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Abstract1

Chromatic symmetric functions are well-studied symmetric functions in algebraic2

combinatorics that generalize the chromatic polynomial and are related to Hessenberg3

varieties and diagonal harmonics. Motivated by the Stanley–Stembridge conjecture,4

we show that the allowable coloring weights for indifference graphs of Dyck paths are5

the lattice points of a permutahedronPλ, andwegive a formula for the dominantweight6

λ. Furthermore,weconjecture that such chromatic symmetric functions areLorentzian,7

a property introducedbyBrändén andHuhas a bridge betweendiscrete convex analysis8

and concavity properties in combinatorics, and we prove this conjecture for abelian9

Dyck paths. We extend our results on the Newton polytope to incomparability graphs10

of (3 + 1)-free posets, and we give a number of conjectures and results stemming11

from our work, including results on the complexity of computing the coefficients and12

relations with the ζ map from diagonal harmonics.13
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_####_ Page 2 of 35 J. P. Matherne et al.

1 Introduction16

1.1 Motivation17

The study of proper colorings of a graph G is a fundamental topic in graph theory and18

theoretical computer science. For a fixed graph G, the number of proper colorings of G19

with n colors is given by the chromatic polynomial χG(n), which was first introduced20

by Birkhoff in 1912 for planar graphs [10] and then for all graphs in 1932 byWhitney21

[64]. In 1995, Stanley defined the following symmetric function generalization of22

χG(n): for a graph G = (V , E) let23

XG(x) :=
∑

f : V (G)→N

f proper

x f (1)x f (2) · · · ,24

where the sum is over all proper colorings f of G (i.e., colorings satisfying f (i) �=25

f ( j) if (i, j) is an edge of G) [57]. This symmetric function has connections to combi-26

natorial Hopf algebras [4], topology [18, 51], statistical mechanics [43], representation27

theory [16, 23, 35], and algebraic geometry [15].28

There are fundamental open questions about XG(x). For instance, Stanley conjec-29

tured in [56, 57] that XG(x) expands positively in the Schur function basis (i.e. is30

s-positive) whenever G is claw-free.31

Conjecture 1.1 (Stanley [57]) If G is claw-free, then XG(x) is s-positive.32

Stanley verified this conjecture for co-bipartite graphs, which are complements of33

bipartite graphs. Another conjecture of Stanley and Stembridge that motivates this34

paper states that if the graph G = G(P) is the incomparability graph of a (3 + 1)-35

free poset P (a poset with no subposet consisting of a 3-chain and an incomparable36

element), then XG(P)(x) expands positively in the elementary basis of symmet-37

ric functions (i.e. is e-positive) [59]. Gasharov proved that XG(P)(x) is s-positive38

[26], which is implied by both conjectures since such graphs G(P) are claw-free39

and e-positivity implies s-positivity. Lewis–Zhang [41] and Guay-Paquet–Morales–40

Rowland [30] studied the enumeration and structure of (3 + 1)-free posets. In [29],41

Guay-Paquet used this work and the modular relation of XG(P)(x) to reduce this con-42

jecture to a subfamily of graphs in bijection with Dyck paths [29], one of the hundreds43

of objects counted by the Catalan numbers. Given a Dyck path d from (0, 0) to (n, n),44

the indifference graph G(d) of the Dyck path d has vertices {1, . . . , n} and edges (i, j)45

with i < j , if the cell (i, j) is below the path d (see Fig. 1).46

Conjecture 1.2 (Stanley–Stembridge [59]) For any Dyck path d, XG(d)(x) is e-47

positive.48

Recently, XG(d)(x) has been related to other very interesting mathematical objects:49

the representation theory of Hessenberg varieties (see e.g., [53]) and the space of50

diagonal harmonics [5, 6, 16, 32]. For other classes of graphswith e-positive chromatic51

symmetric function, see [25].52
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The Newton polytope and Lorentzian property of chromatic... Page 3 of 35 _####_

1.2 Main results53

The purpose of this paper is to contribute to the study of three classes of chromatic54

symmetric functions: those of co-bipartite graphs G, of indifference graphs G(d) of55

Dyck paths d, and of incomparability graphs G(P) of (3 + 1)-free posets P . We56

note that indifference graphs of Dyck paths are the same as incomparability graphs of57

posets that are both (3+1)-free and (2+2)-free (such posets are sometimes called unit58

interval orders, e.g., see [6, Sect. 2.1]), and co-bipartite graphs are incomparability59

graphs of 3-free posets. Thus, the class of incomparability graphs of (3+1)-free posets60

contains both the class of co-bipartite graphs and the class of indifference graphs of61

Dyck paths (see [29, 30]).62

We study these three classes via their Newton polytopes. Recall that the Newton63

polytope of a multivariate polynomial p(x) ∈ R[x1, . . . , xk] is the convex hull in R
k

64

of the support of p, and that p is said to be SNP if its Newton polytope is saturated,65

i.e. if the support of p is equal to the set of lattice points in the Newton polytope of66

p [44]. Our main result is that the chromatic symmetric functions in each of the three67

classes that we study are SNP, and moreover, their Newton polytopes are explicitly68

described permutahedra. In what follows, for a partition λ of length � and a nonneg-69

ative integer k ≥ �, the permutahedron P(k)
λ is the convex hull of permutations of70

(λ1, . . . , λ�, 0, . . . , 0) in Rk . If k < �, the permutahedron P(k)
λ is the empty set.71

Theorem 1.3 (1) (Proposition 3.1) For G a co-bipartite graph, XG(x1, . . . , xk) is SNP72

and its Newton polytope is the permutahedron P(k)
λ(G).73

(2) (Theorem 4.1) For d a Dyck path, XG(d)(x1, . . . , xk) is SNP and its Newton poly-74

tope is the permutahedron P(k)
λ(d).75

(3) (Theorem 5.8) For G(P) the incomparability graph of a (3 + 1)-free poset P,76

XG(P)(x1, . . . , xk) is SNP and its Newton polytope is the permutahedron P(k)
λ(P).77

In each of the three cases of Theorem 1.3, we explicitly describe the Newton78

polytope: for example, in case (2), λ(d) is the weight λgr(d) of the greedy coloring79

of G(d). Interestingly, the weight λgr(d) appears in representation theory, where it is80

the partition arising from the Jordan form of the unique nilpotent orbit associated to81

a given ad-nilpotent ideal I of the set of strictly upper triangular matrices [28] (see82

Remarks 4.8 and 4.12). For more on this connection, including the relation between83

Dyck paths and ad-nilpotent ideals, we point to [23, Sect. 6].84

The proof of Theorem 1.3 in each case proceeds by finding a special coloring gr.85

These symmetric functions are by definition positive in the monomial basis, and all86

three classes of graphs have Stanley’s nice property (see Sect. 2.6), so the support will87

contain any integer vector dominated by the weight of gr. To complete the proof, we88

prove that any vector in the support is dominated by the weight of gr.89

We reiterate that case (3) implies both cases (1) and (2). While preparing90

the manuscript, the authors learned that one of the main ingredients for case91

(2), Lemma 4.11, was already known to Chow in an unpublished note [19] (see92

Remark 4.12). Cases (1) and (3) are new, and case (3) requires an in-depth study93

of the structure of (3 + 1)-free posets from [29, 30] and the recent modular relation94

of Guay-Paquet [29] and Orellana–Scott [47].95
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_####_ Page 4 of 35 J. P. Matherne et al.

1.3 Applications and conjectures96

Here we highlight some of the consequences of Theorem 1.3 that appear in detail in97

Sects. 6 and 7.98

1.3.1 M-convexity and the Lorentzian property99

One strengthening of the SNP property is M-convexity, a property that first appeared100

in discrete convex analysis [46]. Write ei for the i th standard unit vector in N
k . A101

subset J of Nk is matroid-convex or M-convex if for all α, β ∈ J and for all i such102

that αi > βi , there exists a j such that β j > α j and α − ei + e j ∈ J . The convex hull103

of any M-convex set is a generalized permutahedron [48], and the set of lattice points104

of an integral generalized permutahedron is an M-convex set [46, Theorem 1.9]. Let105

Hn
k be the set of degree n homogeneous polynomials in R[x1, . . . , xk]. A polynomial106

f in Hn
k is M-convex if its support is M-convex. Note that if f is M-convex, then f107

is SNP [44].108

The notion of M-convexity is part of the definition of Lorentzian polynomials,109

defined by Brändén–Huh in [13], as a common generalization of stable polynomials110

(a multivariate analogue of real-rooted polynomials) and volume polynomials in alge-111

braic geometry. A polynomial f in Hn
k with nonnegative coefficients is Lorentzian112

if and only if (i) its support is M-convex and (ii) the Hessian of any of its partial113

derivatives of order n − 2 has at most one positive eigenvalue [13].114

Lorentzian polynomials are of interest in part because they satisfy both a discrete115

and continuous type of log-concavity (see [13, Sect. 2.4, Proposition 4.4] and Propo-116

sition 6.2). Brändén and Huh used the theory of Lorentzian polynomials to prove117

the strongest version of Mason’s conjecture [13, Theorem 4.14]1: The numbers Ik of118

independent sets of size k in a matroid with n elements form an ultra log-concave119

sequence [39]. Huh, Matherne, Mészáros, and St. Dizier showed in [38] that (nor-120

malized) Schur functions and certain Schubert polynomials are also Lorentzian. They121

also conjectured that a host of other Schur-like polynomials in algebraic combinatorics122

should be Lorentzian.123

Huh showed that the coefficients of chromatic polynomials of graphs are log-124

concave [37]. Because of the advent of Lorentzian polynomials to study log-concavity125

of multivariate polynomials in algebraic combinatorics, it is natural to consider chro-126

matic symmetric functions XG(x).127

The main conjecture of this paper is that chromatic symmetric functions of Dyck128

paths are Lorentzian.129

Conjecture 1.4 (Conjecture 6.3) Let d be a Dyck path. Then XG(d), restricted to any130

finite number of variables, is Lorentzian.131

We verify Conjecture 1.4 in the special case where the indifference graph G(d) is132

co-bipartite. Dyck paths of this type are called abelian in the literature [35], and they133

form an important class of Dyck paths with connections to Lie theory [35] and (q)134

rook theory [1, 20, 59].135

1 The strongest version of Mason’s conjecture was also proved independently and simultaneously in [7].
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The Newton polytope and Lorentzian property of chromatic... Page 5 of 35 _####_

Table 1 Schematic summary of results and conjectures for chromatic symmetric functions of incompara-
bility graphs of certain families of posets

XG(P) for (3 + 1)-free
posets P which

Are (2 + 2)-free (indifference
graphs of Dyck paths)

May have 2 + 2 pattern

Are 3-free (co-bipartite
graphs)

(Abelian indifference graphs)
is Lorentzian by
Theorem 6.8

May not be Lorentzian, see
Example 6.7

May have 3 pattern is conjecturally Lorentzian by
Conjecture 6.3

is M-convex by Theorem 1.3

Theorem 1.5 (Theorem 6.8) Let d be an abelian Dyck path. Then XG(d), restricted to136

any finite number of variables, is Lorentzian.137

The proof of Theorem 1.5 has interesting connections to rook theory. Because the138

monomial expansion of XG(d), for abelian d , has coefficients involving rook numbers,139

a key role in the proof is played by the real-rootedness of the hit polynomial of any140

Ferrers board [31, Theorem 1], which implies that its coefficients form an ultra log-141

concave sequence.142

For arbitrary Dyck paths d , calculations suggest that XG(d)(x) may be stable (see143

Conjecture 6.5), a more restrictive condition studied by Borcea and Brändén [11, 12]144

that implies the Lorentzian property and is related to real-rootedness.145

As a partial result toward Conjecture 1.4 in the general case, we note that our146

