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Abstract

Chromatic symmetric functions are well-studied symmetric functions in algebraic
combinatorics that generalize the chromatic polynomial and are related to Hessenberg
varieties and diagonal harmonics. Motivated by the Stanley—Stembridge conjecture,
we show that the allowable coloring weights for indifference graphs of Dyck paths are
the lattice points of a permutahedron P, , and we give a formula for the dominant weight
A. Furthermore, we conjecture that such chromatic symmetric functions are Lorentzian,
aproperty introduced by Brindén and Huh as a bridge between discrete convex analysis
and concavity properties in combinatorics, and we prove this conjecture for abelian
Dyck paths. We extend our results on the Newton polytope to incomparability graphs
of (3 + 1)-free posets, and we give a number of conjectures and results stemming
from our work, including results on the complexity of computing the coefficients and
relations with the ¢ map from diagonal harmonics.

Mathematics Subject Classification 0SE05 - 05C15 - 06A07 (Primary) 05A10 -
05A20 - 03D15 (Secondary)

B Alejandro H. Morales
morales_borrero.alejandro@ugam.ca

Jacob P. Matherne
jpmather @ncsu.edu

Jesse Selover
jselover @math.umass.edu
1 Department of Mathematics, North Carolina State University, Raleigh, NC, USA

2 LACIM, Département de Mathématiques, Université du Québec a Montréal, Montréal, QC,
Canada

3 Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA, USA

) Birkhauser

Journal: 29 Article No.: 0928 [ | TYPESET [__|DISK [__]LE [__]CP Disp.:2024/3/28 Pages: 35 Layout: Small-Ex



http://crossmark.crossref.org/dialog/?doi=10.1007/s00029-024-00928-4&domain=pdf

6

17

40

M

42

43

44

45

46

47

48

49

_####_ Page2of35 J.P.Matherne et al.

1 Introduction
1.1 Motivation

The study of proper colorings of a graph G is a fundamental topic in graph theory and
theoretical computer science. For a fixed graph G, the number of proper colorings of G
with n colors is given by the chromatic polynomial x¢ (n), which was first introduced
by Birkhoff in 1912 for planar graphs [10] and then for all graphs in 1932 by Whitney
[64]. In 1995, Stanley defined the following symmetric function generalization of
xGg(n):foragraph G = (V, E) let

Xe(X) = Y xXpuXr@ -
f:V(G)—>N
f proper

where the sum is over all proper colorings f of G (i.e., colorings satisfying f (i) #
f(j)if (i, j)isanedge of G)[57]. This symmetric function has connections to combi-
natorial Hopf algebras [4], topology [18, 51], statistical mechanics [43], representation
theory [16, 23, 35], and algebraic geometry [15].

There are fundamental open questions about X (x). For instance, Stanley conjec-
tured in [56, 57] that X5 (x) expands positively in the Schur function basis (i.e. is
s-positive) whenever G is claw-free.

Conjecture 1.1 (Stanley [57]) If G is claw-free, then X (X) is s-positive.

Stanley verified this conjecture for co-bipartite graphs, which are complements of
bipartite graphs. Another conjecture of Stanley and Stembridge that motivates this
paper states that if the graph G = G(P) is the incomparability graph of a (3 + 1)-
free poset P (a poset with no subposet consisting of a 3-chain and an incomparable
element), then X¢(p)(x) expands positively in the elementary basis of symmet-
ric functions (i.e. is e-positive) [59]. Gasharov proved that X (p)(x) is s-positive
[26], which is implied by both conjectures since such graphs G(P) are claw-free
and e-positivity implies s-positivity. Lewis—Zhang [41] and Guay-Paquet—-Morales—
Rowland [30] studied the enumeration and structure of (3 + 1)-free posets. In [29],
Guay-Paquet used this work and the modular relation of X (p)(x) to reduce this con-
jecture to a subfamily of graphs in bijection with Dyck paths [29], one of the hundreds
of objects counted by the Catalan numbers. Given a Dyck path d from (0, 0) to (n, n),
the indifference graph G (d) of the Dyck path d has vertices {1, . .., n} and edges (i, j)
with i < j, if the cell (i, j) is below the path d (see Fig. 1).

Conjecture 1.2 (Stanley—Stembridge [59]) For any Dyck path d, Xg)(x) is e-
positive.

Recently, X G(4)(X) has been related to other very interesting mathematical objects:
the representation theory of Hessenberg varieties (see e.g., [53]) and the space of
diagonal harmonics [5, 6, 16, 32]. For other classes of graphs with e-positive chromatic
symmetric function, see [25].
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1.2 Main results

The purpose of this paper is to contribute to the study of three classes of chromatic
symmetric functions: those of co-bipartite graphs G, of indifference graphs G(d) of
Dyck paths d, and of incomparability graphs G(P) of (3 4+ 1)-free posets P. We
note that indifference graphs of Dyck paths are the same as incomparability graphs of
posets that are both (34 1)-free and (2+2)-free (such posets are sometimes called unit
interval orders, e.g., see [6, Sect. 2.1]), and co-bipartite graphs are incomparability
graphs of 3-free posets. Thus, the class of incomparability graphs of (3+1)-free posets
contains both the class of co-bipartite graphs and the class of indifference graphs of
Dyck paths (see [29, 30]).

We study these three classes via their Newton polytopes. Recall that the Newton
polytope of a multivariate polynomial p(x) € R[xy, ..., x;] is the convex hull in R¥
of the support of p, and that p is said to be SNP if its Newton polytope is saturated,
i.e. if the support of p is equal to the set of lattice points in the Newton polytope of
p [44]. Our main result is that the chromatic symmetric functions in each of the three
classes that we study are SNP, and moreover, their Newton polytopes are explicitly
described permutahedra. In what follows, for a partition A of length £ and a nonneg-
ative integer k > ¢, the permutahedron P)Ek) is the convex hull of permutations of

(A, ..oy re,0,...,0)in RF. Ifk < ¢, the permutahedron P)Ek) is the empty set.

Theorem 1.3 (1) (Proposition3.1) For G a co-bipartite graph, X (x1, . . ., xx) is SNP
and its Newton polytope is the permutahedron P)E]Z)G)'

(2) (Theorem 4.1) For d a Dyck path, X a)(X1, ..., Xk) is SNP and its Newton poly-
tope is the permutahedron P)Elzfl).

(3) (Theorem 5.8) For G(P) the incomparability graph of a (3 + 1)-free poset P,
XGpy(X1, ..., xk) is SNP and its Newton polytope is the permutahedron ’P)(\lgp).

In each of the three cases of Theorem 1.3, we explicitly describe the Newton
polytope: for example, in case (2), A(d) is the weight A" (d) of the greedy coloring
of G(d). Interestingly, the weight 18" (d) appears in representation theory, where it is
the partition arising from the Jordan form of the unique nilpotent orbit associated to
a given ad-nilpotent ideal / of the set of strictly upper triangular matrices [28] (see
Remarks 4.8 and 4.12). For more on this connection, including the relation between
Dyck paths and ad-nilpotent ideals, we point to [23, Sect. 6].

The proof of Theorem 1.3 in each case proceeds by finding a special coloring gr.
These symmetric functions are by definition positive in the monomial basis, and all
three classes of graphs have Stanley’s nice property (see Sect.2.6), so the support will
contain any integer vector dominated by the weight of gr. To complete the proof, we
prove that any vector in the support is dominated by the weight of gr.

We reiterate that case (3) implies both cases (1) and (2). While preparing
the manuscript, the authors learned that one of the main ingredients for case
(2), Lemma 4.11, was already known to Chow in an unpublished note [19] (see
Remark 4.12). Cases (1) and (3) are new, and case (3) requires an in-depth study
of the structure of (3 4 1)-free posets from [29, 30] and the recent modular relation
of Guay-Paquet [29] and Orellana—Scott [47].
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1.3 Applications and conjectures

Here we highlight some of the consequences of Theorem 1.3 that appear in detail in
Sects. 6 and 7.

1.3.1 M-convexity and the Lorentzian property

One strengthening of the SNP property is M-convexity, a property that first appeared
in discrete convex analysis [46]. Write ¢; for the ith standard unit vector in NK. A
subset J of N¥ is matroid-convex or M-convex if for all o, 8 € J and for all i such
that o; > B;, there exists a j such that 8; > oj and @ — e; +e¢; € J. The convex hull
of any M-convex set is a generalized permutahedron [48], and the set of lattice points
of an integral generalized permutahedron is an M-convex set [46, Theorem 1.9]. Let
H;! be the set of degree n homogeneous polynomials in R[x1, ..., xx]. A polynomial
f in H}! is M-convex if its support is M-convex. Note that if f is M-convex, then f
is SNP [44].

The notion of M-convexity is part of the definition of Lorentzian polynomials,
defined by Brindén—Huh in [13], as a common generalization of stable polynomials
(amultivariate analogue of real-rooted polynomials) and volume polynomials in alge-
braic geometry. A polynomial f in H' with nonnegative coefficients is Lorentzian
if and only if (i) its support is M-convex and (ii) the Hessian of any of its partial
derivatives of order n — 2 has at most one positive eigenvalue [13].

