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Abstract

We propose a random feature model for approximating high-dimensional sparse addi-
tive functions called the hard-ridge random feature expansion method (HARFE). This
method utilizes a hard-thresholding pursuit-based algorithm applied to the sparse ridge
regression (SRR) problem to approximate the coefficients with respect to the random
feature matrix. The SRR formulation balances between obtaining sparse models that
use fewer terms in their representation and ridge-based smoothing that tend to be
robust to noise and outliers. In addition, we use a random sparse connectivity pattern
in the random feature matrix to match the additive function assumption. We prove that
the HARFE method is guaranteed to converge with a given error bound depending
on the noise and the parameters of the sparse ridge regression model. In addition, we
provide a risk bound on the learned model. Based on numerical results on synthetic
data as well as on real datasets, the HARFE approach obtains lower (or comparable)
error than other state-of-the-art algorithms.

Keywords Sparse additive modeling - Random feature expansion - Ridge regression

Mathematics Subject Classification 65D15 - 65D40 - 65K10

1 Introduction

Kernel-based approaches have been extensively used in data-based applications,
including image classification and high-dimensional function approximations since
they often perform well in practice. These approaches utilize a pre-defined nonlinear
function basis in the form of a kernel K (x, y). Using the representer theorem, min-
imizers of kernel training problems over reproducing kernel Hilbert spaces (RKHS)
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take the form of linear combinations of the kernel basis applied to the dataset [11,
24, 43, 50]. Since this technique requires one to apply the kernel K to every pair
of data samples, the methods scale quadratically with the size of the dataset, which
can limit their use in large-scale applications. A more tractable approach utilizes low-
dimensional approximations (or factorizations) of the kernel matrix through the use
of randomized features.

The random feature model (RFM) [38—40] is a popular technique for approximating
the kernel (and thus the minimizer of kernel regression problems) using a randomized
basis that can avoid the cost of full kernel methods. If the kernel is positive definite,
then it can be written as an inner product with a feature function ¢, i.e. K(X,y) =
(p(x), ¢(y)). With RFM, a randomized feature map i is used to approximate the
kernel K (x,y) ~ ¥ (x)T ¥ (y), where ¢ : R? — R . When the random feature map
is low-dimensional, i.e. when N is not large, then the approximation is tractable for
large-scale datasets. This is the method used for random feature kernel regression.

An alternative perspective is to view the RFM as a nonlinear randomized function
approximation. From the neural network point of view, an RFM is a two-layer network
with a randomized but fixed single hidden layer [38—40]. Given an unknown function
f : RY — C, the RFM takes the form y = ¢/ ¢(W”x) € C where x € R? is the
input data, W € RY*¥ is a random weight matrix, ¢ is a non-linear function applied
element-wise and ¢ € CV is the final weight layer. We take as an assumption that the
entries of the matrix W = [w; ¢] are independent and identically distributed (i.i.d.)
random variables generated by the (user defined) probability density function p(®)
ie.wjr~ p(w)foralll < j<dand1 <k < N.Foran RFM, the output layer ¢ is
trained, while the hidden layer W is fixed. Thus, given a collection of m measurements,
whose inputs (and outputs) are arranged column-wise in the matrix X € R?*" (and
Y € C"*™), the random feature regression problem becomes training ¢ by optimizing:

min [|Y — " ¢(W'X)|I7, + R(c)
ceCN

with some penalty function R : CV — R.

The most common choice for R when using RFM is the ridge penalty R(c) =
Am ||c||?2 which leads to the random feature ridge regression (RFRR) problem [15,
26, 33, 40, 42]. In [42], it was shown that for a function f in an RKHS, using N =
O@m > log m) number of random features is sufficient to achieve a test error of O (m ™~ 2 )
when training the output layer of the RFRR problem. In general, to achieve a risk bound
that scales like O(N ! 4+ m_%) using the RFRR problem over the RKHS, properties
of the spectrum of the kernel operator must be known [1, 15]. In practice, the technical
assumptions on the spectrum and its decay may be hard to verify for a given problem
or dataset.

When the ridge parameter A,, — 0T, the RFRR becomes the min-norm inter-
polation problem (also referred to as ridge-less regression) and has received recent
attention in several different settings [3-5, 22, 27, 33, 34, 44]. A detailed analysis of
both the kernel ridge regression and the RFRR problems in terms of the dimensional
parameters d, m, and N is provided in [12, 33], where one conclusion indicates that
the min-norm interpolators are the optimal approximations among all kernel methods
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when N > m, i.e. in the overparameterized setting. However, noise, outliers, and
model misfits often necessitate the use of a penalty in the regression problem.

Since the risk bounds scale is like N~!, in order to have a small error, one must
choose a large number of features. In addition, it has been observed that the global
minimizer of the risk using the RFRR problem as a function of the ratio % is achieved

for values % > 1[33, 34], that is, the lower risk solutions occur in the very overparam-
eterized limit. While the risk analysis indicates that large N is needed, the complexity
of evaluating an RFM in the overpameterized setting scales linearly with the number
of features N, but large N can limit the usefulness for scientific problems or many
query applications. Thus, an alternative approach is to use sparsity-promoting penalties
(or algorithms) to obtain sparse or low-complexity models in the overparameterized
setting.