Theorem 1.3 (2) asserts that the support of XG(d)(x) is M-convex since it is a permu-147

tahedron, and therefore a generalized permutahedron. However, Conjecture 1.4 does148

not extend to the more general class of incomparability graphs of (3 + 1)-free posets149

(see Example 6.7), even though Theorem 1.3 (3) shows their chromatic symmetric150

functions are M-convex. See Table 1 for a schematic summary of our results and151

conjectures.152

1.3.2 M-convexity and claw free graphs153

Monical conjectured a relation between s-positive chromatic symmetric functions and154

the SNP property.155

Conjecture 1.6 (Monical [45]) If XG is s-positive, then XG(x1, . . . , xk) is SNP for156

any k.157

Gasharov showed that for (3+1)-free posets P , XG(P) is s-positive [26]. Thus, The-158

orem 1.3 (3) is a partial confirmation of Monical’s conjecture. We further investigate159

Monical’s conjecture and Conjecture 1.1 in Sect. 7.4. We find that the strengthening160

of Conjecture 1.6 fails if we want XG to be M-convex, rather than just SNP; see161

Example 7.5 for a claw-free graph G for which XG is s-positive but is not M-convex.162

1.3.3 Computational complexity of our classes of chromatic symmetric functions163

Inspired by recent work of Adve–Robichaux–Yong [2, 3], we use the explicit descrip-164

tions of the Newton polytopes in Theorem 1.3 to analyze the complexity of computing165

Journal: 29 Article No.: 0928 TYPESET DISK LE CP Disp.:2024/3/28 Pages: 35 Layout: Small-Ex



R
ev
is
ed

Pr
oo
f

_####_ Page 6 of 35 J. P. Matherne et al.

coefficients of our three classes of chromatic symmetric functions (see Sect. 7.5).166

Throughout this section, we write XG = ∑
α cG

α x
α , XG(d) = ∑

α cd
αx

α , and167

XG(P) = ∑
α cP

α x
α for the three classes.168

Theorem 1.7 (1) (Proposition 7.10) Deciding whether any given coefficient cP
α is169

nonzero is in P.170

(2) (Proposition 7.11) Determining the value of any given coefficient cG
α is #P-171

complete.172

Theorem 1.7 (1) implies that deciding nonvanishing of any given cG
α or cd

α also takes173

polynomial time. Similarly, Theorem 1.7 (2) implies that determining the value of any174

given cP
α is also #P-complete. We leave open the interesting question of whether or175

not determining the coefficients cd
α is #P-complete.176

1.4 Outline177

In Sect. 2, we present background material on (chromatic) symmetric functions as178

well as on various properties of their support. The main results of Sects. 3–5 are that179

the Newton polytopes of the chromatic symmetric functions of co-bipartite graphs,180

indifference graphs of Dyck paths, and incomparability graphs of (3+ 1)-free posets,181

respectively, are permutahedra. A direct consequence is that these chromatic symmet-182

ric functions are SNP and moreover M-convex. We conclude the paper with Sects. 6183

and 7 which collect a number of examples and conjectures about these classes of184

chromatic symmetric functions: most notably, we conjecture that chromatic symmet-185

ric functions of indifference graphs of Dyck paths are Lorentzian, and we verify the186

conjecture for abelian Dyck paths. We also use our description of the Newton poly-187

topes to analyze the complexity of our classes of chromatic symmetric functions and188

to make a conjecture about the ζ map from diagonal harmonics (e.g. see [34, Theorem189

3.15]) relating two Dyck paths encoding unit interval orders.190

2 Background191

2.1 Partitions and symmetric functions192

The dominance order on the set of partitions of the same size is defined as follows:193

λ � μ if
∑k

i=1 λi ≤ ∑k
i=1 μi for all k. Similarly, we use the dominance order for194

compositions of the same size: γ � β if
∑k

i=1 γi ≤ ∑k
i=1 βi for all k.195

Let 	 denote the ring of symmetric functions and 	k be the subring of 	 of sym-196

metric polynomials in k variables. Let mλ denote the monomial symmetric functions197

mλ =
∑

α

xα1
1 xα2

2 · · · ,198

where the sum is over all permutations α of the vector λ = (λ1, λ2, . . .). Let sλ denote199

the Schur symmetric functions200

sλ =
∑

μ

Kλ,μmμ,201
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The Newton polytope and Lorentzian property of chromatic... Page 7 of 35 _####_

where Kλ,μ is the number of semistandard Young tableaux (SSYT) of shape λ and202

content μ. Let eλ denote the elementary symmetric functions203

eλ = eλ1 · · · eλ�
, where ek =

∑

i1<···<ik

xi1 · · · xik .204

Given a basis gλ of 	, we say that f in 	 is g-positive if in the g-expansion of205

f = ∑
λ cλgλ all the coefficients cλ are nonnegative. For more details on symmetric206

functions, see [55, Chapter 7].207

2.2 The saturated Newton polytope (SNP) property208

For a multivariate polynomial p = ∑
α cαxα in R[x1, . . . , xk], the support of p,209

denoted by supp(p), is the set {α | cα �= 0} in N
k of exponents of monomials with210

nonzero coefficients in p. For a homogeneous polynomial of degree n, the support lies211

in the nth discrete simplex
n
k , the set of points inN

k where the sum of the coordinates212

is n.213

The Newton polytope of p is the convex hull of the exponents in the support of p;214

that is,215

Newton(p) = conv(α | α ∈ supp(p)) ⊂ R
k .216

Given a partition λ of length � and a nonnegative integer k ≥ �, let P(k)
λ be the217

convex hull of permutations of (λ1, . . . , λ�, 0, . . . , 0) inRk . For a nonnegative integer218

k < �, let P(k)
λ be P(�)

λ ∩ R
k .219

A polynomial p ∈ R[x1, . . . , xk] has saturated Newton polytope (“is SNP”) if220

supp(p) = Newton(p) ∩ Z
k . That is, p is SNP if its support coincides with the lat-221

tice points of its Newton polytope. This property was defined in [44] and studied222

for polynomials in algebraic combinatorics like Schur functions and Stanley symmet-223

ric functions, and was conjectured and settled for Schubert and (double) Schubert224

polynomials in [17, 24], respectively. For example, by Rado’s theorem [49], a Schur225

polynomial sλ(x1, . . . , xk) is SNP and its Newton polytope is P(k)
λ .226

A subset I ⊂ Z
k is M-convex if for any i in [k] and any α and β in I satisfying227

αi > βi , there is an index j in [n] such that228

α j < β j and α − ei + e j ∈ I and β − e j + ei ∈ I .229

The convex hull of an M-convex set is a generalized permutahedron [48], and the set230

of lattice points in an integral generalized permutahedron forms an M-convex set [46,231

Theorem 1.9]. If a homogeneous polynomial has M-convex support, then it is SNP,232

but the converse does not hold (see Example 7.5).233

We summarize this discussion for the example of Schur polynomials in the theorem234

below.235
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_####_ Page 8 of 35 J. P. Matherne et al.

Theorem 2.1 (Rado [49]) The Schur function sλ(x1, . . . , xk) is SNP and its Newton236

polytope is the permutahedron P(k)
λ . In particular, the support of sλ(x1, . . . , xk) is237

M-convex.238

2.3 Indifference graphs of Dyck paths and incomparability graphs239

A Dyck path d of length n is a lattice path from (0, 0) to (n, n) with north steps240

n = (0, 1) and east steps e = (1, 0) that does not go below the diagonal y = x . The241

bounce path of d is the path obtained by starting at (0, 0), traveling north along d until a242

(1, 0) step of d, and then turning east until the diagonal, then turning north until a (1, 0)243

step of d, and then again turning east until the diagonal, continuing this process until244

arriving at (n, n) [34, Definition 3.1]. The points (0, 0), (i1, j1), . . . , (ib, jb) = (n, n)245

where the bounce path hits the diagonal are called bounce points. The area sequence246

of d is the tuple of nonnegative integers (a1, . . . , an)where ai is the number of squares247

in row i between the path and the diagonal.248

Given a Dyck path d of length n, let G(d) be the indifference graph of the Dyck249

path: the graph where the vertices are [n] and there is an edge between i and j ,250

with i < j , if the square in column i and row n + 1 − j is between the path and251

the diagonal. Note that here we use matrix coordinates for the cells of the diagram,252

i.e. row numbers increase down the diagram. Given a Dyck path d of length n, the253

associated Hessenberg function hd : [n] → [n] is defined by setting hd(i) to be the254

number of squares in column i below d . These functions are characterized as follows:255

hd(i) ≥ i for all i in [n], and hd(i + 1) ≥ hd(i) for all i in [n − 1]. Dyck paths whose256

indifference graphs are co-bipartite are called abelian [35].257

The incomparability graph G(P) of a poset P is the graph formed by taking the ele-258

ments of P as vertices, and putting an edge between i and j if i and j are incomparable259

in P .260

Remark 2.2 The indifference graph G(d) of a Dyck path d with associated Hessenberg261

function hd is the incomparability graph of the poset P on [n] with relations i < j262

whenever hd(i) < j .263

Example 2.3 The Dyck path d = nnneenneee, together with its indifference graph264

G(d) and associated poset P , is illustrated in Fig. 1. Its Hessenberg function is hd =265

(hd(1), . . . , hd(5)) = (3, 3, 5, 5, 5) and the poset P with elements [5] has cover266

relations 1 < 4, 1 < 5, 2 < 4, 2 < 5.267

Definition 2.4 A poset is (m+n)-free if there are no two disjoint chains a1 < · · · < am268

and b1 < · · · < bn in the poset such that every ai is incomparable to every b j .269

Proposition 2.5 (E.g., see [6, Sect. 2.1]) Indifference graphs of Dyck paths of length270

n are exactly the incomparability graphs of (3 + 1)- and (2 + 2)-free posets of n271

elements.272
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The Newton polytope and Lorentzian property of chromatic... Page 9 of 35 _####_

Fig. 1 A Dyck path d encoded by the Hessenberg function hd = (3, 3, 5, 5, 5) and its indifference graph
G(d) which is an incomparability graph of a unit interval order poset P

2.4 Chromatic symmetric functions273

For G a graph, f : V (G) → N is proper if the inverse image of every number (called274

a color) is an independent subset of the graph’s vertices, that is, a subset of the vertices275

where no two are adjacent.276

The chromatic symmetric function for G, defined in [57], is the infinite sum277

XG(x) =
∑

f : V (G)→N

f proper

x f ,278

where the sum is over all proper colorings of G, and the monomial x f is notation for279

x f =
∏

v∈G

x f (v) = x | f −1(1)|
1 x | f −1(2)|

2 · · · .280

We call the vertex sets f −1(i) color classes. When we restrict it to k variables (as281

though the rest were zero),282

XG(x1, . . . , xk) =
∑

f : V (G)→[k]
f proper

x f .283

For a coloring f : V (G) → [k], define the weight of f to be284

wt( f ) = (| f −1(1)|, | f −1(2)|, . . . , | f −1(k)|) ∈ N
k .285

Thus, the support of XG(x1, . . . , xk) is the set286

{wt( f ) | f : V (G) → [k] is proper}.287

Since XG is a symmetric function, if α ∈ supp(XG) then any permutation of α is288

also in supp(XG). Throughout, we will say that a graph G is g-positive if its chromatic289

symmetric function XG is g-positive.290
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_####_ Page 10 of 35 J. P. Matherne et al.