Lorentzian polynomials are of interest in part because they satisfy both a discrete
and continuous type of log-concavity (see [13, Sect. 2.4, Proposition 4.4] and Propo-
sition 6.2). Brindén and Huh used the theory of Lorentzian polynomials to prove
the strongest version of Mason’s conjecture [13, Theorem 4.141': The numbers I; of
independent sets of size k in a matroid with n elements form an ultra log-concave
sequence [39]. Huh, Matherne, Mészaros, and St. Dizier showed in [38] that (nor-
malized) Schur functions and certain Schubert polynomials are also Lorentzian. They
also conjectured that a host of other Schur-like polynomials in algebraic combinatorics
should be Lorentzian.

Huh showed that the coefficients of chromatic polynomials of graphs are log-
concave [37]. Because of the advent of Lorentzian polynomials to study log-concavity
of multivariate polynomials in algebraic combinatorics, it is natural to consider chro-
matic symmetric functions X ¢ (x).

The main conjecture of this paper is that chromatic symmetric functions of Dyck
paths are Lorentzian.

Conjecture 1.4 (Conjecture 6.3) Let d be a Dyck path. Then X g), restricted to any
finite number of variables, is Lorentzian.

We verify Conjecture 1.4 in the special case where the indifference graph G(d) is
co-bipartite. Dyck paths of this type are called abelian in the literature [35], and they
form an important class of Dyck paths with connections to Lie theory [35] and (q)
rook theory [1, 20, 59].

! The strongest version of Mason’s conjecture was also proved independently and simultaneously in [7].
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Table 1 Schematic summary of results and conjectures for chromatic symmetric functions of incompara-
bility graphs of certain families of posets

XG(p) for (3 + 1)-free Are (2 + 2)-free (indifference May have 2 + 2 pattern
posets P which graphs of Dyck paths)
Are 3-free (co-bipartite (Abelian indifference graphs) May not be Lorentzian, see
graphs) is Lorentzian by Example 6.7
Theorem 6.8
May have 3 pattern is conjecturally Lorentzian by is M-convex by Theorem 1.3

Conjecture 6.3

Theorem 1.5 (Theorem 6.8) Let d be an abelian Dyck path. Then X G4y, restricted to
any finite number of variables, is Lorentzian.

The proof of Theorem 1.5 has interesting connections to rook theory. Because the
monomial expansion of X 4), for abelian d, has coefficients involving rook numbers,
a key role in the proof is played by the real-rootedness of the hit polynomial of any
Ferrers board [31, Theorem 1], which implies that its coefficients form an ultra log-
concave sequence.

For arbitrary Dyck paths d, calculations suggest that X (4 (x) may be stable (see
Conjecture 6.5), a more restrictive condition studied by Borcea and Briandén [11, 12]
that implies the Lorentzian property and is related to real-rootedness.

As a partial result toward Conjecture 1.4 in the general case, we note that our
Theorem 1.3 (2) asserts that the support of X 4)(x) is M-convex since it is a permu-
tahedron, and therefore a generalized permutahedron. However, Conjecture 1.4 does
not extend to the more general class of incomparability graphs of (3 + 1)-free posets
(see Example 6.7), even though Theorem 1.3 (3) shows their chromatic symmetric
functions are M-convex. See Table 1 for a schematic summary of our results and
conjectures.

1.3.2 M-convexity and claw free graphs

Monical conjectured a relation between s-positive chromatic symmetric functions and
the SNP property.

Conjecture 1.6 (Monical [45]) If X is s-positive, then Xg(x1, ..., xr) is SNP for
any k.

Gasharov showed that for (34-1)-free posets P, X (p) is s-positive [26]. Thus, The-
orem 1.3 (3) is a partial confirmation of Monical’s conjecture. We further investigate
Monical’s conjecture and Conjecture 1.1 in Sect.7.4. We find that the strengthening
of Conjecture 1.6 fails if we want X to be M-convex, rather than just SNP; see
Example 7.5 for a claw-free graph G for which X is s-positive but is not M-convex.

1.3.3 Computational complexity of our classes of chromatic symmetric functions

Inspired by recent work of Adve—Robichaux—Yong [2, 3], we use the explicit descrip-
tions of the Newton polytopes in Theorem 1.3 to analyze the complexity of computing
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coefficients of our three classes of chromatic symmetric functions (see Sect.7.5).

Throughout this section, we writt Xg = > ,cSx% Xguy = Y, cix*, and

XG(p) = Y., cPx* for the three classes.

Theorem 1.7 (1) (Proposition 7.10) Deciding whether any given coefficient c(f is
nongzero is in P.

(2) (Proposition 7.11) Determining the value of any given coefficient cg is #P-
complete.

Theorem 1.7 (1) implies that deciding nonvanishing of any given cg or cg also takes

polynomial time. Similarly, Theorem 1.7 (2) implies that determining the value of any
given ¢! is also #P-complete. We leave open the interesting question of whether or
not determining the coefficients cfxl is #P-complete.

1.4 Outline

In Sect.2, we present background material on (chromatic) symmetric functions as
well as on various properties of their support. The main results of Sects.3-5 are that
the Newton polytopes of the chromatic symmetric functions of co-bipartite graphs,
indifference graphs of Dyck paths, and incomparability graphs of (3 + 1)-free posets,
respectively, are permutahedra. A direct consequence is that these chromatic symmet-
ric functions are SNP and moreover M-convex. We conclude the paper with Sects. 6
and 7 which collect a number of examples and conjectures about these classes of
chromatic symmetric functions: most notably, we conjecture that chromatic symmet-
ric functions of indifference graphs of Dyck paths are Lorentzian, and we verify the
conjecture for abelian Dyck paths. We also use our description of the Newton poly-
topes to analyze the complexity of our classes of chromatic symmetric functions and
to make a conjecture about the ¢ map from diagonal harmonics (e.g. see [34, Theorem
3.15]) relating two Dyck paths encoding unit interval orders.

2 Background
2.1 Partitions and symmetric functions

The dominance order on the set of partitions of the same size is defined as follows:
A < uif Zle A < Zle w; for all k. Similarly, we use the dominance order for
compositions of the same size: y < g if Zle Vi < Z?:l Bi for all k.

Let A denote the ring of symmetric functions and Ay be the subring of A of sym-
metric polynomials in k variables. Let m, denote the monomial symmetric functions

oy 02
mA=Zx1 Xy e,
o

where the sum is over all permutations « of the vector A = (A1, A2, ...). Lets) denote
the Schur symmetric functions

Sy = E K)lel«mll’
nw
W Birkhauser
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where K, , is the number of semistandard Young tableaux (SSYT) of shape A and
content . Let e) denote the elementary symmetric functions

e, =e, - -e,, where ¢ = E Xip + o Xig-

i <--<ig

Given a basis g, of A, we say that f in A is g-positive if in the g-expansion of
f=> 5 €28 all the coefficients ¢ are nonnegative. For more details on symmetric
functions, see [55, Chapter 7].

2.2 The saturated Newton polytope (SNP) property

For a multivariate polynomial p = Za ceX* in R[xy, ..., x¢], the support of p,
denoted by supp(p), is the set {« | ¢, # 0} in N¥ of exponents of monomials with
nonzero coefficients in p. For a homogeneous polynomial of degree n, the support lies
in the nth discrete simplex AY, the set of points in NF where the sum of the coordinates
is n.

The Newton polytope of p is the convex hull of the exponents in the support of p;
that is,

Newton(p) = conv(x | o € supp(p)) C Rk,

Given a partition A of length £ and a nonnegative integer k > ¢, let P)Ek) be the
convex hull of permutations of (A1, ..., 4¢,0,...,0)in R¥. Fora nonnegative integer
k < ¢,1et P be PV N RE,

A polynomial p € R[xy, ..., x;] has saturated Newton polytope (“is SNP”) if
supp(p) = Newton(p) N ZK. That is, p is SNP if its support coincides with the lat-
tice points of its Newton polytope. This property was defined in [44] and studied
for polynomials in algebraic combinatorics like Schur functions and Stanley symmet-
ric functions, and was conjectured and settled for Schubert and (double) Schubert
polynomials in [17, 24], respectively. For example, by Rado’s theorem [49], a Schur
polynomial s (x1, ..., x¢) is SNP and its Newton polytope is Pik).

A subset I C ZF is M-convex if for any i in [k] and any & and g in I satisfying
o; > B;, there is an index j in [n] such that

aj<pB; and o —e¢ +e; €l and B—e;+e €1.

The convex hull of an M-convex set is a generalized permutahedron [48], and the set
of lattice points in an integral generalized permutahedron forms an M-convex set [46,
Theorem 1.9]. If a homogeneous polynomial has M-convex support, then it is SNP,
but the converse does not hold (see Example 7.5).

We summarize this discussion for the example of Schur polynomials in the theorem
below.
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Theorem 2.1 (Rado [49]) The Schur function s)(xy, ..., x;) is SNP and its Newton

polytope is the permutahedron ’Pik). In particular, the support of s)(xy, ..., Xy) is
M-convex.

