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Abstract

We propose a random feature model for approximating high-dimensional sparse addi-

tive functions called the hard-ridge random feature expansion method (HARFE). This

method utilizes a hard-thresholding pursuit-based algorithm applied to the sparse ridge

regression (SRR) problem to approximate the coefficients with respect to the random

feature matrix. The SRR formulation balances between obtaining sparse models that

use fewer terms in their representation and ridge-based smoothing that tend to be

robust to noise and outliers. In addition, we use a random sparse connectivity pattern

in the random feature matrix to match the additive function assumption. We prove that

the HARFE method is guaranteed to converge with a given error bound depending

on the noise and the parameters of the sparse ridge regression model. In addition, we

provide a risk bound on the learned model. Based on numerical results on synthetic

data as well as on real datasets, the HARFE approach obtains lower (or comparable)

error than other state-of-the-art algorithms.

Keywords Sparse additive modeling · Random feature expansion · Ridge regression

Mathematics Subject Classification 65D15 · 65D40 · 65K10

1 Introduction

Kernel-based approaches have been extensively used in data-based applications,

including image classification and high-dimensional function approximations since

they often perform well in practice. These approaches utilize a pre-defined nonlinear

function basis in the form of a kernel K (x, y). Using the representer theorem, min-

imizers of kernel training problems over reproducing kernel Hilbert spaces (RKHS)
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take the form of linear combinations of the kernel basis applied to the dataset [11,

24, 43, 50]. Since this technique requires one to apply the kernel K to every pair

of data samples, the methods scale quadratically with the size of the dataset, which

can limit their use in large-scale applications. A more tractable approach utilizes low-

dimensional approximations (or factorizations) of the kernel matrix through the use

of randomized features.

The random feature model (RFM) [38–40] is a popular technique for approximating

the kernel (and thus the minimizer of kernel regression problems) using a randomized

basis that can avoid the cost of full kernel methods. If the kernel is positive definite,

then it can be written as an inner product with a feature function φ, i.e. K (x, y) =
〈φ(x), φ(y)〉. With RFM, a randomized feature map ψ is used to approximate the

kernel K (x, y) ≈ ψ(x)T ψ(y), where ψ : R
d → R

N . When the random feature map

is low-dimensional, i.e. when N is not large, then the approximation is tractable for

large-scale datasets. This is the method used for random feature kernel regression.

An alternative perspective is to view the RFM as a nonlinear randomized function

approximation. From the neural network point of view, an RFM is a two-layer network

with a randomized but fixed single hidden layer [38–40]. Given an unknown function

f : R
d → C, the RFM takes the form y = cT φ(WT x) ∈ C where x ∈ R

d is the

input data, W ∈ R
d×N is a random weight matrix, φ is a non-linear function applied

element-wise and c ∈ C
N is the final weight layer. We take as an assumption that the

entries of the matrix W = [ω j,k] are independent and identically distributed (i.i.d.)

random variables generated by the (user defined) probability density function ρ(ω)

i.e. ω j,k ∼ ρ(ω) for all 1 ≤ j ≤ d and 1 ≤ k ≤ N . For an RFM, the output layer c is

trained, while the hidden layer W is fixed. Thus, given a collection of m measurements,

whose inputs (and outputs) are arranged column-wise in the matrix X ∈ R
d×m (and

Y ∈ C
1×m), the random feature regression problem becomes training c by optimizing:

min
c∈CN

‖Y − cT φ(WT X)‖2
�2 + R(c)

with some penalty function R : C
N → R.

The most common choice for R when using RFM is the ridge penalty R(c) =
λm ‖c‖2

�2 which leads to the random feature ridge regression (RFRR) problem [15,

26, 33, 40, 42]. In [42], it was shown that for a function f in an RKHS, using N =
O(m

1
2 log m) number of random features is sufficient to achieve a test error of O(m− 1

2 )

when training the output layer of the RFRR problem. In general, to achieve a risk bound

that scales like O(N−1 + m− 1
2 ) using the RFRR problem over the RKHS, properties

of the spectrum of the kernel operator must be known [1, 15]. In practice, the technical

assumptions on the spectrum and its decay may be hard to verify for a given problem

or dataset.

When the ridge parameter λm → 0+, the RFRR becomes the min-norm inter-

polation problem (also referred to as ridge-less regression) and has received recent

attention in several different settings [3–5, 22, 27, 33, 34, 44]. A detailed analysis of

both the kernel ridge regression and the RFRR problems in terms of the dimensional

parameters d, m, and N is provided in [12, 33], where one conclusion indicates that

the min-norm interpolators are the optimal approximations among all kernel methods
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when N 
 m, i.e. in the overparameterized setting. However, noise, outliers, and

model misfits often necessitate the use of a penalty in the regression problem.

Since the risk bounds scale is like N−1, in order to have a small error, one must

choose a large number of features. In addition, it has been observed that the global

minimizer of the risk using the RFRR problem as a function of the ratio N
m

is achieved

for values N
m


 1 [33, 34], that is, the lower risk solutions occur in the very overparam-

eterized limit. While the risk analysis indicates that large N is needed, the complexity

of evaluating an RFM in the overpameterized setting scales linearly with the number

of features N , but large N can limit the usefulness for scientific problems or many

query applications. Thus, an alternative approach is to use sparsity-promoting penalties

(or algorithms) to obtain sparse or low-complexity models in the overparameterized

setting.

In [21], an �1 basis pursuit denoising problem was used to train RFM from limited

(and noisy) measurements. Similar to the RFRR problem, it was shown that when the

sparsity level s = N and the number of measurements m = O(N log(N )), the risk is

bounded by O(N−1 + m− 1
2 ) [12]. When the “true” values of the final weight layer c

are compressible, then s can be much smaller than N to achieve similar bounds [12,

21]. In [49], a related algorithm based on the LASSO problem was used to iteratively

add a sparse number of random features to the trained RFM. While the �1 based

approaches lead to good generalization bounds and other theoretical properties, their

optimization often comes at a higher computational cost than the ridge regression

problem. In [47], an iterative pruning approach (related to an �0 penalized problem)

is shown to perform well on several synthetic and real data examples, in particular,

for high-dimensional approximation problems with the inherent low-order structure.

