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Abstract

There has recently been a surge on the methodological development for optimal
individualized treatment rule (ITR) estimation. The standard methods in the literature
are designed to maximize the potential average performance (assuming larger outcomes
are desirable). A notable drawback of the standard approach, due to heterogeneity in
treatment response, is that the estimated optimal ITR may be suboptimal or even
detrimental to certain disadvantaged subpopulations. Motivated by the importance of
incorporating an appropriate fairness constraint in optimal decision making (e.g., assign
treatment with protection to those with shorter survival time, or assign a job training
program with protection to those with lower wages), we propose a new framework that
aims to estimate an optimal I'TR to maximize the average value with the guarantee that
its tail performance exceeds a prespecified threshold. The optimal fairness-oriented
ITR corresponds to a solution of a nonconvex optimization problem. To handle
the computational challenge, we develop a new efficient first-order algorithm. We
establish theoretical guarantees for the proposed estimator. Furthermore, we extend
the proposed method to dynamic optimal I'TRs. The advantages of the proposed
approach over existing methods are demonstrated via extensive numerical studies and

real data analysis.
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1 Introduction

One of the primary goals of precision medicine is to estimate the optimal individualized
treatment rule (ITR), tailoring the treatment recommendation to patients according to their
individual characteristics, such as age, gender, and clinical history. The last decade has wit-
nessed a prodigious surge in research on optimal ITR estimation. Popular existing approaches
for estimating optimal ITRs include model-based methods such as Q-learning (Watkins and
Dayan, 1992; Murphy, 2003; Moodie et al., 2007; Chakraborty et al., 2010; Goldberg and
Kosorok, 2012; Song et al., 2015), A-learning (Robins et al., 2000; Murphy, 2005), model-free
policy search methods (Robins et al., 2008; Orellana et al., 2010a,b; Zhang et al., 2012; Zhao
et al., 2012, 2014), among others (Robins, 2004; Moodie et al., 2009; Cai et al., 2010; Hen-
derson et al., 2010; Thall et al., 2002; Imai et al., 2013; Huang et al., 2015; Tao and Wang,
2017). See Chakraborty et al. (2010); Chakraborty and Moodie (2013); Laber et al. (2014);
Kosorok and Moodie (2015) and references therein for a thorough review. The problem of
optimal ITR estimation has also received considerable attention in other fields, such as rec-
ommending the most effective training program for the unemployed (Frolich, 2008; Behncke
et al., 2009; Staghoj et al., 2010; Wunsch, 2013) and finding the best approach to encouraging
voter turnout (Gerber and Green, 2000; Imai et al., 2013). Several econometrics researchers
studied optimal ITR estimation in a decision theory framework (Hirano and Porter, 2009;
Bhattacharya, 2009; Bhattacharya and Dupas, 2012; Tetenov, 2012).

Typically, an optimal ITR is estimated by maximizing the potential average performance
(assuming a larger outcome is desirable) if all patients in the population were to receive
the treatment recommended by the decision rule. Due to the patients’ diversity in their
responsiveness to treatment and vulnerability to adverse effects, the treatment effects are
often heterogeneous. A notable limitation of the previous work in this area is that the
estimated optimal ITR may be suboptimal or even detrimental to a certain disadvantaged
subpopulation. To provide a concrete illustration of this consequence, we consider a simple

yet illustrative example in Section 2. In this example, applying the standard optimal ITR is



actually harmful to a significant portion of the population. In the setting of recommending
a medical treatment, this severe consequence demands careful attention in order to protect
the vulnerable. Motivated by this concern, we propose a new fairness-aware framework
that aims to estimate a mean-optimal ITR under the constraint that its induced potential
outcome distribution has a lower quantile above a given threshold. For example, we may
maximize the average treatment benefit for the whole population while requiring that 95% of
the patients benefit from the treatment (say, by requiring the 5th percentile of the potential
outcome distribution to be above a prespecified threshold).