2.5 Chromatic symmetric functions of co-bipartite graphs291

Stanley and Stembridge [59] related XG of co-bipartite graphs G with rook theory.292

Given a board B ⊂ [n1] × [n2], let rk = rk(B) be the number of placements of k293

non-attacking rooks on B (e.g. see [40]). Given such a co-bipartite graph G, i.e. a294

complement of a bipartite graph, with vertex set {1, . . . , n1} ∪ {n1 + 1, . . . , n1 + n2},295

we associate to it a board B ⊂ [n1]× [n2] with a cell (i, j), in matrix coordinates, for296

each edge (i, n1 + j) not in G. In the case of abelian Dyck paths d, the graph G(d) is297

encoded by a Ferrers board Bμ ⊂ [n1] × [n2] of a partition μ = (μ1, . . . , μ�). The298

board Bμ has a cell (i, j) if j ≤ μi , i.e, Bμ consists of a justified collection of μi299

boxes in the i th row for i = 1, . . . , � (see Example 2.7).300

Lemma 2.6 (Stanley–Stembridge [59, Remark 4.4]) Let G be a co-bipartite graph301

with vertex set {1, . . . , n1} ∪ {n1 + 1, . . . , n1 + n2}, and let B be the board associated302

to G. We have303

XG =
∑

i

i ! · (n1 + n2 − 2i)! · ri (B) · m2i1n1+n2−2i . (2.1)304

Example 2.7 Continuing with Example 2.3, the Dyck path d = nnneenneee in Fig. 1305

is abelian since G(d) is co-bipartite with vertices {1, 2} ∪ {3, 4, 5}. We associate to306

G(d) the Ferrers board B22 ⊂ [2]×[3]. For this boardwe have r0 = 1, r1 = 4, r2 = 2,307

and so by (2.1) we have that XG(d) = 120m11111 + 24m2111 + 4m221.308

2.6 Stanley’s nice property of chromatic symmetric functions309

A graph G is nice if whenever λ is in supp(XG) and μ � λ, then μ is in supp(XG).310

Stanley introduced this notion in [56] and deduced the following properties.311

Proposition 2.8 (Stanley [56, Proposition 1.5]) If G is s-positive, then G is nice.312

To state the next result, we need the following definition. A graph G is claw-free if313

it does not have the claw graph K1,3 as an induced subgraph.314

Proposition 2.9 (Stanley [56, Proposition 1.6]) A graph G and all of its induced sub-315

graphs are nice if and only if G is claw-free.316

The following families of graphs are known to have s-positive chromatic symmetric317

functions:318

(i) co-bipartite graphs [57, Corollary 3.6] (or incomparability graphs of 3-free posets),319

(ii) indifference graphs of Dyck paths, i.e. incomparability graphs of unit interval320

orders (or (3 + 1)- and (2 + 2)-free posets) [59], and321

(iii) incomparability graphs of (3 + 1)-free posets [26].322

Note that families (i) and (ii) are contained in (iii).323
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The Newton polytope and Lorentzian property of chromatic... Page 11 of 35 _####_

3 Chromatic symmetric functions of co-bipartite graphs324

Let G be a co-bipartite graph with n vertices, not necessarily an indifference graph325

of a Dyck path. Stanley [57, Corollary 3.6] showed that XG is e-positive and thus326

s-positive.327

By Lemma 2.6 the expansion of XG in the monomial basis is328

XG =
�n/2�∑

i=0

cG
2i1n−2i m2i1n−2i , (3.1)329

with some coefficients cG
2i1n−2i possibly 0. Let λ(G) = 2 j1n−2 j , where j is maximal330

such that cG
2 j1n−2 j �= 0. Next, we show that XG is SNP.331

Proposition 3.1 If G is a graph with n vertices and its complement G is bipartite, then332

XG(x1, . . . , xk) is SNP and its Newton polytope is P(k)
λ(G).333

Proof Since G is a union of two cliques and edges between the cliques, G is claw-free,334

and so is nice via Proposition 2.9. The partitions 2i1n−2i appearing in the monomial335

expansion in (3.1) are totally ordered by dominance, so there is a unique maximal λ336

such that cλ �= 0, and this is exactly λ(G). Since G is nice, the support of XG is the337

same as the support of sλ(G), which by Theorem 2.1 is P(k)
λ(G). 
�338

Example 3.2 Consider the co-bipartite graph G with vertices {1, 2} ∪ {3, 4} and edges339

{(1, 2), (3, 4), (2, 3)}. Its chromatic symmetric function is XG = 24m1111 + 6m211 +340

2m22, and Newton(XG(d)(x1, x2, x3, x4)) = P(4)
22 .341

4 Chromatic symmetric functions of Dyck paths342

Recall that any graph can be colored with a greedy coloring relative to a fixed ordering343

on the vertices. Given a Dyck path d , let λgr(d) be the weight wt(gr) of the greedy344

coloring on the indifference graph G(d).345

Theorem 4.1 Let d be a Dyck path. Then XG(d)(x1, . . . , xk) is SNP and its Newton346

polytope is P(k)
λgr(d).347

Example 4.2 For the Dyck path d = nnneenneee in Fig. 1, we have that λgr(d) =348

(2, 2, 1), XG(d) = 120m11111 + 24m2111 + 4m221 = 36s11111 + 16s2111 + 4s221, and349

Newton(XG(d)(x1, . . . , xk)) = P(k)
221 (see Fig. 2).350

Corollary 4.3 Let d be a Dyck path. Then supp(XG(d)(x1, . . . , xk)) is M-convex.351

Proof The result follows by Theorem 4.1 and the fact that the support of a homoge-352

neous polynomial p with nonnegative coefficients is M-convex if and only if p is SNP353

and its Newton polytope is a generalized permutahedron. 
�354
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_####_ Page 12 of 35 J. P. Matherne et al.

Fig. 2 The Newton polytopes of XG(d)(x1, x2, x3) and XG(d)(x1, x2, x3, x4) for d = nnneenneee are

the permutahedra P(3)
221 and P(4)

221, respectively

Proof of Theorem 4.1 Since G(d) is claw-free, Proposition 2.9 asserts that G(d) is355

nice. This means that if a partition λ is in supp(XG(d)), then356

supp(sλ(x1, . . . , xk)) = P(k)
λ ⊂ supp(XG(d)(x1, . . . , xk)).357

In particular P(k)
λgr(d) ⊂ supp(XG(d)(x1, . . . , xk)). By Lemma 4.11 below, the reverse358

inclusion holds and the result follows. 
�359

Remark 4.4 In [44, Proposition 2.5 III],Monical–Tokcan–Yong generalize the strategy360

we use here as a general lemma to give a criterion for a symmetric function to be SNP361

and have a Newton polytope which is a permutahedron.362

4.1 Greedy coloring on Dyck paths363

For an indifference graph G(d) on [n], we can describe the greedy coloring algorithm364

using the Dyck path d .365

Definition 4.5 (Bounce path coloring) Let G(d) be the indifference graph of a Dyck366

path d, and let hd be the associated Hessenberg function. The bounce path coloring of367

G(d) is defined as follows. For each color i in order, select the vertices which will be368

colored i by the following procedure: Start at the first uncolored vertex j , and color it369

i . Set j to the first uncolored vertex greater than hd( j), color it i , and repeat until the370

end of the graph is reached.371

Proposition 4.6 Let G(d) be the indifference graph of a Dyck path d. Then the bounce372

path coloring is the greedy coloring of G(d).373

Proof In a greedy coloring, the set of vertices colored 1 can be found by iteratively374

building a list, starting with the first vertex, and adding any vertex that is not adjacent375

to any vertex in the list. Not considering any of the vertices on this list, we can repeat376

the process to find the vertices colored 2, and so on. In an indifference graph G(d),377

the process can be simplified: if the list of vertices for color i during the iteration is378

Si = {v1, . . . , vk}, then a later vertex v is not adjacent to any vi if and only if v is not379
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The Newton polytope and Lorentzian property of chromatic... Page 13 of 35 _####_

Fig. 3 Description of bounce path algorithm to determine the greedy coloring weight (2, 2, 1)

adjacent to vk . The latter is true if and only if hd(vk) < v. Thus, the final list Si is380

determined by the bounce path coloring construction. 
�381

Remark 4.7 For a vertex j , the vertex hd( j) is the next vertex hit by a bounce path on382

d starting at j . Thus, the greedy coloring defined above can be viewed in the Dyck383

path d as follows. Starting at the bottom left corner of d, do a bounce path and color384

the vertices the path visits (when it bounces off the diagonal) with color 1. Then, start385

another bounce path before the first uncolored vertex. If the path visits a colored vertex386

on the diagonal, then the path follows the diagonal until it bounces off before the next387

uncolored vertex. Color the vertices visited when the path bounces off the diagonal388

with color 2, and so on.389

Note that λgr(d)1 is the number of bounce points of the bounce path of d, excluding390

(n, n).391

Remark 4.8 In the process of determining the closure order on nilpotent orbits in type392

A, Gerstenhaber gave an algorithm to determine λgr(d) [28]. We point to [23, Section393

6] for a modern description of the algorithm and further properties of λgr(d).394

Proposition 4.9 The greedy coloring weight λgr(d) is a partition; i.e. it is a sorted395

weight vector.396

Proof Consider the bounce points of each color’s bounce paths. Since the bounce path397

for color i starts before the bounce path for color i +1, the first bounce point for color398

i is before the first bounce point for color i + 1, and so the second bounce point for399

color i is before the second bounce point for color i + 1, and so on. Thus the total400

number of bounce points for color i is at least the total number of bounce points for401

color i + 1, and therefore λgr(d)i ≥ λgr(d)i+1. 
�402

Example 4.10 Continuing with Example 4.2, the bounce path greedy coloring of G(d)403

for d = nnneenneee is illustrated in Fig. 3. The greedy coloring weight is λgr(d) =404

(2, 2, 1).405

4.2 Greedy coloring gives dominating partition406

In this section, we show that the greedy coloring weight dominates the weight of any407

other coloring.408
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_####_ Page 14 of 35 J. P. Matherne et al.

Lemma 4.11 Given a Dyck path d, let XG(d) = ∑
λ cd

λmλ. If cd
λ �= 0 for some λ, then409

λ � λgr(d) in dominance order.410

Remark 4.12 While preparing the current paper, the authors learned that this result,411

and a similar proof, were also known to Tim Chow in an unpublished note [19] (where412

he calls the greedy coloring the first-fit coloring).413

Proof of Lemma 4.11 For each k in [n], it suffices to show that414

k∑

i=1

λgr(d)i = max
f proper

k∑

i=1

wt( f )i . (4.1)415

We say a proper coloring f is k-maximal if
∑k

i=1 wt( f )i is maximal among all416

proper colorings. Our strategy is as follows: we fix k in [n] and show by induction on417

j ≥ 0 that for all j in [n] there exists a k-maximal coloring f such that418

(*) f (i) = gr(i) for all vertices i in [ j] such that f (i) is in [k].419

Equation (4.1) then follows from (*) sincewhen j = n, we see that the greedy coloring420

must also be k-maximal. Since this holds for all k in [n], the greedy coloring ismaximal421

in dominance order.422

The base case j = 0 is true since k-maximal colorings exist and condition (*) is423

vacuously true. Next, suppose that we have a k-maximal coloring f which satisfies424

condition (*) for some j ≥ 0.425

Consider the vertex j + 1. If f ( j + 1) is not in [k] or f ( j + 1) = gr( j + 1), then426

f also satisfies (*) for j + 1, so we are done.427

Otherwise if f ( j + 1) is in [k] and f ( j + 1) �= gr( j + 1), we claim that gr( j + 1)428

is also in [k]. To see this, it is enough to show that429

gr( j + 1) < f ( j + 1).430

This inequality holds because the greedy coloring will assign the first available color431

to the vertex j +1, and since gr agrees with f on the first j vertices, the first available432

color gr( j + 1) is at most f ( j + 1).433

Let c = gr( j + 1) and d = f ( j + 1). We will create a new k-maximal coloring f ′
434

such that condition (*) is satisfied for j + 1, by swapping the colors c and d in f after435

position j .436

Concretely, let f ′ be given by437

f ′(i) =

⎧
⎪⎨

⎪⎩

c if i ≥ j + 1, f (i) = d

d if i ≥ j + 1, f (i) = c

f (i) otherwise.