They connect the sparsity-promoting methods for RFM to the pruning approaches

for reducing the model complexity of overparameterized neural networks. Pruning

algorithms focus on obtaining small subnetworks with similar accuracy to the full

neural network [18, 51] and are based on the lotto ticket hypothesis, where the existence

of smaller subnetworks with similar (or better) risk is conjectured [18]. More precisely,

the lottery ticket hypothesis said that any randomly initialized, dense neural network

(i.e., a random feature network) contains a subnetwork that can match the test accuracy

of the original network after training for at most the same number of training iterations.

On the other hand, the desired sparsity obtained from the hard thresholding step in

our algorithm is essentially a pruning step in order to obtain a subset of features that

could lead to better generalization results with a smaller RFM. In this way, we think of

thresholding methods as one possible approach to solving the lottery ticket hypothesis.

In this work, we propose the HARFE method, which is a hard ridge-based thresh-

olding algorithm to iteratively obtain a small sub-network for a RFM using a sparsity

prior. In addition, we use the sparse random features introduced [21], which restrict

each column of the weight matrix W to have a fixed number of non-zero terms (often

only a few non-zero components). This is beneficial when the number of interacting

or active variables is low but the ambient dimension is high, see [20, 36, 37]. In par-

ticular, for sparse additive modeling and decompositions, the sparse random features

represent possible interactions between input variables. Additive models for kernel

regression and sparse additive models include the multiple kernel learning algorithms
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[2, 19, 48], shrunk additive least squares approximation (SALSA) [25], sparse shrunk

additive models (SSAM) [29], component selection and smoothing operator (COSSO)

[28], additive model with kernel regularization (KAM) [13], and other related works

[37, 45].

1.1 Contributions

Our main algorithmic and modeling contributions are as follows:

• We propose the hard-ridge random feature expansion method (HARFE),1 which

is used to train sparse additive random feature models. This method is related

to the lotto ticket hypothesis since the desired sparsity obtained from the hard

thresholding step in our algorithm is essentially a pruning step in order to obtain

a subset of features that could lead to better generalization results with a smaller

RFM, see also [18, 51].

• The sparse ridge regression (SRR) problem and some associated (scalable) algo-

rithms have been studied in [6, 23, 30, 32, 46]. The HARFE algorithm is one

way to solve the SRR problem and has guarantees on the convergence when the

matrix has standard compressive sensing structures. Specifically, the random fea-

ture matrix has a coherence bound [21] and the restricted isometry property [12],

thus convergence is given by the results in [9, 10, 16, 31]. We also obtained a

generalization bound for our approach based on the proofs from [12, 21].

• Tests on synthetic and real-world datasets validate the proposed method, includ-

ing the inclusion of sparse random features (i.e. for sparse additive random feature

modeling). The method performs comparably or better than other related algo-

rithms as shown in the experiments. In addition, the sparsity priors help to obtain

important variable dependencies from the data.

2 Problem statement and algorithm

Throughout the paper, we use bold letters for column vectors (e.g. x) and bold capital

letters for matrices (e.g. A). We say that a vector z is s-sparse if it has at most s

nonzero entries. Let [N ] denote the set of all positive integers less than or equal to N .

We denote the �p norm of a vector z by ||z||p. Next, we recall a useful definition.

Definition 2.1 (Order-q additive functions [21]) Fix d, q, K ∈ N with 1 ≤ q ≤ d. A

function f : R
d → C is called an order-q additive function with at most K terms if

there exist K complex-valued functions g1, . . . , gK : R
q → C such that

f (x) =
1

K

K∑

j=1

g j (x|S j
), (1)

where for each j ∈ [K ], S j ⊆ [d], S j has q distinct indices, and S j �= S j ′ for j �= j ′.
Here x|S j

denotes the restriction of x ∈ R
d onto S j .

1 The code is available at https://github.com/esha-saha/HARFE.

https://github.com/esha-saha/HARFE
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Note that the class of additive functions in Definition 2.1 is related to sparse additive

modeling and multiple kernel learning [2, 13, 19, 20, 25, 28, 29, 36, 37, 48].

We are interested in approximating an unknown high dimensional function f :
R

d → C, d 
 1, from a set of m samples {(xk, yk)}m
k=1 where the inputs xk are

drawn from an (unknown) probability measure μ(x) and the output data is (likely)

corrupted by noise:

yk = f (xk) + ek, for k ∈ [m]. (2)

We assume that the noise ek is a Gaussian random variable or bounded by some

constant E , that is, |ek | ≤ E ∀k ∈ [m]. In addition, we assume that the target function

f is an order-q additive function with q � d, K �
(

d
q

)
, and that we do not have prior

knowledge on the terms g j . Using the random feature method [21, 38], we approximate

the target function f by:

f (x) ≈ f #(x) = cT φ(WT x) =
N∑

j=1

c jφ(〈x,ω j 〉),

where W = [ωk, j ] ∈ R
d×N is a random weight matrix, ω j ∈ R

d are the column

vectors of the matrix W, and c ∈ C
N is the coefficient vector. The random weight

matrix W ∈ R
d×N is fixed, while the coefficients c ∈ C

N are trainable. The function

φ : R → R is the nonlinear activation function and can be chosen to be a trigonometric

function, the sigmoid function, or the ReLU function. Unless otherwise stated, we use

the sine activation function, i.e. φ(·) = sin(·). This model is a two-layer neural network

with the weights in the hidden layer being randomized but not trainable and thus the

training problem relies on learning the coefficient vector c. Theoretically, the random

feature method has been shown to be comparable with shallow networks in terms of

theoretical risk bounds [38–40, 42] where the population risk is defined as

R( f #) := || f − f #||2
L2(dμ)

=
∫

Rd

| f (x) − f #(x)|2dμ(x) (3)

which is also the L2 squared error between the true function and its approximation.

Suppose the entries of the random weight matrix W are i.i.d. random variables gener-

ated by the (one-dimensional) probability function ρ(ω), ωk, j ∼ ρ(ω). Let A ∈ C
m×N

be the random feature matrix whose entries are defined as ak, j = φ(〈xk,ω j 〉). Then

the general regression problem is to solve the following optimization problem:

min
c∈CN

||Ac − y||22, (4)

where y = [y1, y2, . . . , ym]T .

