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Abstract

There has recently been a surge on the methodological development for optimal

individualized treatment rule (ITR) estimation. The standard methods in the literature

are designed to maximize the potential average performance (assuming larger outcomes

are desirable). A notable drawback of the standard approach, due to heterogeneity in

treatment response, is that the estimated optimal ITR may be suboptimal or even

detrimental to certain disadvantaged subpopulations. Motivated by the importance of

incorporating an appropriate fairness constraint in optimal decision making (e.g., assign

treatment with protection to those with shorter survival time, or assign a job training

program with protection to those with lower wages), we propose a new framework that

aims to estimate an optimal ITR to maximize the average value with the guarantee that

its tail performance exceeds a prespecified threshold. The optimal fairness-oriented

ITR corresponds to a solution of a nonconvex optimization problem. To handle

the computational challenge, we develop a new efficient first-order algorithm. We

establish theoretical guarantees for the proposed estimator. Furthermore, we extend

the proposed method to dynamic optimal ITRs. The advantages of the proposed

approach over existing methods are demonstrated via extensive numerical studies and

real data analysis.
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1 Introduction

One of the primary goals of precision medicine is to estimate the optimal individualized

treatment rule (ITR), tailoring the treatment recommendation to patients according to their

individual characteristics, such as age, gender, and clinical history. The last decade has wit-

nessed a prodigious surge in research on optimal ITR estimation. Popular existing approaches

for estimating optimal ITRs include model-based methods such as Q-learning (Watkins and

Dayan, 1992; Murphy, 2003; Moodie et al., 2007; Chakraborty et al., 2010; Goldberg and

Kosorok, 2012; Song et al., 2015), A-learning (Robins et al., 2000; Murphy, 2005), model-free

policy search methods (Robins et al., 2008; Orellana et al., 2010a,b; Zhang et al., 2012; Zhao

et al., 2012, 2014), among others (Robins, 2004; Moodie et al., 2009; Cai et al., 2010; Hen-

derson et al., 2010; Thall et al., 2002; Imai et al., 2013; Huang et al., 2015; Tao and Wang,

2017). See Chakraborty et al. (2010); Chakraborty and Moodie (2013); Laber et al. (2014);

Kosorok and Moodie (2015) and references therein for a thorough review. The problem of

optimal ITR estimation has also received considerable attention in other fields, such as rec-

ommending the most effective training program for the unemployed (Frölich, 2008; Behncke

et al., 2009; Staghoj et al., 2010; Wunsch, 2013) and finding the best approach to encouraging

voter turnout (Gerber and Green, 2000; Imai et al., 2013). Several econometrics researchers

studied optimal ITR estimation in a decision theory framework (Hirano and Porter, 2009;

Bhattacharya, 2009; Bhattacharya and Dupas, 2012; Tetenov, 2012).

Typically, an optimal ITR is estimated by maximizing the potential average performance

(assuming a larger outcome is desirable) if all patients in the population were to receive

the treatment recommended by the decision rule. Due to the patients’ diversity in their

responsiveness to treatment and vulnerability to adverse effects, the treatment effects are

often heterogeneous. A notable limitation of the previous work in this area is that the

estimated optimal ITR may be suboptimal or even detrimental to a certain disadvantaged

subpopulation. To provide a concrete illustration of this consequence, we consider a simple

yet illustrative example in Section 2. In this example, applying the standard optimal ITR is
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actually harmful to a significant portion of the population. In the setting of recommending

a medical treatment, this severe consequence demands careful attention in order to protect

the vulnerable. Motivated by this concern, we propose a new fairness-aware framework

that aims to estimate a mean-optimal ITR under the constraint that its induced potential

outcome distribution has a lower quantile above a given threshold. For example, we may

maximize the average treatment benefit for the whole population while requiring that 95% of

the patients benefit from the treatment (say, by requiring the 5th percentile of the potential

outcome distribution to be above a prespecified threshold).

Although the proposed fairness-aware optimal ITR (F-ITR) is conceptually intuitive, its

computational and statistical theories are highly nontrivial as the optimal F-ITR corresponds

to a solution to a nonconvex optimization problem. We consider estimating the optimal F-

ITR within a class of stochastic decision rules indexed by a Euclidean parameter. However,

we do not require to specify an outcome regression model. Hence, our approach belongs to the

category of model-free policy search methods. We study both the static and dynamic ITRs.

We derive the asymptotic convergence theory of the proposed estimator using empirical

process techniques. Considering the class of stochastic treatment rules alleviates some aspect

of the computational challenge. Moreover, we show that doing so will lead to an optimal

decision rule as good as the optimal rule within the corresponding class of deterministic

decision rules. We prove that the estimated optimal decision rule satisfies the quantile

constraint asymptotically, and that its value function converges at a OP pn
´1{2q rate, where

n is the sample size. We further develop a new first-order dual algorithm to efficiently

compute the estimator. The new algorithm and theory are of independent interest and

can be useful for other optimality criteria, such as the composite criterion in Luckett et al.

(2017) for balancing multiple and possibly competing outcomes and the robust criterion in

Xiao et al. (2019) for achieving robustness against skewed, heterogeneous, heavy-tailed errors

or outliers in data.

We point out that the proposed F-ITR framework is also closely related to robust methods

for deriving the optimal ITRs. There are some robust methods for deriving optimal ITRs.

In particular, Wang et al. (2018a) study the quantile optimal treatment regimes. Linn

et al. (2017); Qi et al. (2019a) propose quantile regression approaches to indirectly and
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approximately maximize the quantile of outcomes over some classes of decision rules. Wang

et al. (2018b) study estimating the mean-optimal treatment regime under the constraint on

the mean objectives of risk outcome. Qi et al. (2019b) propose a general decision-rule based

risk measure for individualized decision making. However, none of the work above considers

both mean and quantile objectives simultaneously, though both objectives can be important

in practice.

Paper Organization. The rest of this paper is organized as follows. In Section 2, we

present the fairness-oriented individualized treatment regime. In Section 3, we present our

estimator. In Section 4, we derive the asymptotic result. We extend our framework to dy-

namic treatment regimes in Section 5. We conduct extensive numerical studies in Section 6,

and we conclude the paper and discuss future directions in Section 7.

2 Fairness-Oriented Optimality Criterion

2.1 Notation and Setup

In this paper, we consider the setting of a binary treatment. We denote the treatment for

patient i as Ai P t0, 1u. Let Yi be the corresponding outcome. Without loss of generality,

we assume that a larger outcome is preferable. To define the optimal ITR, we adopt the

counterfactual (or potential) outcome framework (Rubin, 1978; Splawa-Neyman et al., 1990)

in causal inference. Specifically, let Y ˚i p0q be the outcome of patient i had this patient receive

treatment 0, and let Y ˚i p1q be defined similarly. Since each patient can only be assigned to

one treatment, for patient i, we observe either Yip0q or Yip1q, but not both.

We assume that the observed outcome for patient i is Yi “ Y ˚i p0qp1´Aiq ` Y
˚
i p1qAi. In

other words, the observed outcome is the outcome corresponding to the treatment the patient

actually receives. In causal inference, this is referred as the consistency assumption. Also,

we assume that the potential outcome of one patient should not be affected by treatments

assigned to the other patients, or the stable unit treatment value assumption (Rubin, 1986).
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2.2 A Motivating Example

For illustration, we consider a heteroscedastic outcome regression model Yi “ 1`3Ai`Xi´

5AiXi ` p1 ` Ai ` 2AiXiqεi, where the covariate Xi „ Unifr0, 1s, the noise εi „ Np0, 1q,

and the treatment Ai “ 1 if patient i receives the treatment, and Ai “ 0 if patient i is in

the control group. We consider the following seven decision rules: (1) Ai “ 0, for all i; (2)

Ai “ 1pXi ď 3{5q; (3) Ai “ 1pXi ď 1{2q; (4) Ai “ 1pXi ď 1{5q; (5) Ai “ 1pXi ď 1{10q; (6)

Ai “ 1 for all i, and (7) random assignment PpAi “ 1q “ 0.5. We evaluate the performance

of the seven decision rules on a large independent sample of size 106.

Table 1: Mean and the 0.10-th quantile of the outcomes of the seven different treatment
regimes estimated using 106 simulated samples

Regime (1) (2) (3) (4) (5) (6) (7)

mean 1.50 2.40 2.37 2.00 1.78 2.00 1.74
Q0.10 0.16 ´0.03 0.20 0.33 0.26 ´2.29 ´0.81

Table 1 summarizes the 0.10-th quantile (Q0.10) and the mean of potential outcome

distribution of each of the seven decision rules. This example was initially considered in

Wang et al. (2018a) to illustrate the quantile-optimal ITR, which maximizes QτtY
˚pfqu.