438

Note that f ′ is still k-maximal because we swapped one color in [k] for another.439

Since f ′( j + 1) = gr( j + 1) and f ′(i) = f (i) = gr(i) for i in [ j], it follows that f ′
440

satisfies condition (*) for j + 1. Thus it remains to show that f ′ is proper.441
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The Newton polytope and Lorentzian property of chromatic... Page 15 of 35 _####_

Only the colors c and d have changed from f to f ′, so let v be a vertex prior to442

j + 1 which is colored either c or d in f ′. Since f ( j + 1) = d and gr( j + 1) = c, and443

both of those colorings are proper, the value of the associated Hessenberg function444

hd(v) < j + 1. This means v is not adjacent to any vertex v′ after j + 1, and so both445

f ′−1(c) and f ′−1(d) are still independent sets, as desired. 
�446

As a corollary we obtain a similar result as Lemma 4.11 in the Schur basis.447

Corollary 4.13 Given a Dyck path d, let XG(d) = ∑
λ f d

λ sλ. If f d
μ �= 0 for some μ,448

then μ � λgr(d).449

Proof Since XG(d) is s-positive, if f d
λ > 0 for some λ then the coefficient cd

λ in the450

monomial basis is also positive, and the result follows by Lemma 4.11. 
�451

Lastly, given any partition we can find a Dyck path whose chromatic symmetric452

function XG(d) has as Newton polytope the permutahedron associated to λ.453

Proposition 4.14 Given a partitionλ, the chromatic symmetric function XG(d)(x1, . . . , xk)454

for the Dyck path d = nλ′
1eλ′

1 · · · nλ′
meλ′

m where m = λ1 has Newton polytope P(k)
λ .455

Proof The graph G(d) consists of m cliques of sizes λ′
1 through λ′

m . The greedy456

coloring will color the i th clique with the colors {1, . . . , λ′
i }. In this coloring, the color457

j is used #{i | λ′
i ≥ j} = λ j times, thus λgr(d) = λ. The result then follows by458

Theorem 4.1. 
�459

5 Chromatic symmetric functions of (3+ 1)-free posets460

5.1 Structure of (3+ 1)-free posets461

The structure, enumeration, and asymptotics of (3 + 1)-free posets were studied by462

Lewis–Zhang [41] for the labeled case and Guay-Paquet–Morales–Rowland [30] and463

Guay-Paquet [29] for the unlabeled case. We will use results from the unlabeled case464

using the notation in [29].465

A part listing is an ordered list L of parts that are arranged on nonnegative integer466

levels. Each part is either a vertex at a given level or a bicolored graph with color467

classes arranged as vertices on consecutive levels. We can view a part listing as a word468

in the alphabet469

� = {vi | i ≥ 0} ∪ {bi,i+1(H) | i ≥ 0, H bicolored graph},470

where vi represents a vertex on level i , and bi,i+1(H) represents a graph H on levels471

i and i + 1 (see Fig. 4a).472

Given a part listing L , we associate a poset P on the vertices of L as follows. Given473

vertices x and y, we have that x < y if474

(i) x and y are, respectively, at levels i and j with j − i ≥ 2,475

(ii) x is one level below y and the part containing x appears before the part containing476

y in L ,477
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_####_ Page 16 of 35 J. P. Matherne et al.

(iii) x is one level below y and they are joined by an edge of a bicolored graph H .478

Example 5.1 The part listing L in Fig. 4a is given by the word v0v1v2v2v0b0,1(H)479

where H is the bicolored graph with edges {(h, d), (i, d), (i, e)}. The associated nine480

element poset P is given in Fig. 4b.481

Theorem 5.2 [29, Propositions 2.4, 2.5]482

(i) Given a (3+ 1)-free poset P, there exists a part listing L whose associated poset483

is P.484

(ii) Given a part listing L, the associated poset P is (3 + 1)-free.485

Moreover, if the part listings L in (i) and (ii) have no parts bi,i+1(H), then the asso-486

ciated poset P is (3 + 1)- and (2 + 2)-free (i.e. a unit interval order).487

Several part listings can correspond to the same (3 + 1)-free poset. For instance,488

in Example 5.1 the same poset as for the part listing L can be obtained from the489

part listing L ′ = b1,2(H)v0v1v2v2v0. There are certain commutation and circulation490

relations on the words in � of listings that yield the same poset (see [30, Sect. 3.3]491

and [29, Sect. 2]).492

From Guay-Paquet et al. [30, Proposition 3.11], we can pick a unique part listing493

representative of a (3 + 1)-free poset that we call a canonical part listing. Moreover,494

by Guay-Paquet et al. [30, Remark 3.2], such a canonical part listing corresponds to a495

(3+1)- and (2+2)-free poset if and only if the canonical part listing has no occurrences496

of bi,i+1(H). We summarize the characterization of canonical part listings of (3+ 1)-497

and (2 + 2)-free posets in the following result implicit in [30].2498

Theorem 5.3 [30, Remark 3.2, Proposition 3.11] A part listing va1 · · · van of an n-499

element (3 + 1)- and (2 + 2)-free poset P is the canonical part listing if and only if500

a1 = 0 and ai+1 ≤ ai + 1 for i = 1, . . . , n − 1.501

Remark 5.4 In [30, Sects. 2, 3] the canonical part listing is defined as the lexico-502

graphically maximal element of a subset of words in the alphabet � that is called the503

trace of the dependence graph, coming from the theory of trace monoids (see [21,504

Sect. 2.3]).3 The authors in [27, Sect. 6] obtain the canonical part listing as charac-505

terized in Theorem 5.3 using a well-chosen order on the entire set of words in the506

alphabet �, circumventing the use of trace monoids. In what follows we use only the507

characterization in Theorem 5.3.508

Remark 5.5 Note that the set of tuples of integers a = (a1, . . . , an) satisfying a1 = 0509

and 0 ≤ ai+1 ≤ ai + 1 is a classical interpretation for the Catalan numbers [58,510

Exercise 2.80]. Such tuples have the following bijection with Dyck paths: a encodes511

the area sequence of a Dyck path d ′, or alternatively a �→ d ′ where d ′ is the Dyck512

path obtained by replacing each ai by a north step n and ai − ai+1 + 1 east steps e513

[58, Solution 3.80].514

2 In [30] the authors use the letter ci corresponding to clones that correspond to consecutive copies of the
letter vi in the part listing.
3 A previous version of the current paper incorrectly restated the definition of the canonical part listing
from Guay-Paquet et al. [30].
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The Newton polytope and Lorentzian property of chromatic... Page 17 of 35 _####_

5.2 Guay-Paquet’s reduction from (3+ 1)-free posets to unit interval orders515

In this section, given a part listing L of a (3 + 1)-free poset P = P(L), we write516

X(L) := XG(P).517

For level i = 0, 1, . . . and j = 0, 1, . . . , s, let U (i)
j be the part listing518

U (i)
j := v

s− j
i+1 vr

i v
j
i+1.519

For level i = 0, 1, . . . and j = 0, 1, . . . , r , let D(i)
j be the part listing520

D(i)
j := v

j
i vs

i+1v
r− j
i .521

If the context is clear, we omit the level i and denote these part listings by U j and D j522

respectively.523

Given a bicolored graph H with r lower vertices, s upper vertices, and j =524

0, . . . ,min(r , s), let q j be the probability that H and a uniformly random match-525

ing M with min(r , s) edges between the lower and upper vertices have j edges in526

common.527

Theorem 5.6 [29, Proposition 4.1 (iv)] Let L be the part listing of a (3+1)-free poset528

containing a bicolored graph bi,i+1(H) with r vertices on level i and s vertices on529

level i + 1. Then530

X(L) =
min(r ,s)∑

j=0

q j X(L j ),531

where L j is the part listing obtained from L by replacing bi,i+1(H) with U j if r ≥ s532

and with D j if r < s, and q j is the probability defined above.533

Remark 5.7 The probabilities q j have an interpretation in terms of rook theory. Given534

such a bicolored graph H with vertex set {1, . . . , r}∪{r +1, . . . , r +s}, its complement535

G = H is a co-bipartite graph corresponding to a board B ⊂ [r ] × [s] (see Sect. 2.5).536

Then q j = h j (B)/|r − s|! where h j (B) is the j th hit number of B, which counts537

the number of placements of min(r , s) non-attacking rooks on the rectangular board538

[r ] × [s] with j rooks in B.539

5.3 Main result for (3+ 1)-free posets540

First, we define the greedy weight for colorings of an incomparability graph of a541

(3 + 1)-free poset. Given a (3 + 1)-free poset P , the weight λgr(P) is defined as542

follows. For a part listing L for P:543

(i) apply Theorem 5.6 to every bicolored graph bi,i+1(H) in the part listing,544

(ii) for each bi,i+1(H), find the largest j such that q j �= 0 and replace L by L j .545
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_####_ Page 18 of 35 J. P. Matherne et al.

At the end, we obtain a part listing L ′ with no bipartite graphs and thus representing a546

(3 + 1)- and (2 + 2)-free poset (i.e. a unit interval order). By Theorem 5.3, there is a547

lex-maximal part listing L ′′ for that poset satisfying the property a1 = 0, ai+1 ≤ ai +1.548

Using the greedy coloring in the incomparability graph, which is an indifference graph549

for some Dyck path d , we obtain the weight λgr(P) := λgr(d) (see Sect. 7.1).550

Theorem 5.8 Let G(P) be an incomparability graph of a (3 + 1)-free poset. Then551

XG(P)(x1, . . . , xk) is SNP, and its Newton polytope is P(k)
λgr(P). In particular, λgr(P)552

dominates the weight of any coloring of G(P).553

In order to prove Theorem 5.8, we need the following lemma.554

Lemma 5.9 Suppose that A and B are part listings, and fix r , s positive numbers.555

Let 0 ≤ j < k ≤ s, and suppose that we have posets given by part listings as556

follows:557

Pj := Abi,i+1(U j )B and Pk := Abi,i+1(Uk)B.558

Then if κ is a weight of a coloring of G(Pj ), there is also a coloring of G(Pk) with559

weight κ . The same result holds if we replace Ui with Di .560

Proof It suffices to take B to be empty by the circulation relation of [29, Sect. 2.2].561

Also, it suffices to take k = j + 1. The part listings for U j and U j+1 are562

v
s− j
2 vr

1v
j
2 and v

s− j−1
2 vr

1v
j+1
2 ,563

respectively. Therefore, the poset for Abi,i+1(U j+1) is the poset for Abi,i+1(U j )564

together with r additional covering relations coming from moving a vi+1 after all565

of the vi s. Therefore, any coloring of G(Abi,i+1(U j )) has a corresponding coloring566

of G(Abi,i+1(U j+1)) with the same weight, since adding relations to a poset deletes567

edges from the incomparability graph, which never makes a proper coloring improper.568

Therefore, G(Pj+1) has a coloring of weight κ . The proof for the case where Uk is569

replaced with Dk is the same. 
�570

Proof of Theorem 5.8 Let L be a part listing for P := P(L) and recall that for part571

listings F we define X(F) := XG(P(F)). The proof is by induction on the number572

of bicolored graphs in L . If there are none, then P is also (2 + 2)-free (i.e. a unit573

interval order) and thus the graph G(P) is an indifference graph of a Dyck path (see574

Remark 2.2 and Conjecture 7.1). The result then follows in this case by Lemma 4.11. If575