2.3 Indifference graphs of Dyck paths and incomparability graphs

A Dyck path d of length n is a lattice path from (0, 0) to (n,n) with north steps
n = (0, 1) and east steps e = (1, 0) that does not go below the diagonal y = x. The
bounce path of d is the path obtained by starting at (0, 0), traveling north along d until a
(1, 0) step of d, and then turning east until the diagonal, then turning north until a (1, 0)
step of d, and then again turning east until the diagonal, continuing this process until
arriving at (n, n) [34, Definition 3.1]. The points (0, 0), (i1, j1), - -5 (ip, jp) = (n, n)
where the bounce path hits the diagonal are called bounce points. The area sequence
of d is the tuple of nonnegative integers (a1, . . ., a,) where g; is the number of squares
in row i between the path and the diagonal.

Given a Dyck path d of length n, let G(d) be the indifference graph of the Dyck
path: the graph where the vertices are [n] and there is an edge between i and j,
with i < j, if the square in column i and row n + 1 — j is between the path and
the diagonal. Note that here we use matrix coordinates for the cells of the diagram,
i.e. row numbers increase down the diagram. Given a Dyck path d of length n, the
associated Hessenberg function hy: [n] — [n] is defined by setting /4(i) to be the
number of squares in column i below d. These functions are characterized as follows:
hq(@@) > iforalliin[n],and hg(i + 1) > hg(i) for all i in [n — 1]. Dyck paths whose
indifference graphs are co-bipartite are called abelian [35].

The incomparability graph G (P) of a poset P is the graph formed by taking the ele-
ments of P as vertices, and putting an edge between i and j if i and j are incomparable
in P.

Remark 2.2 The indifference graph G (d) of a Dyck path d with associated Hessenberg
function h, is the incomparability graph of the poset P on [n] with relations i < j
whenever h;(i) < j.

Example 2.3 The Dyck path d = nnneenneee, together with its indifference graph
G (d) and associated poset P, is illustrated in Fig. 1. Its Hessenberg function is iy =
(ha(1), ..., hq(5) = (3,3,5,5,5) and the poset P with elements [5] has cover
relations 1 < 4,1 <5,2 <4,2 <5.

Definition 2.4 A posetis (m+n)-free if there are no two disjoint chains a; < - -+ < ap,
and by < --- < by in the poset such that every a; is incomparable to every b;.

Proposition 2.5 (E.g., see [6, Sect. 2.1]) Indifference graphs of Dyck paths of length
n are exactly the incomparability graphs of (3 + 1)- and (2 4 2)-free posets of n
elements.
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Fig. 1 A Dyck path d encoded by the Hessenberg function 1y = (3, 3,5, 5, 5) and its indifference graph
G (d) which is an incomparability graph of a unit interval order poset P

o3 2.4 Chromatic symmetric functions

a4 For G a graph, f: V(G) — Nis proper if the inverse image of every number (called
275 acolor) is an independent subset of the graph’s vertices, that is, a subset of the vertices
»s  where no two are adjacent.

277 The chromatic symmetric function for G, defined in [57], is the infinite sum
278 Xc(x) = Z Xf s

f: V(G)—>N

f proper

2o where the sum is over all proper colorings of G, and the monomial x/ is notation for

. 1 —1
280 Xf = 1_[ Xf(v) = x‘lf (l)lxéf @ e,
veG

w1 We call the vertex sets £~ 1(i) color classes. When we restrict it to k variables (as
22 though the rest were zero),

283 X1, ..., xx) = Z x/.
f1V(G)—[k]
f proper

284 For a coloring f: V(G) — [k], define the weight of f to be

wt(f) = (DL @ 17 R € NE.

26 Thus, the support of X (x1, ..., xx) is the set

287 {wt(f) | f: V(G) — [k] is proper}.

288 Since X is a symmetric function, if « € supp(X¢) then any permutation of « is
29 alsoin supp(X ). Throughout, we will say that a graph G is g-positive if its chromatic

20 symmetric function X is g-positive.
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2.5 Chromatic symmetric functions of co-bipartite graphs

Stanley and Stembridge [59] related X of co-bipartite graphs G with rook theory.
Given a board B C [n1] x [n3], let rp = ri(B) be the number of placements of k
non-attacking rooks on B (e.g. see [40]). Given such a co-bipartite graph G, i.e. a
complement of a bipartite graph, with vertex set {1, ..., n1}U{n1 +1,...,n1+no},
we associate to itaboard B C [n1] x [n2] with a cell (i, j), in matrix coordinates, for
each edge (i, n; + j) not in G. In the case of abelian Dyck paths d, the graph G(d) is
encoded by a Ferrers board B, C [n1] x [n2] of a partition ;t = (i1, ..., u¢). The
board B, has a cell (i, j) if j < u;, i.e, B, consists of a justified collection of p;
boxes in the ith row fori = 1, ..., £ (see Example 2.7).

Lemma 2.6 (Stanley—Stembridge [59, Remark 4.4]) Let G be a co-bipartite graph
with vertex set {1, ..., n1}U{n1+1,...,n1 +ny}, and let B be the board associated
to G. We have

Xg =) il (n1+ny —20)! i (B) - My oy sny2i. 2.1)

1

Example 2.7 Continuing with Example 2.3, the Dyck path d = nnneenneee in Fig. 1
is abelian since G(d) is co-bipartite with vertices {1, 2} U {3, 4, 5}. We associate to
G (d) the Ferrers board B> C [2] x[3]. Forthisboardwehaverg = 1,r1 =4, =2,
and so by (2.1) we have that X ) = 120m1111 + 24ma111 + 4moa;.

2.6 Stanley’s nice property of chromatic symmetric functions

A graph G is nice if whenever A is in supp(X¢) and ;0 < A, then p is in supp(Xg).
Stanley introduced this notion in [56] and deduced the following properties.

Proposition 2.8 (Stanley [56, Proposition 1.5]) If G is s-positive, then G is nice.

To state the next result, we need the following definition. A graph G is claw-free if
it does not have the claw graph K 3 as an induced subgraph.

Proposition 2.9 (Stanley [56, Proposition 1.6]) A graph G and all of its induced sub-
graphs are nice if and only if G is claw-free.

The following families of graphs are known to have s-positive chromatic symmetric
functions:

(1) co-bipartite graphs [57, Corollary 3.6] (or incomparability graphs of 3-free posets),
(ii) indifference graphs of Dyck paths, i.e. incomparability graphs of unit interval
orders (or (3 + 1)- and (2 + 2)-free posets) [59], and
(iii) incomparability graphs of (3 + 1)-free posets [26].

Note that families (i) and (ii) are contained in (iii).
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3 Chromatic symmetric functions of co-bipartite graphs

Let G be a co-bipartite graph with n vertices, not necessarily an indifference graph
of a Dyck path. Stanley [57, Corollary 3.6] showed that X is e-positive and thus
s-positive.

By Lemma 2.6 the expansion of X in the monomial basis is

[n/2]
Xg = Z Cgl,l,z,-mziln—m', 3.1
i=0
with some coefficients c§,,  possibly 0. Let A(G) = 271772/, where j is maximal
such that CzG.il"—Z.f # 0. Next, we show that X is SNP.

Proposition 3.1 If G is a graph with n vertices and its complement G is bipartite, then
Xc(x1, ..., x¢) is SNP and its Newton polytope is P)EIEZ;)'

Proof Since G is a union of two cliques and edges between the cliques, G is claw-free,
and so is nice via Proposition 2.9. The partitions 2/ 1"~ appearing in the monomial
expansion in (3.1) are totally ordered by dominance, so there is a unique maximal A
such that ¢, # 0, and this is exactly A(G). Since G is nice, the support of X is the
same as the support of s (), which by Theorem 2.1 is 77{2;). O

Example 3.2 Consider the co-bipartite graph G with vertices {1, 2} U {3, 4} and edges

{(1,2), (3,4), (2, 3)}. Its chromatic symmetric function is Xg = 24m 111 + 6mo211 +

2my, and Newton(X g ) (X1, X2, X3, X4)) = PS).

4 Chromatic symmetric functions of Dyck paths

Recall that any graph can be colored with a greedy coloring relative to a fixed ordering
on the vertices. Given a Dyck path d, let A8'(d) be the weight wt(gr) of the greedy
coloring on the indifference graph G(d).

Theorem 4.1 Let d be a Dyck path. Then X q)(x1, ..., xi) is SNP and its Newton
polytope is Pg;r) )"

Example 4.2 For the Dyck path d = nnneenneee in Fig. 1, we have that A2"(d) =
(2,2,1), XG@) = 120my1111 + 24ma111 + 4mooy = 36511111 + 1652111 + 45221, and
Newton(X () (x1, ..., xx)) = Pé?l (see Fig.2).

Corollary 4.3 Let d be a Dyck path. Then supp(XG)(x1, . .., xx)) is M-convex.

Proof The result follows by Theorem 4.1 and the fact that the support of a homoge-
neous polynomial p with nonnegative coefficients is M-convex if and only if p is SNP
and its Newton polytope is a generalized permutahedron. O
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(0,2,2,1)

(1,2,2) (2,1,2)

(2,2,1)

Fig. 2 The Newton polytopes of X (g)(x1, X2, x3) and X q)(x1, X2, X3, x4) for d = nnneenneee are

the permutahedra 732)1 and PS)I , respectively

Proof of Theorem 4.1 Since G(d) is claw-free, Proposition 2.9 asserts that G(d) is
nice. This means that if a partition A is in supp(Xg(q)), then

supp(sy (x1, ..., X)) = P,{k) C supp(XGa) (X1, - . -, X)).