In [21], an £! basis pursuit denoising problem was used to train RFM from limited
(and noisy) measurements. Similar to the RFRR problem, it was shown that when the
sparsity level s = N and the number of measurements m = O(N log(N)), the risk is

bounded by O(N~! + m_%) [12]. When the “true” values of the final weight layer ¢
are compressible, then s can be much smaller than N to achieve similar bounds [12,
21]. In [49], a related algorithm based on the LASSO problem was used to iteratively
add a sparse number of random features to the trained RFM. While the ¢! based
approaches lead to good generalization bounds and other theoretical properties, their
optimization often comes at a higher computational cost than the ridge regression
problem. In [47], an iterative pruning approach (related to an £° penalized problem)
is shown to perform well on several synthetic and real data examples, in particular,
for high-dimensional approximation problems with the inherent low-order structure.
They connect the sparsity-promoting methods for RFM to the pruning approaches
for reducing the model complexity of overparameterized neural networks. Pruning
algorithms focus on obtaining small subnetworks with similar accuracy to the full
neural network [18, 51] and are based on the lotto ticket hypothesis, where the existence
of smaller subnetworks with similar (or better) risk is conjectured [ 18]. More precisely,
the lottery ticket hypothesis said that any randomly initialized, dense neural network
(i.e., arandom feature network) contains a subnetwork that can match the test accuracy
of the original network after training for at most the same number of training iterations.
On the other hand, the desired sparsity obtained from the hard thresholding step in
our algorithm is essentially a pruning step in order to obtain a subset of features that
could lead to better generalization results with a smaller RFM. In this way, we think of
thresholding methods as one possible approach to solving the lottery ticket hypothesis.

In this work, we propose the HARFE method, which is a hard ridge-based thresh-
olding algorithm to iteratively obtain a small sub-network for a RFM using a sparsity
prior. In addition, we use the sparse random features introduced [21], which restrict
each column of the weight matrix W to have a fixed number of non-zero terms (often
only a few non-zero components). This is beneficial when the number of interacting
or active variables is low but the ambient dimension is high, see [20, 36, 37]. In par-
ticular, for sparse additive modeling and decompositions, the sparse random features
represent possible interactions between input variables. Additive models for kernel
regression and sparse additive models include the multiple kernel learning algorithms
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[2, 19, 48], shrunk additive least squares approximation (SALSA) [25], sparse shrunk
additive models (SSAM) [29], component selection and smoothing operator (COSSO)
[28], additive model with kernel regularization (KAM) [13], and other related works
[37, 45].

1.1 Contributions

Our main algorithmic and modeling contributions are as follows:

e We propose the hard-ridge random feature expansion method (HARFE),' which
is used to train sparse additive random feature models. This method is related
to the lotto ticket hypothesis since the desired sparsity obtained from the hard
thresholding step in our algorithm is essentially a pruning step in order to obtain
a subset of features that could lead to better generalization results with a smaller
RFM, see also [18, 51].

e The sparse ridge regression (SRR) problem and some associated (scalable) algo-
rithms have been studied in [6, 23, 30, 32, 46]. The HARFE algorithm is one
way to solve the SRR problem and has guarantees on the convergence when the
matrix has standard compressive sensing structures. Specifically, the random fea-
ture matrix has a coherence bound [21] and the restricted isometry property [12],
thus convergence is given by the results in [9, 10, 16, 31]. We also obtained a
generalization bound for our approach based on the proofs from [12, 21].

e Tests on synthetic and real-world datasets validate the proposed method, includ-
ing the inclusion of sparse random features (i.e. for sparse additive random feature
modeling). The method performs comparably or better than other related algo-
rithms as shown in the experiments. In addition, the sparsity priors help to obtain
important variable dependencies from the data.

2 Problem statement and algorithm

Throughout the paper, we use bold letters for column vectors (e.g. x) and bold capital
letters for matrices (e.g. A). We say that a vector z is s-sparse if it has at most s
nonzero entries. Let [N] denote the set of all positive integers less than or equal to N.
We denote the £” norm of a vector z by [|z]||,. Next, we recall a useful definition.
Definition 2.1 (Order-q additive functions [21]) Fixd,q, K e Nwith1 <¢g <d. A
function f : R? — C is called an order-¢ additive function with at most K terms if
there exist K complex-valued functions g, ..., gx : R? — C such that

K
1
fx) = E;gj(xw,.), ()

where for each j € [K1, S; C [d], S; has ¢ distinct indices, and S; # S/ for j # j'.
Here x|s; denotes the restriction of x € R4 onto S;.

! The code is available at https://github.com/esha-saha/HARFE.
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Note that the class of additive functions in Definition 2.1 is related to sparse additive
modeling and multiple kernel learning [2, 13, 19, 20, 25, 28, 29, 36, 37, 48].

We are interested in approximating an unknown high dimensional function f :
R? — C,d > 1, from a set of m samples {(xx, yk)}ZL1 where the inputs x; are
drawn from an (unknown) probability measure p(x) and the output data is (likely)
corrupted by noise:

Yk = f(Xx) +ex, fork e [m]. ()

We assume that the noise e is a Gaussian random variable or bounded by some
constant E, thatis, |ex| < E Vk € [m]. In addition, we assume that the target function
f is an order-¢q additive function withq < d, K < (Z), and that we do not have prior
knowledge on the terms g ;. Using the random feature method [21, 38], we approximate
the target function f by:

N

fO~ ) =cTpWx) =) cjp((x ),

j=1

where W = [wy ;] € R?*N is a random weight matrix, @; € R? are the column
vectors of the matrix W, and ¢ € CV is the coefficient vector. The random weight
matrix W € R?*¥ s fixed, while the coefficients ¢ € CV are trainable. The function
¢ : R — Ris the nonlinear activation function and can be chosen to be a trigonometric
function, the sigmoid function, or the ReL U function. Unless otherwise stated, we use
the sine activation function, i.e. ¢ () = sin(-). This model is a two-layer neural network
with the weights in the hidden layer being randomized but not trainable and thus the
training problem relies on learning the coefficient vector c. Theoretically, the random
feature method has been shown to be comparable with shallow networks in terms of
theoretical risk bounds [38—40, 42] where the population risk is defined as