L = Abi,i+1(H)B has at least onebicoloredgraph, then X(L) is a convex combination576

X(L) =
∑

j

q j X(AU j B) or X(L) =
∑

j

q j X(AD j B).577
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Fig. 4 A A part listing L and B its corresponding (3 + 1)-free poset P

We proceed with the first case and the argument for the second case is the same. Let578

j ′ be the largest j such that q j is nonzero. The support of X(L) is the union579

suppX(L)(x1, . . . , xk) =
j ′⋃

j=0

suppX(AU j B)(x1, . . . , xk).580

By Lemma 5.9,581

suppX(AU j B)(x1, . . . , xk) ⊂ suppX(AU j ′ B)(x1, . . . , xk),582

so583

suppX(L)(x1, . . . , xk) = suppX(AU j ′ B)(x1, . . . , xk).584

By the inductive hypothesis, the support of X(AU j ′ B)(x1, . . . , xk) is P(k)
λgr(AU j ′ B),585

which is P(k)
λgr(P) by definition. 
�586

Example 5.10 The part listing L = v0v1v2v2v0b01(H) in Fig. 4a has X(L) =587

362880m19 + 90720m217 + 23040m2215 + 6048m2313 + 1728m241588

+ 1440m316 + 384m3214 + 112m32212 + 48m323 .589

The part listings L0, L1, and L2 in Fig. 5 have chromatic symmetric functions590

X(L0) = 362880m19 + 75600m217 + 14880m2215 + 2664m2313 + 384m241591

+ 1440m316 + 240m3214 + 32m32212 ,592

X(L1) = 362880m19 + 85680m218 + 20160m2215 + 4752m2313 + 1152m241593

+ 1440m316 + 336m3214 + 80m32212 + 24m323 ,594

X(L2) = 362880m19 + 95760m217 + 25920m2215 + 7344m2313 + 2304m241595

+ 1440m316 + 432m3214 + 144m32212 + 72m323 .596
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_####_ Page 20 of 35 J. P. Matherne et al.

Fig. 5 The part listings L0, L1, and L2 in the convex combination of X(L). The dominant coloring κ2 of
X(L2) dominates the respective dominant colorings κ0 and κ1 of X(L0) and X(L1)

Next we apply Theorem 5.6. For the bicolored graph H we have the probabilities597

q0 = 0, q1 = q2 = 1/2, thus598

X(L) = 0 · X(L0) + 1

2
X(L1) + 1

2
X(L2).599

The part listings L0, L1, and L2 correspond to (3+1)- and (2+2)-free posets. Their600

respective lex-maximal listings and Hessenberg functions (obtained by inspection, see601

Conjecture 7.1) are:

Lex-maximal listing Hessenberg function

L0 (0, 1, 2, 2, 0, 1, 1, 0, 0) (4, 5, 7, 7, 7, 9, 9, 9, 9)
L1 (0, 1, 2, 2, 0, 1, 0, 0, 1) (4, 5, 6, 6, 7, 9, 9, 9, 9)
L2 (0, 1, 2, 2, 0, 0, 0, 1, 1) (4, 5, 5, 5, 7, 9, 9, 9, 9)

602

If we perform the greedy algorithm on the incomparability graphs, we obtain the603

partitions 32, 211, 3222, and 3222 respectively. Then, by Theorem 5.8, we have that604

Newton(XG(P)(x1, . . . , xk)) = P(k)
3222.605

6 Stability and the Lorentzian property of XG(d)606

6.1 Main conjectures for all Dyck paths607

Ourmain results (Proposition 3.1 and Theorems 4.1 and 5.8) establish that the supports608

of certain classes of polynomials are M-convex. The property of M-convexity is often609

a shadow of a more general property, that of being a Lorentzian polynomial.610

Lorentzian polynomials were recently introduced by Brändén and Huh [13] as a611

bridge between discrete convex analysis and concavity properties in combinatorics.612

Many families of polynomials appearing in algebraic combinatorics are known or613

conjectured to be Lorentzian: for example (normalized) Schur polynomials, and a614

variety of other Schur-like polynomials [38].615

Definition 6.1 A homogeneous polynomial f ∈ R[x1, . . . , xk] of degree n with non-616

negative coefficients is called Lorentzian if the following two conditions are satisfied:617

• supp( f ) is M-convex, and618
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Fig. 6 Dyck paths d ′
1, d ′

2, d ′
3 corresponding to the lex-maximal listings L1, L2, L3 from Example 5.10

and their corresponding Dyck paths d1, d2, d3 associated to the incomparability graphs. The conjectured
correspondence between these Dyck paths agrees with the ζ map

• for all i1, i2, . . . , in−2 ∈ [k], the associated quadratic form of the quadratic poly-619

nomial620

∂

∂xi1
◦ · · · ◦ ∂

∂xin−2

( f )621

has at most one positive eigenvalue. That is, the Hessian of the quadratic polyno-622

mial has at most one positive eigenvalue.623

Note that both conditions in Definition 6.1 are “easy” to check and in particular only624

require a finite number of checks. An important application of Lorentzian polynomials625

is that their coefficients form a type of log-concave sequence (and are further log-626

concave as functions on the positive orthant Rk
>0).627

Given a vector α in Nk , let α! := α1! · · · αk !.628

Proposition 6.2 [13, Theorem 2.30; Proposition 4.4] Let f = ∑
α∈
n

k
cαxα be a629

Lorentzian polynomial. Then f exhibits the following two types of log-concavity phe-630

nomena:631

• (Continuous) The polynomial f is either identically zero or its logarithm is concave632

on the positive orthant Rk
>0.633

• (Discrete) The coefficients of f satisfy:634

(α!)2c2α ≥ (α + ei − e j )!(α − ei + e j )! · cα+ei −e j cα−ei +e j635

for all i, j in [k] and all α in
n
k ,636
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_####_ Page 22 of 35 J. P. Matherne et al.

and thus637

c2α ≥ cα+ei −e j cα−ei +e j for all i, j in [k] and all α in
n
k .638

We used SageMath [60] to check the conditions in Definition 6.1, and verified the639

following conjecture for all Dyck paths of length n ≤ 7, with k ≤ 8 variables.640

Conjecture 6.3 Let d be a Dyck path. Then XG(d), restricted to any finite number of641

variables, is Lorentzian.642

Theorem 1.5 verifies this conjecture for abelian Dyck paths. Graph colorings have643

many other interesting log-concavity properties like the following result of Huh on644

chromatic polynomials of graphs.645

Theorem 6.4 [37] Let χG(q) = anqn − an−1qn−1 + · · · + (−1)na0 be the chromatic646

polynomial of a graph G. Then, the sequence a0, . . . , an is log-concave.647

We now strengthen Conjecture 6.3 to the class of stable polynomials, which are a648

multivariate version of real-rooted polynomials. A polynomial f ∈ R[x1, . . . , xk] is649

stable if it has no roots in the product of k open upper half-planes. We point toWagner650

[62] for a survey on stable polynomials, as well as to the papers [11, 12] by Borcea651

and Brändén for more theory on stable polynomials.652

We note that the class of Lorentzian polynomials agrees with the class of homo-653

geneous stable polynomials for quadratic polynomials, but is larger for other degrees.654

For example, (normalized) Schur polynomials are Lorentzian but not stable in general655

[38, Example 9].656

Unfortunately, checking stability is harder than checking the Lorentzian property.657

In particular, one can check that a polynomial is stable by checking that an infinite658

number of certain univariate specializations are real-rooted [62, Lemma 2.3]. Using659

SageMath [60], we probed a random assortment of such univariate specializations to660

make the following conjecture.661

Conjecture 6.5 Let d be a Dyck path. Then XG(d), restricted to any finite number of662

variables, is stable.663

Example 6.6 For theDyck path d = nneneene, we have thatλgr(d) = (3, 1), XG(d) =664

24m1111 + 8m211 + 2m22 + m31, and Newton(XG(d)(x1, . . . , xk)) = P(k)
31 . One can665

check that XG(d) is Lorentzian and see Fig. 7 for a diagram of its Newton polytope666

with coefficients exhibiting log-concavity in root directions.667

We conclude this subsection with an example showing that incomparability graphs668

of (3 + 1)-free posets are not Lorentzian, and thus not stable.669

Example 6.7 Let G = C4 be the 4-cycle, which is co-bipartite. Note that G is670

the incomparability graph of the (2 + 2)-poset, which is (3 + 1)-free. It has chro-671

matic symmetric function XC4 = 24m1111 + 4m211 + 2m22. The polynomial f =672

XC4(x1, . . . , x5) isM-convex but is not Lorentzian since the quadratic form associated673
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Fig. 7 The Newton polytope

P(3)
31 of XG(d)(x1, x2, x3), for

d = nneneene, with the
coefficient of each lattice point
in red

to
∂

∂x1
◦ ∂

∂x2
f , which has matrix674

A =

⎛

⎜⎜⎜⎜⎝

0 8 8 8 8
8 0 8 8 8
8 8 8 24 24
8 8 24 8 24
8 8 24 24 8

⎞

⎟⎟⎟⎟⎠
,675

with characteristic polynomial (x + 8)(x + 16)2(x2 − 64x + 64), has two positive676

eigenvalues.677

6.2 Lorentzian property for abelian Dyck paths678

In this section we verify Conjecture 6.3 for abelian Dyck paths, i.e. paths whose679

indifference graphs G(d) are co-bipartite.680

Theorem 6.8 Let d be an abelian Dyck path. Then XG(d) is Lorentzian.681

Proof Let d be an abelian path of size n = n1 + n2 whose co-bipartite indifference682

graph G(d) has vertex set {1, . . . , n1} ∪ {n1 + 1, . . . , n1 + n2} and is encoded by a683

Ferrers boards Bμ ⊂ [n1] × [n2] of partitions μ = (μ1, . . . , μ�). By (3.1) we have684

that685

XG(d) =
∑

i

i ! · (n − 2i)! · ri · m2i1n−2i , (6.1)686

where ri = ri (Bμ) is the number of placements of i non-attacking rooks in Bμ.687

By Corollary 4.3 we know that XG(d) is M-convex. By Definition 6.1, showing that688

the symmetric polynomial XG(d)(x1, . . . , xk) is Lorentzian amounts to checking that689

for each partition α = (α1, . . . , αk) of n − 2, the k × k matrix Hα = ((α + er + es)! ·690

cα+er +es )
k
r ,s=1 has at most one positive eigenvalue, where cα is the coefficient of xα

691

in XG(d).692

By (6.1), the support of XG(d)(x1, . . . , xk) is in {0, 1, 2}k ⊂ N
k . Thus, for k > n693

variables, we only have to consider the matrices Hα of the partition694

α = (2i−1, 1n−2i , 0k−n+i+1), (6.2)695
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Fig. 8 A The block matrix Mp,q (a, b, c) and B the block matrix Np,q (x; a, b, c) obtained from x I −
Mp,q (a, b, c) by doing certain row operations

for i ≥ 1. The matrix Hα has the form696

Hα =
(
0 0
0 H ′

α

)

i−1 k−i+1

, H ′
α = Mn−2i−1,k−n+i (a, b, c)697

where
a = 2i+1 · (i + 1)! · (n − 2i − 2)! · ri+1

b = 2i · i ! · (n − 2i)! · ri

c = 2i−1 · (i − 1)! · (n − 2i + 2)! · ri−1,

698

and Mp,q(a, b, c) is the block matrix in Fig. 8a.699

The characteristic polynomial of H ′
α is given, via Proposition 6.9, by700

det(x I − H ′
α) = (x + a)n−2i−1 · (x − b + c)k−n+i ·701

(
x2 − ((n − 2i − 1)a + b + (k − n + i)c)x702

−(n − 2i)(k − n + i + 1)b2 + (n − 2i − 1)a(b + (k − n + i)c)
)

.