In particular 77(];)( 4 C supp(XG @) (X1, - .., xx)). By Lemma 4.11 below, the reverse
inclusion holds and the result follows. O

Remark 4.4 In [44,Proposition 2.5 I11], Monical-Tokcan—Yong generalize the strategy
we use here as a general lemma to give a criterion for a symmetric function to be SNP
and have a Newton polytope which is a permutahedron.

4.1 Greedy coloring on Dyck paths

For an indifference graph G(d) on [n], we can describe the greedy coloring algorithm
using the Dyck path d.

Definition 4.5 (Bounce path coloring) Let G (d) be the indifference graph of a Dyck
path d, and let /4 be the associated Hessenberg function. The bounce path coloring of
G(d) is defined as follows. For each color i in order, select the vertices which will be
colored i by the following procedure: Start at the first uncolored vertex j, and color it
i. Set j to the first uncolored vertex greater than %,(j), color it i, and repeat until the
end of the graph is reached.

Proposition 4.6 Ler G(d) be the indifference graph of a Dyck path d. Then the bounce
path coloring is the greedy coloring of G(d).

Proof In a greedy coloring, the set of vertices colored 1 can be found by iteratively
building a list, starting with the first vertex, and adding any vertex that is not adjacent
to any vertex in the list. Not considering any of the vertices on this list, we can repeat
the process to find the vertices colored 2, and so on. In an indifference graph G(d),
the process can be simplified: if the list of vertices for color i during the iteration is
S; = {v1, ..., vk}, then a later vertex v is not adjacent to any v; if and only if v is not
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4 2
¥ ¥

Fig.3 Description of bounce path algorithm to determine the greedy coloring weight (2, 2, 1)

adjacent to vg. The latter is true if and only if 44(vi) < v. Thus, the final list S; is
determined by the bounce path coloring construction. O

Remark 4.7 For a vertex j, the vertex h,4(j) is the next vertex hit by a bounce path on
d starting at j. Thus, the greedy coloring defined above can be viewed in the Dyck
path d as follows. Starting at the bottom left corner of d, do a bounce path and color
the vertices the path visits (when it bounces off the diagonal) with color 1. Then, start
another bounce path before the first uncolored vertex. If the path visits a colored vertex
on the diagonal, then the path follows the diagonal until it bounces off before the next
uncolored vertex. Color the vertices visited when the path bounces off the diagonal
with color 2, and so on.

Note that A£"(d) is the number of bounce points of the bounce path of d, excluding
(n, n).

Remark 4.8 In the process of determining the closure order on nilpotent orbits in type
A, Gerstenhaber gave an algorithm to determine A2"(d) [28]. We point to [23, Section
6] for a modern description of the algorithm and further properties of A" (d).

Proposition 4.9 The greedy coloring weight A& (d) is a partition; i.e. it is a sorted
weight vector.

Proof Consider the bounce points of each color’s bounce paths. Since the bounce path
for color i starts before the bounce path for color i + 1, the first bounce point for color
i is before the first bounce point for color i + 1, and so the second bounce point for
color i is before the second bounce point for color i + 1, and so on. Thus the total
number of bounce points for color i is at least the total number of bounce points for
color i 4 1, and therefore A8"(d); > A8 (d);+1. O

Example 4.10 Continuing with Example 4.2, the bounce path greedy coloring of G (d)
for d = nnneenneee is illustrated in Fig. 3. The greedy coloring weight is A8 (d) =
(2,2, 1).

4.2 Greedy coloring gives dominating partition

In this section, we show that the greedy coloring weight dominates the weight of any
other coloring.
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Lemma4.11 Given a Dyck path d, let XGa) = Y, cfm,\. Ifcf % 0 for some A, then
A < A& (d) in dominance order.

Remark 4.12 While preparing the current paper, the authors learned that this result,
and a similar proof, were also known to Tim Chow in an unpublished note [19] (where
he calls the greedy coloring the first-fit coloring).

Proofof Lemma 4.11 For each k in [n], it suffices to show that

k k
A8(d); = i 4.1
; (@) fr;ggﬁgwt(f) @1

We say a proper coloring f is k-maximal if Zle wt(f); is maximal among all
proper colorings. Our strategy is as follows: we fix k in [n] and show by induction on
j = 0 that for all j in [n] there exists a k-maximal coloring f such that

(*) f(@@) = gr(@) for all vertices i in [j] such that £ (i) is in [k].

Equation (4.1) then follows from (*) since when j = n, we see that the greedy coloring
must also be k-maximal. Since this holds for all k in [r], the greedy coloring is maximal
in dominance order.

The base case j = 0 is true since k-maximal colorings exist and condition (*) is
vacuously true. Next, suppose that we have a k-maximal coloring f which satisfies
condition (*) for some j > 0.

Consider the vertex j + 1. If f(j + 1) is notin [k]or f(j + 1) = gr(j + 1), then
f also satisfies (*) for j + 1, so we are done.

Otherwise if f(j + 1) isin [k] and f(j + 1) # gr(j + 1), we claim that gr(j + 1)
is also in [£]. To see this, it is enough to show that

g+ < fG+D.

This inequality holds because the greedy coloring will assign the first available color
to the vertex j + 1, and since gr agrees with f on the first j vertices, the first available
color gr(j + 1) isat most f(j + 1).

Letc = gr(j + 1) andd = f(j + 1). We will create a new k-maximal coloring f’
such that condition (¥) is satisfied for j + 1, by swapping the colors c and d in f after
position j.

Concretely, let f be given by

c ifi>j+1,f(i)=d
fiy=43d ifiz=j+1,fi)=c
f(@i) otherwise.
Note that f” is still k-maximal because we swapped one color in [k] for another.
Since f/(j +1) = gr(j + 1) and f'(i) = f(i) = gr(i) for i in [j], it follows that f’

satisfies condition (*) for j 4 1. Thus it remains to show that f’ is proper.
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Only the colors ¢ and d have changed from f to f’, so let v be a vertex prior to
J + 1 which is colored either cord in f’. Since f(j +1) =d and gr(j + 1) = ¢, and
both of those colorings are proper, the value of the associated Hessenberg function
ha(v) < j + 1. This means v is not adjacent to any vertex v after j + 1, and so both
f~Y(c) and f'~1(d) are still independent sets, as desired. O

As a corollary we obtain a similar result as Lemma 4.11 in the Schur basis.

Corollary 4.13 Given a Dyck path d, let XG@) = ), f)flsk. Ifflf = 0 for some u,
then < A8 (d).

Proof Since X (q) is s-positive, if ff > 0 for some A then the coefficient cf\l in the
monomial basis is also positive, and the result follows by Lemma 4.11. O

Lastly, given any partition we can find a Dyck path whose chromatic symmetric
function X4 has as Newton polytope the permutahedron associated to A.

Proposition 4.14 Given a partition A, the chromatic symmetric function X (X1, . . ., Xk)

for the Dyck path d = n*1e* ... n*metn where m = Ay has Newton polytope P)Ek).

Proof The graph G(d) consists of m cliques of sizes A} through A, . The greedy

coloring will color the ith clique with the colors {1, .. ., A; }. In this coloring, the color
jisused #{i | A} > j} = A; times, thus A#'(d) = A. The result then follows by
Theorem 4.1. O

5 Chromatic symmetric functions of (3 + 1)-free posets
5.1 Structure of (3 + 1)-free posets

The structure, enumeration, and asymptotics of (3 + 1)-free posets were studied by
Lewis—Zhang [41] for the labeled case and Guay-Paquet—Morales—Rowland [30] and
Guay-Paquet [29] for the unlabeled case. We will use results from the unlabeled case
using the notation in [29].

A part listing is an ordered list L of parts that are arranged on nonnegative integer
levels. Each part is either a vertex at a given level or a bicolored graph with color
classes arranged as vertices on consecutive levels. We can view a part listing as a word
in the alphabet

Y={v; |i>0}U{b;i;+1(H)|i >0, H bicolored graph},

where v; represents a vertex on level i, and b; ;1 (H) represents a graph H on levels
iandi + 1 (see Fig.4a).

Given a part listing L, we associate a poset P on the vertices of L as follows. Given
vertices x and y, we have that x < y if

(1) x and y are, respectively, at levels i and j with j —i > 2,
(i1) x is one level below y and the part containing x appears before the part containing
yinL,
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(ii1) x is one level below y and they are joined by an edge of a bicolored graph H.

Example 5.1 The part listing L in Fig.4a is given by the word voviv2vav0bo,1(H)
where H is the bicolored graph with edges {(h, d), (i, d), (i, e)}. The associated nine
element poset P is given in Fig.4b.

Theorem 5.2 [29, Propositions 2.4, 2.5]

(i) Given a (3 + 1)-free poset P, there exists a part listing L whose associated poset
is P.
(ii) Given a part listing L, the associated poset P is (3 4 1)-free.