RU™M = 11f = A1 = / |fx) — )12 dpx) 3)
]Rd

which is also the L? squared error between the true function and its approximation.
Suppose the entries of the random weight matrix W are i.i.d. random variables gener-
ated by the (one-dimensional) probability function p (@), @k, ; ~ p(w).LetA € C"* N
be the random feature matrix whose entries are defined as ax ; = ¢ ({X¢, @;)). Then
the general regression problem is to solve the following optimization problem:

min ||Ac — y]||3, 4
min [|Ac — I @

where y = [y1, 2, ..., yml’.
For sparse additive modeling, since f is an order-g function, each entry of the
random feature matrix A should only depend on g entries of the input data x.
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Therefore, we can instead generate a sparse random matrix W where each col-
umn of W has at most g nonzero entries following the probability function p(®)
[21]. One such way to generate W is to first generate N random vectors v\/) =
(viJ ), el v{(/ ))T in R? and use a random embedding that assigns v o @ j» where
w; = (0,0,...,0, v}j),O, . véj),O, o v;j),O, ...,0)7. In particular, for each
J, we select a subset of ¢g indices from [d] uniformly at random and then sample
each nonzero entry using o (w). The sparse random matrix W can also be obtained as
W=W ® M, where W e RN is a dense matrix whose entries are sampled from
p(®), the mask M € R¥*N jsa sparse matrix whose non-zero entries are one and each
column of M has g non-zero entries, and ® denotes the element-wise multiplication.
Using this formulation, the general sparse regression problem becomes

find ¢ € CV such that ||Ac — yll2 < ey/m and c is sparse, ®)

where € is the parameter related to the noise level. The motivation for sparsity in c is
due to the assumption that K < (3), thus not all index subsets are needed.

In order to solve the sparse random feature regression problem, we propose a new
greedy algorithm named hard-ridge random feature expansion (HARFE), which uses
a hard thresholding pursuit (HTP) like algorithm to solve the random feature ridge
regression problem. Specifically, we learn ¢ from the following minimization problem:

mirllv [Ac —yl3 +malle||3 such that ¢ is s -sparse, (6)
ceC

where A > 0 is the regularization parameter. Equation (6) can be rewritten as

min ||Be — y||§ such that ¢ is s-sparse, 7
ceCN
where B = A e COmtNIXN and § = Y1 ¢ ¢V To solve (7), we first
v mAly 0 ) ’

start with an s-sparse vector ¢? € CV (typically taken as ¢ = 0) and update based on
the HTP approach

§"*1 = {indices of s largest (in magnitude) entries of ¢” + uB*(y — B¢")}

¢t = argmin{||§ — Be|3. supp(c) € "'} ®
where 1 > 0 is the step-size and s is a user defined parameter. The idea is to solve for
the coefficients using a much smaller number of model terms. The subset S given by
the indices of the s largest entries of one gradient descent step applied on the vector ¢
is a good candidate for the support set of ¢. The HTP algorithm iterates between these
two steps and leads to a stable and robust reconstruction of sparse vectors depending
on the RIP constant. The Gram matrix B*B is computed directly based on the ridge

problem
"+ uB*(§ — Bc") = (1 —mur)e” + uA*(y — Ac").
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Algorithm 1 Hard-Ridge Random Feature Expansion (HARFE)

Require: Samples {xg, yk}}?:l, non-linear function ¢, number of features N, sparsity level s, random
weight sparsity g, step size i, regularization parameter A, convergence threshold € and total number of
iterations tot_iter.

Draw (g-sparse) N random weights @ ; whose non-zero entries are sampled from p (w).

Construct the random feature matrix A = [¢ ((x¢; @;))] € cmxN
Ensure:

Initialization: Start with s-sparse decVN (c0 =0),n=0

while (Relative Residual> €) or (n<tot_iter) do
Sl (1 = mpaye” + pA*(y — Ac)
idx < indices of s largest entries of entl & Choose the subset of features §"+1
A < A[:,idx]
TN\ idx] =0
¢"*1[idx] < argmin{|ly — Ac||3 + mle|3} = (A*A + miL) " A%y
n=n+1

end while

N
return Sparse vector ¢ = [c], ¢2, ..., cy] such that: fn(x) =3y cipx; @;).
1

Final

Fig.1 Schematic representation of HARFE. The active nodes at each iteration is given in green

The approach is summarized in Algorithm 1. The relative residual at the iterate ¢” is
defined as

[[Ac" —yll2
yll2

Relative Residual =

One of the motivations for including the ridge penalty is that for random feature
regression, the sparsity level s can be large and thus the least squares step in (8) may
be ill-conditioned. Numerically, we observed that even a small non-zero value of A can
be beneficial for ensuring convergence and good generalization. In Fig. 1, we provide
a schematic representation of the sequence generated by the algorithm, namely, over
each step a sparse subset of nodes is obtained until a final configuration is achieved.

3 Theoretical discussion
The error produced by the HARFE algorithm can be established by extending the
results on the HTP algorithm to include the ridge regression term and by leveraging

bounds on the restricted isometry constant for this type of random feature matrix.
Recall that given an integer s € [V], the s-th restricted isometry constant of a matrix
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A € C"*N_denoted by 8, (A), is the smallest non-negative § such that
(1 - 8)IxI3 < [Ax]3 < (1 +8)[IxI3

holds for all s-sparse x € CN [17]. Let k1,5 (x) denote the ¢! distance to the best s-term
approximation of x defined by

k1,s(x) = inf {||z— x| :z € C", zis s — sparse} .

The value k1 s(x) provides a measure for the compressibility of the vector x with
respect to the £! norm and is obtained by setting all but the s-largest in magnitude
entries to zero.