In this example, the mean optimal treatment regime is Regime 2, and the optimal 0.10-th

quantile treatment regime is Regime 4. However, Regime 4 only achieves a mean outcome

2.00, which is about 20% lower than the optimal mean outcome achieved by Regime 2. As

an example of the F-ITR, we consider (1) with the 0.10-th quantile being constrained to be

non-negative. This leads to Regime 3 as the desired choice among the seven. We observe that

the mean of Regime 3 is 2.37 and is very close to the unconstrained optimal mean value 2.40

given by Regime 2. This example demonstrates that in some applications, it is sensible and

beneficial to go beyond optimizing a single criterion such as mean or quantile. We further

plot the empirical treatment effect distributions of Regime 2 and Regime 3 in Figure 1, and

we observe that Regime 3 substantially enlightens the left tail of the distribution. This shows

that by slightly reducing the mean, we can potentially achieve much better fairness.
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Figure 1: Empirical distributions of treatment Regimes 2 and 3

2.3 Fairness-Oriented Optimality

Our goal is to tailor the treatment recommendation to patient i by considering the patient’s

individual characteristics, summarized in the covariate vector Xi P Rd, to achieve certain

optimal performance regarding the treatment benefit in the population. An individualized

treatment rule (ITR) is a mapping that takes the covariate vector xi as input and outputs

a binary variable in t0, 1u. For computational efficiencies as discussed in the next section,

we consider stochastic ITRs, which output a probability for assigning the treatment. A

stochastic ITR can be represented by fp¨, ¨q : Rd ˆ U Ñ t0, 1u, where U „ Uniformr0, 1s.

Given an ITR fp¨, ¨q, the corresponding potential outcome is Y ˚i pfq “ Y ˚i p1qfpXi, Uq `

Y ˚i p0qt1 ´ fpXi, Uqu. Note that from here onward, for ease of presentation, we omit the

term U . In particular, Y ˚i pfq is the outcome following treatment regime fp¨, ¨q, which assigns

patient i to treatment 1 or 0. In this paper, we focus on randomized trials for which Ai and
`

Y ˚i p1q, Y
˚
i p0q

˘

are independent. Our results can be extended to observational studies, as

discussed in Remark 7.

To evaluate a treatment regime, existing work has focused on the population mean of

the potential outcome distribution, i.e., EtY ˚pfqu. We consider a refinement of this metric

by enforcing certain fairness constraints. Intuitively, to protect the vulnerable, we would

wish the lower tail of the potential outcome distribution should not be inferior. Specifically,

the τ -th quantile of Y ˚pfq is defined as QτtY
˚pfqu “ inftt : F ˚ptq ě τu, where F ˚ denotes

6



the cumulative distribution function of Y ˚pfq, and τ P p0, 1q is the quantile level of interest

(e.g., the 0.10-quantile). Formally, given a collection D of treatment regimes, we propose

to estimate the following fairness-oriented optimal ITR (F-ITR), which is defined as the

solution to the optimization problem

maximize
fPD

EtY ˚pfqu, subject to QτtY
˚
pfqu ě q, (1)

where q P R is a pre-specified threshold.

3 Proposed Estimator and Algorithm

3.1 Estimation

We first discuss how to estimate the F-ITR defined in Section 2.2 from a randomized trial.

Denote the observed sample set as tpxi, yi, aiqu
n
i“1, i “ 1, . . . , n, where xi P Rd denotes the

covariates, yi P R denotes the response, and ai P t0, 1u denotes the treatment. The optimiza-

tion problem in (1) is challenging as it involves a nonsmooth nonconvex objective function

subjecting to a nonsmooth nonconvex constraint. We show below how the computational

challenges can be partly alleviated by considering stochastic ITRs.

Specifically, the stochastic ITR assigns treatment 1 to patient i with probability fpxi,βq,

where fp¨,βq P D, a parametric class of functions. For example, we may adopt the logistic

function fpx,βq “ t1`expp´xJβqu´1. There has been substantial recent interest in stochas-

tic ITRs, see Luedtke and van der Laan (2016); Dı́az and van der Laan (2018); Kennedy

(2019); Dı́az and Hejazi (2020); Qiu et al. (2020), among others. Luedtke and van der Laan

(2016) overcomes the challenges of an NP-hard knapsack problem by focusing on stochastic

ITRs. Qiu et al. (2020) showed that in a nonparametric setting with instrumental variables,

the optimal ITR among all stochastic rules is in fact deterministic whenever there is hetero-

geneity in the average treatment effect across subgroups defined by measured covariates in

the population. In Section 4, we also establish a link between the stochastic ITR and the

deterministic ITR for the current problem.

For a stochastic ITR induced by fpxi,βq, we denote the mean and the τ -th quantile of
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the corresponding potential outcome distribution by Mpβq and Qτ pβq, respectively. The

optimal F-ITR is indexed by the parameter β˚:

β˚ P argmax
β

Mpβq, subject to Qτ pβq ě q, (2)

where Mpβq is the mean of the potential outcome distribution induced by the ITR index

by β. Let µp1,Xq “ ErYi|ai “ 1,Xis “ ErY ˚i p1q|Xis and µp0,Xiq “ ErYi|a “ 0,Xs “

ErY ˚i p0q|Xis. Recalling fipβq “ Ppai “ 1|Xi,βq, we have

Mpβq “ E
“

Y ˚i p1q1pai “ 1q ` Y ˚i p0q1pai “ 0q
‰

“ EXi

“

µp1,Xiqfipβq ` µp0,Xiq
`

1´ fipβq
˘‰

. (3)

Similarly as in Zhang et al. (2012) and Wang et al. (2018a), we can consistently estimate

Mpβq and Qτ pβq without specifying an outcome regression model by

xMpβq “ argminun
´1

n
ÿ

i“1

cipβqpyi ´ uq
2, (4)

and

pQτ pβq “ argminqn
´1

n
ÿ

i“1

cipβqρτ pyi ´ qq (5)

respectively, where ρτ puq “ utτ ´ 1pu ă 0qu is the quantile loss function, and cipβq “

aifpxi,βq ` p1´ aiqt1´ fpxi,βqu. We estimate β˚ by

pβ P argmax
β

xMpβq, subject to pQτ pβq ě q ´ C{
?
n, (6)

where C is a positive constant. Note that we introduce the term C{
?
n to ensure the

feasibility of Qτ p
pβq for ease of presentation in the theoretical results. However, this term

can be dropped in practice.
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3.2 Lagrangian Dual Problem and its Properties

Solving problem (6) is computationally challenging as the constraint is nonconvex in β. To

generate a feasible high-quality solution, we consider its Lagrangian dual problem:

minimize
λě0

Lpλq :“ max
β

 

xMpβq ` λ
 

q ´ pQτ pβq
((

. (7)

As this dual problem is convex in λ, which is a scalar, classical methods such as golden

section search can be applied to efficiently find the optimal λ˚. Then, the corresponding rβ,

defined as

rβ “ argmax
β

 

xMpβq ` λ˚
 

q ´ pQτ pβq
((

, (8)

is the dual optimal solution and satisfies the quantile constraint.

In what follows, we present the key properties of the dual solution rβ and compare it with

the primal solution pβ. We first show that the dual solution in (8) indeed exists. We provide

the proof in Appendix Section A

Proposition 1. Assume that there exists a feasible primal optimal solution as in (6). A

dual optimal solution rβ in (8) also exits.

The next theorem quantifies the duality gap between the primal and dual optimal solu-

tions.

Theorem 2. Let pβ be the solution to problem (6), and λ˚ and rβ be some optimal Lagrangian

multiplier and dual solution to problems (7) and (8), respectively. We have that there exists

a rβ such that the duality gap is bounded by

ˇ

ˇ xMprβq ´ xMppβq
ˇ

ˇ ď λ˚
ˇ

ˇ pQτ p
pβq ´ pQτ p

rβq
ˇ

ˇ.

Proof. See Appendix B for the detailed proof. �

Remark 3. As pβ is a feasible solution to (5), Qτ p
pβq ě q and Qτ p

pβq P ty1, ..., ynu. Without

loss of generality, assuming y1 ď y2 ď ¨ ¨ ¨ ď yk ď q ď ¨ ¨ ¨ ď yn, we have that the duality gap

is upper bounded by λ˚|yk ´ pQτ p
rβq|. In the simulation studies in Section 4, we observe that
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our algorithm achieves small duality gaps in different settings under consideration, which

demonstrates that the proposed algorithm generates high-quality solutions in practice. We

emphasize that although in this paper we adopt fipβq “ t1`exppxJi βqu
´1, Theorem 2 actually

holds for general choices of continuous fi.

3.3 Algorithm

We summarize the algorithm below. For the Lagrangian dual problem, during each iteration,

given some λ, we solve the follwing problem

maximize
β

Dpβq :“ xMpβq ` λ
 

pQτ pβq ´ q
(

(9)

to evaluate the value of the Lagrangian dual function Lpλq. In the current literature of

precision medicine, this type of problem is commonly solved by genetic algorithms (Whitley,

1994), which are known to be inefficient and lack stability. We propose to solve the problem

by an efficient first-order method. In particular, at the t-th iteration, given the current

solution βt, we compute a corresponding sub(super)-gradient vt P BDspβ
tq. In particular,

we first consider xMpβq in (4). By straightforward calculation, we obtain

xMpβq “ n´1
n
ÿ

i“1

cipβqyi.

Note that cipβq is smooth due to the use of stochastic ITR. We can thus compute the

gradient of xMpβtq efficiently, which we denote as vtM . Next, we consider pQτ pβq. Due to

the discontinuity of the sample quantile function, we replace the indicator function in in the

quantile loss function ρτ puq “ utτ ´ 1pu ă 0qu by a sigmoid function.

Taking vt “ vtM ` λv
t
Q, we update the solution by the following gradient step

βt`1 “ βt ` αtv
t,

where αt is a prespecified stepsize. This algorithm can be implemented efficiently and displays

satisfactory performance in our simulation experiments.
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4 Statistical Theory

In this section, we present the statistical theory of the proposed estimator. In particular, we

show that the estimator pβ achieves the optimal risk asymptotically.