Although the proposed fairness-aware optimal ITR (F-ITR) is conceptually intuitive, its
computational and statistical theories are highly nontrivial as the optimal F-ITR corresponds
to a solution to a nonconvex optimization problem. We consider estimating the optimal F-
ITR within a class of stochastic decision rules indexed by a Euclidean parameter. However,
we do not require to specify an outcome regression model. Hence, our approach belongs to the
category of model-free policy search methods. We study both the static and dynamic I'TRs.
We derive the asymptotic convergence theory of the proposed estimator using empirical
process techniques. Considering the class of stochastic treatment rules alleviates some aspect
of the computational challenge. Moreover, we show that doing so will lead to an optimal
decision rule as good as the optimal rule within the corresponding class of deterministic
decision rules. We prove that the estimated optimal decision rule satisfies the quantile
constraint asymptotically, and that its value function converges at a Op(n~'?) rate, where
n is the sample size. We further develop a new first-order dual algorithm to efficiently
compute the estimator. The new algorithm and theory are of independent interest and
can be useful for other optimality criteria, such as the composite criterion in Luckett et al.
(2017) for balancing multiple and possibly competing outcomes and the robust criterion in
Xiao et al. (2019) for achieving robustness against skewed, heterogeneous, heavy-tailed errors
or outliers in data.

We point out that the proposed F-ITR framework is also closely related to robust methods
for deriving the optimal ITRs. There are some robust methods for deriving optimal ITRs.
In particular, Wang et al. (2018a) study the quantile optimal treatment regimes. Linn

et al. (2017); Qi et al. (2019a) propose quantile regression approaches to indirectly and



approximately maximize the quantile of outcomes over some classes of decision rules. Wang
et al. (2018b) study estimating the mean-optimal treatment regime under the constraint on
the mean objectives of risk outcome. Qi et al. (2019b) propose a general decision-rule based
risk measure for individualized decision making. However, none of the work above considers
both mean and quantile objectives simultaneously, though both objectives can be important
in practice.

Paper Organization. The rest of this paper is organized as follows. In Section 2, we
present the fairness-oriented individualized treatment regime. In Section 3, we present our
estimator. In Section 4, we derive the asymptotic result. We extend our framework to dy-
namic treatment regimes in Section 5. We conduct extensive numerical studies in Section 6,

and we conclude the paper and discuss future directions in Section 7.

2 Fairness-Oriented Optimality Criterion

2.1 Notation and Setup

In this paper, we consider the setting of a binary treatment. We denote the treatment for
patient i as A; € {0,1}. Let Y; be the corresponding outcome. Without loss of generality,
we assume that a larger outcome is preferable. To define the optimal ITR, we adopt the
counterfactual (or potential) outcome framework (Rubin, 1978; Splawa-Neyman et al., 1990)
in causal inference. Specifically, let Y;*(0) be the outcome of patient ¢ had this patient receive
treatment 0, and let Y;*(1) be defined similarly. Since each patient can only be assigned to
one treatment, for patient ¢, we observe either Y;(0) or Y;(1), but not both.

We assume that the observed outcome for patient ¢ is Y; = Y;*(0)(1 — 4;) + ¥;*(1)A;. In
other words, the observed outcome is the outcome corresponding to the treatment the patient
actually receives. In causal inference, this is referred as the consistency assumption. Also,
we assume that the potential outcome of one patient should not be affected by treatments

assigned to the other patients, or the stable unit treatment value assumption (Rubin, 1986).



2.2 A Motivating Example

For illustration, we consider a heteroscedastic outcome regression model Y; = 1+ 3A4; + X, —
5A; X; + (1 + A; + 2A;X,)e;, where the covariate X; ~ Unif[0, 1], the noise ¢; ~ N(0, 1),
and the treatment A; = 1 if patient ¢ receives the treatment, and A; = 0 if patient ¢ is in
the control group. We consider the following seven decision rules: (1) A; = 0, for all i; (2)
A= 1(X, < 3/5); (3) A; = 1(X, < 1/2); (4) 4 = 1(X; < 1/5); (5) A; = 1(X, < 1/10); (6)
A; =1 for all i, and (7) random assignment P(A4; = 1) = 0.5. We evaluate the performance

of the seven decision rules on a large independent sample of size 10°.