(6.3)

703

So XG(d) is Lorentzian if and only if the polynomial in (6.3) always has at most704

one positive root. This fact is implied by the following inequalities:705

b − c ≤ 0, (6.4)706

− (n − 2i)(k − n + i + 1)b2 + (n − 2i − 1)a(b + (k − n + i)c) ≤ 0, (6.5)707

where (6.4) comes from a root of the polynomial and (6.5) follows from the quadratic708

formula. These two inequalities are verified in Propositions 6.10 and 6.12 below. 
�709

The next result gives a formula for the characteristic polynomials of block matrices710

like H ′
α . For indeterminates a, b, c and nonnegative integers p, q ≥ 0 let Mp,q(a, b, c)711

be the block matrix in Fig. 8a.712
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Proposition 6.9 For indeterminates a, b, c and nonnegative integers p, q ≥ 0, the713

matrix Mp,q(a, b, c) has characteristic polynomial714

det(x I − Mp,q(a, b, c)) = (x + a)p(x − b + c)q(x2 − x(pa + b + qc)715

− (p + 1)(q + 1)b2 + pa(b + qc)).716

Proof We subtract the first row of x I − Mp,q(a, b, c) from rows 2 to p + 1 and we717

subtract row p + 2 from rows p + 3 to p + q + 2 to obtain the matrix Np,q(x; a, b, c)718

in Fig. 8b. The determinant remains unchanged. Next, we partition the matrix into the719

same blocks as in the figure and use the Schur complement (see [65, Sect. 0.3]) to720

calculate the determinant. Hence721

det(x I − Mp,q(a, b, c)) = det Np,q(x; a, b, c)722

= det

(
A B
C D

)
= det(A) · det(D − C A−1B), (6.6)723

where724

C A−1B = (p + 1)b2

x − pa

⎛

⎜⎜⎝

1 · · · 1

0

⎞

⎟⎟⎠ , D − C A−1B725

=

⎛

⎜⎜⎜⎝

f g · · · g
−(x − b + c) x − b + c

...

−(x − b + c)
0

. . .
0

x − b + c

⎞

⎟⎟⎟⎠ ,726

for f = x − b − (p + 1)b2/(x − pa) and g = −c − (p + 1)b2/(x − pa). By doing727

a cofactor expansion, say on the first row of A and D − C A−1B, one readily obtains728

that729

det(A) = (x + a)p · (x − pa),730

det(D − C A−1B) = (x − b + c)q( f + qg)731

= (x − b + c)q

x − pa
732

(
x2 − x(pa + b + qc) − (p + 1)(q + 1)b2 + pa(b + qc)

)
.733

Using these two formulas in (6.6) gives the desired result. 
�734

The rest of this section is devoted to verifying (6.4) and (6.5). The next result shows735

(6.4), which is true for all co-bipartite graphs.736
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Proposition 6.10 Let G be a co-bipartite graph with vertex set {1, . . . , n1} ∪ {n1 +737

1, . . . , n1 + n2}. Then (6.4) holds for all i ; that is, for i ≥ 1 we have738

2 · i ! · (n1 + n2 − 2i)! · ri (B) ≤ (i − 1)! · (n1 + n2 − 2i + 2)! · ri−1(B),739

where B ⊂ [n1] × [n2] is the board associated to G.740

Proof For convenience, we substitute j = i −1. There are ( j +1)·r j+1(B) placements741

of j + 1 non-attacking rooks in B with a distinguished rook. An overcount of this742

quantity is the number of pairs (p, c), where p is a placement of j non-attacking rooks743

in B and c is a cell in [n1]× [n2] in a different row and column than the j rooks. Thus744

we have745

( j + 1) · r j+1(B) ≤ (n1 − j)(n2 − j) · r j (B). (6.7)746

Without loss of generality, assume n1 ≤ n2. Then n1 + n2 − 2 j ≥ 2(n1 − j). The747

desired inequality is trivially true if j +1 > n1 or j +1 > n2, since then r j+1(B) = 0.748

So, we can assume j + 1 ≤ n1 ≤ n2. Thus, n1 + n2 − 2 j − 1 ≥ n2 − j . Thus we749

have that750

2(n1 − j)(n2 − j) · r j (B) ≤ (n1 + n2 − 2 j)(n1 + n2 − 2 j − 1) · r j (B).751

Combining this inequality with (6.7), we obtain752

2 · ( j + 1) · r j+1(B) ≤ (n1 + n2 − 2 j)(n1 + n2 − 2 j − 1) · r j (B),753

which is equivalent to the desired result. 
�754

We now verify (6.5), which is true for Ferrers boards but not necessarily all boards755

(see Examples 6.7, 6.13). We need the following lemma that follows from a result of756

Haglund–Ono–Wagner [31] about the ultra log-concavity of hit numbers of Ferrers757

boards. Note that ultra log-concavity of rook numbers, which holds for all boards (see758

[31, 33]), is not sufficient to ensure (6.5) (see Example 6.13).759

Lemma 6.11 Suppose μ = (μ1, . . . , μ�) is a partition. Then for i ≥ 1, the rook760

numbers ri := ri (Bμ) satisfy761

r2i ≥
(
1 + 1

i

)(
1 + 1

� − i

) (
1 + 1

μ1 − i

)
ri−1ri+1. (6.8)762

Proof The hit polynomial of a Ferrers board Bμ ⊂ [N ] × [N ] is given by763

T (x;μ) :=
N∑

i=0

(N − i)! · ri (Bμ) · (x − 1)i ,764

where N must be big enough to contain μ. Assume without loss of generality that765

μ1 ≥ �, and take N = μ1.766
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Haglund–Ono–Wagner [31, Theorem 1] showed that T (x;μ) is real-rooted, so this767

is also true for T (x +1;μ). Furthermore, the degree of T (x +1;μ) is at most �, since768

no more than � rooks can be placed on μ. Newton’s inequality (see, e.g., [36, p. 52])769

tells us that the coefficients of this polynomial are ultra log-concave. This means that770

the sequence771

(μ1 − i)!
(
�
i

) ri772

is log-concave. That is,773

i(� − i) · (μ1 − i)!2 · r2i ≥ (i + 1)(� − i + 1)(μ1 − i + 1)!(μ1 − i − 1)! · ri−1 · ri+1,774

which is equivalent to the desired result. 
�775

We are now ready to verify (6.5).776

Proposition 6.12 Equation (6.5) holds.777

Proof G(d) is encoded by a partition μ = (μ1, . . . , μ�) inside [n1] × [n2], with778

deg(XG(d)) = n = n1 + n2. Assume without loss of generality that μ1 ≥ �. By779

Lemma 6.11 the following inequality is true780

r2i ≥
(
1 + 1

i

)(
1 + 1

� − i

) (
1 + 1

μ1 − i

)
ri−1ri+1. (6.9)781

Using i ≤ � ≤ μ1 and � + μ1 ≤ n gives782

r2i ≥
(
1 + 1

i

) (
1 + 2

n − 2i

)(
1 + 1

n − 2i

)
ri−1ri+1, (6.10)783

which is equivalent to784

(n − 2i)b2 ≥ (n − 2i − 1)ac. (6.11)785

Multiplying both sides of this inequality by k − n + i +1 ≥ 0 and using (6.4) gives786

the desired result. 
�787

Example 6.13 Continuing with Example 6.7, the 4-cycle C4 is a co-bipartite graph788

associated to the diagonal board B = {(1, 1), (2, 2)} ⊂ [2] × [2]. For this board we789

have that r0 = 1, r1 = 2, and r2 = 1, so for i = 1 we have790

4 = r21 <

(
1 + 1

i

) (
1 + 2

n − 2i

)(
1 + 1

n − 2i

)
ri−1ri+1 = 2 · 2 · 3

2
· 1 · 1.791

Thus (6.10) does not hold. And for k > 4 variables, neither do (6.11) or (6.5).792
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Fig. 9 There are two Dyck paths associated to a unit interval order P: one is the path d whose indifference
graph is the incomparability graph of P , and the other one is the path d ′ associated to the lex-maximal
listing tuple a. Conjecture 7.1 states that d = ζ(d ′) as illustrated in this example

7 Further examples and conjectures793

7.1 Relation with the �map from diagonal harmonics794

Wehave twoDyckpaths associated to a (3+1)- and (2+2)-free poset (i.e. a unit interval795

order) P of size n: P corresponds to an incomparability graph G(d) of a Dyck path d796

and to a lex-maximal part listing va1 · · · van of an area sequence a = (a1, . . . , an) of797

a Dyck path d ′ by Theorem 5.3 and Remark 5.5. Using FindStat [50, link], it appears798

that these Dyck paths are related by Haglund’s well-known ζ map from diagonal799

harmonics (e.g. see [34, Theorem 3.15]). See [23, Remark 6.6] for a similar statement800

in terms of ad-nilpotent ideals.801

Conjecture 7.1 4 Let P be a unit interval order corresponding to an incomparability802

graph G(d) and a lex-maximal part listing encoded by a tuple a = (a1, . . . , an). If d ′
803

is the Dyck path with area sequence a, then804

d = ζ(d ′).805

Example 7.2 The unit interval order P associated to the Dyck path d = nneennee806

in Fig. 1 corresponds to the lex-maximal listing v0v0v1v1v1v0. The associated tuple807

a = (0, 0, 1, 1, 0) is the area sequence of the Dyck path d ′ = nenneneene. One can808

check that d = ζ(d ′), as illustrated in Fig. 9. For a larger example, see Fig. 6.809

4 This conjecture has been proved independently by Gélinas–Segovia–Thomas [27] and by Fang [22].
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7.2 Chromatic symmetric functions with reflexive Newton polytopes810

An important property in the Ehrhart theory of lattice polytopes, i.e. polytopes with811

integral vertices, is that of a polytope being reflexive [14]. A lattice polytope Q with812

0 in its interior is reflexive if its polar (dual) Q∗ is a lattice polytope (see, e.g., [9,813

Sect. 4.4]). In [8, Theorem 34] the authors characterized when a permutahedron P(k)
λ814

is reflexive. In Sect. 4 we showed that for a Dyck path d, the Newton polytope of815

XG(d)(x1, . . . , xk) is the permutahedron P(k)
λgr(d). It would be interesting to use their816

characterization of reflexive permutahedra to find all Dyck paths d for which the817

Newton polytope of XG(d)(x1, . . . , xk) is reflexive.818

7.3 Unimodality of colorings819

Although we have not been able to show Conjecture 6.3 for arbitrary indifference820

graphs, which by Proposition 6.2 would imply log-concavity of the coefficients, the821

following weaker result follows from Gasharov’s s-positivity of XG(d) [26].822

Proposition 7.3 For a Dyck path d with XG(d) = ∑
λ cd

λ · mλ, if μ � ν then cd
μ ≤ cd

ν .823

Proof Gasharov proved that XG(P)(x) is s-positive [26], thus824

XG(d) =
∑

λ

f d
λ sλ,825

where f d
λ ∈ N. Every Schur function has a monomial expansion of the form sλ =826 ∑

μ Kλμmμ. In this expansion, if μ � ν, then we have the inequality Kλμ ≤ Kλν of827

