 − e
−

9(k+20)2

32

)

Fig. 10  Example from Sect.  3.2. Comparing different methods on the intersecting time-series example. 

Top to bottom rows are SRMD, EMD, EEMD, CEEMDAN, EWT, and VMD. The first column displays 

the noiseless ground truth (in black) and the learned signal representation (in blue). The remaining two col-

umns are the two modes, where the true IMFs are plotted in black and the learned IMFs are in blue

▸

Fig. 11  Example from Sect. 3.3. First row: the noisy input signal. Second row: magnitude of non-zero 

learned coefficients (left) and learned clusters (right). Third row from left to right: reconstructed signal 

(in blue) and the three extracted modes (in blue) versus the corresponding noiseless signal and modes (in 

black). Last row: error of the reconstruction and the three IMFs compared to the ground truth
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for k ∈ ℤ and t ∈ [0, 1]. Note that the modes y
1
(t) and y

2
(t) produce Gaussians in the 

Fourier domain centered at k = 16 and 20 Hz , respectively. The leading term, me
−iπk , 

centers the wave packets to t = 0.5 s where m = 160 is the total number of samples. For 

the SRMD algorithm, the hyperparameters to generate the basis are set to �
max

= 40 , 

N = 20, m = 3 200 , and Δ = 0.2 . The hyperparameter for the DBSCAN algorithm is set to 

� = 1.5.

The noiseless and noisy time series with r = 25% are shown in Fig.  12. All recon-

struction and decomposition results will be compared against the true signal (or modes) 

ytrue(t), y1(t), and y
2
(t) . We compare our results with other methods applied to noisy signals 

with different noise ratios r = 5%, 15%, and 25% . From the results in Fig. 13, we see that 

only VMD and our method properly reconstruct and decompose the noisy signal. Moreo-

ver, when the noise level r is small (5%), the VMD approach produces comparable results 

with our method. When r increases, our method is still able to capture the intrinsic modes 

and denoise the input signal. On the other hand, the VMD is able to identify some aspects 

of the two intrinsic modes but is polluted by noise, see Figs. 14 and 15.

The clusters of the non-zero coefficients obtained by SRMD applied to the noisy signal 

with the noise levels r = 5%, 15% , and 25% are shown in Fig. 16. Note that the clusters sur-

round the two Gaussian peaks ( 16 Hz and 20 Hz ) that define the true input signal. The other 

features obtained by the SRMD provide slightly corrects to the overall shape to ensure the 

reconstruction error is below the specified upper bound. This implies one has the flexibility 

in choosing the width and number of random features since additional features can be used 

to ensure the reconstruction is reasonable.

Appendix D: Example on Parameter Tuning and Limitations

As we discuss in Sect.  3.6, the window size Δ and the clustering neighborhood scale � 

are sensitive tunable parameters. For example, in the discontinuous time-series example 

(see Sect.  3.1), if � = 0.06 (instead of 0.1), the non-zero learned coefficients align with 

the true instantaneous frequencies. However, the learned modes are not reasonable due to 

wrong clusters (see Fig. 17). On the other hand, if � = 0.15 , although the non-zero learned 

Fig. 12  Example from Appendix  C. Ground truth (left) and noisy input with r = 25% (right)
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Fig. 13  Example from Appendix  C. Decomposition results with r = 5% noise using six different meth-

ods. Top to bottom rows: SRMD, EMD, EEMD, CEEMDAN, EWT, and VMD. First column: the noiseless 

ground truth (black) and the learned signal (blue). Middle and last columns: the first and second ground 

truth IMFs (black) with the learned IMFs (blue)
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Fig. 14  Example from Appendix  C. Decomposition results with r = 15% noise using SRMD (first row) 

and VMD (second row). First column: the noiseless ground truth (black) and the learned signal (blue). Mid-

dle and last columns: the first and second ground truth IMFs (black) with the learned IMFs (blue)

Fig. 15  Example from Appendix  C. Decomposition results with r = 25% noise using SRMD (first row) 

and VMD (second row). First column: the noiseless ground truth (black) and the learned signal (blue). Mid-

dle and last columns: the first and second ground truth IMFs (black) with the learned IMFs (blue)
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coefficients still align with the true instantaneous frequencies, Algorithm 2 can not extract 

the mode since the clustering part is not able to cluster the set Ŝ.

Finally, if we choose the window size Δ too big or too small, the non-zero learned coef-

ficients may not align well with the instantaneous frequencies or make it difficult to cluster 

(see Fig. 18).

Fig. 16  Example from Appendix  C. First column: magnitude of non-zero learned coefficients for noisy 

signals with r = 5%, 15% , and 25% . Second column: two learned clusters (green and orange)
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