Table 1: Mean and the 0.10-th quantile of the outcomes of the seven different treatment
regimes estimated using 10° simulated samples

Regime (1)  (2) ) &) 6 ©) (7

mean 1.50 2.40 2.37 2.00 1.78 2.00 1.74
Qo.10 0.16 -0.03 0.20 0.33 0.26 -2.29 -—0.81

Table 1 summarizes the 0.10-th quantile (Qg10) and the mean of potential outcome
distribution of each of the seven decision rules. This example was initially considered in
Wang et al. (2018a) to illustrate the quantile-optimal ITR, which maximizes Q. {Y*(f)}.
In this example, the mean optimal treatment regime is Regime 2, and the optimal 0.10-th
quantile treatment regime is Regime 4. However, Regime 4 only achieves a mean outcome
2.00, which is about 20% lower than the optimal mean outcome achieved by Regime 2. As
an example of the F-ITR, we consider (1) with the 0.10-th quantile being constrained to be
non-negative. This leads to Regime 3 as the desired choice among the seven. We observe that
the mean of Regime 3 is 2.37 and is very close to the unconstrained optimal mean value 2.40
given by Regime 2. This example demonstrates that in some applications, it is sensible and
beneficial to go beyond optimizing a single criterion such as mean or quantile. We further
plot the empirical treatment effect distributions of Regime 2 and Regime 3 in Figure 1, and
we observe that Regime 3 substantially enlightens the left tail of the distribution. This shows

that by slightly reducing the mean, we can potentially achieve much better fairness.
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Figure 1: Empirical distributions of treatment Regimes 2 and 3

2.3 Fairness-Oriented Optimality

Our goal is to tailor the treatment recommendation to patient ¢ by considering the patient’s
individual characteristics, summarized in the covariate vector X; € R, to achieve certain
optimal performance regarding the treatment benefit in the population. An individualized
treatment rule (ITR) is a mapping that takes the covariate vector x; as input and outputs
a binary variable in {0,1}. For computational efficiencies as discussed in the next section,
we consider stochastic ITRs, which output a probability for assigning the treatment. A
stochastic ITR can be represented by f(-,-) : R x U — {0, 1}, where U ~ Uniform[0, 1].
Given an ITR f(-,-), the corresponding potential outcome is Y;*(f) = Y*(1)f(X;,U) +
Y:*(0){1 — f(X;,U)}. Note that from here onward, for ease of presentation, we omit the
term U. In particular, Y;*(f) is the outcome following treatment regime f(-, ), which assigns
patient ¢ to treatment 1 or 0. In this paper, we focus on randomized trials for which A; and
(Y;*(1),Y;*(0)) are independent. Our results can be extended to observational studies, as
discussed in Remark 7.

To evaluate a treatment regime, existing work has focused on the population mean of
the potential outcome distribution, i.e., E{Y*(f)}. We consider a refinement of this metric
by enforcing certain fairness constraints. Intuitively, to protect the vulnerable, we would
wish the lower tail of the potential outcome distribution should not be inferior. Specifically,

the 7-th quantile of Y*(f) is defined as Q. {Y*(f)} = inf{t : F*(t) = 7}, where F* denotes



the cumulative distribution function of Y*(f), and 7 € (0, 1) is the quantile level of interest
(e.g., the 0.10-quantile). Formally, given a collection D of treatment regimes, we propose
to estimate the following fairness-oriented optimal ITR (F-ITR), which is defined as the

solution to the optimization problem
ma>;i%nze E{Y*(f)}, subject to Q- {Y*(f)} = g, (1)
€

where ¢ € R is a pre-specified threshold.

3 Proposed Estimator and Algorithm

3.1 Estimation

We first discuss how to estimate the F-ITR defined in Section 2.2 from a randomized trial.
Denote the observed sample set as {(x;,v;, )}y, i = 1,...,n, where x; € R? denotes the
covariates, y; € R denotes the response, and a; € {0, 1} denotes the treatment. The optimiza-
tion problem in (1) is challenging as it involves a nonsmooth nonconvex objective function
subjecting to a nonsmooth nonconvex constraint. We show below how the computational
challenges can be partly alleviated by considering stochastic ITRs.