For sparse additive modeling, since f is an order-q function, each entry of the

random feature matrix A should only depend on q entries of the input data xk .
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Therefore, we can instead generate a sparse random matrix W where each col-

umn of W has at most q nonzero entries following the probability function ρ(ω)

[21]. One such way to generate W is to first generate N random vectors v( j) =
(v

( j)
1 , . . . , v

( j)
q )T in R

q and use a random embedding that assigns v( j) to ω j , where

ω j = (0, 0, . . . , 0, v
( j)
1 , 0, . . . , v

( j)
2 , 0, . . . , v

( j)
q , 0, . . . , 0)T . In particular, for each

j , we select a subset of q indices from [d] uniformly at random and then sample

each nonzero entry using ρ(ω). The sparse random matrix W can also be obtained as

W = W̃ � M, where W̃ ∈ R
d×N is a dense matrix whose entries are sampled from

ρ(ω), the mask M ∈ R
d×N is a sparse matrix whose non-zero entries are one and each

column of M has q non-zero entries, and � denotes the element-wise multiplication.

Using this formulation, the general sparse regression problem becomes

find c ∈ C
N such that ||Ac − y||2 ≤ ε

√
m and c is sparse, (5)

where ε is the parameter related to the noise level. The motivation for sparsity in c is

due to the assumption that K �
(

d
q

)
, thus not all index subsets are needed.

In order to solve the sparse random feature regression problem, we propose a new

greedy algorithm named hard-ridge random feature expansion (HARFE), which uses

a hard thresholding pursuit (HTP) like algorithm to solve the random feature ridge

regression problem. Specifically, we learn c from the following minimization problem:

min
c∈CN

‖Ac − y‖2
2 + mλ||c||22 such that c is s -sparse, (6)

where λ > 0 is the regularization parameter. Equation (6) can be rewritten as

min
c∈CN

‖Bc − ỹ||22 such that c is s-sparse, (7)

where B =
[

A√
mλIN

]
∈ C

(m+N )×N and ỹ =
[

y

0

]
∈ C

m+N . To solve (7), we first

start with an s-sparse vector c0 ∈ C
N (typically taken as c0 = 0) and update based on

the HTP approach

Sn+1 = {indices of s largest (in magnitude) entries of cn + μB∗(y − Bcn)}
cn+1 = argmin{‖ỹ − Bc‖2

2, supp(c) ⊆ Sn+1}
(8)

where μ > 0 is the step-size and s is a user defined parameter. The idea is to solve for

the coefficients using a much smaller number of model terms. The subset S given by

the indices of the s largest entries of one gradient descent step applied on the vector c

is a good candidate for the support set of c. The HTP algorithm iterates between these

two steps and leads to a stable and robust reconstruction of sparse vectors depending

on the RIP constant. The Gram matrix B∗B is computed directly based on the ridge

problem

cn + μB∗(ỹ − Bcn) = (1 − mμλ)cn + μA∗(y − Acn).
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Algorithm 1 Hard-Ridge Random Feature Expansion (HARFE)

Require: Samples {xk , yk }m
k=1, non-linear function φ, number of features N , sparsity level s, random

weight sparsity q, step size μ, regularization parameter λ, convergence threshold ε and total number of

iterations tot_iter.

Draw (q-sparse) N random weights ω j whose non-zero entries are sampled from ρ(ω).

Construct the random feature matrix A = [φ(〈xk ; ω j 〉)] ∈ C
m×N .

Ensure:

Initialization: Start with s-sparse c0 ∈ C
N (c0 = 0), n = 0

while (Relative Residual> ε) or (n<tot_iter) do

c̃n+1 ← (1 − mμλ)cn + μA∗(y − Acn)

idx ← indices of s largest entries of c̃n+1 � Choose the subset of features Sn+1

Ā ← A[:, idx]
cn+1[[N ] \ idx] = 0

cn+1[idx] ← argmin{||y − Āc||22 + mλ||c||22} = (Ā∗Ā + mλIs )
−1Ā∗y

n = n + 1

end while

return Sparse vector c = [c1, c2, . . . , cN ] such that: f �(x) =
N∑

j=1
c j φ(x; ω j ).

Iteration

1

Iteration

2

Final

Iteration

Fig. 1 Schematic representation of HARFE. The active nodes at each iteration is given in green

The approach is summarized in Algorithm 1. The relative residual at the iterate cn is

defined as

Relative Residual =
||Acn − y||2

||y||2
.

One of the motivations for including the ridge penalty is that for random feature

regression, the sparsity level s can be large and thus the least squares step in (8) may

be ill-conditioned. Numerically, we observed that even a small non-zero value of λ can

be beneficial for ensuring convergence and good generalization. In Fig. 1, we provide

a schematic representation of the sequence generated by the algorithm, namely, over

each step a sparse subset of nodes is obtained until a final configuration is achieved.

3 Theoretical discussion

The error produced by the HARFE algorithm can be established by extending the

results on the HTP algorithm to include the ridge regression term and by leveraging

bounds on the restricted isometry constant for this type of random feature matrix.

Recall that given an integer s ∈ [N ], the s-th restricted isometry constant of a matrix
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A ∈ C
m×N , denoted by δs(A), is the smallest non-negative δ such that

(1 − δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2

holds for all s-sparse x ∈ C
N [17]. Let κ1,s(x) denote the �1 distance to the best s-term

approximation of x defined by

κ1,s(x) = inf
{
‖z − x‖1 : z ∈ C

n, z is s − sparse
}
.

The value κ1,s(x) provides a measure for the compressibility of the vector x with

respect to the �1 norm and is obtained by setting all but the s-largest in magnitude

entries to zero.

The following result is restricted to the case when q = d and μ = 1. The q ≤ d case

follows from similar arguments [21]. From [17], the theorem below can be extended

trivially for any step size μ by scaling the matrix A and the vector y with the ratio√
μ.

Theorem 3.1 (Convergence of the iterates of HARFE) Let the data {xk}k∈[m] be drawn

from N (0, γ 2Id), the weights {ω j } j∈[N ] be drawn from N (0, σ 2Id), and the random

feature matrix A ∈ C
m×N be defined component-wise by ak, j = exp(i〈xk,ω j 〉).