Moreover, if the part listings L in (i) and (ii) have no parts b; ;11 (H), then the asso-
ciated poset P is (3 4+ 1)- and (2 + 2)-free (i.e. a unit interval order).

Several part listings can correspond to the same (3 + 1)-free poset. For instance,
in Example 5.1 the same poset as for the part listing L can be obtained from the
part listing L’ = by 2(H)vovjvav2v9. There are certain commutation and circulation
relations on the words in X of listings that yield the same poset (see [30, Sect. 3.3]
and [29, Sect. 2]).

From Guay-Paquet et al. [30, Proposition 3.11], we can pick a unique part listing
representative of a (3 + 1)-free poset that we call a canonical part listing. Moreover,
by Guay-Paquet et al. [30, Remark 3.2], such a canonical part listing corresponds to a
(3+1)-and (2+2)-free poset if and only if the canonical part listing has no occurrences
of b; ;4+1(H). We summarize the characterization of canonical part listings of (3 + 1)-
and (2 + 2)-free posets in the following result implicit in [30].2

Theorem 5.3 [30, Remark 3.2, Proposition 3.11] A part listing v, - - - Vg, of an n-

element (3 4 1)- and (2 + 2)-free poset P is the canonical part listing if and only if
ai=0andaj41 <aj+1fori=1,...,n— 1.

Remark 5.4 In [30, Sects. 2, 3] the canonical part listing is defined as the lexico-
graphically maximal element of a subset of words in the alphabet X that is called the
trace of the dependence graph, coming from the theory of trace monoids (see [21,
Sect. 2.3]).3 The authors in [27, Sect. 6] obtain the canonical part listing as charac-
terized in Theorem 5.3 using a well-chosen order on the entire set of words in the
alphabet X, circumventing the use of trace monoids. In what follows we use only the
characterization in Theorem 5.3.

Remark 5.5 Note that the set of tuples of integers a = (ay, ..., a,) satisfying a; = 0
and 0 < ag;41 < a; + 1 is a classical interpretation for the Catalan numbers [58,
Exercise 2.80]. Such tuples have the following bijection with Dyck paths: a encodes
the area sequence of a Dyck path d’, or alternatively a — d’ where d’ is the Dyck
path obtained by replacing each a; by a north step n and a; — a; 41 + 1 east steps e
[58, Solution 3.80].

2 In [30] the authors use the letter ¢; corresponding to clones that correspond to consecutive copies of the
letter v; in the part listing.

3A previous version of the current paper incorrectly restated the definition of the canonical part listing
from Guay-Paquet et al. [30].
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5.2 Guay-Paquet’s reduction from (3 + 1)-free posets to unit interval orders

In this section, given a part listing L of a (3 + 1)-free poset P = P(L), we write
X(L) :=XgG(p)- ‘
Forleveli =0,1,...and j =0,1,...,s,let UJ(.') be the part listing
@) . s=J . J
Uu;”:

=V ViV

Forleveli =0,1,...and j =0, 1,...,r,let D;i) be the part listing

D;l) =vjv v .
If the context is clear, we omit the level i and denote these part listings by U; and D
respectively.

Given a bicolored graph H with r lower vertices, s upper vertices, and j =
0,...,min(r, s), let g; be the probability that A and a uniformly random match-
ing M with min(r, s) edges between the lower and upper vertices have j edges in
common.

Theorem 5.6 [29, Proposition 4.1 (iv)] Let L be the part listing of a (3 + 1)-free poset
containing a bicolored graph b; j+1(H) with r vertices on level i and s vertices on
level i + 1. Then

min(r,s)

X(L)= Y qiX(L,
=0

where L is the part listing obtained from L by replacing b; ;+1(H) with U; if r > s
and with D; if r < s, and q; is the probability defined above.

Remark 5.7 The probabilities ¢; have an interpretation in terms of rook theory. Given
such abicolored graph H with vertex set {1, ..., r}U{r+1, ..., r+s},its complement
G=Hisa co-bipartite graph corresponding to a board B C [r] x [s] (see Sect. 2.5).
Then g; = hj(B)/|r — s|! where h;(B) is the jth hit number of B, which counts
the number of placements of min(r, s) non-attacking rooks on the rectangular board
[r] x [s] with j rooks in B.

5.3 Main result for (3 + 1)-free posets

First, we define the greedy weight for colorings of an incomparability graph of a
(3 4 1)-free poset. Given a (3 + 1)-free poset P, the weight A8"(P) is defined as
follows. For a part listing L for P:

(i) apply Theorem 5.6 to every bicolored graph b; ;41 (H) in the part listing,
(i) for each b; ;41 (H), find the largest j such that g; # 0 and replace L by L.
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At the end, we obtain a part listing L with no bipartite graphs and thus representing a
(3 + 1)- and (2 + 2)-free poset (i.e. a unit interval order). By Theorem 5.3, there is a
lex-maximal part listing " for that poset satisfying the property a; = 0,a;11 < a; +1.
Using the greedy coloring in the incomparability graph, which is an indifference graph
for some Dyck path d, we obtain the weight A2"(P) := A%"(d) (see Sect.7.1).

Theorem 5.8 Let G(P) be an incomparability graph of a (3 + 1)-free poset. Then
Xgp)(x1, ..., xx) is SNP, and its Newton polytope is P/{];r)(},). In particular, \#"(P)
dominates the weight of any coloring of G(P).

In order to prove Theorem 5.8, we need the following lemma.

Lemma 5.9 Suppose that A and B are part listings, and fix r, s positive numbers.
Let 0 < j < k < s, and suppose that we have posets given by part listings as
follows:

Pj:=Ab;;11(Uj)B and Py := Ab; ;+1(Uy)B.

Then if k is a weight of a coloring of G(Pj), there is also a coloring of G(Py) with
weight k. The same result holds if we replace U; with D;.

Proof It suffices to take B to be empty by the circulation relation of [29, Sect. 2.2].
Also, it suffices to take k = j + 1. The part listings for U; and U; 4 are

—Jrai s—j=1r j+l
viv, and v, vivy

;
respectively. Therefore, the poset for Ab; ;11(U;41) is the poset for Ab; ;11(U;)
together with r additional covering relations coming from moving a v; 4 after all
of the v;s. Therefore, any coloring of G(Ab; ;+1(U;)) has a corresponding coloring
of G(Ab; ;1+1(Uj41)) with the same weight, since adding relations to a poset deletes
edges from the incomparability graph, which never makes a proper coloring improper.
Therefore, G(P;41) has a coloring of weight «. The proof for the case where Uy is
replaced with Dy is the same. O

Proof of Theorem 5.8 Let L be a part listing for P := P (L) and recall that for part
listings F we define X (F) := X¢(p(F)). The proof is by induction on the number
of bicolored graphs in L. If there are none, then P is also (2 4 2)-free (i.e. a unit
interval order) and thus the graph G (P) is an indifference graph of a Dyck path (see
Remark 2.2 and Conjecture 7.1). The result then follows in this case by Lemma 4.11. If
L = Ab; ;+1(H)B has atleast one bicolored graph, then X (L) is aconvex combination

X(L)=Y ¢;X(AU;B) or X(L)=Y q;X(AD;B).
j j

W Birkhauser

Journal: 29 Article No.: 0928 [ | TYPESET [__|DISK [__]LE [__]CP Disp.:2024/3/28 Pages: 35 Layout: Small-Ex




578

579

580

582

583

584

585

586

587

588

589

590

592

593

594

595

596

The Newton polytope and Lorentzian property of chromatic... Page 190f35  _####_

2 a b a b
{ 4 — c
0 —e . N Por(H)
f b f g
L P
(a) (B)

Fig.4 A A part listing L and B its corresponding (3 + 1)-free poset P

We proceed with the first case and the argument for the second case is the same. Let
J' be the largest j such that ¢ is nonzero. The support of X (L) is the union

./

J
suppX (L) (x1, ..., xx) = U suppX (AU; B)(xy, ..., Xi).
j=0

By Lemma 5.9,
suppX(AU; B)(x1, ..., xk) C suppX (AU B)(x1, ..., Xk),
SO

suppX (L)(xy, ..., xx) = suppX (AU B)(xy, ..., xp).

By the inductive hypothesis, the support of X(AU; B)(x1, ..., xt) is PS;)(AU,/B),
J

which is P,/ ) by definition.

]

Example 5.10 The part listing L = vovivavvobo1 (H) in Fig.4a has X (L) =

362880m 19 + 90720m2,7 + 23040m.2,5 + 6048m,3 13 + 1728ma4

+ 1440}7’!316 + 384m3214 + 112m32212 + 48m323.

The part listings Lo, L1, and L, in Fig.5 have chromatic symmetric functions

X (Lo) = 362880m 9 + 75600m,,7 + 14880m425 + 2664my3,3 + 384m,4,

+ 1440”’[316 + 2407713214 + 32m32212,

X(L1) = 362880my9 + 85680m,,5 + 20160m,25 + 4752mys 13 + 1152m44

+ 1440m316 + 336m3214 + 80m32212 + 24m323,

X (Ly) = 362880m,9 + 95760my,7 + 25920m,2;5 + 7344mys s + 2304m4

+ 14407"’1316 + 432”’[3214 + 144m32212 + 72m323.
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2

1 e~a— P —  ——

0 | | 7] -
Uo Ul U‘Z

Fig.5 The part listings Lg, L1, and L7 in the convex combination of X (L). The dominant coloring k7 of
X (L7) dominates the respective dominant colorings kq and «1 of X (Lq) and X(L1)

Next we apply Theorem 5.6. For the bicolored graph H we have the probabilities
q0 =0, q1 = g2 = 1/2, thus

1 1
X(L) =0 X(Lo) + S X(L1) + 5 X(L2).