The following result is restricted to the case wheng = d and © = 1. The g < d case
follows from similar arguments [21]. From [17], the theorem below can be extended
trivially for any step size w by scaling the matrix A and the vector y with the ratio

JE.

Theorem 3.1 (Convergence of the iterates of HARFE) Let the data {Xy }ic[m) be drawn
from N(0, y21y), the weights {w;}jeny be drawn from N (0, o21,), and the random
feature matrix A € C™N be defined component-wise by ag,j = exp(i{xXx, ®;)).
Denote the €y-regularization parameter by ) and the sparsity level by s. If

m=>Cy(1+1)7%s log(s™),

N
>Cr(14+ 1) s log?6s)log [ ——— + 3],
logam) = G214 s log"(6s) Og<9log(2m)+>

V8 2.2 d
~— (141 @y%>+1)7 >N,
673 14 )

where C1 and C; are universal positive constants, then with probability at least 1 —26,
foralle € CN ande € C" withy = Ac+e, the sequence ¢" defined by the Algorithm 1
with ¢® = 0, using 2s instead of s in the algorithm, satisfies

\/m—lny — Ac|2 + Allel3

1" — cllz < 28" el + 2Liers(©) + Da
s 14+ A

NG

for alln > 0 where the constants B € (0, 1), D1, D> > 0 depend only on 8¢5 (B). The

A
matrix B is given by B = (m + mx)—% [ml i| e Cm+N)XN
N
Proof The ridge regression problem:
min [[Ac —y[3 +miel3 ©)
ceRN
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can be written in the form:

min |Bz — §|3 10)
min [[Bz —§3 (

where B = (m + mA) ™2 [«/m_AAI } € Cm+NxN and § = [z] e C"™*N . For Eq.
N

(10), the error is defined as € = § — Bz’ which is equivalent to

5 € m+N
e_[_mc}ec .

If ¢ is the minimizer of (9) and z’ is the minimizer of (10), then z’ = (m + m)»)% c

The scaling is needed for the matrix to satisfy a restricted isometry property.
To estimate the restricted isometry constant of B, we first bound the restricted

isometry constant of m2A. By Theorem A.1 and the assumptions, if
m > 6Cin; % s log(8™h)

m N
> 6C log?(65) log [ ————— +3
Tog3m) = 02 s log*(65) log (910g(2m) + )

V3 (4y%? + 1DE > N,

where C1 and C; are universal positive constants, then with probability at least 1 — 28,
the 6s-restricted isometry constant is bounded by

865 (A) < 3n1 +n3 + V2,
or equivalently
| 1agas - 15 Hzﬁz <301 415+ V2m,

for all § C [N] with |S| = 6s. Therefore, the 6s-restricted isometry constant of B
satisfies

[B3Bs X[, = [on +mn (A3As +matg) ~ 15|

1 1
— |m'AxA —IH
1—}—)\Hm §S SZ—>2

301+ 03+ V2m
1+ A ’

14X
63

Setting the parameters to 1] = and 1, = then |BiBs — Is||, ., < = if

4f ’ V3
m > 648C; (1 +1)"%s log(8™1)
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N
> 288C, (1 + 1)~ s log?(6s)log( ——— +3
TogGm) = 258C2(1+4)7"s log"(6s) log <9log(2m)+ )

NG

d
2 (141 @yt + 15 > N.
63 v

By Eq. (23) of Theorem A.2, the sequence generated by the hard thresholding pursuit
algorithm produces a solution with the following bound

C -
12" =22 < 26"112/ll2 + —=k1,,(2) + D&, (n

Vs
for all n > 0 where the constants § € (0,1),C, D > 0 depend only on §¢,(B).

Transforming the variables to the original variables yields the following bound

c R U
lc" —ella <2B8"[lells + —=k15(€) + D (1 +21)"2 m™2 ||€]2 (12)

VA
n ¢ -1 -1 2 2
=28 ||c||2+$K1‘s(c)+D A+2)72m 2 /lell; +millefly (13)

m~1lell3 + Allell3
1+

C
<2B"%ell2 + —=k1,5(c) + D\/ . (14)

NG
which concludes the proof. O

It is worth noting that, in practice, A > 0 is small, i.e. we would like mA = O(1).
Thus the third term in the iterative bound is smaller than the second term and does not
contribute significantly to the overall error.

Theorem 3.2 (Risk bound for HARFE) Let the data {Xi}ikeim) be drawn from
N0, y*1y), the weights {w;}jerny be drawn from N (0, 0?1y), and the random fea-
ture matrix A € C"*N be defined component-wise by a,j = exp(i{Xk, @;)). Denote
the £, regularization parameter by )\, accuracy parameter by € > 0, and the sparsity
level by s. If the assumptions of Theorem 3.1 are satisfied, then with probability at
least 1 — 286, the following risk bounds hold:

k™ <151, (4 Dy % 3744 (2mo (1))i
= 14 N & 1)
[T+ s 1 )
+C T(3 i+ N2 (2m10g(5>> )Kx,l(llc*ll)
. 1 (2 \\*
+ DE (3_4m_2 + N2 <—10g (—)) )
m 8
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Proof We use the L? norm, which can be decomposed into two parts using the triangle
inequality:

f = 2w < = Fllzaw + 1= 2w

The approximation f¥ is defined in Eq. (18) and the best ¢-based approximation f*
is given in Eq. (19).