Note that we consider a class of stochastic ITRs, a more general class of decision rules

than deterministic ITRs. It is not difficult to see that the expected risk achieved by opti-

mal stochastic decision rule is always lower bounded by the risk achieved by the optimal

deterministic decision rule. In addition, consider linear deterministic ITRs of the form

rfipβq “ 1pxJi β ą 0q and the corresponding stochastic ITRs fipβq “ Ppai “ 1|xi,βq “

t1` expp´xJi βqu
´1, the latter of which are our primary focus as discussed earlier. We show

in Proposition 4 below that if some linear deterministic decision rule achieves optimal risk

and satisfies the quantile constraint, there exists a linear stochastic decision rule that ap-

proximates the risk and constraint up to arbitrary precision. Throughout our discussions,

we assume that the response yi’s and the covariates xi’s are bounded.

Proposition 4. Suppose there exists a qβ, which is an optimal solution to the problem that

qβ “ argmax
β

Mpβq, subject to Qτ pβq ě q, (10)

where the deterministic ITR fi “ 1pxJi β ą 0q is adopted. Considering problem (6), where

stochastic ITR fpxi,βq “ Ppfi “ 1q “ t1 ` expp´xJi βqu
´1 is adopted, denote by pβ an

optimal solution to problem (6). We have that for any given ε ą 0, as nÑ `8, pβ satisfies

the constraint of problem (2), and PpMppβq ěMpqβq ´ εq Ñ 1.

Proof. See Appendix C for the detailed proof. �

The following theorem proves that the risk incurred by pβ converges to the optimal risk

R˚. To derive the consistency, we employ the empirical process techniques. The detailed

proof is presented in Appendix D.

Theorem 5. Suppose β˚ P B, where B is a compact set. Then

lim
nÑ8

!

Mppβq ´ sup
βP rQ

Mpβq
)

“ 0
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in probability, where rQ denotes the closure of Q “ tβ : Qτ pβq ě qu. Thus, if β˚ belongs

to the closure of rQ, then limnÑ8
xM “ M˚ in probability, where xM and M˚ denotes the

estimator’s corresponding population mean treatment results and optimal mean treatment

results under the quantile constraint, respectively.

The next theorem derives the convergence rate of Mppβq ´Mpβ˚q.

Theorem 6. Suppose that β˚ belongs to a compact set BpMq, where M ą 0 is a constant.

Then we have that @ τ ě 1 we have

P˚
`

Mppβq ěMpβ˚q ´ ε
˘

ě 1´ e´τ ,

where P˚ denotes the outer probability for possibly nonmeasureable sets, and ε “ Opn´1{2q.

Or, equivalently,

|Mppβq ´Mpβ˚q| “ OP pn
´1{2

q.

Proof. See Appendix E for the detailed proof. �

Remark 7. The proposed method and theoretical results can be extended to observational

studies using the propensity score weighting approach. Assume the popular no unmeasured

confounder assumption tY ˚p1q, Y ˚p0qu K A|X holds. Leting πpXq “ PpA “ 1|Xq, the

propensity score PpCpβq “ 1|Xq “ πpXqfpX,βq ` p1´ πpXqqp1´ fpX,βqq. Denoting the

propensity score by πcpX,βq, we estimate the mean and the τ -th quantile of the treatment

effect by argminun
´1

řn
i“1

cpxi,βq
pπcpxi,βq

pβqpyi ´ uq
2 and argminqn

´1
řn
i“1

cpxi,βq
pπcpxi,βq

cpxi,βqρτ pyi ´ qq,

respectively, where pπcpxi,βq is an estimator of the propensity score πcpxi,βq. In our simula-

tion, we use the logistic regression to estimate πcpxi,βq, where we model πpXq as πpX,γq “

exppXJγq{p1`exppXJγqq. In practice, we may use other semiparametric or nonparametric

models for the estimation.

Remark 8. In practice, the future patient population may not be exactly the same as the

training samples, for example, a slight shift of age or other covariates. To solve this challenge,

we refer the readers to Mo et al. (2020), which addresses the covariate shift problem.
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5 Extension to Dynamic Treatment Regime

We extend the proposed F-ITR to the dynamic setting, which involves a sequence of decision

rules. For example, in treating a chronic disease, the patient’s condition often needs to be

re-evaluated over time. Depending on the patient’s clinical information and how he/she

responds to the previous treatment, the doctor may need to adapt the treatment decision.

For ease of presentation, we consider a two-stage dynamic setting, but our methods and

results can be extended to the general T -stage case by induction. Assume that patient i

receives treatment a
p1q
i P t0, 1u at stage 1 and treatment a

p2q
i P t0, 1u at stage 2. At the

end of stage 2, we observe the outcome Yi, based on which the overall treatment effect will

be evaluated. A dynamic ITR has the form f “ tf p1q, f p2qu, such that f pjq is a function of

all information available before making the j-th decision. We denote the baseline covariate

vector as X
p1q
i , and denote the covariate at the second stage as X

p2q
i , which may depend

on X
p1q
i and a

p1q
i and may include intermediate outcomes. Let H

p1q
i “ tX

piq
i u and H

p2q
i “

tX
p1q
i , a

p1q
i ,X

p2q
i u. Throughout our discussion, we adopt the no unmeasured confounder or

sequential ignorability assumption, that is, conditioning on the history, the treatment is

independent of any future information, see Robins (1997) for details. In addition, we adopt

the positivity assumption that there exist positive constants c1 ă c2 such that c1 ď Ppaj “

a|Hjq ď c2 for a P t0, 1u and j “ 1, 2.

Here our goal is to estimate the optimal dynamic ITR, which is defined as the one

that maximized the average final outcome under the constraint that a lower quantile of the

potential outcome distribution of the ITR exceeds a given threshold. Consider the class

of candidate ITRs index by β “ tβp1q,βp2qu, and f pjqpH
pjq
i |β

pjqq “ Ppapjqi “ 1|H
pjq
i q “

t1 ` expp´H
pjqJ
i βpjqqu´1, j “ 1, 2. Given a β, we denote the corresponding stochastic

sequential decision rule by dpβq “
`

d1pH
p1q|βp1qq, d2pH

p2q|βp2qq
˘

, where d1pH
p1q|βp1qq “

Bernoulli
`

f p1qpH
p1q
i |β

p1qq
˘

and d2pH
p2q|βp2qq “ Bernoulli

`

f p2qpH
p2q
i |β

p2qq
˘

. We sometimes

write dpβq “ pd1pβ
p1qq, d2pβ

p2qqq for brevity.

For sample i, the potential final outcomes are denoted as tY ˚i p1, 1q, Y
˚
i p1, 0q, Y

˚
i p0, 1q, Y

˚
i p0, 0qu,

corresponding to the four possible treatment sequences. Given a dynamic ITR dpβq, the

potential intermediate information is denoted by X
p2q˚
i pd1pβ

p1qqq and the potential final out-
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come is denoted by Y ˚pdpβqq. We have

Y ˚
`

dpβq
˘

“ Y ˚p1, 1q1
`

d1pβ
p1q
q “ 1, d2pβ

p2q
q “ 1

˘

` Y ˚p1, 0q1
`

d1pβ
p1q
q “ 1, d2pβ

p2q
q “ 0

˘

` Y ˚p0, 1q1
`

d1pβ
p1q
q “ 0, d2pβ

p2q
q “ 1

˘

` Y ˚p0, 0q1
`

d1pβ
p1q
q “ 0, d2pβ

p2q
q “ 0

˘

.

Thus, we have that the population mean of the potential outcome distribution induced by

dpβq is:

Mpβq “ E
“

Y ˚
`

dpβq
˘‰

“ E
“

f p1qpH
p1q
i ,βp1qqf p2qpH

p2q˚
i ,βp2qqµp1, 1,Hp2q˚

q

` f p1qpH
p1q
i ,βp1qqp1´ f p2qpH

p2q˚
i ,βp2qqqµp1, 0,Hp2q˚

q

` p1´ f p1qpH
p1q
i ,βp1qqqf p2qpH

p2q˚
i ,βp2qqµp0, 1,Hp2q˚

q

` p1´ f p1qpH
p1q
i ,βp1qqqp1´ f p2qpH

p2q˚
i ,βp2qqqµp0, 0,H p2q˚

q
‰

,

where µpj1, j2,H
p2q˚q “ E

“

Y ˚pj1, j2q
ˇ

ˇX
p1q
i , A

p1q
i “ j1,X

p2q˚
i pj1q

‰

, j1, j2 P t0, 1u.

To estimate Mpβq, suppose we have a sample tx
p1q
i , a

p1q
i ,x

p2q
i , a

p2q
i , yiuiPrns, and let h

p1q
i “

x
p1q
i and h

p2q
i “ px

p1qJ
i , a

p1q
i ,x

p2q
i q

J. We further assume that the sample is from the sequential

multiple assignment randomized trial (SMART) (Murphy, 2008; Lavori and Dawson, 2000)

with

π1ph
p1q
i q “ Ppap1q|hp1qi q “ π1, and π2ph

p2q
i q “ Ppap2q|hp2qi q “ π2,

where π1, π2 P p0, 1q are two known constants. Let

cipβq “
a
p1q
i a

p2q
i

π1π2
¨ f
p1q
i ph

p1q
i ,βp1qqf

p2q
i ph

p2q
i ,βp2qq

`
a
p1q
i p1´ a

p2q
i q

π1p1´ π2q
¨ f
p1q
i ph

p1q
i ,βp1qq

`

1´ f
p2q
i ph

p2q
i ,βp2qq

˘

`
p1´ a

p1q
i qa

p2q
i

p1´ π1qπ2
¨
`

1´ f
p1q
i ph

p1q
i ,βp1qq

˘

f
p2q
i ph

p2q
i ,βp2qq

`
p1´ a

p1q
i qp1´ a

p2q
i q

p1´ π1qp1´ π2q
¨
`

1´ f
p1q
i ph

p1q
i ,βp1qq

˘`

1´ f
p2q
i ph

p2q
i ,βp2qq

˘

.