Specifically, the stochastic ITR assigns treatment 1 to patient ¢ with probability f(x;, 3),
where f(-,8) € D, a parametric class of functions. For example, we may adopt the logistic
function f(x, 3) = {1+exp(—x'B3)}~!. There has been substantial recent interest in stochas-
tic ITRs, see Luedtke and van der Laan (2016); Diaz and van der Laan (2018); Kennedy
(2019); Diaz and Hejazi (2020); Qiu et al. (2020), among others. Luedtke and van der Laan
(2016) overcomes the challenges of an NP-hard knapsack problem by focusing on stochastic
ITRs. Qiu et al. (2020) showed that in a nonparametric setting with instrumental variables,
the optimal ITR among all stochastic rules is in fact deterministic whenever there is hetero-
geneity in the average treatment effect across subgroups defined by measured covariates in
the population. In Section 4, we also establish a link between the stochastic ITR and the
deterministic ITR for the current problem.

For a stochastic ITR induced by f(x;,3), we denote the mean and the 7-th quantile of



the corresponding potential outcome distribution by M(3) and Q,(3), respectively. The
optimal F-ITR is indexed by the parameter 3*:

B* € argmax M(3), subject to Q.(8) = g, (2)
B

where M(3) is the mean of the potential outcome distribution induced by the ITR index
by 8. Let u(1,X) = E[Vila; = 1,X.] = E[Y;*(1)|X.] and p(0,X;) = E[¥ila = 0,X] =
E[Y;*(0)|X;]. Recalling f;(8) = P(a; = 1| X;, 3), we have

M(B) = E[Y*(1)1(a; = 1) + Y*(0)1(a; = 0)]
= Ex, [M(l, X;) fi(B) + (0, Xi)(l - fz(ﬁ))] (3)

Similarly as in Zhang et al. (2012) and Wang et al. (2018a), we can consistently estimate
M(B) and Q,(B) without specifying an outcome regression model by

M(B) = argmin,n™" > ci(8)(y: — u)?, (4)

i=1

and

Q.(B) = argmingn ™ > ci(B)p-(y; — q) (5)
i=1
respectively, where p,(u) = u{T — 1(u < 0)} is the quantile loss function, and ¢;(8) =

a; f(x;,8) + (1 —a;){1 — f(x;,8)}. We estimate 3* by
B € argmax /ﬁ(ﬁ), subject to @T(ﬁ) > q— C/+/n, (6)
B

where C' is a positive constant. Note that we introduce the term C/y/n to ensure the

~

feasibility of Q,(3) for ease of presentation in the theoretical results. However, this term

can be dropped in practice.



3.2 Lagrangian Dual Problem and its Properties

Solving problem (6) is computationally challenging as the constraint is nonconvex in 3. To
generate a feasible high-quality solution, we consider its Lagrangian dual problem:

minimize £(\) := max {M\(ﬁ) + Mg — @T(ﬁ)}} (7)

A=0

As this dual problem is convex in A, which is a scalar, classical methods such as golden
section search can be applied to efficiently find the optimal A*. Then, the corresponding B,
defined as

B = argmax {M(B) + 3 {q - C.(8)}}, (8)

is the dual optimal solution and satisfies the quantile constraint.

In what follows, we present the key properties of the dual solution B and compare it with
the primal solution B We first show that the dual solution in (8) indeed exists. We provide
the proof in Appendix Section A

Proposition 1. Assume that there ezists a feasible primal optimal solution as in (6). A

dual optimal solution B in (8) also exits.

The next theorem quantifies the duality gap between the primal and dual optimal solu-

tions.

Theorem 2. Let [/3\ be the solution to problem (6), and \* and ,5 be some optimal Lagrangian
multiplier and dual solution to problems (7) and (8), respectively. We have that there exists

a E such that the duality gap is bounded by

—~

M(B) — M(B)| < 3*|0.(B) - 0.(B)|
Proof. See Appendix B for the detailed proof. [

Remark 3. As 3 is a feasible solution to (5), QT(B) > q and QT(B) €{y1, ..., Yn}. Without
loss of generality, assuming 13 < yo < -+ < Yp < q < -+ < Yy, we have that the duality gap

is upper bounded by N\* |y — @T(Bﬂ In the simulation studies in Section 4, we observe that



our algorithm achieves small duality gaps in different settings under consideration, which
demonstrates that the proposed algorithm generates high-qualily solutions in practice. We
emphasize that although in this paper we adopt fi(3) = {1+exp(x; B3)}~*, Theorem 2 actually

holds for general choices of continuous f;.