1 1
Following the proof in Section 6 of [12], if N > —2(1 + 210g(3))2, then with
€

probability at least 1 — §, we have
If = 2@ < €llfllp. 15)

We use McDiarmid’s Inequality to bound || f* — f%|| 12(dy)» arguing similarly as in
Lemma 2 from [21] or Section 6 of [12]. Let {z;} j¢[;n] be i.i.d. random variables sam-
pled from the distribution . which are independent from the sampled points {X;} je[m]
and the frequencies {®}ie(n]. This independence assumption makes {z;} e also
independent of coefficients ¢* and ¢* and thus allows for the following argument. Let
v be a random variable defined by

1 m
V@1, 2m) = = Pl — — D1 @) = frEp P,
j=1

Then Ez[v] =0 as

We perturb the k—th component of v to get,

|U(Z17 s 2k, .. Zm) - U(zlv B ikv ] Zm)|

|f*(z) — ROl — | f* @) — fF@E01?].

=<

3|~

Using Cauchy—Schwarz inequality, for any z, we have,
f* @) — fr@l < Nl — &3,
which holds since |¢(z, ®)| = 1. Hence,
V(21 ..o Ty -+ s Zm) — V(21 - Ty - - oy Zm)| < %Nné* — &3 =A.
Therefore, we can apply McDiarmid’s inequality to the random variable v, i.e.

1
P,(v —Ez[v] >1) < exp(—%) where tr := A %log (5) Following the results
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from Theorem 3.1, we have that §¢,(B) < T (the matrix B is as obtained in Eq. (10)),

then with s replaced by 2s, with probability at least 1 — 36 (26 for the coherence bound
and § from the 25), we have:

1 2 1 e~
"= S = o Xt 1 <zj>—fﬁ<z/>|2+N< a“g(g))”“*—c”ll%

1 - 2 1
= —IBE@ —&HZ+ N[/ Zlog|=)]Ie*—¢*3
mII =)l + < - 0g<3>) ler —¢*[I5
1 . N 2 -
C*—cﬁ)||§+N< —log( )) IIc* cﬁ||§.

C
From Eq. (24) of Theorem A.2, || (€* —&%) ||, < TKS,l(E*)+D||é||2,where C,D>0
s

depend only on ¢y (B). Since ¢ = «/m + mAc, transforming to original variables, we
have:

1
1 2 1 2
1= £l 2 < <— + N( — log (‘)))
V3m m )
C
<Vm + mkﬁKs,l(HC*ll) + Dy/lle|? + m)»llc*H%) (16)

1
(@) < —I|fll, and |le]l2 < E. Thus, combining Egs. (25) and

p(w)k

1 2 1 :
Lf = P2 < €l fll, + <@ + N( zlog <g>>>

(m%@,l(uan) +D\/E2+ miN~! llfll%)

11 1 (2 1 3
<elfllp+ |3 *m 24+ N2 Elog 3

(ﬂm%

R
=fllp <6+D\/; (3 i+ (2mlog (5)) ))
[T+ (1 1 1\ 4 .
+C p (3 i+ N2 <2mlog(g)) )Ks,l(”c [B)
(1 _1 1(2 1 I
+DE |37 4m 2+ N2 (_10g<_>> )
m 1)

Note |¢;| =
(16) yields

N

k51 (Ie*]) + D(E + VmiNT2 ||f||p>
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Theorem 3.1 highlights a theoretical purpose of A > 0 in terms of convergence.
The constants D1, D> > 0 in Theorem 3.1 depend on &5 (B). As A approaches zero,
the value of §¢; (B) approaches the larger value of dg5 (A) and thus 8 increases, which
can lead to slower convergence. As A becomes large, the solution approaches zero and
the error bounds in Theorem 3.1 become trivial. In practice, we found that a small
non-zero value is useful for convergence and for mitigating the effects of noise and
outliers.

Theorem 3.1 is stated for any vector ¢. We can consider two potential vectors ¢
depending on the scaling of N and m. First, if N is sufficiently large, then by the
results of [12, 21] the matrix A will be well-conditioned with high probability (for
any A > 0) and thus there exists a ¢ such that e = 0. Therefore, for small > > 0 the
relative error is dominated by the compressibility of c:

lc" — cll2 C ki15(c) A
1€~ _ppn o = B9 . (17)
lell2 Vs lellz 1+ A

In this setting, the HARFE algorithm can be seen as a pruning approach that generates
a subnetwork with s connections that is an approximation to the full N-parameter
network, see [18, 51].

Alternatively, we can consider the function approximation results found in [21,
38—40]. Suppose we are given a probability density p used to sample the entries of
the random weights @ € R and a function ¢ : R2 — C. A function f € F(¢, p) if
f :R? — C has finite p-norm with respect to ¢ defined by

Fp,p) = {f(X) = /Rdot(w)¢(X; w) dw ‘ I £1l, := sup

ot(w)‘ }
— | <00y,
Jd )

where p(®) = p(w1) ... p(wg). The random feature approximation of f € F(¢, p)
is denoted by f* and defined as

N
ffx =Y cox o), (18)
j=1

where the weights {®;} je[n] are sampled i.i.d. from the density p. Following [38—40],
the best ¢-based approximation of f € F(¢, p) is given by f*

1 N a(w;)
* § : J .
f (X) - N j:1 p( j) ¢(Xa w])7 (19)

where the coefficients with respect to the random features are defined as c;. = 1\(/)[;‘(0«])))
J

for all j € [N] and thus |c*|2 < N’% | f1l,. For example, let p be the density
associated with NV (0, 2) and assume that the conditions of Theorem 3.1 hold. In this
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setting, it was shown in [21] that ||e*[lcc = [|Ac* — ¥lloo < €l| f1l, Where

L () 4404 1+,/121 o e (]
€= —— — log — ~log(=]].
N ve d 8% T2 %5

Therefore, the bound in Theorem 3.1 becomes

N 1 C _ 62+)\,N71
" — "2 < 28" N 2+$(1—SN 1>+D‘/1+—A 1£1p. (20)

which scales like N~2. Equation (20) could be refined, since in multiple places an
£2 bound is replaced by an £°° norm (noting that || £ || o 1s essentially an infinity-like
norm).