(11)
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Then, we estimate Mpβq by

xMpβq “ argminµn
´1

n
ÿ

i“1

cipβqpyi ´ µq
2.

Similarly, we estimate the τ -th quantile of the outcome by

pQτ pβq “ argminqn
´1

n
ÿ

i“1

cipβqρτ pyi ´ qq.

Then, our estimator for the F-ITR is given by

pβ “ argminβ xMpβq, subject to pQτ pβq ě q ´ C{
?
n. (12)

Let Mpβ˚q be the optimal risk satisfying the quantile constraint that Qτ pβ
˚q ě q. We

derive the risk consistency by showing that Mppβq converges to Mpβ˚q as sample size n goes

to infinity. The results hold for general T -stage problems by an induction argument.

Proposition 9. Suppose there exists qβ “ tqβp1q, qβp2qu, which is the optimal solution to

the problem dynamic treatment regime problem at the population level, and the deterministic

decision rule is adopted. Considering problem (12), where stochastic decision rule is adopted,

denote by pβ “ tpβp1q, pβp2qu an optimal solution to (12). We have that for any given ε ą 0,

as nÑ 8, pβ satisfies the constraint of problem (12), and PpMppβq ěMpqβq ´ εq Ñ 1.

Proof. The proof is similar to the proof of Proposition 4, and we omit it here. �

Next, we present the convergence rate. The proof is similar to the proof of Theorem 6..

Theorem 10. Suppose that the optimal regime β˚ “ tβp1q˚,βp2q˚u belongs to a compact set

BpMq, where M ą 0 is a constant. Then we have that for all ξ ě 1 we have

P˚
`

Mppβq ěMpβ˚q ´ ε
˘

ě 1´ e´ξ,

where P˚ denotes the outer probability for possibly nonmeasureable sets, and ε “ Opn´1{2q.

Or, equivalently,

|xMppβq ´Mpβ˚q| “ OP pn
´1{2

q.
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Remark 11. In this section, we focus on the scenario where the final outcome is of interest.

In Appendix F, we extend the analysis to a different scenario where a reward is observed at

each stage and the goal is to optimize the total reward while constraining the quantile of the

potential outcome distribution at each stage to exceed some threshold. Meanwhile, suppose

the goal is maximizing the sum of outcome of stages 1 and 2. Denote the potential outcome

for sample i at stages 1 and 2 with actions a
p1q
i and a

p2q
i by Y

p1q
i pa

p1q
i q and Y

p2q
i pa

p1q
i , a

p2q
i q. We

may just replace the original potential outcome Y ˚i pa
p1q
i , a

p2q
i q by Y

p1q
i pa

p1q
i q ` Y

p2q
i pa

p1q
i , a

p2q
i q.

Then the proposed method still applies.

6 Numerical Results

In this section, we conduct extensive numerical studies using both synthetic and real datasets

to investigate the empirical performance of our proposed approach. Our studies demonstrate

that the proposed methods achieve desired quantile constraints and obtain desirable mean

outcomes.

6.1 Monte Carlo Studies

Example 1 (Static ITR) We generate the random outcome yi from the following het-

eroscedastic outcome regression model

yi “ 1`xi1´xi2`x
3
i3`e

xi4`aip3´5xi1`2xi2´3xi3`xi4q`
 

1`aip1`xi1`xi2`xi3`xi4q
(

εi,

i “ 1, . . . , n, where the xij’s are independently generated from the Uniformp0, 1q distribution,

and the treatment indicator ai satisfies log
 

Ppai “ 1|xiq{Ppai “ 0|xiq
(

“ ´0.5 ´ 0.5pxi1 `

xi2`xi3`xi4q. We consider two different distributions for the random error εi: the standard

normal distribution, and a highly non-symmetric distribution χ2
5 ´ 5. We consider two

different sample sizes n “ 500 or 1000.

We consider the class of treatment regimes Ppai “ 1|xiq “ 1{t1 ` expp´xTi ηqu. For

each combination of error distribution and sample size n, we consider two different choices

of τ (0.1 and 0.25). For each τ , we consider two choices of q. We aim to answer three
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Table 2: Simulation studies of F-ITR. Under different quantile constraints, where we require
the τ -th quantile of the treatment effect is at least q, we report the averaged treatment effects
of sample mean Mmean, sample quantile Qτ , sample duality gap (Dual), the corresponding
population mean treatment EpMmeanq, the population quantile EpQτ q, and the percentage
of infeasible cases (IF) among the total 1000 simulations.

Error n τ q Mmean Qτ Dual EpMmeanq EpQτ q IF

Np0, 1q 500 0.10 1.00 4.03 1.03 0.04 3.86 1.04 0.8%
(0.25) (0.07) (0.08) (0.15) (0.18) NA

1.20 3.83 1.23 0.05 3.74 1.22 6.7%
(0.25) (0.03) (0.16) (0.14) (0.13) NA

0.25 1.90 4.07 1.95 0.04 4.05 2.00 0
(0.17) (0.26) (0.02) (0.09) (0.10) NA

2.00 4.04 2.05 0.04 4.01 2.08 0
(0.12) (0.15) (0.02) (0.03) (0.06) NA

1000 0.10 1.00 3.93 1.03 0.03 3.88 1.06 0
(0.15) (0.02) (0.08) (0.07) (0.15) NA

1.20 3.76 1.23 0.03 3.74 1.26 3.2%
(0.18) (0.01) (0.03) (0.16) (0.10) NA

0.25 1.90 4.01 1.94 0.03 4.04 1.95 0
(0.08) (0.16) (0.03) (0.02) (0.04) NA

2.00 4.06 2.04 0.04 3.97 2.06 0
(0.11) (0.17) (0.02) (0.02) (0.05) NA

χ2
5 500 0.10 ´0.75 3.30 ´0.68 0.06 3.14 ´0.75 6.6%

(0.59) (0.14) (0.08) (0.36) (0.33) NA
´0.80 3.61 ´0.74 0.05 3.53 ´0.85 4.2%

(0.50) (0.06) (0.15) (0.24) (0.17) NA
0.25 0.45 3.65 0.52 0.07 3.60 0.43 9.6%

(0.45) (0.05) (0.22) (0.30) (0.22) NA
0.50 3.52 0.58 0.07 3.44 0.48 10.7%

(0.39) (0.12) (0.16) (0.31) (0.15) NA
1000 0.10 ´0.75 3.39 ´0.68 0.05 3.28 ´0.71 3.4%

(0.27) (0.03) (0.05) (0.11) (0.12) NA
´0.80 3.46 ´0.75 0.06 3.36 ´0.82 1.3%

(0.32) (0.03) (0.09) (0.22) (0.11) NA
0.25 0.45 3.71 0.50 0.04 3.64 0.43 6.7%

(0.28) (0.09) (0.07) (0.15) (0.10) NA
0.50 3.62 0.54 0.07 3.54 0.47 8.3%

(0.35) (0.03) (0.07) (0.16) (0.16) NA

essential questions through this Monte Carlo study: (1) How well does the proposed F-ITR

meet the quantile constraint for fairness protection? (2) How does the F-ITR compare with
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the traditional mean-optimal ITR without fairness constraint? (3) How does the proposed

algorithm work comparing with the traditional genetic algorithm?

Table 2 summarizes the results based on 1000 simulations runs, including the average of

the estimated mean value (Mmean) and the average of the estimated τ -th quantile (Qτ ) based

on the sample. We also report the averaged duality gap (Dual) for each setting, which is an

estimate of the optimality of the achieved objectives. Furthermore, using a large independent

Monte Carlo sample of size one million, we evaluate the expected mean value (EpMmeanq)

and the τ -th quantile (EpQτ q) when the estimated ITR is used to assign treatment for each

individual in the sample. We also report the number of infeasible (IF) cases in the last

column, where our algorithm fails to find a feasible solution among 1000 runs. We point out

that the infeasibility of the problem may due to the random samples that no such regime

satisfying the quantile constraint exists.

Table 3: Quantitative comparisons of the proposed algorithm (Alg) and the genetic algo-
rithm. We report the averaged objective value achieved by different algorithms, and the
averaged running times in seconds after repeating the simulation 1000 times, the values in
parentheses correspond to the sample standard deviations.