The part listings L, L1, and L, correspond to (3+1)- and (2+2)-free posets. Their
respective lex-maximal listings and Hessenberg functions (obtained by inspection, see
Conjecture 7.1) are:

Lex-maximal listing Hessenberg function
Lo 0,1,2,2,0,1,1,0,0) 4,5,7,7,7,9,9,9,9)
Ly 0,1,2,2,0,1,0,0, 1) (4,5,6,6,7,9,9,9,9
Ly 0,1,2,2,0,0,0, 1, 1) (4,5,5,5,7,9,9,9,9)

If we perform the greedy algorithm on the incomparability graphs, we obtain the
partitions 32, 211, 3222, and 3222 respectively. Then, by Theorem 5.8, we have that

k
Newton(Xg(py(x1s - -, X)) = Py

6 Stability and the Lorentzian property of X q4)
6.1 Main conjectures for all Dyck paths

Our main results (Proposition 3.1 and Theorems 4.1 and 5.8) establish that the supports
of certain classes of polynomials are M-convex. The property of M-convexity is often
a shadow of a more general property, that of being a Lorentzian polynomial.

Lorentzian polynomials were recently introduced by Brindén and Huh [13] as a
bridge between discrete convex analysis and concavity properties in combinatorics.
Many families of polynomials appearing in algebraic combinatorics are known or
conjectured to be Lorentzian: for example (normalized) Schur polynomials, and a
variety of other Schur-like polynomials [38].

Definition 6.1 A homogeneous polynomial f € R[xy, ..., x;] of degree n with non-
negative coefficients is called Lorentzian if the following two conditions are satisfied:

e supp(f) is M-convex, and

W Birkhauser
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d 1 d2 d3

Fig. 6 Dyck paths d{, dj, dj corresponding to the lex-maximal listings Ly, Ly, L3 from Example 5.10
and their corresponding Dyck paths dy, da, d3 associated to the incomparability graphs. The conjectured
correspondence between these Dyck paths agrees with the { map

e foralliy,is,...,i,—2 € [k], the associated quadratic form of the quadratic poly-
nomial
0 0
Bxi, e axin_z (f)

has at most one positive eigenvalue. That is, the Hessian of the quadratic polyno-
mial has at most one positive eigenvalue.

Note that both conditions in Definition 6.1 are “easy” to check and in particular only
require a finite number of checks. An important application of Lorentzian polynomials
is that their coefficients form a type of log-concave sequence (and are further log-
concave as functions on the positive orthant RX ).

Given a vector  in N¥, let ! := oy ! - - - g ).

Proposition 6.2 [13, Theorem 2.30; Proposition 4.4] Let f = . A ceX* be a

Lorentzian polynomial. Then f exhibits the following two types of log-concavity phe-
nomena:

o (Continuous) The polynomial f is either identically zero or its logarithm is concave
on the positive orthant RI;O.
o (Discrete) The coefficients of f satisfy:

2.2
(@hcy 2 (a+e — Ej)!(O{ —e + ej)! “Catej—ejCa—eite;

foralli, jin[k]and all o« in A7,

) Birkhauser
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and thus
€3 > Cate—ejCa—e;+e; foralli, jin[k]andallin A}

We used SageMath [60] to check the conditions in Definition 6.1, and verified the
following conjecture for all Dyck paths of length n < 7, with k < 8 variables.

Conjecture 6.3 Let d be a Dyck path. Then X ), restricted to any finite number of
variables, is Lorentzian.

Theorem 1.5 verifies this conjecture for abelian Dyck paths. Graph colorings have
many other interesting log-concavity properties like the following result of Huh on
chromatic polynomials of graphs.

Theorem 6.4 [37] Let xG(q) = ang" — an—19""" + - - + (=1)"ag be the chromatic
polynomial of a graph G. Then, the sequence ay, . . ., a, is log-concave.

We now strengthen Conjecture 6.3 to the class of stable polynomials, which are a
multivariate version of real-rooted polynomials. A polynomial f € R[x, ..., x¢] is
stable if it has no roots in the product of k£ open upper half-planes. We point to Wagner
[62] for a survey on stable polynomials, as well as to the papers [11, 12] by Borcea
and Brindén for more theory on stable polynomials.

We note that the class of Lorentzian polynomials agrees with the class of homo-
geneous stable polynomials for quadratic polynomials, but is larger for other degrees.
For example, (normalized) Schur polynomials are Lorentzian but not stable in general
[38, Example 9].

Unfortunately, checking stability is harder than checking the Lorentzian property.
In particular, one can check that a polynomial is stable by checking that an infinite
number of certain univariate specializations are real-rooted [62, Lemma 2.3]. Using
SageMath [60], we probed a random assortment of such univariate specializations to
make the following conjecture.

Conjecture 6.5 Let d be a Dyck path. Then X (4), restricted to any finite number of
variables, is stable.

Example 6.6 Forthe Dyck pathd = nneneene, wehave thatA®'(d) = (3, 1), Xg@) =
24my111 + 8maiy 4 2moyp + m31, and Newton(X ) (x1, ..., xk)) = 733(),;). One can
check that X4 is Lorentzian and see Fig.7 for a diagram of its Newton polytope
with coefficients exhibiting log-concavity in root directions.

We conclude this subsection with an example showing that incomparability graphs
of (3 + 1)-free posets are not Lorentzian, and thus not stable.

Example 6.7 1Let G = C4 be the 4-cycle, which is co-bipartite. Note that G is
the incomparability graph of the (2 + 2)-poset, which is (3 4 1)-free. It has chro-
matic symmetric function X¢, = 24my11 + 4m211 + 2mo>. The polynomial f =
Xc,(x1, ..., x5)1is M-convex but is not Lorentzian since the quadratic form associated
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Fig.7 The Newton polytope 1 1
3

7’§|) of XG(a)(x1, x2, x3), for

d = nneneene, with the

coefficient of each lattice point

in red
1
a a . .
to — o — f, which has matrix
0x1  dxp
0 8 8 8 8
&8 0 8 8 8
A=18 8 8 24 241,
8 8 24 8 24
8 8 24 24 8

with characteristic polynomial (x + 8)(x + 16)%(x? — 64x + 64), has two positive
eigenvalues.

6.2 Lorentzian property for abelian Dyck paths

In this section we verify Conjecture 6.3 for abelian Dyck paths, i.e. paths whose
indifference graphs G (d) are co-bipartite.

Theorem 6.8 Let d be an abelian Dyck path. Then X (q) is Lorentzian.

Proof Let d be an abelian path of size n = n| 4+ ny whose co-bipartite indifference
graph G(d) has vertex set {1,...,n1}U{n; + 1,...,n1 + ny} and is encoded by a
Ferrers boards B, C [n1] x [n2] of partitions ;& = (w1, ..., i¢). By (3.1) we have
that

XG(d):Zi!~(n—2i)!'ri'm2i1:172i, (61)
i

where r; = r;(B,,) is the number of placements of i non-attacking rooks in B,.

By Corollary 4.3 we know that X 4) is M-convex. By Definition 6.1, showing that
the symmetric polynomial X Gq)(x1, ..., xx) is Lorentzian amounts to checking that
for each partition @ = («y, ..., ;) of n — 2, the k x k matrix Hy = ((« + e, + ¢e;)! -
Ca+er+es)lr{,s:1 has at most one positive eigenvalue, where ¢, is the coefficient of x*
in XGa).