Denote the �2-regularization parameter by λ and the sparsity level by s. If

m ≥ C1 (1 + λ)−2 s log(δ−1),

m

log(3m)
≥ C2 (1 + λ)−1 s log2(6s) log

(
N

9 log(2m)
+ 3

)
,

√
δ

6
√

3
(1 + λ) (4γ 2σ 2 + 1)

d
4 ≥ N ,

where C1 and C2 are universal positive constants, then with probability at least 1−2δ,

for all c ∈ C
N and e ∈ C

m with y = Ac+e, the sequence cn defined by the Algorithm 1

with c0 = 0, using 2s instead of s in the algorithm, satisfies

‖cn − c‖2 ≤ 2βn‖c‖2 +
D1√

s
κ1,s(c) + D2

√
m−1‖y − Ac‖2

2 + λ‖c‖2
2

1 + λ

for all n ≥ 0 where the constants β ∈ (0, 1), D1, D2 > 0 depend only on δ6s(B). The

matrix B is given by B = (m + mλ)−
1
2

[
A√

mλIN

]
∈ C

(m+N )×N .

Proof The ridge regression problem:

min
c∈RN

‖Ac − y‖2
2 + mλ‖c‖2

2 (9)
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can be written in the form:

min
z′∈RN

‖Bz′ − ỹ‖2
2 (10)

where B = (m + mλ)−
1
2

[
A√

mλIN

]
∈ C

(m+N )×N and ỹ =
[

y

0

]
∈ C

m+N . For Eq.

(10), the error is defined as ẽ = ỹ − Bz′ which is equivalent to

ẽ =
[

e

−
√

mλ c

]
∈ C

m+N .

If c is the minimizer of (9) and z′ is the minimizer of (10), then z′ = (m + mλ)
1
2 c.

The scaling is needed for the matrix to satisfy a restricted isometry property.

To estimate the restricted isometry constant of B, we first bound the restricted

isometry constant of m− 1
2 A. By Theorem A.1 and the assumptions, if

m ≥ 6C1η
−2
1 s log(δ−1)

m

log(3m)
≥ 6C2η

−2
2 s log2(6s) log

(
N

9 log(2m)
+ 3

)

√
δ η1 (4γ 2σ 2 + 1)

d
4 ≥ N ,

where C1 and C2 are universal positive constants, then with probability at least 1−2δ,

the 6s-restricted isometry constant is bounded by

δ6s (A) < 3η1 + η2
2 +

√
2η2,

or equivalently

∥∥∥m−1A∗
SAS − IS

∥∥∥
2→2

< 3η1 + η2
2 +

√
2η2,

for all S ⊂ [N ] with |S| = 6s. Therefore, the 6s-restricted isometry constant of B

satisfies

∥∥B∗
SBS − IS

∥∥
2→2

=
∥∥∥(m + mλ)−1

(
A∗

SAS + mλIS

)
− IS

∥∥∥
2→2

=
1

1 + λ

∥∥∥m−1A∗
SAS − IS

∥∥∥
2→2

<
3η1 + η2

2 +
√

2η2

1 + λ
.

Setting the parameters to η1 = 1+λ

6
√

3
and η2 =

√
1+λ

4
√

3
, then

∥∥B∗
SBS − IS

∥∥
2→2

< 1√
3

if

m ≥ 648C1 (1 + λ)−2 s log(δ−1)
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m

log(3m)
≥ 288C2 (1 + λ)−1 s log2(6s) log

(
N

9 log(2m)
+ 3

)

√
δ

6
√

3
(1 + λ) (4γ 2σ 2 + 1)

d
4 ≥ N .

By Eq. (23) of Theorem A.2, the sequence generated by the hard thresholding pursuit

algorithm produces a solution with the following bound

‖z′n − z′‖2 ≤ 2βn‖z′‖2 +
C
√

s
κ1,s(z

′) + D‖ẽ‖2, (11)

for all n ≥ 0 where the constants β ∈ (0, 1), C, D > 0 depend only on δ6s(B).

Transforming the variables to the original variables yields the following bound

‖cn − c‖2 ≤ 2βn‖c‖2 +
C
√

s
κ1,s(c) + D (1 + λ)−

1
2 m− 1

2 ‖ẽ‖2 (12)

≤ 2βn‖c‖2 +
C
√

s
κ1,s(c) + D (1 + λ)−

1
2 m− 1

2

√
‖e‖2

2 + mλ‖c‖2
2 (13)

≤ 2βn‖c‖2 +
C
√

s
κ1,s(c) + D

√
m−1‖e‖2

2 + λ‖c‖2
2

1 + λ
, (14)

which concludes the proof. ��

It is worth noting that, in practice, λ > 0 is small, i.e. we would like mλ = O(1).

Thus the third term in the iterative bound is smaller than the second term and does not

contribute significantly to the overall error.

Theorem 3.2 (Risk bound for HARFE) Let the data {xk}k∈[m] be drawn from

N (0, γ 2Id), the weights {ω j } j∈[N ] be drawn from N (0, σ 2Id), and the random fea-

ture matrix A ∈ C
m×N be defined component-wise by ak, j = exp(i〈xk,ω j 〉). Denote

the �2 regularization parameter by λ, accuracy parameter by ε > 0, and the sparsity

level by s. If the assumptions of Theorem 3.1 are satisfied, then with probability at

least 1 − 2δ, the following risk bounds hold:

R( f #) ≤ ‖ f ‖ρ

(
ε + D

√
λ

N

(
3− 1

4 +
(

2m log

(
1

δ

)) 1
4

))

+ C

√
1 + λ

s

(
3− 1

4 + N
1
2

(
2m log

(
1

δ

)) 1
4

)
κs,1(‖c�‖)

+ DE

(
3− 1

4 m− 1
2 + N

1
2

(
2

m
log

(
1

δ

)) 1
4

)
.
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Proof We use the L2 norm, which can be decomposed into two parts using the triangle

inequality:

|| f − f �||L2(dμ) ≤ || f − f �||L2(dμ) + || f � − f �||L2(dμ).

The approximation f � is defined in Eq. (18) and the best φ-based approximation f �

is given in Eq. (19).