3.3 Algorithm

We summarize the algorithm below. For the Lagrangian dual problem, during each iteration,

given some A, we solve the follwing problem
max},mize D(B) = /T/I\(B) + )\{@T(,B) —q} (9)

to evaluate the value of the Lagrangian dual function £(A). In the current literature of
precision medicine, this type of problem is commonly solved by genetic algorithms (Whitley,
1994), which are known to be inefficient and lack stability. We propose to solve the problem
by an efficient first-order method. In particular, at the t-th iteration, given the current
solution B, we compute a corresponding sub(super)-gradient v* € 0D,(3"). In particular,

we first consider M (B) in (4). By straightforward calculation, we obtain
M(B) =n~" ) ci(B)yi
i=1

Note that ¢;(3) is smooth due to the use of stochastic ITR. We can thus compute the
gradient of M\(Bt) efficiently, which we denote as v,;. Next, we consider Qf(ﬁ). Due to
the discontinuity of the sample quantile function, we replace the indicator function in in the
quantile loss function p,(u) = u{r — 1(u < 0)} by a sigmoid function.

Taking v = v}, + \vfy, we update the solution by the following gradient step
,Bt+1 _ IBt + th’Ut,

where «y is a prespecified stepsize. This algorithm can be implemented efficiently and displays

satisfactory performance in our simulation experiments.
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4 Statistical Theory

In this section, we present the statistical theory of the proposed estimator. In particular, we
show that the estimator ﬁ achieves the optimal risk asymptotically.

Note that we consider a class of stochastic ITRs, a more general class of decision rules
than deterministic I'TRs. It is not difficult to see that the expected risk achieved by opti-
mal stochastic decision rule is always lower bounded by the risk achieved by the optimal
deterministic decision rule. In addition, consider linear deterministic ITRs of the form
fi(B) = 1(x] B8 > 0) and the corresponding stochastic ITRs fi(8) = P(a; = 1|x;,8) =
{1 +exp(—x;B)}71, the latter of which are our primary focus as discussed earlier. We show
in Proposition 4 below that if some linear deterministic decision rule achieves optimal risk
and satisfies the quantile constraint, there exists a linear stochastic decision rule that ap-
proximates the risk and constraint up to arbitrary precision. Throughout our discussions,

we assume that the response y;’s and the covariates x;’s are bounded.

Proposition 4. Suppose there exists a B, which is an optimal solution to the problem that

é = argmax M(3), subject to Q.(8) = q, (10)
B

where the deterministic ITR f; = 1(x/B > 0) is adopted. Considering problem (6), where
stochastic ITR f(x;,3) = P(fi = 1) = {1 + exp(—x,B)}™" is adopted, denote by B an

optimal solution to problem (6). We have that for any given € > 0, as n — +0, ,@ satisfies

A~

the constraint of problem (2), and P(M(B) = M(B) —¢) > 1.
Proof. See Appendix C for the detailed proof. [ |

The following theorem proves that the risk incurred by ﬁ converges to the optimal risk
R*. To derive the consistency, we employ the empirical process techniques. The detailed

proof is presented in Appendix D.

Theorem 5. Suppose B3* € B, where B is a compact set. Then

lim {M(B) - Sup/\/l(ﬁ)} —0

n—ao0 Beé

11



in probability, where Q denotes the closure of @ ={B:Q.(8) = q}. Thus, if B* belongs
to the closure of @, then limn_,ooM\ = M* in probability, where M and M* denotes the
estimator’s corresponding population mean treatment results and optimal mean treatment

results under the quantile constraint, respectively.
The next theorem derives the convergence rate of M(8) — M(B%).

Theorem 6. Suppose that 3* belongs to a compact set B(M), where M > 0 is a constant.

Then we have thatV 7 = 1 we have
P*(M(B) = M(B*) —e) =1—e,

where P* denotes the outer probability for possibly nonmeasureable sets, and € = O(n_m).