Mean τ “ 0.10 τ “ 0.25

Error n Method Obj. Time(s) Obj. Time(s) Obj. Time(s)

Np0, 1q 500 Alg. 4.19 3.01 1.39 3.08 2.29 3.07
(0.24) (0.18) (0.15) (0.20) (0.04) (0.25)

Genetic 4.14 5.97 1.24 23.03 2.04 22.14
(0.18) (1.61) (0.12) (2.79) (0.05) (3.16)

1000 Alg. 4.08 4.54 1.42 4.46 2.29 4.66
(0.13) (0.38) (0.05) (0.38) (0.07) (0.16)

Genetic 4.20 6.95 1.22 33.18 2.04 31.08
(0.13) (1.64) (0.07) (4.97) (0.05) (2.92)

χ2
5 ´ 5 500 Alg. 3.70 2.98 -0.56 3.08 0.68 2.89

(0.45) (0.24) (0.12) (0.23) (0.15) (0.17)
Genetic 3.78 6.42 -0.91 23.94 0.51 20.35

(0.60) (1.24) (0.15) (4.76) (0.16) (3.72)
1000 Alg. 3.87 3.15 -0.47 4.03 0.58 4.08

(0.42) (0.20) (0.12) (0.28) (0.13) (0.26)
Genetic 3.91 7.10 -0.83 39.10 0.53 31.85

(0.37) (1.61) (0.12) (3.75) (0.11) (8.03)

First, the values Qτ and EpQτ q reported in Table 2 confirm that the fairness constraints
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Figure 2: Empirical treatment effect distribution of mean optimal treatment regime (Mean-
Opt) and F-ITR under four setups, where we estimate the regimes using n “ 500 samples,
and test on 1 million samples. In setups 1 and 2, the errors are from Np0, 1q. In setup 1 we
set τ “ 0.1, q “ 1, and in setup 2, we set τ “ 0.25, q “ 2. In setups 3 and 4, the errors are
from χ2

5 ´ 5. In setup 3, we set τ “ 0.1, q “ ´0.75, and in setup 4, we set τ “ 0.25, q “ 0.5.
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are satisfied. Second, we compare the performance of F-ITR with M-ITR (mean-optimal

ITR without fairness constraint) based on the testing samples. Figure 2 displays the density

plots of the estimated potential outcome distribution of F-ITR and that of M-ITR under four

different setups considered in the Monte Carlo experiment. It is observed that in setups 1,

3, and 4, F-ITR achieves substantially lower left-tail densities comparing with M-ITR while

does not reduce the mean performance significantly. In setup 2, we observe that the two

distributions do not differ significantly. This is because that the mean optimal treatment

regime also satisfies the quantile constraint. In this case, we observe that F-ITR almost

has the same distribution as M-ITR. These figures demonstrate that the proposed F-ITR

leads to improved performance at the left tail, with little sacrifice the overall average benefits.

Furthermore, we observe that when the quantile constraint is relatively relaxed, the achieved

mean value is very close to that of M-ITR. These observations demonstrate strong evidence

supporting the benefits of the proposed F-ITR.

Finally, we evaluate the performance and computational speed of the proposed new

algorithm. We apply the proposed algorithm and the genetic algorithm to estimate the

mean-optimal ITR (M-ITR) and quantile-optimal ITR (maximizing the τ -th quantile of

the potential outcome distribution). Note that the genetic algorithm is not applicable to

F-ITR. Table 3 compares the average computational time and estimated values based on

100 simulation runs. For M-ITR, the new algorithm achieves similar values as the genetic

algorithm does, while reducing the computational time by about one third. For Q-ITR, the

new algorithm achieves significantly better values and only requires a small fraction of the

computational time of the genetic algorithm.

Example 2 (Dynamic ITR) We consider a two-stage example and generate the data from

the model

yi “ 1`xi1`ai1t1´3pxi1´0.2q2u`xi2`ai2t1´5pxi2´0.4q2u`
`

1`0.5ai1´ai1xi1`0.5ai2´ai2xi2
˘

εi,

where xi1 and xi2|txi1, ai1u are generated from uniform distributions on [0,1] and rxi1, xi1`1s,

respectively, and ai1|xi1 and ai2|txi1, ai1, xi2u are generated from Bernoullipexpitp´0.5`xi1qq
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and Bernoullipexpitp´1`xi2qq, respectively. Similarly as in the previous example, we consider

two different distributions for the random error εi: the standard normal distribution Np0, 1q

and the asymmetric 0.5 ¨ pχ2
5 ´ 5q distribution. We consider sequential ITRs of the form

pA1, A2q, where A1 “ 1tc1X1 ` b1 ă 0u, and A2 “ 1tc2X2 ` b2 ă 0u. We consider the

dynamic F-ITR in Appendix F. We aim to optimize the mean value under different quantile

constraints Qτ ě q for different τ and q. We consider sample size n “ 1000 or 2000

The simulation results are summarized in Table 4. For both normal and chi-square errors,

we provide in the first line the mean of the M-ITR (without constraint) together with its

10% and 25%-th quantiles as benchmarks. It is observed that for both error distributions,

the F-ITR has only slightly smaller mean than M-ITR but satisfies the conditional quantile

constraints well. In contrast, for normal error the M-ITR has negative 0.10 quantile, for the

chi-square error, the M-ITR has negative 0.10 and 0.25 quantiles, suggesting that the M-ITR

may have undesirable effects for fragile individuals. Our proposed F-ITR achieve the desired

constraints, and achieve near-optimal mean treatment effects as the duality gap is small.

6.2 Application

We apply the proposed method to analyze the ACTG175 dataset from the R package

speff2trial. This dataset contains 2,139 HIV-infected patients. These patients are ran-

domly assigned to one of the four treatments including zidovudine (AZT) monotherapy,

AZT+didanosine(ddI), AZT+zalcitabine(ddC), and ddI monotherapy. The goal of the trial

is to determine if the treatment with one drug (monotherapy) is better than the treat-

ment with two drugs (combination therapy) in patients with CD4-T cells between 200 and

500/mm3. See Hammer et al. (1996) for more details.

In exploratory analysis, we observe heteroscedastic treatment effects and high asymmetry

in the outcome variable distribution. It was known in the medical literature that the patients

who had taken AZT before entering the trial, treated with ddI or AZT+ddI are better than

continuing to take AZT alone. We thus consider the problem of how to assign treatment

to the patients who had taken AZT before the trial, to either continued treatment with

AZT+ddI combination or the ddI monotherapy. Denote Ai “ 1 if patient i is assigned to

the AZT+ddI therapy, and Ai “ 0 if the patient is assigned to the ddI monotherapy. The
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Table 4: Simulation studies of F-ITR in dynamic settings. Under different quantile con-
straints, where we require the τ -th quantile of the treatment effect is at least q, we report
the averaged treatment effects of sample mean Mmean, sample quantile Qτ , sample duality
gap (Dual), the corresponding population mean treatment EpMmeanq, the population quan-
tile EpQτ q, and the percentage of infeasible cases (IF) among the total 1000 simulations.

Error n τ q Mmean Q10% Q25% Dual EpMmeanq EpQ10%q EpQ25%q IF

Np0, 1q 1000 / / 3.41 ´0.80 1.37 / 3.18 ´0.71 1.41 /
0.10 0.00 3.29 0.41 1.88 0.15 3.12 0.16 1.86 0

(0.17) (0.33) (0.21) (0.09) (0.11) (0.41) (0.16) /
0.20 3.14 0.60 1.98 0.34 3.06 0.42 1.93 0

(0.18) (0.25) (0.19) (0.14) (0.11) (0.32) (0.08) /
0.25 1.60 3.14 0.36 1.73 0.19 3.18 0.31 1.84 3.2%

(0.26) (0.52) (0.21) (0.11) (0.15) (0.32) (0.16) /
1.70 3.09 0.49 1.86 0.22 3.09 0.40 1.83 16.3%

(0.33) (0.26) (0.18) (0.16) (0.12) (0.47) (0.15) /
2000 0.10 0.00 3.15 0.28 1.82 0.20 3.16 0.19 1.91 0

(0.14) (0.24) (0.16) (0.18) (0.04) (0.30) (0.14) /
0.20 3.14 0.35 1.88 0.15 3.18 0.27 1.86 0

(0.12) (0.16) (0.08) (0.11) (0.04) (0.27) (0.07) /
0.25 1.60 3.20 0.13 1.81 0.18 3.16 0.07 1.79 8.3%

(0.27) (0.21) (0.15) (0.18) (0.11) (0.61) (0.13) /
1.70 3.12 0.34 1.83 0.13 3.18 0.25 1.89 9.0%

(0.10) (0.29) (0.12) (0.22) (0.16) (0.24) (0.11) /

χ2
5 1000 / / 3.19 ´3.21 ´0.78 / 3.24 ´2.80 ´0.43 /

(0.38) (0.61) (0.57) / (0.16) (1.05) (0.77) /
0.10 0.00 2.78 0.25 1.23 0.19 2.91 0.21 1.36 0

(0.26) (0.16) (0.11) (0.26) (0.13) (0.26) (0.03) /
0.20 2.69 0.42 1.39 0.18 2.81 0.36 1.43 1.3%

(0.24) (0.13) (0.09) (0.38) (0.15) (0.12) (0.03) /
1.00 3.03 0.05 1.17 0.27 2.74 ´0.08 1.18 3.8%

(0.45) (0.07) (0.16) (0.27) (0.32) NA
1.10 2.87 0.14 1.23 0.20 2.94 0.01 1.34 21.2%

(0.43) (0.41) (0.19) (0.16) (0.14) (0.38) (0.14) /
2000 0.10 0.00 2.79 0.25 1.30 0.11 2.93 0.18 1.41 0

(0.20) (0.18) (0.13) (0.10) (0.09) (0.31) (0.02) /
0.20 2.70 0.34 1.24 0.19 2.82 0.38 1.38 0

(0.23) (0.12) (0.14) (0.10) (0.13) (0.17) (0.03) /
0.25 1.00 2.99 ´0.18 1.30 0.14 ´0.33 1.22 3.1%

(0.33) (0.40) (0.11) (0.15) (0.15) (0.55) (0.23) /
1.10 2.89 ´0.04 1.26 0.23 2.98 ´0.07 1.18 23.8%

(0.24) (0.56) (0.07) (0.23) (0.13) (0.49) 0.14 /

outcome is the CD4 count at 96˘5 weeks from baseline (denoted as CD496) as it is a crucial

measure of the progression for HIV-infected patients.