Following the proof in Section 6 of [12], if N ≥
1

ε2
(1 +

√
2 log(

1

δ
))2, then with

probability at least 1 − δ, we have

|| f − f �||L2(dμ) ≤ ε|| f ||ρ . (15)

We use McDiarmid’s Inequality to bound || f � − f �||L2(dμ), arguing similarly as in

Lemma 2 from [21] or Section 6 of [12]. Let {z j } j∈[m] be i.i.d. random variables sam-

pled from the distribution μ which are independent from the sampled points {x j } j∈[m]
and the frequencies {ω}k∈[N ]. This independence assumption makes {z j } j∈[m] also

independent of coefficients c� and c� and thus allows for the following argument. Let

v be a random variable defined by

v(z1, . . . , zm) = ‖ f � − f �‖2
L2(dμ)

−
1

m

m∑

j=1

| f �(z j ) − f �(z j )|2.

Then Ez[v] = 0 as

Ez[| f �(z j ) − f �(z j )|2] = Ez1,...,zm [| f �(z j ) − f �(z j )|2] = ‖ f � − f �‖2
L2(dμ)

.

We perturb the k−th component of v to get,

|v(z1, . . ., zk, . . ., zm) − v(z1, . . ., z̃k, . . ., zm)|

≤
1

m

∣∣∣| f �(zk) − f �(zk)|2 − | f �(z̃k) − f �(z̃k)|2
∣∣∣ .

Using Cauchy–Schwarz inequality, for any z, we have,

| f �(z̃k) − f �(z̃k)|2 ≤ N‖c̃� − c̃�‖2
2,

which holds since |φ(z,ω)| = 1. Hence,

|v(z1, . . ., zk, . . ., zm) − v(z1, . . ., z̃k, . . . , zm)| ≤
2N

m
‖c̃� − c̃�‖2

2 := �.

Therefore, we can apply McDiarmid’s inequality to the random variable v, i.e.

Pz(v − Ez[v] ≥ t) ≤ exp(− 2t2

m�2 ) where t := �

√
m

2
log

(
1

δ

)
. Following the results
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from Theorem 3.1, we have that δ6s(B) < 1√
3

(the matrix B is as obtained in Eq. (10)),

then with s replaced by 2s, with probability at least 1−3δ (2δ for the coherence bound

and δ from the 25), we have:

‖ f � − f �‖2
L2(dμ)

≤
1

m

∑m
j=1 | f �(z j ) − f �(z j )|2 + N

(√
2

m
log

(
1

δ

))
‖c̃� − c̃�‖2

2

=
1

m
‖B̃(c̃� − c̃�)‖2

2 + N

(√
2

m
log

(
1

δ

))
‖c̃� − c̃�‖2

2

≤
1

√
3m

‖(c̃� − c̃�)‖2
2 + N

(√
2

m
log

(
1

δ

))
‖c̃� − c̃�‖2

2.

From Eq. (24) of Theorem A.2, ‖(c̃�− c̃�)‖2 ≤
C
√

s
κs,1(c̃

�)+ D‖ẽ‖2, where C, D > 0

depend only on δ6s(B). Since c̃ =
√

m + mλc, transforming to original variables, we

have:

‖ f � − f �‖L2(dμ) ≤
(

1
√

3m
+ N

(√
2

m
log

(
1

δ

))) 1
2

(√
m + mλ

C
√

s
κs,1(‖c�‖) + D

√
‖e‖2 + mλ‖c�‖2

2

)
(16)

Note |c�
k | =

1

N

∣∣∣∣
α(ωk)

ρ(ω)k

∣∣∣∣ ≤
1

N
‖ f ‖ρ and ‖e‖2 ≤ E . Thus, combining Eqs. (25) and

(16) yields

‖ f − f �‖L2(dμ) ≤ ε‖ f ‖ρ +
(

1
√

3m
+ N

(√
2

m
log

(
1

δ

))) 1
2

(√
m + mλ

C
√

s
κs,1(‖c�‖) + D

√
E2 + mλN−1‖ f ‖2

ρ

)

≤ ε‖ f ‖ρ +
(

3− 1
4 m− 1

2 + N
1
2

(
2

m
log

(
1

δ

)) 1
4

)

(√
m

√
1 + λ

C
√

s
κs,1(‖c�‖) + D(E +

√
mλN− 1

2 ‖ f ‖ρ

)

= ‖ f ‖ρ

(
ε + D

√
λ

N

(
3− 1

4 +
(

2m log

(
1

δ

)) 1
4

))

+ C

√
1 + λ

s

(
3− 1

4 + N
1
2

(
2m log

(
1

δ

)) 1
4

)
κs,1(‖c�‖)

+ DE

(
3− 1

4 m− 1
2 + N

1
2

(
2

m
log

(
1

δ

)) 1
4

)
.

��
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Theorem 3.1 highlights a theoretical purpose of λ > 0 in terms of convergence.

The constants D1, D2 > 0 in Theorem 3.1 depend on δ6s (B). As λ approaches zero,

the value of δ6s (B) approaches the larger value of δ6s (A) and thus β increases, which

can lead to slower convergence. As λ becomes large, the solution approaches zero and

the error bounds in Theorem 3.1 become trivial. In practice, we found that a small

non-zero value is useful for convergence and for mitigating the effects of noise and

outliers.

Theorem 3.1 is stated for any vector c. We can consider two potential vectors c

depending on the scaling of N and m. First, if N is sufficiently large, then by the

results of [12, 21] the matrix A will be well-conditioned with high probability (for

any λ > 0) and thus there exists a c such that e = 0. Therefore, for small λ > 0 the

relative error is dominated by the compressibility of c:

‖cn − c‖2

‖c‖2
≤ 2βn +

C
√

s

κ1,s(c)

‖c‖2
+ D

√
λ

1 + λ
. (17)

In this setting, the HARFE algorithm can be seen as a pruning approach that generates

a subnetwork with s connections that is an approximation to the full N -parameter

network, see [18, 51].