Kostka numbers (see [42, Example 9 (b) SS1.7] or [63]). Thus if μ � ν then828

cd
μ =

∑

λ

f d
λ Kλμ ≤

∑

λ

f d
λ Kλν = cd

ν ,829

as desired. 
�830

7.4 SNP property of chromatic symmetric functions831

We show in Theorem 5.8 that (3+1)-free incomparability graphs have permutahedral832

support, so they are all M-convex and have the SNP property.833

Remark 7.4 This result does not hold for analogous graphs which are not incompara-834

bility graphs of posets. If G is an incomparability graph of a poset P , it is claw-free if835

and only if P is (3 + 1)-free. But there are claw-free graphs for which the chromatic836

symmetric function does not even have M-convex support (see Example 7.5).837

Example 7.5 LetG be the claw-free graphwith six vertices in Fig. 10a. Note that (when838

expanded in 6 variables) XG = 162s16 + 72s214 + 12s2212 + 6s23 + 6s313 is SNP;839
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however, it is not M-convex since (1, 1, 1, 3, 0, 0), (0, 0, 2, 2, 2, 0) are both in the840

support, but841

(0, 0, 2, 2, 2, 0) + e4 − ei842

is not for any i in {1, 2, 3, 5}.843

Conjecture 1.6 says that the chromatic symmetric function of any s-positive graph844

should be SNP. Our result that (3 + 1)-free incomparability graphs have chromatic845

symmetric functionswithM-convex support is a partial confirmation of the conjecture.846

However, in order to test the conjecture for other graphs one needs to look at graphs847

with size n ≥ 12. The next minimal example shows that there are s-positive symmetric848

functions that are not SNP, but they do not occur for small n.5 This makes it hard to849

find a counterexample for Conjecture 1.6.850

Example 7.6 The function851

f = s6222 + s444852

is not SNP (when expanded in at least 4 variables). The vector (5, 3, 3, 1, 0, . . .) is853

a convex combination 1
2 (6, 2, 2, 2) + 1

2 (4, 4, 4, 0), but the partition (5, 3, 3, 1) is not854

dominated by either (6, 2, 2, 2) or (4, 4, 4), so it is not in the support of f .855

Remark 7.7 Furthermore, there are s-positive incomparability graphs that contain856

claws, which are not covered by our Theorem 5.8: see Example 7.8. These can fail to857

be M-convex (as in the example), and it seems plausible that an s-positive incompara-858

bility graph with 12 vertices that contains claws could fail to be SNP. We were unable859

to complete a search over the space of incomparability graphs with 12 vertices due to860

computational constraints.861

Example 7.8 Let G be the treewith six vertices in Fig. 10b, which is an incomparability862

graph for the poset in Fig. 10c. Then XG = 32s16 +40s214 +18s2212 +8s23 +16s313 +863

6s321 + 2s32 + 2s412 . This is not M-convex since (0, 0, 0, 3, 0, 3) and (0, 0, 0, 4, 1, 1)864

are both in the support, but865

(0, 0, 0, 3, 0, 3) + e4 − e6866

is not.867

7.5 Complexity of XG(P) and XG(d)868

The study of the complexity of chromatic symmetric functions of general graphs and869

claw-free graphswas started byAdve–Robichaux–Yong [3].Wegive somepreliminary870

results on these questions for graphs G(d) and the more general G(P).871

5 There are no 3-antichains of partitions of n < 12 in dominance order with one partition being a convex
combination of the other two.
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Fig. 10 Examples of graphs with s-positive chromatic symmetric functions that are not M-convex. The
example in A is claw-free and chordal but is not an incomparability graph. The example in B is a chordal
incomparability graph of the poset in C, but the graph contains a claw

Given a (3 + 1)-free poset P (resp. a co-bipartite graph G or a Dyck path d)872

and its chromatic symmetric function XG(P) = ∑
α cP

α x
α (resp. XG = ∑

α cG
α x

α or873

XG(d) = ∑
α cd

αx
α), it is of interest to study the nonvanishing decision problem: the874

complexity of deciding whether cP
α �= 0 (resp. cG

α �= 0 or cd
α �= 0) and the complexity875

of computing cP
α (resp. cG

α or cd
α), both measured in the input size of P (resp. G and876

d). For the sake of specificity, we assume a Dyck path d of length n is given as a length877

2n string of e and n steps. A poset P is specified by a list of its cover relations, and a878

co-bipartite graph is specified by a list of its edges.879

Proposition 7.9 Let d be a Dyck path of length n. Given a weight α ∈ N
n, deciding880

whether cd
α is nonzero is in P (takes time polynomial in n).881

Proof ByTheorem4.1, the support of XG(d)(x1, . . . , xk) is the permutahedronP(k)
λgr(d).882

The greedy algorithm to determine λgr(d) from d takes time polynomial in n: for each883

number i in [n], consider vertex i . For each other vertex j , check if j is connected and884

add it to the list of neighbors of i if so. Consider each color x in order, and if x is not a885

color of a neighbor of i , color the vertex i the color x and move on to the next vertex.886

(It suffices to consider each pair of vertices only once.) Once λgr(d) is determined,887

determining membership of α in the permutahedron takes polynomial time as well by888

Rado’s theorem [49]. 
�889

Proposition 7.10 Let P be a (3+ 1)-free poset on n vertices. Given a weight α ∈ N
n,890

deciding whether cP
α is nonzero is in P (takes time polynomial in n).891

Proof Recall that P is specified as a list of cover relations. Following the decomposi-892

tion in [29, 30], we can convert P into a part listing L in polynomial time (where the893

bicolored graphs in L are encoded as adjacency matrices).894

Following our proof of Theorem 5.8, we find the dominating weight λgr(P) by895

finding for each bicolored graph H the maximum Uk (or Dk) appearing in its convex896

decomposition. Such k is the size of the maximum matching in H , which we can897

find in polynomial time (see [52, Section 16.4]). The result then follows by the same898

argument as in the proof of Proposition 7.9. 
�899

Next we use Lemma 2.6 to determine the complexity of computing the coefficients900

of XG in the monomial basis for co-bipartite graphs.901
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Proposition 7.11 If G is a co-bipartite graph, then determining the coefficients cG
α is902

#P-complete.903

Proof Computing the permanent of a 0-1 matrix A of size n×n is #P-complete [61]. If904

B ⊂ [n]×[n] is the support of thematrix A, then perm(A) = rn(B).Given the board B,905

let G be the co-bipartite graphwith two cliques on vertices {1, . . . , n}∪{n+1, . . . , 2n}906

and edges (i, n + j) for each (i, j) not in B. Then by (2.1) we have that cG
2n =907

n! · rn(B) = n! · perm(A). Hence, determining the coefficients cG
α of XG is #P-908

complete as desired. 
�909

Since co-bipartite graphs are incomparability graphs of (3 + 1)-free posets, we910

immediately obtain the following.911

Corollary 7.12 If P is a (3 + 1)-free poset, then determining the coefficients cP
α is912

#P-complete.913

Proof The result follows from Proposition 7.11 and the fact that co-bipartite graphs914

are incomparability graphs of 3-free posets. 
�915

Remark 7.13 Given a Dyck path d , it would be interesting to see whether or not deter-916

mining the coefficients cd
α of XG(d) is #P-complete. More concretely, is determining917

the leading coefficient cd
λgr(d) for the greedy coloring #P-complete?918

Remark 7.14 In contrast, one can compute cd
2k1n−2k in polynomial time for abelian919

Dyck paths d (i.e. Dyck paths with indifference graphs G(d) that are also co-bipartite),920

which are encoded by Ferrers boards Bμ of partitions μ = (μ1, . . . , μ�). Then by921

classical rook theory [40],
∑

k rk(Bμ)(x)r−k = ∏
i (x + μ�−i+1 − i − 1), where922

(x)m = x(x − 1) · · · (x − m + 1). The coefficients rk(Bμ) can be extracted using923

the Stirling numbers of the second kind S(m, k), since xm = ∑m
k=0 S(m, k)(x)k . The924

numbers S(m, k) can in turn be computed efficiently, say by using their recurrence925

(e.g. see [54, Eqs. (1.93), (1.96)]).926

Remark 7.15 We know of two recent algorithms to compute XG(d), and it would be927

interesting to analyze their complexity.928

• Carlsson and Mellit [16, Sect. 4] defined chromatic symmetric functions of partial929

Dyck paths and defined a Dyck path algebra generated by operators Dn, De that930

act on these symmetric functions by adding north steps n and east steps e to the931

Dyck path. These operators use plethystic operations (e.g. see [34, Chapter 1]). If932

the Dyck path d has steps ε1 · · · ε2n , then [16, Theorem 4.4] implies that933

XG(d) = Dε1 · · · Dε2n (1).934

• Abreu and Nigro [1, Algorithm 2.8] gave a recursive algorithm, based on the935

modular relation, to compute XG(d).936

Journal: 29 Article No.: 0928 TYPESET DISK LE CP Disp.:2024/3/28 Pages: 35 Layout: Small-Ex



R
ev
is
ed

Pr
oo
f

The Newton polytope and Lorentzian property of chromatic... Page 33 of 35 _####_

Acknowledgements This project started during a stay of the second named author at Institut Mittag-Leffler937

in Djursholm, Sweden in the course of the program on Algebraic and Enumerative Combinatorics in Spring938

2020. We thankfully acknowledge the support of the Swedish Research Council under Grant No. 2016-939

06596, and thank Institut Mittag-Leffler for its hospitality. We thank Margaret Bayer, Petter Brändén, Tim940

Chow, Laura Colmenarejo, Benedek Dombos, Félix Gélinas, Mathieu Guay-Paquet, Álvaro Gutiérrez, Jim941

Haglund, Chris Hanusa, June Huh, Khanh Nguyen Duc, Greta Panova, Adrien Segovia, Mark Skandera,942

Eric Sommers, Hugh Thomas, and Andrew Tymothy Wilson for helpful comments. We also would like to943

thank the anonymous referee for edits and suggestions that improved the manuscript. The first named author944

was partially supported byMax Planck Institute for Mathematics (MPIM), the Hausdorff Research Institute945

for Mathematics (HIM), and the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence946

Strategy—GZ 2047/1, Projekt-ID 390685813. The second and third named authors were partially supported947

by NSF Grants DMS-1855536 and DMS-2154019.948

References949

1. Abreu, A., Nigro, A.: Chromatic symmetric functions from the modular law. J. Combin. Theory Ser.950

A 180, 105407 (2021)951

2. Adve, A., Robichaux, C., Yong, A.: An efficient algorithm for deciding vanishing of Schubert polyno-952

mial coefficients. Adv. Math. 383, 107669 (2021)953

3. Adve, A., Robichaux, C., Yong, A.: Computational complexity, Newton polytopes, and Schubert poly-954

nomials. Sém. Lothar. Combin. 82B, 52 (2020)955

4. Aguiar,M., Bergeron, N., Sottile, F.: Combinatorial Hopf algebras and generalizedDehn–Sommerville956

relations. Compos. Math. 142(1), 1–30 (2006)957

5. Alexandersson, P., Sulzgruber, R.: A combinatorial expansion of vertical-strip LLT polynomials in the958

basis of elementary symmetric functions. Adv. Math. 400, 108256 (2021)959

6. Alexandersson, P., Panova, G.: LLT polynomials, chromatic quasisymmetric functions and graphs with960

cycles. Discrete Math. 341(12), 3453–3482 (2018)961

7. Anari,N., Liu,K.,Gharan, S.O.,Vinzant,C.: Log-concavepolynomials III:mason’s ultra-log-concavity962

conjecture for independent sets of matroids. arXiv preprint arXiv:1811.01600 (2018)963

8. Bayer, M., Goeckner, B., Hong, S.J., McAllister, T., Olsen, M., Pinckney, C., Vega, J., Yip, M.: Lattice964

polytopes from Schur and symmetric Grothendieck polynomials. Electron. J. Combin. 28(2), #P2.45965