For the HARFE results in the following two sections, we observed that the value of u
does not have a significant impact on the generalization. Therefore, we set u = 0.1 for
all experiments, which can be shown to produce a convergent sequence by extending
the proofs found in [16]. In addition, we fix the sparsity ratio (s/N) to be 5% or 10%.
Since the parameter A depends on the dataset and the noise level, it should be tuned,
for example, using cross-validation. In our experiments, we found that the optimal
regularization parameter can range from 102 to 10~! depending on the input data
(since the data is not normalized). Thus, we optimize our results over a set of possible
values for A in order to obtain good generalization.

4 Numerical results on synthetic data

In this section, we test Algorithm 1 for approximating sparse additive functions includ-
ing the benchmark examples discussed in [7, 8, 21, 35, 37]. The experiments show that
the HARFE model outperforms several existing methods in terms of testing errors.

The step-size parameteris setto u = 0.1 for all experiments. Other hyperparameters
will be specified for each experiment. The relative test error is calculated as

xeXuy [ = FFX)?
Rel(/. fﬁ):\/z gﬁlf xlf(X;“'ZX)I 7 1)
X€E Xiest

and the mean-squared test error is defined as

1
[ Xtestl

MSE(f, /%) = > - ffl? (22)

X€ Xiest
where f is the target function and f* is the trained function.
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Table 1 Relative test errors (as percentage) for approximating various nonlinear functions using different
q values

1 X1X2
d q — J1+Ix12 _ Y exp(—Ix;])
J 1+ Ix13 9

5 5 5 100
SRFE 1 3.30 1.29 102.1 1.20
HARFE, A =0 1 3.30 1.40 105.6 1.50
HARFE, A > 0 1 3.20 1.00 100 1.10
SRFE 3 0.80 1.0 8.0 1.80
HARFE, A =0 3 1.00 0.25 3.20 2.70
HARFE, » > 0 3 0.73 0.18 3.40 2.01
SRFE 5 0.56 1.10 9.24 2.04
HARFE, A =0 5 1.80 1.08 11.20 3.00
HARFE, A > 0 5 0.57 1.00 7.70 2.20

For each function, the two smallest errors are highlighted (in bold). The ridge paramater A using in the
HAREFE approach is set to 1074,10719,10=10 and 10! (going left to right). In all experiments, m 4, =
Mmrest = 500, N = 104, x ~ ur-1, l]d, the nonzero entries of @ are drawn from A/(0, 1) and bias is drawn
from U[0, 27]

4.1 Low-order function approximation

In the first example, we show the advantage of using a greedy approach over an £!
optimization problem and the benefit of the additional ridge term. The input data
is sampled from a uniform distribution U[—1, 17 and the activation function is set
to ¢(-) = sin(-). The nonzero entries of the random weights @; are sampled from
N (0, 1). We introduce a set of random bias terms b; € R for j € [N] so that
the random feature matrix is now defined as ay ; = sin({x¢, @;) + b;). The bias is
sampled from [0, 2r] to cover all phase angles. The number of random weights is
N = 10%, the sparsity level is s = 500, and the number of training and testing data
are Mypin = 500 and mes; = 500, respectively. In all experiments in this section, we
set the maximal number of iterations for our method to 50.

Table 1shows the median relative error (as a percentage) over 10 randomly generated
test sets. In the experiments, we compared the results using g € {1, 3, 5}. In each case,
the HARFE approach with A > 0 is more accurate than HARFE with A = 0 and the
SRFE [21]. We observe that when the exact order ¢ is known, the error is lower (see
Column 5 of Table 1). Although not included in the table, it is worth mentioning that
the Elastic Net model performs comparably to the SRFE model, although it does not
have the same generalization theory [21].

4.2 Approximation of Friedman functions

In this example, we test the HARFE method on the Friedmann functions, which are
used as benchmark examples for certain approximation techniques [7, 8, 35, 37]. The
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Table2 Mean-squared test
errors of different methods when
approximating Friedman
functions

three Friedman functions are defined as, f; : [0, 1110 - R

1 2
Ji(x1, ..., x10) = 10sin(mwx1x2) + 20 (X3 - E) + 10x4 + 5xs,

fr:00,11* >R

Method fi 2 (x10%) f3(x1073)
svm 436 18.13 23.15
Im 7.71 36.15 45.42
mnet 9.21 19.61 18.12
rForst 6.02 21.50 22.21
ANOVA 1.43 17.21 20.69
SRFE, g =2 2.35 5.15 18.88
HARFE, g =2 1.52 1.31 10.90
HAREFE, ¢ 3.01 1.90 13.28

The values for SRFE and HARFE are obtained by training the model
on 100 randomly generated training sets and validating them on 100
randomly generated test sets. We test for different ¢ values. In the last
row, g = 5 for fj and ¢ = d = 4 for f> and f3. For the HARFE,
A=1x1073,5% 1073, and 1 x 107 for the functions f], f2, and
f3, respectively. The two best values for every function are highlighted

in bold

fa(xt, x2, x3, x4) =\/(100x1)2+ <x3(520ﬂx2+4077)—

and f3 : [0, 1* >R

f3(x1, x2, X3, x4) = arctan (

2
(5207 x7 + 7)(10x4 + 1)> ’

x3(5207x2 4407 ) — (5207 x2+407) 1 (10x4+1) !
100x ’