Or, equivalently,

M(B) = M(B")| = Op(n™"72).
Proof. See Appendix E for the detailed proof. [ |

Remark 7. The proposed method and theoretical results can be extended to observational
studies using the propensity score weighting approach. Assume the popular no unmeasured
confounder assumption {Y*(1),Y*(0)} L A|X holds. Leting 7(X) = P(A = 1|X), the
propensity score P(C(8) = 1|X) = n(X) f(X,8) + (1 = 7(X))(1 — f(X,B)). Denoting the

propensity score by w.(X,3), we estimate the mean and the T-th quantile of the treatment

eﬁeCt by a‘rgmln n - Zz 1 ﬂi(f;’ﬁ,@)) (/6) (yl - U) and argmln n - Zz 1 ﬂt-jx“ﬁ (X’M )pT (y’b - Q)7
respectively, where T.(x;, 3) is an estimator of the propensity score w.(x;,3). In our simula-
tion, we use the logistic regression to estimate m.(X;, 3), where we model m(X) as m(X,vy) =
exp(X Ty)/(1+exp(X Tw)). In practice, we may use other semiparametric or nonparametric

models for the estimation.

Remark 8. In practice, the future patient population may not be exactly the same as the
training samples, for example, a slight shift of age or other covariates. To solve this challenge,

we refer the readers to Mo et al. (2020), which addresses the covariate shift problem.
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5 Extension to Dynamic Treatment Regime

We extend the proposed F-ITR to the dynamic setting, which involves a sequence of decision
rules. For example, in treating a chronic disease, the patient’s condition often needs to be
re-evaluated over time. Depending on the patient’s clinical information and how he/she
responds to the previous treatment, the doctor may need to adapt the treatment decision.
For ease of presentation, we consider a two-stage dynamic setting, but our methods and
results can be extended to the general T-stage case by induction. Assume that patient ¢
receives treatment a = {0,1} at stage 1 and treatment a @ ¢ {0,1} at stage 2. At the
end of stage 2, we observe the outcome Y;, based on which the overall treatment effect will
be evaluated. A dynamic ITR has the form f = {f®), @} such that £ is a function of
all information available before making the j-th decision. We denote the baseline covariate

vector as X-(l)

, and denote the covariate at the second stage as X -(2), which may depend
on X, M and a( ) and may include intermediate outcomes. Let H = {X } and H, @ —
{X ,a; , } Throughout our discussion, we adopt the no unmeasured confounder or
sequential ignorability assumption, that is, conditioning on the history, the treatment is
independent of any future information, see Robins (1997) for details. In addition, we adopt

the positivity assumption that there exist positive constants ¢; < ¢z such that ¢; < P(a; =
a|Hj) < ¢y forae {0,1} and j = 1,2.

Here our goal is to estimate the optimal dynamic ITR, which is defined as the one
that maximized the average final outcome under the constraint that a lower quantile of the
potential outcome distribution of the ITR exceeds a given threshold. Consider the class
of candidate ITRs index by 8 = {81, 8®}, and fO(HY|BW) = P = 1|HY) =
{1+ exp(—Hi(j)TB(j))}*l, j =1, 2. Given a 3, we denote the corresponding stochastic
sequential decision rule by d(8) = (di(HW|BW),dr(H®|B®)), where di(HV|BW) =
Bernoulli (fO(HM|BW)) and dy( H®|B®) = Bernoulli( f@(H”|3?)). We sometimes
write d(B) = (d1(BW), dy(B?))) for brevity.

For sample 7, the potential final outcomes are denoted as {Y;*(1,1), Y;*(1,0),Y;*(0,1), Y;*(0,0)},

corresponding to the four possible treatment sequences. Given a dynamic ITR d(8), the

potential intermediate information is denoted by XZ-@)*(dl (BM)) and the potential final out-

13



come is denoted by Y*(d(83)). We have

Y*(d(8)) = V(1L 1)1(d(BY) = 1,ds(8?) = 1)

+Y*(1,0)1(di(BY) = 1,d5(B?) = 0)
+Y*(0,1)1(di(BY) = 0,d5(B?) = 1)
+Y*(0,0)1(di(BY) = 0,do(B%) = 0).