Alternatively, we can consider the function approximation results found in [21,

38–40]. Suppose we are given a probability density ρ used to sample the entries of

the random weights ω ∈ R
d and a function φ : R

2d → C. A function f ∈ F(φ, ρ) if

f : R
d → C has finite ρ-norm with respect to φ defined by

F(φ, ρ) =
{

f (x) =
∫

Rd

α(ω)φ(x;ω) dω

∣∣∣∣ ‖ f ‖ρ := sup
ω

∣∣∣∣
α(ω)

ρ(ω)

∣∣∣∣ < ∞
}

,

where ρ(ω) = ρ(ω1) . . . ρ(ωd). The random feature approximation of f ∈ F(φ, ρ)

is denoted by f � and defined as

f �(x) =
N∑

j=1

c
�
j φ(x,ω j ), (18)

where the weights {ω j } j∈[N ] are sampled i.i.d. from the density ρ. Following [38–40],

the best φ-based approximation of f ∈ F(φ, ρ) is given by f �

f �(x) =
1

N

N∑

j=1

α(ω j )

ρ(ω j )
φ(x,ω j ), (19)

where the coefficients with respect to the random features are defined as c�
j := α(ω j )

Nρ(ω j )

for all j ∈ [N ] and thus ‖c�‖2 ≤ N− 1
2 ‖ f ‖ρ . For example, let ρ be the density

associated with N (0, σ 2) and assume that the conditions of Theorem 3.1 hold. In this



27 Page 14 of 24 E. Saha et al.

setting, it was shown in [21] that ‖e�‖∞ = ‖Ac� − y‖∞ ≤ ε‖ f ‖ρ , where

ε :=
1

√
N

⎛
¿1 + 4γ σd

√

1 +
√

12

d
log

m

δ
+

√
1

2
log

(
1

δ

)À
⎠ .

Therefore, the bound in Theorem 3.1 becomes

‖cn − c�‖2 ≤

⎛
¿2βn N− 1

2 +
C
√

s

(
1 − s N−1

)
+ D

√
ε2 + λN−1

1 + λ

À
⎠ ‖ f ‖ρ, (20)

which scales like N− 1
2 . Equation (20) could be refined, since in multiple places an

�2 bound is replaced by an �∞ norm (noting that ‖ f ‖ρ is essentially an infinity-like

norm).

For the HARFE results in the following two sections, we observed that the value of μ

does not have a significant impact on the generalization. Therefore, we set μ = 0.1 for

all experiments, which can be shown to produce a convergent sequence by extending

the proofs found in [16]. In addition, we fix the sparsity ratio (s/N ) to be 5% or 10%.

Since the parameter λ depends on the dataset and the noise level, it should be tuned,

for example, using cross-validation. In our experiments, we found that the optimal

regularization parameter can range from 10−12 to 10−1 depending on the input data

(since the data is not normalized). Thus, we optimize our results over a set of possible

values for λ in order to obtain good generalization.

4 Numerical results on synthetic data

In this section, we test Algorithm 1 for approximating sparse additive functions includ-

ing the benchmark examples discussed in [7, 8, 21, 35, 37]. The experiments show that

the HARFE model outperforms several existing methods in terms of testing errors.

The step-size parameter is set toμ = 0.1 for all experiments. Other hyperparameters

will be specified for each experiment. The relative test error is calculated as

Rel( f , f �) =

√∑
x∈X test

| f (x) − f �(x)|2
∑

x∈X test
| f (x)|2

, (21)

and the mean-squared test error is defined as

MSE( f , f �) =
1

|X test|
∑

x∈X test

| f (x) − f �(x)|2 (22)

where f is the target function and f � is the trained function.
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Table 1 Relative test errors (as percentage) for approximating various nonlinear functions using different

q values

d q
1√

1 + ‖x‖2
2

√
1 + ‖x‖2

2

x1x2

1 + x6
3

∑d
i=1 exp(−|xi |)

5 5 5 100

SRFE 1 3.30 1.29 102.1 1.20

HARFE, λ = 0 1 3.30 1.40 105.6 1.50

HARFE, λ > 0 1 3.20 1.00 100 1.10

SRFE 3 0.80 1.0 8.0 1.80

HARFE, λ = 0 3 1.00 0.25 3.20 2.70

HARFE, λ > 0 3 0.73 0.18 3.40 2.01

SRFE 5 0.56 1.10 9.24 2.04

HARFE, λ = 0 5 1.80 1.08 11.20 3.00

HARFE, λ > 0 5 0.57 1.00 7.70 2.20

For each function, the two smallest errors are highlighted (in bold). The ridge paramater λ using in the

HARFE approach is set to 10−4, 10−10, 10−10, and 10−1 (going left to right). In all experiments, mtrain =
mtest = 500, N = 104, x ∼ U [−1, 1]d , the nonzero entries of ω are drawn from N (0, 1) and bias is drawn

from U [0, 2π ]

4.1 Low-order function approximation

In the first example, we show the advantage of using a greedy approach over an �1

optimization problem and the benefit of the additional ridge term. The input data

is sampled from a uniform distribution U[−1, 1]d and the activation function is set

to φ(·) = sin(·). The nonzero entries of the random weights ω j are sampled from

N (0, 1). We introduce a set of random bias terms b j ∈ R for j ∈ [N ] so that

the random feature matrix is now defined as ak, j = sin(〈xk,ω j 〉 + b j ). The bias is

sampled from U[0, 2π ] to cover all phase angles. The number of random weights is

N = 104, the sparsity level is s = 500, and the number of training and testing data

are mtrain = 500 and mtest = 500, respectively. In all experiments in this section, we

set the maximal number of iterations for our method to 50.

Table 1shows the median relative error (as a percentage) over 10 randomly generated

test sets. In the experiments, we compared the results using q ∈ {1, 3, 5}. In each case,

the HARFE approach with λ > 0 is more accurate than HARFE with λ = 0 and the

SRFE [21]. We observe that when the exact order q is known, the error is lower (see

Column 5 of Table 1). Although not included in the table, it is worth mentioning that

the Elastic Net model performs comparably to the SRFE model, although it does not

have the same generalization theory [21].