We follow the setup from [37], where both the training and testing input datasets
are randomly generated from the uniform distribution /[0, 119, msrain = 200, and
mest = 1000. In addition, Gaussian noise with zero mean and standard deviations of
o = 1.0, 125.0, and 0.1, are added to the output data. The MSE of various methods
when approximating Friedman functions are displayed in Table 2. We include the
results of various methods found in [37] and compare against the results of SRFE
[21] and HARFE. For HARFE, the nonzero entries of the random weight vectors
and the bias terms are sampled from U[—1, 1]. We use N = 10* features for f1 and
N = 2 x 103 features for Jf>and f3,s = 200, and 50 iterations in total. Our proposed
method achieves the smallest errors when approximating Friedman functions f> and

f3 even when the value of ¢ is unknown (in that case, we assign g = d).
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Fig. 2 Scatter plots of the true data versus the predicted values using the HARFE model over the test set
for functions f1, f» and f3 (from left to right)
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Fig. 3 Plots showing the time required (in seconds) for optimizing the trainable weights ¢ using HARFE
compared with SRFE for m € {250, 500, 1000} with d = 100 (left) and d € {50, 100, 200} with m = 500

(right) for the function f(x) =,/1+ ||x||%

It is worth noting that although the first Friedman function has d = 10, it is a
sparse additive model of order-2, and thus is better approximated by the ANOVA,
SRFE, and HARFE models. This is verified by the results in Table 2 with g = 2.
Note that HARFE with g = 2 yields a comparable result with ANOVA for f; while
outperforming ANOVA in the other two examples. For the second Friedman function,
HARFE with ¢ = 2 is significantly better than the other methods by almost a factor
of 14 times. For the third Friedman function, when the scale of the data is taken into
consideration, all methods produce slightly worse results, with HARFE producing
the lowest error overall. In Fig. 2, scatter plots show the true data compared to the
predicted values using the HARFE model over a test set for functions fi, f» and f3.
The HARFE model produces lower variances for fi and f,, while some bias occurs
in f3 near zero.

In Fig. 3, we plot the runtimes (in seconds) of both HARFE and SRFE during the

training phase for f(x) = /1 + ||x||% with different m and d. The stopping criteria
used for both the algorithm was same. We can see clearly that HARFE is almost 2.5
times faster than SRFE as the number of features N increases.

In the next experiment, we would like to test HARFE for feature selection. Figure
4displays a histogram illustrating the distribution of indices retained by the HARFE
approach for the Friedman function g : [0, 11?0 — R,
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Fig.4 A histogram plot displaying the distribution of indices retained by the HARFE approach applied to

2
the Friedman function g(xp, ..., x29) = 10sin(wx1x2) + 20 <x3 - %) + 10x4 + 5x5 using ¢ = 2. The
histogram is based on the occurrence rate (as a percentage) of the input variables obtained from the HARFE
model. The HARFE model correctly identifies the dominate index set

1 2
g(x1,...,x20) = 10sin(mrx1x2) + 20 (x3 — 5) + 10x4 + S5xs.

In this experiment, we choose ¢ = 2. From the histogram in Fig. 4, we observe
that HARFE can redistribute the weights based on active input variables especially
when applied for a g-order additive function satisfying ¢ <« d and the number of
active variables (five in this case) is much less than the input dimension (which is
twenty) of the function. Specifically, the histogram is based on the occurrence rate
(as a percentage) of all twenty variables obtained from the HARFE model. The top 5
indices correspond exactly with the correct set.

5 Numerical results on real datasets

We compare the performance of models obtained by the HARFE algorithm with
other state-of-the-art sparse additive models [21, 25, 29] when applied to eleven real
datasets. An overview of the datasets and the hyperparameters s, g, mA used in the
HARFE model are presented in Table 3.

The results of COSSO, Lasso, SALSA, SpAM, and SSAM are obtained from [25,
29, 41] and we include the results of the SRFE and HARFE model. The experiments
follow the setup from [25, 29, 41], where the training data is normalized so that the
input and output values have zero mean and unit variance along each dimensions.
Each dataset is divided in half to form the training and testing sets. The results and
comparisons are shown in Table 4. The HARFE approach produces the lowest errors on
eight datasets and achieves comparable results on the remaining datasets. Specifically,
we significantly outperform other methods on the Propulsion, Airfoil and Forestfire
datasets.
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Table 3 Overview of eleven
datasets and the values of s, mA,
and ¢ used in the HARFE model

Dataset Dim  Train Val N K m q

Propulsion 15 200 200 3k 300 10710 2
Galaxy 20 2000 2000 10k 1k 1077 2
Skillcraft 18 1700 1630 20k 1k 1.0 2
Airfoil 41 750 750 80k 5k 1.0 2
Forestfire 10 211 167 4220 422 0.5 2
Housing 12 256 250 10k 1k 0.1 2
Music 90 1000 1000 10k 666 2.5 3
Insulin 50 256 250 2560 170 2.75 2
Speech 21 520 520 20k 1k 0.1 2
Telemonitor 19 1000 867 15k 937 0.1 5
CCPP 59 2000 2000 10k 1k 0.5 1

The experimental setup and datasets for each test follow from [14, 25,
29, 41]

Table 4 Average MSE on real datasets using various sparse additive models including COSSO, Lasso,
SALSA, SpAM, SRFE, SSAM, and HARFE

HARFE COSSO Lasso SALSA SpAM SRFE SSAM

Propulsion 0.0000417 0.00094 0.0248 0.0088 1.1121 0.0154 -

Galaxy 0.0001024 0.00153 0.0239 0.00014 0.9542 0.0012 -

Skillcraft 0.5368 0.5551 0.6650 0.5470 0.9055 0.8730 0.5432
Airfoil 0.4492 0.5178 0.5199 0.5176 0.9623 0.5702 0.4866
Forestfire 0.2937 0.3753 0.5193 0.3530 0.9694 0.4067 0.3477
Housing 0.2636 1.3097 0.4452 0.2642 0.8165 0.6395 0.3787
Music 0.6134 0.7982 0.6349 0.6251 0.7683 1.0454 0.6295
Insulin 1.0137 1.1379 1.1103 1.0206 1.2035 1.6456 1.0146
Speech 0.0238 0.3486 0.0730 0.0224 0.6600 0.0246 -