Thus, we have that the population mean of the potential outcome distribution induced by

d(B) is:

M(B) = E[Y*(d(B))]
= E[/OE, B0) 1O H”, B2)u(1,1, HE)
+ fOHEY, B0 - f@)(H@*,ﬂ@’))u(l, 0, H®")

)

+ (1 fOHD, V) FOHD*, BP)u(0,1, HP)
+(1— fOHED, B - O <H<2>*6 ))1£(0,0, H®*)],

where p(ju, jo, H®®) = E[Y*(ja, j2)| X7 A7 = 50, X7 ()], g, € 0,1}

To estimate M(3), suppose we have a sample {xz ,agl),xg ), 1(2),3;1}26 and let h D -
x\" and h§2) = (XZ(»I)T, agl), 1(2)) We further assume that the sample is from the sequential
multiple assignment randomized trial (SMART) (Murphy, 2008; Lavori and Dawson, 2000)
with

m(hY) = P(a®[rMY) = 1, and m(A?) = P(a? ) = 7,
where 7, m5 € (0,1) are two known constants. Let

(1) ()

c(B) = = Y, B £ (Y )
;)8:;;) 170, B (1 - 17 (0, 5) -
+(1(1__—;)§7:)(1 170, B 1 (0, 82
U(f_;);g - fj) (=W 8) (1= P, 89)).

14



Then, we estimate M(3) by

—~

M(B) = argminun_1 2 ci(B)(y; — p)?.

i=1
Similarly, we estimate the 7-th quantile of the outcome by

A~

Q.(B) = argmingn™" Y ci(B)pr(yi — ).

i=1
Then, our estimator for the F-ITR is given by

A~

8= argminﬁj\//\l(ﬁ), subject to Q,(8) = q — C/+/n. (12)

Let M(B*) be the optimal risk satisfying the quantile constraint that Q.(3*) = q. We

derive the risk consistency by showing that M(3) converges to M(3*) as sample size n goes

to infinity. The results hold for general T-stage problems by an induction argument.

Proposition 9. Suppose there exists ,é = {B(l),é(z)}, which s the optimal solution to
the problem dynamic treatment regime problem at the population level, and the deterministic
decision rule is adopted. Considering problem (12), where stochastic decision rule is adopted,
denote by B = {,3(1)7,3(2)} an optimal solution to (12). We have that for any given € > 0,
as n — o, B satisfies the constraint of problem (12), and P(M (B) > M(B) —e) —> 1.

Proof. The proof is similar to the proof of Proposition 4, and we omit it here. [ |
Next, we present the convergence rate. The proof is similar to the proof of Theorem 6..

Theorem 10. Suppose that the optimal regime 3* = {B1M* B@*} belongs to a compact set
B(M), where M > 0 is a constant. Then we have that for all £ = 1 we have

P*(M(B) = M(B*) —¢) =1 — ¢,

where P* denotes the outer probability for possibly nonmeasureable sets, and ¢ = O(n=/?).
Or, equivalently,

IM(B) — M(B*)] = Op(n~?),

15



Remark 11. In this section, we focus on the scenario where the final outcome is of interest.
In Appendiz F, we extend the analysis to a different scenario where a reward is observed at
each stage and the goal is to optimize the total reward while constraining the quantile of the
potential outcome distribution at each stage to exceed some threshold. Meanwhile, suppose
the goal is mazimizing the sum of outcome of stages 1 and 2. Denote the potential outcome
for sample i at stages 1 and 2 with actions al(l) and al(?) by Yi(l)(agl)) and Y;-@)(agl), agg)). We
may just replace the original potential outcome Y*(a",a®) by ;V(a") + ;P (alV, o).

Then the proposed method still applies.

6 Numerical Results

In this section, we conduct extensive numerical studies using both synthetic and real datasets
to investigate the empirical performance of our proposed approach. Our studies demonstrate
that the proposed methods achieve desired quantile constraints and obtain desirable mean

outcomes.