(2020)966

9. Beck, M., Robins, S.: Computing the continuous discretely. Undergraduate Texts in Mathematics, 2nd967

edn. Springer, New York (2015)968

10. Birkhoff, G.D.: A determinant formula for the number of ways of coloring a map. Ann. Math. (2)969

14(1–4), 42–46 (1912/13)970

11. Borcea, J., Brändén, P.: The Lee–Yang and Pólya–Schur programs. I. Linear operators preserving971

stability. Invent. Math. 177(3), 541–569 (2009)972

12. Borcea, J., Brändén, P.: The Lee–Yang and Pólya–Schur programs. II. Theory of stable polynomials973

and applications. Commun. Pure Appl. Math. 62(12), 1595–1631 (2009)974

13. Brändén, P., Huh, J.: Lorentzian polynomials. Ann. Math. (2) 192(3), 821–891 (2020)975

14. Braun, B.: Unimodality problems in Ehrhart theory, Recent trends in combinatorics. IMA Vol. Math.976

Appl. 159, 687–711 (2016)977

15. Brosnan, P.,Chow,T.Y.:Unit interval orders and the dot action on the cohomologyof regular semisimple978

Hessenberg varieties. Adv. Math. 329, 955–1001 (2018)979

16. Carlsson, E., Mellit, A.: A proof of the shuffle conjecture. J. Am. Math. Soc. 31(3), 661–697 (2018)980

17. Castillo, F., Cid-Ruiz,Y.,Mohammadi, F.,Montaño, J.: Double Schubert polynomials do have saturated981

Newton polytopes. Forum Math. Sigma 11, e100 (2023)982

18. Chandler, A., Sazdanovic, R., Stella, S., Yip, M.: On the strength of chromatic symmetric homology983

for graphs. Adv. Appl. Math. 150, 102559 (2023)984

19. Chow, T.: Note on the Schur-expansion of XG for indifference graphs G (2015). link985

20. Colmenarejo, L.,Morales, A.H., Panova, G.: Chromatic symmetric functions of Dyck paths and q-rook986

theory. Eur. J. Combin. 107, 103595 (2023)987

21. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific Publishing Co. Inc., River Edge988

(1995)989

Journal: 29 Article No.: 0928 TYPESET DISK LE CP Disp.:2024/3/28 Pages: 35 Layout: Small-Ex

http://arxiv.org/abs/1811.01600
http://timothychow.net/firstfit.pdf


R
ev
is
ed

Pr
oo
f

_####_ Page 34 of 35 J. P. Matherne et al.

22. Fang, W.: Bijective proof of a conjecture on unit interval posets. DMTCS 26(2), #2 (2024)990

23. Fenn, M., Sommers, E.: A transitivity result for ad-nilpotent ideals in type A. Indagat. Math. 32(6),991

1175–1189 (2021)992

24. Fink, A., Mészáros, K., St. Dizier, A.: Schubert polynomials as integer point transforms of generalized993

permutahedra. Adv. Math. 332, 465–475 (2018)994

25. Foley, A.M., Hoàng, C.T., Merkel, O.D.: Classes of graphs with e-positive chromatic symmetric func-995

tion. Electron. J. Combin. 26(3), 3.51 (2019)996

26. Gasharov, V.: Incomparability graphs of (3+1)-free posets are s-positive. DiscreteMath. 157, 211–215997

(1996)998

27. Gélinas, F., Segovia, A., Thomas, H.: Proof of a conjecture of Matherne, Morales, and Selover on999

encodings of unit interval orders. arXiv preprint arXiv:2212.12171 (2022)1000

28. Gerstenhaber, M.: Dominance over the classical groups. Ann. Math. 2(74), 532–569 (1961)1001

29. Guay-Paquet, M.: A modular relation for the chromatic symmetric functions of (3 + 1)-free posets.1002

arXiv preprint arXiv:1306.2400 (2013)1003

30. Guay-Paquet, M., Morales, A.H., Rowland, E.: Structure and enumeration of (3+1)-free posets. Ann.1004

Combin. 18(4), 645–674 (2014)1005

31. Haglund, J., Ono, K., Wagner, D.G.: Theorems and conjectures involving rook polynomials with only1006

real zeros. Topics in Number Theory (University Park, PA, 1997), Math. Appl., vol. 467, pp. 207–221.1007

Kluwer Acad. Publ., Dordrecht (1999)1008

32. Haglund, J., Wilson, A.T.: Macdonald polynomials and chromatic quasisymmetric functions. Electron.1009

J. Combin. 27(3), #P3.37 (2020)1010

33. Haglund, J.: Further investigations involving rook polynomials with only real zeros. Eur. J. Combin.1011

21(8), 1017–1037 (2000)1012

34. Haglund, J.: The q,t-Catalan Numbers and the Space of Diagonal Harmonics, University Lecture1013

Series, vol. 41. American Mathematical Society, Providence (2008)1014

35. Harada, M., Precup, M.E.: The cohomology of abelian Hessenberg varieties and the Stanley–1015

Stembridge conjecture. Algebr. Combin. 2(6), 1059–1108 (2019)1016

36. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Mathematical Library, Cambridge1017

University Press, Cambridge (1988). Reprint of the 1952 edition1018

37. Huh, J.: Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs. J. Am.1019

Math. Soc. 25(3), 907–927 (2012)1020

38. Huh, J., Matherne, J.P., Mészáros, K., St. Dizier, A.: Logarithmic concavity of Schur and related1021

polynomials. Trans. Am. Math. Soc. 375(6), 4411–4427 (2022)1022

39. Mason, J.H.: Matroids: unimodal conjectures and Motzkin’s theorem. In: Proceedings Combinatorics,1023

Proc. Conf. Combinatorial Math., pp. 207–220. Math. Inst., Oxford (1972)1024

40. Kaplansky, I., Riordan, J.: The problem of the rooks and its applications. DukeMath. J. 13(2), 259–2681025

(1946)1026

41. Lewis, J.B., Zhang, Y.X.: Enumeration of graded (3 + 1)-avoiding posets. J. Combin. Theory Ser. A1027

120(6), 1305–1327 (2013)1028

42. Macdonald, I.G.: Symmetric functions and Hall polynomials. Oxford Classic Texts in the Physical1029

Sciences, 2nd edn. The Clarendon Press, Oxford University Press, New York (2015)1030

43. McDonald, L.M., Moffatt, I.: On the Potts model partition function in an external field. J. Stat. Phys.1031

146(6), 1288–1302 (2012)1032

44. Monical, C., Tokcan, N., Yong, A.: Newton polytopes in algebraic combinatorics. Selecta Math. (N.S.)1033

25(5), 66 (2019)1034

45. Monical, C.: Polynomials in algebraic combinatorics, Ph.D. Thesis (2018), University of Illinois at1035

Urbana-Champaign1036

46. Murota, K.: Discrete ConvexAnalysis, SIAMMonographs onDiscreteMathematics andApplications,1037

Society for Industrial and Applied Mathematics. SIAM, Philadelphia (2003)1038

47. Orellana, R., Scott, G.: Graphs with equal chromatic symmetric functions. Discrete Math. 320, 1–141039

(2014)1040

48. Postnikov, A.: Permutohedra, associahedra, and beyond. Int. Math. Res. Not. 2009(6), 1026–11061041

(2009)1042

49. Rado, R.: An inequality. J. Lond. Math. Soc. 27, 1–6 (1952)1043

50. Rubey, M., Stump, C., et al.: FindStat—the combinatorial statistics database. http://www.FindStat.org.1044

Accessed 28 Feb 20241045

Journal: 29 Article No.: 0928 TYPESET DISK LE CP Disp.:2024/3/28 Pages: 35 Layout: Small-Ex

http://arxiv.org/abs/2212.12171
http://arxiv.org/abs/1306.2400
http://www.FindStat.org


R
ev
is
ed

Pr
oo
f

The Newton polytope and Lorentzian property of chromatic... Page 35 of 35 _####_

51. Sazdanovic, R., Yip, M.: A categorification of the chromatic symmetric function. J. Combin. Theory,1046

Ser. A 154, 218–246 (2018)1047

52. Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency. Vol. A, Algorithms and Combi-1048

natorics, Paths, Flows, Matchings, Chapters 1–38, vol. 24, Springer, Berlin (2003)1049

53. Shareshian, J., Wachs, M.L.: Chromatic quasisymmetric functions. Adv. Math. 295, 497–551 (2016)1050

54. Stanley, R.P.: Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics,1051

vol. 49, 2nd edn. Cambridge University Press, Cambridge (2012)1052

55. Stanley, R.P.: Enumerative combinatorics. Volume 2, Cambridge Studies in Advanced Mathematics,1053

vol. 62. Cambridge University Press, Cambridge (1999)1054

56. Stanley, R.P.: Graph colorings and related symmetric functions: ideas and applications: a description1055

of results, interesting applications, & notable open problems. Discrete Math. 193, 267–286 (1998).1056

Selected papers in honor of Adriano Garsia (Taormina, 1994)1057

57. Stanley, R.P.: symmetric function generalization of the chromatic polynomial of a graph. Adv. Math.1058

111(1), 166–194 (1995)1059

58. Stanley, R.P.: Catalan Numbers. Cambridge University Press, New York (2015)1060

59. Stanley, R.P., Stembridge, J.R.: On immanants of Jacobi–Trudi matrices and permutations with1061

restricted position. J. Combin. Theory Ser. A 62(2), 261–279 (1993)1062

60. The Sage-Combinat community: Sage-Combinat: enhancing Sage as a toolbox for computer explo-1063

ration in algebraic combinatorics, (2022)1064

61. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8(2), 189–2011065

(1979)1066

62. Wagner, D.G.: Multivariate stable polynomials: theory and applications. Bull. Am. Math. Soc. (N.S.)1067

48(1), 53–84 (2011)1068

63. White, D.E.:Monotonicity and unimodality of the pattern inventory. Adv.Math. 38(1), 101–108 (1980)1069

64. Whitney, H.: The coloring of graphs. Ann. Math. (2) 33(4), 688–718 (1932)1070

65. Zhang, F.: The Schur complement and its applications, Numerical Methods and Algorithms, vol. 4.1071

Springer, New York (2005)1072

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps1073

and institutional affiliations.1074

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Journal: 29 Article No.: 0928 TYPESET DISK LE CP Disp.:2024/3/28 Pages: 35 Layout: Small-Ex


	The Newton polytope and Lorentzian property of chromatic symmetric functions
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Main results
	1.3 Applications and conjectures
	1.3.1 M-convexity and the Lorentzian property
	1.3.2 M-convexity and claw free graphs
	1.3.3 Computational complexity of our classes of chromatic symmetric functions

	1.4 Outline

	2 Background
	2.1 Partitions and symmetric functions
	2.2 The saturated Newton polytope (SNP) property
	2.3 Indifference graphs of Dyck paths and incomparability graphs
	2.4 Chromatic symmetric functions
	2.5 Chromatic symmetric functions of co-bipartite graphs
	2.6 Stanley's nice property of chromatic symmetric functions

	3 Chromatic symmetric functions of co-bipartite graphs
	4 Chromatic symmetric functions of Dyck paths
	4.1 Greedy coloring on Dyck paths
	4.2 Greedy coloring gives dominating partition

	5 Chromatic symmetric functions of (3+1)-free posets
	5.1 Structure of (3+1)-free posets
	5.2 Guay-Paquet's reduction from (3+1)-free posets to unit interval orders
	5.3 Main result for (3+1)-free posets

	6 Stability and the Lorentzian property of XG(d)
	6.1 Main conjectures for all Dyck paths
	6.2 Lorentzian property for abelian Dyck paths

	7 Further examples and conjectures
	7.1 Relation with the ζ map from diagonal harmonics
	7.2 Chromatic symmetric functions with reflexive Newton polytopes
	7.3 Unimodality of colorings
	7.4 SNP property of chromatic symmetric functions
	7.5 Complexity of XG(P) and XG(d)

	Acknowledgements
	References