We consider two covariates for estimating the treatment regimes, which are the baseline

weights of the patients, and the baseline CD4-T cell counts. We then estimate the M-

ITR, Q-ITR (maximizing the 0.25-th quantile), and the F-ITR (under the constraint that
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Table 5: Estimated quantiles and means of different treatment regimes for ACTG175 data
analysis.

Method pQ.25
xM

0.25-th Quantile-optimal 263.0 346.5
Mean-optimal 219.3 403.9
F-ITR 232.4 398.7

the 0.25-th quantile is lower bounded by 230). (It has been observed that when CD4 is

below 200 cells/mm3, the risk of serious health problems increases. For example, the risk

of PCP (fungal pneumonia) and chest infections rise steeply when the CD4 falls below 200

cells/mm3). The results are summarized in Table 5. We observe that the 0.25-quantiles

and the means are significantly different for the Q-ITR and the M-ITR. Meanwhile, with a

quantile constraint, the estimated mean of the F-ITR is close to the mean of M-ITR.

7 Discussion

To conclude, we propose a new framework for fairness-aware optimal ITR estimation under

a quantile constraint. We show that the proposed estimator satisfies the quantile constraint,

and achieves the optimal mean treatment effects asymptotically. Our extensive simulation

studies demonstrate that though the estimator is derived from a highly nonconvex problem,

our proposed algorithm achieves high-quality solutions in practice.

In practice, it is important to properly choose the quantile level τ and the threshold q

in our proposed model (2). In one of the motivating examples, we aim to control the tail

behavior of the treatment results. Thus, in such applications, we suggest that we let τ be

0.05 or 0.10, and q be 0 or a small positive number, where we assume that a positive result

means that the patient benefits from the treatment. In future work, we will discuss with

practitioners and make better recommendations.

Unlike the unconstrained mean-optimal ITR approach, the proposed method does not

achieve the Fisher consistency in general even if the decision space increases. We argue here

that by imposing a practically meaningful quantile constraint, the Fisher’s consistency holds

asymptotically. In particular, for the unconstrained approach, as the functional space of the
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decision rule f increases, it is reasonable to assume that in expectation, the treatment effects

are positive for all individuals, i.e., EtY ˚i pfq|xiu ě 0 for all xi. Meanwhile, as mentioned

above, the main motivation of imposing the quantile/fairness constraint is to ensure vast

majority of the patients would benefit from the treatment. That is, some lower tail of the

distribution of treatment effects is positive. Then, if we impose a constraint that

Q0.05tY
˚
pfqu ě 0,

this constraint is satisfied by the optimal solution to the unconstrained ITR problem by our

assumption. Thus, the two solutions coincide, and the Fisher’s consistency is satisfied.

For future work, our proposed method can be potentially generalized to achieve group

fairness. In particular, suppose that we have a small number of K groups of patients. The

groups can be defined by gender, age, or income status. We can then require the quantile

constraint to be satisfied for each group by imposing multiple constraints. For example,

suppose that we have two groups of patients. Denote the two groups as G1 and G2. With a

slight abuse of notation, to ensure that the two groups get fair results, we may impose the

constraints

Qτ pY
˚
i pfqq ě q for i P Gk, k “ 1, 2.

In this case, we have multiple constraints, and by a similar Lagrangian dual approach as we

propose to tackle our original problem with a single constraint, we can potentially solve the

problem. We will study this problem from both algorithmic and statistical perspectives in

the future.
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Frölich, M. (2008). Statistical treatment choice: an application to active labor market

programs. Journal of the American Statistical Association, 103 547–558.

Gerber, A. S. and Green, D. P. (2000). The effects of canvassing, telephone calls, and

direct mail on voter turnout: A field experiment. American Political Science Review, 94

653–663.

25



Goldberg, Y. and Kosorok, M. R. (2012). Q-learning with censored data. Annals of

Statistics, 40 529.

Hammer, S. M., Katzenstein, D. A., Hughes, M. D., Gundacker, H., Schooley,

R. T., Haubrich, R. H., Henry, W. K., Lederman, M. M., Phair, J. P., Niu,

M. et al. (1996). A trial comparing nucleoside monotherapy with combination therapy

in hiv-infected adults with cd4 cell counts from 200 to 500 per cubic millimeter. New

England Journal of Medicine, 335 1081–1090.

Henderson, R., Ansell, P. and Alshibani, D. (2010). Regret-regression for optimal

dynamic treatment regimes. Biometrics, 66 1192–1201.

Hirano, K. and Porter, J. R. (2009). Asymptotics for statistical treatment rules. Econo-

metrica, 77 1683–1701.

Huang, X., Choi, S., Wang, L. and Thall, P. F. (2015). Optimization of multi-stage

dynamic treatment regimes utilizing accumulated data. Statistics in Medicine, 34 3424–

3443.

Imai, K., Ratkovic, M. et al. (2013). Estimating treatment effect heterogeneity in

randomized program evaluation. The Annals of Applied Statistics, 7 443–470.

Kennedy, E. H. (2019). Nonparametric causal effects based on incremental propensity

score interventions. Journal of the American Statistical Association, 114 645–656.

Kosorok, M. R. and Moodie, E. E. (2015). Adaptive Treatment Strategies in Practice:

Planning Trials and Analyzing Data for Personalized Medicine, vol. 21. SIAM.

Laber, E. B., Lizotte, D. J., Qian, M., Pelham, W. E. and Murphy, S. A. (2014).

Dynamic treatment regimes: Technical challenges and applications. Electronic Journal of

Statistics, 8 1225–1272.

Lavori, P. W. and Dawson, R. (2000). A design for testing clinical strategies: biased

adaptive within-subject randomization. Journal of the Royal Statistical Society: Series A,

163 29–38.

26



Linn, K. A., Laber, E. B. and Stefanski, L. A. (2017). Interactive Q-learning for

quantiles. Journal of the American Statistical Association, 112 638–649.

Luckett, D. J., Laber, E. B. and Kosorok, M. R. (2017). Estimation and optimization

of composite outcomes. arXiv preprint arXiv:1711.10581.

Luedtke, A. R. and van der Laan, M. J. (2016). Optimal individualized treatments in

resource-limited settings. The international journal of biostatistics, 12 283–303.

Mo, W., Qi, Z. and Liu, Y. (2020). Learning optimal distributionally robust individualized

treatment rules. Journal of the American Statistical Association 1–16.

Moodie, E. E., Platt, R. W. and Kramer, M. S. (2009). Estimating response-

maximized decision rules with applications to breastfeeding. Journal of the American

Statistical Association, 104 155–165.

Moodie, E. E., Richardson, T. S. and Stephens, D. A. (2007). Demystifying optimal

dynamic treatment regimes. Biometrics, 63 447–455.

Murphy, S. A. (2003). Optimal dynamic treatment regimes. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 65 331–355.

Murphy, S. A. (2005). An experimental design for the development of adaptive treatment

strategies. Statistics in Medicine, 24 1455–1481.

Murphy, S. A. (2008). An experimental design for the development of adaptive treatment

strategies. Statistics in Medicine, 24 1455–1481.

Orellana, L., Rotnitzky, A. and Robins, J. M. (2010a). Dynamic regime marginal

structural mean models for estimation of optimal dynamic treatment regimes, part I: main

content. The International Journal of Biostatistics, 6.

Orellana, L., Rotnitzky, A. and Robins, J. M. (2010b). Dynamic regime marginal

structural mean models for estimation of optimal dynamic treatment regimes, part II:

proofs of results. The International Journal of Biostatistics, 6.

27



Qi, Z., Cui, Y., Liu, Y. and Pang, J.-S. (2019a). Estimation of individualized decision

rules based on an optimized covariate-dependent equivalent of random outcomes. SIAM

Journal on Optimization, 29 2337–2362.

Qi, Z., Pang, J.-S. and Liu, Y. (2019b). Estimating individualized decision rules with

tail controls. arXiv preprint arXiv:1903.04367.

Qiu, H., Carone, M., Sadikova, E., Petukhova, M., Kessler, R. C. and Luedtke,

A. (2020). Optimal individualized decision rules using instrumental variable methods.

Journal of the American Statistical Association.

Robins, J., Orellana, L. and Rotnitzky, A. (2008). Estimation and extrapolation of

optimal treatment and testing strategies. Statistics in Medicine, 27 4678–4721.

Robins, J. M. (1997). Causal inference from complex longitudinal data. In Latent Variable

Modeling and Applications to Causality. Springer, 69–117.

Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions.

In Proceedings of the Second Seattle Symposium in Biostatistics. Springer, 189–326.

Robins, J. M., Hernan, M. A. and Brumback, B. (2000). Marginal structural models

and causal inference in epidemiology.

Rubin, D. B. (1978). Bayesian inference for causal effects: The role of randomization. The

Annals of statistics 34–58.

Rubin, D. B. (1986). Comment: Which ifs have causal answers. Journal of the American

Statistical Association, 81 961–962.

Song, R., Wang, W., Zeng, D. and Kosorok, M. R. (2015). Penalized Q-learning for

dynamic treatment regimens. Statistica Sinica, 25 901.

Splawa-Neyman, J., Dabrowska, D. M. and Speed, T. (1990). On the application of

probability theory to agricultural experiments. essay on principles. section 9. Statistical

Science 465–472.