Telemonitor 0.0370 5.7192 0.0863 0.0347 0.8643 0.0336 0.0689
CCPP 0.0677 0.9684 0.07395 0.0678 0.0647 0.07440 0.0694

The lowest error for each dataset is highlighted in bold

In Fig. 5, we plot the histogram of the percentage of weights corresponding to each
variable based on the (sparse) coefficient vector approximated using HARFE (from
Table 4) for the Propulsion, Housing, Speech, and Telemonitor datasets, respectively.
For the Propulsion test in Fig. 5a, we see that the 14th variable (gas turbine compressor
decay state coefficient) and the 15th variable (gas turbine decay state coefficient) have
the least contribution to the predictor (Lever Position), while the 3rd variable (gas
turbine rate of revolutions) is the most relevant variable to the predictor. From the
random sampling, the histograms are initiated uniformly (at least in expectation). This
experiment shows that the HARFE algorithm will redistribute the weights and identify
important variables as a benefit of the sparsity-promoting aspect.

) Birkhauser



27 Page20of24 E.Sahaetal.

14 1
o2 - 2
Q Q
E 10 »3_ 10
o 8 (=}
(] v g
(=] o
8 6 S 6
5 @
g 4 [T
[ Q
a 5 a5

0 0

123 456 7 8 9101112131415 1 2 3 4 5 6 7 8 9 10 11 12
Input Variables Input Variables
(a) Propulsion dataset (b) Housing dataset

14 10
n
. 0
< 12 F
= 5 8

@

=10 =
el =
. R .
2 £
g ¢ g
g 4 5
= a
&, 2

0

12345678 910111?131415161718192021 g 1234567 8 910111213141516171819
Input Variables Input Variables
(c) Speech dataset (d) Telemonitoring dataset

Fig.5 The histogram plots the percentage of weights corresponding to each variable based on the (sparse)
coefficient vector approximated using HARFE for the Propulsion, Housing, Speech, and the Telemonitor
datasets, respectively

From Fig. 5b, the HARFE variable selection suggests that the predictor of the House
dataset (per capita crime rate by town) is most affected by the 5th variable (proportion
of owner-occupied units built prior to 1940) and the 12th variable (median value of
owner-occupied homes in $1000’s). In Fig. 5c, the plot shows that the 13th (Noise-to-
Harmonic or NTH parameter) significantly contributes to the output of the predictor
(median pitch) of speech dataset. Lastly, for the Telemonitoring, the experiment in
Fig. 5d shows several significant contributors to HARFE trained predictor.

6 Summary

In this work, we proposed a new high-dimensional sparse additive model utilizing the
random feature method with two sparsity priors. First, we assumed that the number of
terms needed in the model is small which leads to function approximations with low
model complexity. Secondly, we enforce a random and sparse connectivity pattern
between the hidden layer and the input layer which helps to extract input variable
dependencies. Based on the numerical experiments on high-dimensional synthetic
examples, the Friedman functions, and real data, the HARFE algorithm was shown to
produce robust results that have the added benefit of extracting interpretable variable
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information. The analysis of the HARFE algorithm utilizes techniques from compres-
sive sensing and it was shown that the method converges and has a reasonable error
bound depending on the number of features, the number of samples, the ridge param-
eter, the sparsity, the noise level, and dimensional parameters. We expect that risk
bounds for the HARFE model can be obtained by following the proofs found in [21].
In ongoing work, we would like to incorporate prior variable dependency information
within the construction of the weight matrix.
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Appendices
A Key results

Theorem A.1 (Restricted Isometry Constants from [12] Let the data {Xi}ie[m) be
drawn from N (0, y?1,), the weights {wj}jen be drawn from N0, 021y), and
the random feature matrix A € C™N be defined component-wise by ay. i =
exp(i(xx, @;)). For n1, m2, 8 € (0, 1) and some integer s > 1, if

m > le_2s 10g(871)
m -2 2
—>C 1 1
logGm) = 21, " s log”(s) og(
Vo (4y2e2 + )5 = N,

N
—— 43
9log(2m) )

where C1 and Co are universal positive constants, then with probability at least 1 —24,
the s restricted isometry constant of \/LﬁA is bounded by

1 2
53 (ﬁA> < 37]1 + Uk + \/57]2

Theorem A.2 (Convergence of HTP Theorem 6.20 from [17]) Suppose that the (6s)™
order restricted isometry constant of A € C"*N satisfies 8¢, < —=, then for any

\/5}
c € CN and e € C™, the sequence c* defined by the hard thresholding pursuit with
y = Ac +e, ¢ = 0, using 2s instead of s in the algorithm, satisfies

N n D,
e —cll2 = 28%lell2 + —=«1,5(¢) + D2llell2, (23)
S
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for all n > 0 where the constants B € (0, 1), D1, Dy > 0 depend only on 8¢s. In
particular, if the sequence (¢") clusters around some ¢* € CV | then

Dy
e — |l < —=15(0) + Dalell>. (24)

%

LemmaA.3 (Lemma 1 in [21]) Fix the confidence parameter § > 0 and accuracy
parameter € > 0. Suppose f € F(¢p, p) where ¢ (X, w) = exp(i(X, w)) and p is
a probability distribution with finite second moment used for sampling the random

1 / 1

weights ®. Suppose N > —2(1 + 210g(5))2, then with probability at least 1 — §,
€

the following holds with respect to the draw of @ for j € [N],

If = 2@ <€l flo (25)

where f*(x) = ZzN:I c]: exp(i (X, w)), with c]’: = %.
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