4.2 Approximation of Friedman functions

In this example, we test the HARFE method on the Friedmann functions, which are

used as benchmark examples for certain approximation techniques [7, 8, 35, 37]. The
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Table 2 Mean-squared test

errors of different methods when

approximating Friedman

functions

Method f1 f2 (×103) f3 (×10−3)

svm 4.36 18.13 23.15

lm 7.71 36.15 45.42

mnet 9.21 19.61 18.12

rForst 6.02 21.50 22.21

ANOVA 1.43 17.21 20.69

SRFE, q = 2 2.35 5.15 18.88

HARFE, q = 2 1.52 1.31 10.90

HARFE, q 3.01 1.90 13.28

The values for SRFE and HARFE are obtained by training the model

on 100 randomly generated training sets and validating them on 100

randomly generated test sets. We test for different q values. In the last

row, q = 5 for f1 and q = d = 4 for f2 and f3. For the HARFE,

λ = 1 × 10−3, 5 × 10−3, and 1 × 10−5 for the functions f1, f2, and

f3, respectively. The two best values for every function are highlighted

in bold

three Friedman functions are defined as, f1 : [0, 1]10 → R

f1(x1, . . . , x10) = 10 sin(πx1x2) + 20

(
x3 −

1

2

)2

+ 10x4 + 5x5,

f2 : [0, 1]4 → R

f2(x1, x2, x3, x4)=

√
(100x1)2+

(
x3(520πx2+40π)−

1

(520πx2 + π)(10x4 + 1)

)2
,

and f3 : [0, 1]4 → R

f3(x1, x2, x3, x4)=arctan

(
x3(520πx2+40π)−(520πx2+40π)−1(10x4+1)−1

100x1

)
.

We follow the setup from [37], where both the training and testing input datasets

are randomly generated from the uniform distribution U[0, 1]d , mtrain = 200, and

mtest = 1000. In addition, Gaussian noise with zero mean and standard deviations of

σ = 1.0, 125.0, and 0.1, are added to the output data. The MSE of various methods

when approximating Friedman functions are displayed in Table 2 . We include the

results of various methods found in [37] and compare against the results of SRFE

[21] and HARFE. For HARFE, the nonzero entries of the random weight vectors ω

and the bias terms are sampled from U[−1, 1]. We use N = 104 features for f1 and

N = 2 × 103 features for f2 and f3, s = 200, and 50 iterations in total. Our proposed

method achieves the smallest errors when approximating Friedman functions f2 and

f3 even when the value of q is unknown (in that case, we assign q = d).
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Fig. 2 Scatter plots of the true data versus the predicted values using the HARFE model over the test set

for functions f1, f2 and f3 (from left to right)

Fig. 3 Plots showing the time required (in seconds) for optimizing the trainable weights c using HARFE

compared with SRFE for m ∈ {250, 500, 1000} with d = 100 (left) and d ∈ {50, 100, 200} with m = 500

(right) for the function f (x) =
√

1 + ‖x‖2
2

It is worth noting that although the first Friedman function has d = 10, it is a

sparse additive model of order-2, and thus is better approximated by the ANOVA,

SRFE, and HARFE models. This is verified by the results in Table 2 with q = 2.

Note that HARFE with q = 2 yields a comparable result with ANOVA for f1 while

outperforming ANOVA in the other two examples. For the second Friedman function,

HARFE with q = 2 is significantly better than the other methods by almost a factor

of 14 times. For the third Friedman function, when the scale of the data is taken into

consideration, all methods produce slightly worse results, with HARFE producing

the lowest error overall. In Fig. 2 , scatter plots show the true data compared to the

predicted values using the HARFE model over a test set for functions f1, f2 and f3.

The HARFE model produces lower variances for f1 and f2, while some bias occurs

in f3 near zero.

In Fig. 3, we plot the runtimes (in seconds) of both HARFE and SRFE during the

training phase for f (x) =
√

1 + ‖x‖2
2 with different m and d. The stopping criteria

used for both the algorithm was same. We can see clearly that HARFE is almost 2.5

times faster than SRFE as the number of features N increases.

In the next experiment, we would like to test HARFE for feature selection. Figure

4displays a histogram illustrating the distribution of indices retained by the HARFE

approach for the Friedman function g : [0, 1]20 → R,



27 Page 18 of 24 E. Saha et al.

Fig. 4 A histogram plot displaying the distribution of indices retained by the HARFE approach applied to

the Friedman function g(x1, . . . , x20) = 10 sin(πx1x2) + 20
(

x3 − 1
2

)2
+ 10x4 + 5x5 using q = 2. The

histogram is based on the occurrence rate (as a percentage) of the input variables obtained from the HARFE

model. The HARFE model correctly identifies the dominate index set

g(x1, . . . , x20) = 10 sin(πx1x2) + 20

(
x3 −

1

2

)2

+ 10x4 + 5x5.

In this experiment, we choose q = 2. From the histogram in Fig. 4, we observe

that HARFE can redistribute the weights based on active input variables especially

when applied for a q-order additive function satisfying q � d and the number of

active variables (five in this case) is much less than the input dimension (which is

twenty) of the function. Specifically, the histogram is based on the occurrence rate

(as a percentage) of all twenty variables obtained from the HARFE model. The top 5

indices correspond exactly with the correct set.

5 Numerical results on real datasets

We compare the performance of models obtained by the HARFE algorithm with

other state-of-the-art sparse additive models [21, 25, 29] when applied to eleven real

datasets. An overview of the datasets and the hyperparameters s, q, mλ used in the

HARFE model are presented in Table 3.

The results of COSSO, Lasso, SALSA, SpAM, and SSAM are obtained from [25,

29, 41] and we include the results of the SRFE and HARFE model. The experiments

follow the setup from [25, 29, 41], where the training data is normalized so that the

input and output values have zero mean and unit variance along each dimensions.

Each dataset is divided in half to form the training and testing sets. The results and

comparisons are shown in Table 4. The HARFE approach produces the lowest errors on

eight datasets and achieves comparable results on the remaining datasets. Specifically,

we significantly outperform other methods on the Propulsion, Airfoil and Forestfire

datasets.
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Table 3 Overview of eleven

datasets and the values of s, mλ,

and q used in the HARFE model

Dataset Dim Train Val N s mλ q

Propulsion 15 200 200 3 k 300 10−10 2

Galaxy 20 2000 2000 10 k 1 k 10−7 2

Skillcraft 18 1700 1630 20 k 1 k 1.0 2

Airfoil 41 750 750 80 k 5 k 1.0 2

Forestfire 10 211 167 4220 422 0.5 2

Housing 12 256 250 10 k 1 k 0.1 2

Music 90 1000 1000 10 k 666 2.5 3

Insulin 50 256 250 2560 170 2.75 2

Speech 21 520 520 20 k 1 k 0.1 2

Telemonitor 19 1000 867 15 k 937 0.1 5

CCPP 59 2000 2000 10 k 1 k 0.05 1

The experimental setup and datasets for each test follow from [14, 25,

29, 41]