28



Staghoj, J., Svarer, M. and Rosholm, M. (2010). Choosing the best training pro-

gramme: Is there a case for statistical treatment rules? Oxford Bulletin of Economics and

Statistics, 72 172–201.

Steinwart, I., Scovel, C. et al. (2007). Fast rates for support vector machines using

gaussian kernels. The Annals of Statistics, 35 575–607.

Tao, Y. and Wang, L. (2017). Adaptive contrast weighted learning for multi-stage multi-

treatment decision-making. Biometrics, 73 145–155.

Tetenov, A. (2012). Statistical treatment choice based on asymmetric minimax regret

criteria. Journal of Econometrics, 166 157–165.

Thall, P. F., Sung, H.-G. and Estey, E. H. (2002). Selecting therapeutic strategies

based on efficacy and death in multicourse clinical trials. Journal of the American Statis-

tical Association, 97 29–39.

Wang, L., Zhou, Y., Song, R. and Sherwood, B. (2018a). Quantile-optimal treatment

regimes. Journal of the American Statistical Association 1–12.

Wang, Y., Fu, H. and Zeng, D. (2018b). Learning optimal personalized treatment rules in

consideration of benefit and risk: with an application to treating type 2 diabetes patients

with insulin therapies. Journal of the American Statistical Association, 113 1–13.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine Learning, 8 279–292.

Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4 65–85.

Wunsch, C. (2013). Optimal use of labor market policies: the role of job search assistance.

Review of Economics and Statistics, 95 1030–1045.

Xiao, W., Zhang, H. H. and Lu, W. (2019). Robust regression for optimal individualized

treatment rules. Statistics in Medicine, 38 2059–2073.

Zhang, B., Tsiatis, A. A., Laber, E. B. and Davidian, M. (2012). A robust method

for estimating optimal treatment regimes. Biometrics, 68 1010–1018.

29



Zhao, Y., Zeng, D., Rush, A. J. and Kosorok, M. R. (2012). Estimating individualized

treatment rules using outcome weighted learning. Journal of the American Statistical

Association, 107 1106–1118.

Zhao, Y.-Q., Zeng, D., Laber, E. B., Song, R., Yuan, M. and Kosorok, M. R.

(2014). Doubly robust learning for estimating individualized treatment with censored

data. Biometrika, 102 151–168.

30



Appendix

A Proof of Proposition 1

Proof. First, we show that an optimal λ˚ for problem (7) exits. By the definition of the

Lagrangian dual function, we have that Lpλq in (7) is an infimum of a collection of linear

functions. Thus, it holds that Lpλq is a convex function. Also, it is not difficult to see that

as λÑ `8, we have Lpλq Ñ `8. Thus, together with the convexity of Lpλq, we have that

Lpλq has compact level sets. That is, for any α P R, the set tλ : Lpλq ď αu is compact.

By the Bolzano-Weistrass Theorem, there exists an optimal Lagrangian multiplier λ˚ that

minimizes Lpλq.

Then, given the optimal Lagrangian multiplier λ˚. Since, by assumption, the primal

solution pβ exists, we have that the function xMpβq is bounded above. We have that a dual

optimal solution rβ exists. �

B Proof of Theorem 2

Proof. In the proof, for ease of presentation, we let the constraint for the primal problem be

pQτ pβq ě q.

We consider the case where the optimal Lagrangian multiplier λ˚ “ 0 or λ˚ ą 0. We

first have that, if λ˚ “ 0, we have that β˚ “ argmax xMpβq by (8). Since pQτ p
rβq ě q by the

feasibility of rβ, we have rβ is also a primal optimal solution, and our clam holds.

If λ˚ ą 0, we show in Lemma 12 that one of the two cases hold

i. There exists a dual optimal solution such that pQτ p
rβq “ q.

ii. There exist at least two solutions achieve the dual optimal objective, denoted as rβ and

rβ1, such that pQτ p
rβq ă q and pQτ p

rβ1q ą q.

Considering the two cases separately, for case (i), there exists a dual optimal solution rβ such
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that pQτ p
rβq “ q. By the weak duality, we have

xMppβq ě xMprβq ` λ˚tq ´ pQτ p
rβqu “ xMprβq,

and our claim holds as desired. Note that in this case, the dual optimal solution actually

also achieves the primal optimality.

We then focus on case (ii). Given the multiplier λ˚, there exist multiple solutions achieve

the dual optimality. Suppose that there are m of them. Let these solutions be βp1q,...,βpmq

be the sequence of solutions ranked by their corresponding primal objective values that

xMpβp1qq ď xMpβp2qq ď ¨ ¨ ¨ ď xMpβpmqq.

Meanwhile, by the dual optimality, we have that

λ˚ xMpβp1qq ` λ
˚
pQτ pβp1qq “ xMpβp2qq ` λ

˚
pQτ pβp2qq “ ¨ ¨ ¨ “ xMpβpmqq ` λ

˚
pQτ pβpmqq.

Since λ˚ ą 0, we have

pQτ pβp1qq ě pQτ pβp2qq ě ¨ ¨ ¨ ě pQτ pβpmqq.

Meanwhile, by our assumption, we have that there exists some k P rms such that

pQτ pβpkqq ě q ě pQτ pβpk`1qq.

This shows that there exists a dual solution, βpk`1q in this case, that satisfies the primal

constraint, and the duality gap is upper bounded by rλp pQτ pβpk`1q ´ qq. Note that by the

discrete nature of the sample quantile function pQτ p¨q, the primal solution’s corresponding

sample quantile value is pQτ p
pβq, which might be different from q. We thus have, the duality

bound can be bounded by rλ
 

pQτ pβpk`1qq ´ pQτ p
pβq
(

, which concludes our proof. �

Lemma 12. For the dual problem (8), suppose that the optimal Lagrangian multiplier λ˚ ą

0. One of the following two cases must hold that

i. There exists a dual optimal solution such that pQτ p
rβq “ q.
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ii. There exist at least two solutions achieve the dual optimal objective, denoted as rβ and

rβ1, such that pQτ p
rβq ă q and pQτ p

rβ1q ą q.

Proof. We prove the lemma by contradiction. We assume the contrary that pQτ p
rβq ă q for

all dual optimal solutions rβ that achieve the dual optimal objective. (Note that the other

case pQτ p
rβq ă q follows by similar arguments.) We have that

Lpλ˚q “ maximize
β

xMpβq ` λ˚tq ´ pQλpβqu

“ maximize
`Prns

xMpβp`qq ` λ˚tq ´ pQλpβ
p`q
qu,

where βp`q “ argmaxβ:Qτ pβq“y`
xMpβqpβq, by the fact that Qτ pβq “ yi for some i P rns.

By our assumption that pQτ p
rβq is strictly less than q. As shown in Lemma 13, we have

that for small ε ą 0, we have

Lpλ˚ ` εq “ maximize
`Prns

xMpβq ` pλ˚ ` εqtq ´ pQτ pβqu

ă maximize
`Prns

xMpβq ` λ˚tq ´ pQτ pβqu

“ Lpλ˚q.

However, since λ˚ is the optimal Lagrangian multiplier by our assumption, it minimizes the

function Lpλ˚q. The above result gives a contradiction, and our result holds as desired. �

Lemma 13. Suppose that the dual optimal Lagrangian multiplier λ˚ ą 0. Let βp`q “

argmaxtxMpβq : pQτ pβq “ y`u for ` “ 1, ..., n. With loss of generality, assume y1 ă y2 ă

¨ ¨ ¨ ă yn. It holds that if 0 ă ε ă min`Pt2,...,nu
 

Mpβp`´1qq ´Mpβp`q
(

,

Lpλ˚ ` εq “ minimize
`Prns

xMpβq ` pλ˚ ` εqtq ´ pQτ pβqu.

Proof. When we perturb the optimal λ˚ to λ˚` ε, the corresponding dual solution becomes

rβ1 “ argmax
β

xMpβq ` pλ˚ ` εqtq ´ pQτ pβqu.

By our choice of ε, it is not difficult to see that our claim holds as desired. �

33



C Proof of Proposition 4

Proof. For ease of presentation, we denote by |Mpqβq and qQτ p
qβq the sample mean and τ -th

quantile of the treatment effects following deterministic decision rule fi “ 1pxJi
qβ ą 0q.

We first prove that there exists a rβ that if we follow the stochastic ITR fpxi, rβq “

Ppfi “ 1q “ t1` expp´xJi
rβqu´1, the corresponding objective can be arbitrarily close to the

objective achieved by the deterministic ITR fi “ 1pxJi
qβ ą 0q, and the quantile constraint

is approximately satisfied by the stochastic ITR. We have that for any qβ and δ ą 0, there

exists some rβ such that
ˇ

ˇ1pxJi
qβ ą 0q ´

 

1 ` expp´xJi
rβq
(´1ˇ

ˇ ď δ for all xi. (Note that

here we implicitly assume that xi ‰ 0. If we indeed have some xi “ 0, we may perturb

the data by letting all x1i “ xi ` δ for some δ such that all x1i ‰ 0.) This implies that

by considering stochastic ITRs that fpxi,βq “ Ppfi “ 1q “ t1 ` expp´xJi βqu
´1, we have

for any given ε1 ą 0, there exists some rβ, such that the corresponding objective satisfies

xMprβq ą |Mpqβq´ε1 and the corresponding quantile constraint satisfies pQτ p
rβq ą qQτ p

qβq´ε1.