By (6.1), the support of XG()(x1, ..., x;) isin {0, 1, Z}k C NF. Thus, for k > n
variables, we only have to consider the matrices H,, of the partition

o = (2i—1’ 1n—2i’ Ok—n+i+1)’ (62)

) Birkhauser
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T —a e —a —b —b —b
—(z+a) z+a
0 a : 0 ’
. —(z+a) z+a
’ b =b =b - b T —0 —c —c
a 0 5 - —(z—b+¢c) z—b+ec 0
b 0 : 0
P b —(z—b+c¢) r—b+c
\ [l | Il ‘
n—2i k—n+i+1 p+1 q+1

(A) (B)

Fig. 8 A The block matrix Mpq4(a, b, c¢) and B the block matrix Np,q(x; a, b, c) obtained from xI —
Mp.q(a, b, c) by doing certain row operations

for i > 1. The matrix H, has the form

0l 0
Hy = (0 H > Hy = My—2i—1 k—=n+i (@, by ©)
o
i—1 k—i+1
a=2"" G4+ D (m—2i —2)! 1y
where b =2'-il- (n —2i)! - r;
c=2" (i =D (=20 +2)! i,

and M, ,4(a, b, ¢) is the block matrix in Fig. 8a.
The characteristic polynomial of H}, is given, via Proposition 6.9, by

det(x] — H.)) = (x +a)" 271 . (x — b + o) " H.
(xz—((n—Zi— Da+b+ (k—n+i)c)x
=2k —n+it DB+ (n—2i — 1)a(b+(k—n+i)c)).
(6.3)

So Xg(q) is Lorentzian if and only if the polynomial in (6.3) always has at most
one positive root. This fact is implied by the following inequalities:

b—c <0, (6.4)
— =20y k—n+i+ Db+ n—2i—Dab+ k—n+i)c)<0, (6.5)

where (6.4) comes from a root of the polynomial and (6.5) follows from the quadratic
formula. These two inequalities are verified in Propositions 6.10 and 6.12 below. O

The next result gives a formula for the characteristic polynomials of block matrices

like Ho’(. For indeterminates a, b, ¢ and nonnegative integers p, g > Olet M, ,(a, b, ¢)
be the block matrix in Fig. 8a.
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Proposition 6.9 For indeterminates a, b, c and nonnegative integers p,q > 0, the

matrix My, 4(a, b, ¢) has characteristic polynomial

det(x] — M, 4(a,b,c)) = (x+a)’(x —b+ )9 x> —x(pa+b+ qc)

—(p + 1)(g + Db* + pa(b + qc)).

Proof We subtract the first row of xI — M, 4(a, b, ¢) from rows 2 to p + 1 and we
subtract row p + 2 fromrows p + 3 to p + g + 2 to obtain the matrix Np 4 (x; a, b, ¢)
in Fig. 8b. The determinant remains unchanged. Next, we partition the matrix into the
same blocks as in the figure and use the Schur complement (see [65, Sect. 0.3]) to

calculate the determinant. Hence

det(x! — M, 4(a,b,c)) =detN, ,(x;a,b,c)

= det (%) = det(A) - det(D — CA~'B), (6.6)

where
1---1
1)b?
ca-lp = LD ., D—CA"'B

X — pa 0

f 8 8
—(x—b+c) x—b+c

: 0 .. 0
—(x—=b+o) x—b+c

for f =x—b—(p+ 1)b?/(x — pa) and g = —c — (p + 1)b*/(x — pa). By doing
a cofactor expansion, say on the first tow of A and D — C A~ B, one readily obtains

that

det(A) = (x +a)? - (x — pa),
det(D—CA™'B) = (x —b+)I(f + qg)
_(x=b+o)

X — pa

<x2 —x(pa+b+qc) — (p+ (g + Db+ palb + qc)) .

Using these two formulas in (6.6) gives the desired result.

O

The rest of this section is devoted to verifying (6.4) and (6.5). The next result shows

(6.4), which is true for all co-bipartite graphs.
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Proposition 6.10 Let G be a co-bipartite graph with vertex set {1,...,n1} U {ny +
1,...,n1 4+ ny}. Then (6.4) holds for all i; that is, fori > 1 we have

2.0l (ny 42 —20) - ri(B) < (i — !~ (ny + 12 —2i +2)! - ri_1(B),

where B C [n1] x [ny] is the board associated to G.

Proof For convenience, we substitute j = i — 1. There are (j+1)-r;1 (B) placements
of j + 1 non-attacking rooks in B with a distinguished rook. An overcount of this
quantity is the number of pairs (p, ¢), where p is a placement of j non-attacking rooks
in Band cisacellin [n1] X [n2] in a different row and column than the j rooks. Thus
we have

G+ D-rjp1(B) = (ni — j)nz — j) -rj(B). (6.7)

Without loss of generality, assume n; < ny. Then ny +np —2j > 2(n; — j). The
desired inequality is trivially trueif j+1 > njor j+1 > nj,since thenr;(B) = 0.
So, we can assume j + 1 < ny < np. Thus, ny +ny —2j — 1 > np — j. Thus we
have that

2y — )(ny — j)-rj(B) < (n1 +n2 —=2j)(ny +n2—2j—1)-rj(B).
Combining this inequality with (6.7), we obtain
2-(j+ 1) -rjp1(B) < (ny +n2—=2j)(ny +ny—2j—1)-rj(B),

which is equivalent to the desired result. O

We now verify (6.5), which is true for Ferrers boards but not necessarily all boards
(see Examples 6.7, 6.13). We need the following lemma that follows from a result of
Haglund—Ono—Wagner [31] about the ultra log-concavity of hit numbers of Ferrers
boards. Note that ultra log-concavity of rook numbers, which holds for all boards (see
[31, 33]), is not sufficient to ensure (6.5) (see Example 6.13).

Lemma 6.11 Suppose u = (1, ..., pne) is a partition. Then for i > 1, the rook
numbers r; = r;(B,) satisfy

1 1 1
rt > (1 + T) (1 + —> (1 + > Fio1Tig]. (6.8)
i l—i n1 — i

Proof The hit polynomial of a Ferrers board B, C [N] x [N] is given by

N
T ) =) (N=Dri(By) - (x = 1),

i=0

where N must be big enough to contain p. Assume without loss of generality that
u1 > £, and take N = pu;.
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Haglund—Ono—Wagner [31, Theorem 1] showed that 7' (x; ) is real-rooted, so this
is also true for T (x + 1; ). Furthermore, the degree of T (x + 1; w) is at most £, since
no more than £ rooks can be placed on u. Newton’s inequality (see, e.g., [36, p. 52])
tells us that the coefficients of this polynomial are ultra log-concave. This means that

the sequence

(g —1)!

is log-concave. That is,

i€ —i)- (=D rf =+ D =i+ Dy =i+ DMy =i =D rimg - rign,

which is equivalent to the desired result.

We are now ready to verify (6.5).

Proposition 6.12 Equation (6.5) holds.

m}

Proof G(d) is encoded by a partition © = (@1, ..., i¢) inside [n1] x [n2], with
deg(XG@)) = n = n1 + np. Assume without loss of generality that £ > £. By

Lemma 6.11 the following inequality is true

1 1 1
rt > (1 + T) (1 + ) <l + > Fi1Tig1-
i l—i w1 — i

Usingi <€ < pu1 and £ + uy < n gives

5 1 2 1
ry > 1+lf 1+n—2i 1+n—2i Ti—1Ti41,

which is equivalent to

(n =2)b> > (n —2i — Dac.

(6.9)

(6.10)

6.11)

Multiplying both sides of this inequality by k —n +i 4+ 1 > 0 and using (6.4) gives

the desired result.

]

Example 6.13 Continuing with Example 6.7, the 4-cycle Cy4 is a co-bipartite graph
associated to the diagonal board B = {(1, 1), (2,2)} C [2] x [2]. For this board we

have that ro = 1,71 =2,and r, = 1, so fori = 1 we have

3

—-1-1.

1 2 1
4:r12<<1+7)(1+ _><1+ ,>r,~_1r,~+1:2-2-
i n—2i n—2i 2

Thus (6.10) does not hold. And for k > 4 variables, neither do (6.11) or (6.5).
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d d

-

P
° ) e—e— o —

1 2 3

Fig.9 There are two Dyck paths associated to a unit interval order P: one is the path d whose indifference
graph is the incomparability graph of P, and the other one is the path d’ associated to the lex-maximal
listing tuple a. Conjecture 7.1 states that d = ¢(d’) as illustrated in this example

7 Further examples and conjectures
7.1 Relation with the { map from diagonal harmonics

We have two Dyck paths associated to a (3+1)- and (2+2)-free poset (i.e. aunit interval
order) P of size n: P corresponds to an incomparability graph G (d) of a Dyck path d
and to a lex-maximal part listing v, - - - v, Of an area sequence a = (ay, ..., a,) of
a Dyck path d’ by Theorem 5.3 and Remark 5.5. Using FindStat [50, link], it appears
that these Dyck paths are related by Haglund’s well-known ¢ map from diagonal
harmonics (e.g. see [34, Theorem 3.15]). See [23, Remark 6.6] for a similar statement
in terms of ad-nilpotent ideals.

Conjecture 7.1 # Let P be a unit interval order corresponding to an incomparability
graph G(d) and a lex-maximal part listing encoded by a tuple a = (ay, ..., a,). Ifd’
is the Dyck path with area sequence a, then

d=1¢d).

Example 7.2 The unit interval order P associated to the Dyck path d = nneennee
in Fig. 1 corresponds to the lex-maximal listing vovgvjvivivg. The associated tuple
a=(0,0,1,1,0) is the area sequence of the Dyck path d’ = nenneneene. One can
check that d = ¢(d"), as illustrated in Fig.9. For a larger example, see Fig. 6.

4 This conjecture has been proved independently by Gélinas—Segovia—Thomas [27] and by Fang [22].
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7.2 Chromatic symmetric functions with reflexive Newton polytopes

An important property in the Ehrhart theory of lattice polytopes, i.e. polytopes with
integral vertices, is that of a polytope being reflexive [14]. A lattice polytope Q with
0 in its interior is reflexive if its polar (dual) Q* is a lattice polytope (see, e.g., [9,
Sect. 4.4]). In [8, Theorem 34] the authors characterized when a permutahedron P)Ek)
is reflexive. In Sect.4 we showed that for a Dyck path d, the Newton polytope of
XG@a)(x1, ..., xx) is the permutahedron Pi’g ) It would be interesting to use their
characterization of reflexive permutahedra to find all Dyck paths d for which the
Newton polytope of X qa)(x1, ..., xi) is reflexive.