Table 4 Average MSE on real datasets using various sparse additive models including COSSO, Lasso,

SALSA, SpAM, SRFE, SSAM, and HARFE

HARFE COSSO Lasso SALSA SpAM SRFE SSAM

Propulsion 0.0000417 0.00094 0.0248 0.0088 1.1121 0.0154 –

Galaxy 0.0001024 0.00153 0.0239 0.00014 0.9542 0.0012 –

Skillcraft 0.5368 0.5551 0.6650 0.5470 0.9055 0.8730 0.5432

Airfoil 0.4492 0.5178 0.5199 0.5176 0.9623 0.5702 0.4866

Forestfire 0.2937 0.3753 0.5193 0.3530 0.9694 0.4067 0.3477

Housing 0.2636 1.3097 0.4452 0.2642 0.8165 0.6395 0.3787

Music 0.6134 0.7982 0.6349 0.6251 0.7683 1.0454 0.6295

Insulin 1.0137 1.1379 1.1103 1.0206 1.2035 1.6456 1.0146

Speech 0.0238 0.3486 0.0730 0.0224 0.6600 0.0246 –

Telemonitor 0.0370 5.7192 0.0863 0.0347 0.8643 0.0336 0.0689

CCPP 0.0677 0.9684 0.07395 0.0678 0.0647 0.07440 0.0694

The lowest error for each dataset is highlighted in bold

In Fig. 5, we plot the histogram of the percentage of weights corresponding to each

variable based on the (sparse) coefficient vector approximated using HARFE (from

Table 4) for the Propulsion, Housing, Speech, and Telemonitor datasets, respectively.

For the Propulsion test in Fig. 5a, we see that the 14th variable (gas turbine compressor

decay state coefficient) and the 15th variable (gas turbine decay state coefficient) have

the least contribution to the predictor (Lever Position), while the 3rd variable (gas

turbine rate of revolutions) is the most relevant variable to the predictor. From the

random sampling, the histograms are initiated uniformly (at least in expectation). This

experiment shows that the HARFE algorithm will redistribute the weights and identify

important variables as a benefit of the sparsity-promoting aspect.
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Fig. 5 The histogram plots the percentage of weights corresponding to each variable based on the (sparse)

coefficient vector approximated using HARFE for the Propulsion, Housing, Speech, and the Telemonitor

datasets, respectively

From Fig. 5b, the HARFE variable selection suggests that the predictor of the House

dataset (per capita crime rate by town) is most affected by the 5th variable (proportion

of owner-occupied units built prior to 1940) and the 12th variable (median value of

owner-occupied homes in $1000’s). In Fig. 5c, the plot shows that the 13th (Noise-to-

Harmonic or NTH parameter) significantly contributes to the output of the predictor

(median pitch) of speech dataset. Lastly, for the Telemonitoring, the experiment in

Fig. 5d shows several significant contributors to HARFE trained predictor.

6 Summary

In this work, we proposed a new high-dimensional sparse additive model utilizing the

random feature method with two sparsity priors. First, we assumed that the number of

terms needed in the model is small which leads to function approximations with low

model complexity. Secondly, we enforce a random and sparse connectivity pattern

between the hidden layer and the input layer which helps to extract input variable

dependencies. Based on the numerical experiments on high-dimensional synthetic

examples, the Friedman functions, and real data, the HARFE algorithm was shown to

produce robust results that have the added benefit of extracting interpretable variable
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information. The analysis of the HARFE algorithm utilizes techniques from compres-

sive sensing and it was shown that the method converges and has a reasonable error

bound depending on the number of features, the number of samples, the ridge param-

eter, the sparsity, the noise level, and dimensional parameters. We expect that risk

bounds for the HARFE model can be obtained by following the proofs found in [21].

In ongoing work, we would like to incorporate prior variable dependency information

within the construction of the weight matrix.
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Appendices

A Key results

Theorem A.1 (Restricted Isometry Constants from [12] Let the data {xk}k∈[m] be

drawn from N (0, γ 2Id), the weights {ω j } j∈[N ] be drawn from N (0, σ 2Id), and

the random feature matrix A ∈ C
m×N be defined component-wise by ak, j =

exp(i〈xk,ω j 〉). For η1, η2, δ ∈ (0, 1) and some integer s ≥ 1, if

m ≥ C1η
−2
1 s log(δ−1)

m

log(3m)
≥ C2η

−2
2 s log2(s) log

(
N

9 log(2m)
+ 3

)

√
δ η1 (4γ 2σ 2 + 1)

d
4 ≥ N ,

where C1 and C2 are universal positive constants, then with probability at least 1−2δ,

the s restricted isometry constant of 1√
m

A is bounded by

δs

(
1

√
m

A

)
< 3η1 + η2

2 +
√

2η2.

Theorem A.2 (Convergence of HTP Theorem 6.20 from [17]) Suppose that the (6s)th

order restricted isometry constant of A ∈ C
m×N satisfies δ6s < 1√

3
, then for any

c ∈ C
N and e ∈ C

m , the sequence ck defined by the hard thresholding pursuit with

y = Ac + e, c0 = 0, using 2s instead of s in the algorithm, satisfies

‖cn − c‖2 ≤ 2βn‖c‖2 +
D1√

s
κ1,s(c) + D2‖e‖2, (23)
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for all n ≥ 0 where the constants β ∈ (0, 1), D1, D2 > 0 depend only on δ6s . In

particular, if the sequence (cn) clusters around some c� ∈ C
N , then

‖c − c�‖2 ≤
D1√

s
κ1,s(c) + D2‖e‖2. (24)

Lemma A.3 (Lemma 1 in [21]) Fix the confidence parameter δ > 0 and accuracy

parameter ε > 0. Suppose f ∈ F(φ, ρ) where φ(x,ω) = exp(i〈x,ω〉) and ρ is

a probability distribution with finite second moment used for sampling the random

weights ω. Suppose N ≥
1

ε2
(1 +

√
2 log(

1

δ
))2, then with probability at least 1 − δ,

the following holds with respect to the draw of ω j for j ∈ [N ],

‖ f − f �‖L2(dμ) ≤ ε‖ f ‖ρ (25)

where f �(x) =
∑N

i=1 c�
k exp(i〈x,ω〉), with c�

k =
α(ωk)

Nρ(ωk)
.
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