In addition, we have that by our assumptions that all outcomes are bounded, and qβ

achieves the quantile constraint in population. Also, as shown above, for any ε1 ą 0, there

exists some rβ such that pQτ p
rβq ą qQτ p

qβq´ε1. We thus have that if n is large enough, problem

(6) is feasible. Note that as nÑ 8 both xMpβq and |Mpβq converge to Mpβq “ EpY ˚pβqq.

Meanwhile, we have xMprβq ą |Mpqβq ´ ε1. We then have for any ε2 ą 0, the solution to our

problem (6), pβ, satisfies that Mppβq ě Mpqβq ´ ε1 ´ ε2 with probability approaching one,

and satisfies the quantile constraint in (6). Since ε1 and ε2 are arbitrary, our claim follows

as desired. �

D Proof of Theorem 5

Proof. Denote by Pn the empirical measure of the observed samples. Let β˚ be a minimizer

to the loss function under the quantile constraint in expectation that

β˚ “ argmax
βPB

Mpβq, subject to Qτ pβq ě q.
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First, we have that as Qτ pβ
˚q ě q, by Theorem 1 of Wang et al. (2018a), it is not difficult to

see that, as n increases, pQτ pβ
˚q ě q´C ¨n´1{2 for some constant C with probability goes to

1. Thus, we have that as n increases, β˚ is a feasible point for problem (6) with probability

goes to 1.

Meanwhile, by the definition that pβ is the maximizer for the empirical mean function

under the constraint, we have that for any n large enough, xMppβq ě xMpβ˚q for all β˚ P B

and satisfies pQτ pβ
˚q ě q´C ¨n´1{2 with high probability. Thus, we only need to prove that

xMppβq ÑMppβq in probability.

By our assumption that β P B, and B is compact, we have that pβ is bounded. This

implies that txMpβq : β P Bu belongs to a Donsker class because it is not difficult to see

xMpβq is Lipschitz continuous with respect to β. Consequently, we have

?
n
 

xMppβq ´Mppβq
(

“ OP p1q.

Our claim holds as desired. �

E Proof of Theorem 6

Proof. The proof is based on an application of Theorem 5.6 of Steinwart et al. (2007).

Specifically, let G be the function class

G “
 

xMpβq ´ xMpβ˚q : β P Qτ pqq
(

,

where β˚ P argmaxβPQτ pqqMpβq, and Qτ pqq “ tβ : Qτ pβ
˚q ě qu. We first have that

Epgq ď 0 for any g P G as β˚ is a maximizer in expectation. Note that our loss function

is Lipschitz conitnuous with respect to β. Denote that Lipschitz constant as CL, we have

|g| ď CL}β ´ β
˚}. As we assume that β P BpMq, we have |g| ď B “ 2MCL. Consequently,

squaring both sides and taking expectations, we have Epg2q ď Epgq ` 4B2.
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Next, for the covering number N
`

B´1G, ε, L2pPnq
˘

, we have

logN
`

B´1G, ε, L2pPnq
˘

ď logN
`

B´1txMpβq : β P BpMqu, ε, L2pPnq
˘

ď logN
`

BpMq, Bε{CL, , L2pPnq
˘

ď logN
`

Bp1q, 2ε, L2pPnq
˘

.

Thus, by Theorem 2.1 of Steinwart et al. (2007), we have that for some constant C,

sup
Pn

logN
`

B´1G, ε, L2pPnq
˘

ď Cε´2.

Consequently, by Theorem 5.6 of Steinwart et al. (2007), there exists a constant CS such

that for all n ě 1 and τ ě 1, we have that

P˚
`

Mppβq ăMpβ˚q ´ CSεpn,C1, B, τq
˘

ď e´τ ,

where

εpn,C1, B, τq “ B ¨
´ 1

n
`

4
?
n

¯

` pB ` C1q
τ

n
.

Our claim holds as desired. �

F Dynamic Treatment Regime with Intermediate Out-

come

In this section, we extend the dynamic treatment regime discussed in Section 5 to the more

general case where we observe intermediate outcome at each stage. Similar to Section 5, we

consider 2-stage dynamic treatment regime for ease of presentation, and the methods and

results for the general T -stage case can be easily generalized. We also assume that the data

are from some SMART trial.

The main difference between the setup with intermediate outcome is that after the first

stage, we observe an intermediate outcome Y
p1q
i for sample i, and after the second stage,

we observe an outcome Y
p2q
i . Let H

p1q
i “ X

p1q
i and H

p2q
i “ pX

p1qJ
i , A

p1q
i , Y

p1q
i ,X

p2qJ
i qJ. We
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consider candidate stochastic F-ITR indexed by β “ tβp1q,βp2qu such that fjpH
pjq
i ,βpjqq “

PpApjqi “ 1|H
pjq
i q “ t1` expp´H

pjqJ
i βpjqqu for j “ 1, 2.

Suppose we have random samples tx
p1q
i , a

p1q
i , y

p1q
i ,x

p2q
i , a

p2q
i , y

p2q
i uiPrns, and we let h

p1q
i “ x

p1q
i ,

and h
p2q
i “ px

p1qJ
i , a

p1q
i , y

p1q
i ,x

p2qJ
i qJ. We consider a backward fitting approach to estimat-

ing the optimal F-ITR. Specifically, letting c
p2q
i pβ

p2qq “ a
p2q
i f p2qph

p2q
i ,βp2qq ` p1 ´ a

p2q
i qt1 ´

f p2qph
p2q
i ,βp2qqu, we estimate the regime for stage 2 by

pβp2q P argmax xMp2q
pβp2qq, subject to pQp2q

τ2
pβp2qq ě q ´ C2{

?
n, (13)

where xMp2qpβp2qq and pQp2q
τ2 pβ

p2qq are the estimators for the mean and τ2-th quantile of out-

come in stage 2 that

xMp2q
pβp2qq “ argminµn

´1
n
ÿ

i“1

c
p2q
i pβ

p2q
qpy

p2q
i ´ µq2,

and

pQp2q
pβp2qq “ argminqn

´1
n
ÿ

i“1

c
p2q
i pβ

p2q
qρτ2py

p2q
i ´ qq,

and C2 is a constant.

After getting pβp2q, we estimate the regime for stage 1. First, similar to (11), we let

c
p1q
i pβ

p1q
q “

a
p1q
i a

p2q
i

π1π2
¨ f
p1q
i ph

p1q
i ,βp1qqf

p2q
i ph

p2q
i , pβp2qq

`
a
p1q
i p1´ a

p2q
i q

π1p1´ π2q
¨ f
p1q
i ph

p1q
i ,βp1qq

`

1´ f
p2q
i ph

p2q
i , pβp2qq

˘

`
p1´ a

p1q
i qa

p2q
i

p1´ π1qπ2
¨
`

1´ f
p1q
i ph

p1q
i ,βp1qq

˘

f
p2q
i ph

p2q
i , pβp2qq

`
p1´ a

p1q
i qp1´ a

p2q
i q

p1´ π1qp1´ π2q
¨
`

1´ f
p1q
i ph

p1q
i ,βp1qq

˘`

1´ f
p2q
i ph

p2q
i , pβp2qq

˘

.

Then, we estimate the F-ITR at stage 1 by

pβp1q “ argmax
βp1q

xMpβp1qq, subject to pQp1q
τ1
pβp1qq ě q1 ´ C1{

?
n, and pQτ pβ

p1q
q ě q ´ C{

?
n,

(14)
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where

xMpβp1qq “ argminµn
´1

n
ÿ

i“1

c
p1q
i pβ

p1q
qpy

p1q
i ` y

p2q
i ´ µq2

is the estimator of the mean of total outcome, and

pQτ pβ
p1q
q “ argminqn

´1
n
ÿ

i“1

c
p1q
i pβ

p1q
qρτ py

p1q
i ` y

p2q
i ´ qq

is the estimator for the τ -th quantile of the total outcome, and

pQp1q
τ1
pβp1qq “ argminqn

´1
n
ÿ

i“1

cipβ
p1q
qρτ1py

p1q
i ´ qq,

where cipβ
p1qq “ a

p1q
i f p1qph

p1q
i ,βp1qq ` p1 ´ a

p1q
i qt1 ´ f p1qph

p1q
i ,βp1qqu, is the estimator for the

τ1-th quantile of the stage 1 intermediate outcome.

For the estimator pβ “ tpβp1q, pβp2qu derived above, we can get similar OP pn
´1{2q rate of

convergence to the optimal risk Mpβ˚q, while satisfying the quantile constraints by backward

induction and similar arguments in the proof of Theorem 6.

Theorem 14. Suppose that β˚ “ tβ˚1 ,β
˚
2u belongs to a compact set BpMq, where M ą 0 is

a constant. Then we have that for all τ ě 1 we have

P˚
`

Mppβq ěMpβ˚q ´ ε
˘

ě 1´ e´τ ,

where P˚ denotes the outer probability for possibly nonmeasureable sets, and ε “ Opn´1{2q.

Or, equivalently,

|Mppβq ´Mpβ˚q| “ OP pn
´1{2

q.

In addition, we have that, with probability goes to 1,

Qp1q
τ p

pβp1qq ě q1, Qp2q
τ p

pβp2qq ě q2, and Qτ p
pβq ě q,

where Qp1q
τ1 pβ

p1qq denotes the τ1-th quantile of the stage 1 intermediate outcome, Qp2q
τ2 pβ

p2qq

denotes the τ2-th quantile of the stage 2 intermediate outcome, and Qτ p
pβq denotes the τ -th

quantile of the total outcome.
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