7.3 Unimodality of colorings

Although we have not been able to show Conjecture 6.3 for arbitrary indifference
graphs, which by Proposition 6.2 would imply log-concavity of the coefficients, the
following weaker result follows from Gasharov’s s-positivity of X ) [26].

d

Ve

Proposition 7.3 For a Dyck path d with XG@ay =Y, cil -m;, if u = v then cﬁ <c

Proof Gasharov proved that X g(p)(X) is s-positive [26], thus

X6 = folsx,
by

where ffl € N. Every Schur function has a monomial expansion of the form s) =
Zu K; um . In this expansion, if i > v, then we have the inequality K, < K3, of
Kostka numbers (see [42, Example 9 (b) SS1.7] or [63]). Thus if i > v then

d _ d d _d
Cu _ka Kku = Zf)“ K =Cy,
x X
as desired. O

7.4 SNP property of chromatic symmetric functions

We show in Theorem 5.8 that (3 + 1)-free incomparability graphs have permutahedral
support, so they are all M-convex and have the SNP property.

Remark 7.4 This result does not hold for analogous graphs which are not incompara-
bility graphs of posets. If G is an incomparability graph of a poset P, it is claw-free if
and only if P is (3 + 1)-free. But there are claw-free graphs for which the chromatic
symmetric function does not even have M-convex support (see Example 7.5).

Example 7.5 Let G be the claw-free graph with six vertices in Fig. 10a. Note that (when
expanded in 6 variables) X = 162sj6 + 725514 + 1255212 + 6553 + 65313 is SNP;
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however, it is not M-convex since (1,1, 1, 3,0, 0), (0,0, 2, 2, 2, 0) are both in the
support, but

(0,0,2,2,2,0) +es —¢;

is not for any i in {1, 2, 3, 5}.

Conjecture 1.6 says that the chromatic symmetric function of any s-positive graph
should be SNP. Our result that (3 + 1)-free incomparability graphs have chromatic
symmetric functions with M-convex support is a partial confirmation of the conjecture.

However, in order to test the conjecture for other graphs one needs to look at graphs
with size n > 12. The next minimal example shows that there are s-positive symmetric
functions that are not SNP, but they do not occur for small n.> This makes it hard to
find a counterexample for Conjecture 1.6.

Example 7.6 The function

f = 56222 + S444

is not SNP (when expanded in at least 4 variables). The vector (5, 3,3,1,0,...) is
a convex combination %(6, 2,2,2) + %(4, 4,4, 0), but the partition (5, 3, 3, 1) is not
dominated by either (6, 2, 2, 2) or (4, 4, 4), so it is not in the support of f.

Remark 7.7 Furthermore, there are s-positive incomparability graphs that contain
claws, which are not covered by our Theorem 5.8: see Example 7.8. These can fail to
be M-convex (as in the example), and it seems plausible that an s-positive incompara-
bility graph with 12 vertices that contains claws could fail to be SNP. We were unable
to complete a search over the space of incomparability graphs with 12 vertices due to
computational constraints.

Example 7.8 Let G be the tree with six vertices in Fig. 10b, which is an incomparability
graph for the poset in Fig. 10c. Then X = 32516 +40s514 + 1855212 48553 + 165373 +
65321 + 2532 + 25412. This is not M-convex since (0, 0, 0, 3, 0, 3) and (0,0, 0,4, 1, 1)
are both in the support, but

(0,0,0,3,0,3) + es — e

is not.

7.5 Complexity of Xg(p) and XG(d)

The study of the complexity of chromatic symmetric functions of general graphs and
claw-free graphs was started by Adve—Robichaux—Yong [3]. We give some preliminary
results on these questions for graphs G (d) and the more general G (P).

5 There are no 3-antichains of partitions of n < 12 in dominance order with one partition being a convex
combination of the other two.
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o g #5
3¢ /o4
174\, 2 1

() (B) ()

Fig. 10 Examples of graphs with s-positive chromatic symmetric functions that are not M-convex. The
example in A is claw-free and chordal but is not an incomparability graph. The example in B is a chordal
incomparability graph of the poset in C, but the graph contains a claw

t

\)

Given a (3 + 1)-free poset P (resp. a co-bipartite graph G or a Dyck path d)
and its chromatic symmetric function Xg(py = >, c£x* (resp. Xg = >, cSx¥ or
XGwy = Y, cix®), it is of interest to study the nonvanishing decision problem: the
complexity of deciding whether c(f # 0 (resp. cg # 0Qor cg # 0) and the complexity
of computing c(f (resp. cg or cg), both measured in the input size of P (resp. G and
d). For the sake of specificity, we assume a Dyck path d of length n is given as a length
2n string of e and n steps. A poset P is specified by a list of its cover relations, and a
co-bipartite graph is specified by a list of its edges.

Proposition 7.9 Let d be a Dyck path of length n. Given a weight o € N", deciding
whether cg is nonzero is in P (takes time polynomial in n).

Proof By Theorem4.1, the supportof X¢q)(x1, . .., x%) is the permutahedron Pilzr) @)
The greedy algorithm to determine A%"(d) from d takes time polynomial in n: for each
number i in [n], consider vertex i. For each other vertex j, check if j is connected and
add it to the list of neighbors of i if so. Consider each color x in order, and if x is not a
color of a neighbor of i, color the vertex i the color x and move on to the next vertex.
(It suffices to consider each pair of vertices only once.) Once A8'(d) is determined,
determining membership of « in the permutahedron takes polynomial time as well by
Rado’s theorem [49]. O

Proposition 7.10 Let P be a (3 + 1)-free poset on n vertices. Given a weight o € N",
deciding whether c(f is nonzero is in P (takes time polynomial in n).

Proof Recall that P is specified as a list of cover relations. Following the decomposi-
tion in [29, 30], we can convert P into a part listing L in polynomial time (where the
bicolored graphs in L are encoded as adjacency matrices).

Following our proof of Theorem 5.8, we find the dominating weight A8 (P) by
finding for each bicolored graph H the maximum Uy (or Dy) appearing in its convex
decomposition. Such k is the size of the maximum matching in H, which we can
find in polynomial time (see [52, Section 16.4]). The result then follows by the same
argument as in the proof of Proposition 7.9. O

Next we use Lemma 2.6 to determine the complexity of computing the coefficients
of X in the monomial basis for co-bipartite graphs.
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Proposition 7.11 If G is a co-bipartite graph, then determining the coefficients cg is
#P-complete.

Proof Computing the permanent of a 0-1 matrix A of size n x n is #P-complete [61]. If
B C [n]x[n]isthe support of the matrix A, then perm(A) = r, (B). Given the board B,
let G be the co-bipartite graph with two cliques on vertices {1, ..., n}U{n+1, ..., 2n}
and edges (i,n + j) for each (i, j) not in B. Then by (2.1) we have that cg,, =
n! - r,(B) = n!-perm(A). Hence, determining the coefficients cg of X¢g is #P-
complete as desired. O

Since co-bipartite graphs are incomparability graphs of (3 + 1)-free posets, we
immediately obtain the following.

Corollary 7.12 If P is a (3 + 1)-free poset, then determining the coefficients c(f is
#P-complete.

Proof The result follows from Proposition 7.11 and the fact that co-bipartite graphs
are incomparability graphs of 3-free posets. O

Remark 7.13 Given a Dyck path d, it would be interesting to see whether or not deter-
mining the coefficients cg of X¢a) is #P-complete. More concretely, is determining
the leading coefficient cfgr ) for the greedy coloring #P-complete?

Remark 7.14 In contrast, one can compute c‘zikln,z,C in polynomial time for abelian
Dyck paths d (i.e. Dyck paths with indifference graphs G (d) that are also co-bipartite),
which are encoded by Ferrers boards B, of partitions it = (i1, ..., t¢). Then by
classical rook theory [40], D>, ri(B)(®)r—x = [[;(x + pe—it1 — i — 1), where
(X)m = x(x = 1)---(x —m + 1). The coefficients r(B,) can be extracted using
the Stirling numbers of the second kind S(m, k), since x™ = Y ;" S(m, k)(x). The
numbers S(m, k) can in turn be computed efficiently, say by using their recurrence
(e.g. see [54, Egs. (1.93), (1.96)]).

Remark 7.15 We know of two recent algorithms to compute X (4), and it would be
interesting to analyze their complexity.

e Carlsson and Mellit [16, Sect. 4] defined chromatic symmetric functions of partial
Dyck paths and defined a Dyck path algebra generated by operators Dy, De that
act on these symmetric functions by adding north steps n and east steps e to the
Dyck path. These operators use plethystic operations (e.g. see [34, Chapter 1]). If
the Dyck path d has steps €7 - - - €2;,, then [16, Theorem 4.4] implies that

XG@) = De¢ -+ De,, (1).

e Abreu and Nigro [1, Algorithm 2.8] gave a recursive algorithm, based on the
modular relation, to compute X G(q).
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