6.1 Monte Carlo Studies

Example 1 (Static ITR) We generate the random outcome y; from the following het-

eroscedastic outcome regression model
Y = 1 + i1 —Tio +$?3 + et +(Ii<3 — 5%2‘1 + 2$i2 —3131'3 +$i4) + {1 +CLZ'(1 +Zi1 + T+ X43 +xi4)}5i;

i =1,...,n, where the z;;’s are independently generated from the Uniform(0, 1) distribution,
and the treatment indicator a; satisfies log {P(a; = 1]x;)/P(a; = 0x;)} = —0.5 — 0.5(z;1 +
Tio + X3+ x44). We consider two different distributions for the random error ¢;: the standard
normal distribution, and a highly non-symmetric distribution x2 — 5. We consider two
different sample sizes n = 500 or 1000.

We consider the class of treatment regimes P(a; = 1|x;) = 1/{1 + exp(—x/n)}. For
each combination of error distribution and sample size n, we consider two different choices

of 7 (0.1 and 0.25). For each 7, we consider two choices of ¢. We aim to answer three
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Table 2: Simulation studies of F-ITR. Under different quantile constraints, where we require
the 7-th quantile of the treatment effect is at least ¢, we report the averaged treatment effects
of sample mean M ean, sample quantile Q,, sample duality gap (Dual), the corresponding
population mean treatment E(M ean), the population quantile E(Q,), and the percentage
of infeasible cases (IF) among the total 1000 simulations.

Error n T q Mupean  9r Dual E(Mpean) E(Q,) IF
N(0,1) 500 0.10 1.00 4.03 1.03 0.04 3.86 1.04 0.8%
(0.25) (0.07) (0.08)  (0.15)  (0.18) NA

1.20 3.83 1.23 0.05 3.74 1.22 6.7%

(0.25) (0.03) (0.16)  (0.14)  (0.13) NA

0.25 1.90 4.07 1.95 0.04 4.05 2.00 0
(0.17)  (0.26) (0.02)  (0.09)  (0.10) NA

2.00 4.04 2.05 0.04 4.01 2.08 0

(0.12) (0.15) (0.02)  (0.03)  (0.06) NA

1000 0.10 1.00 3.93 1.03 0.03 3.88 1.06 0
(0.15)  (0.02) (0.08)  (0.07)  (0.15) NA

1.20 3.76 1.23 0.03 3.74 1.26 3.2%

(0.18) (0.01) (0.03)  (0.16)  (0.10) NA

0.25 1.90 4.01 1.94 0.03 4.04 1.95 0
(0.08) (0.16) (0.03)  (0.02)  (0.04) NA

2.00 4.06 2.04 0.04 3.97 2.06 0

(0.11) (0.17) (0.02)  (0.02)  (0.05) NA

Xg 500 0.10 -0.75 3.30 —0.68 0.06 3.14 —0.75  6.6%
(0.59) (0.14) (0.08)  (0.36)  (0.33) NA

—0.80 3.61 —0.74 0.05 3.53 —0.85 4.2%

(0.50) (0.06) (0.15)  (0.24)  (0.17) NA

0.25 0.45 3.65 0.52 0.07 3.60 0.43 9.6%
(0.45) (0.05) (0.22)  (0.30)  (0.22) NA

0.50 3.52 0.58 0.07 3.44 0.48  10.7%

(0.39) (0.12) (0.16)  (0.31)  (0.15) NA

1000 0.10 —-0.75 3.39 —0.68 0.05 3.28 —-0.71  3.4%
(027) (0.03) (0.05) (0.11)  (0.12) NA

—0.80 3.46 —-0.75 0.06 3.36 —-0.82  1.3%

(0.32)  (0.03) (0.09)  (0.22)  (0.11) NA

0.25 0.45 3.71 0.50 0.04 3.64 0.43 6.7%
(0.28) (0.09) (0.07)  (0.15)  (0.10) NA

0.50 3.62 0.54 0.07 3.54 0.47 8.3%

(0.35) (0.03) (0.07)  (0.16)  (0.16) NA

essential questions through this Monte Carlo study: (1) How well does the proposed F-ITR

meet the quantile constraint for fairness protection? (2) How does the F-ITR compare with
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the traditional mean-optimal ITR without fairness constraint? (3) How does the proposed
algorithm work comparing with the traditional genetic algorithm?

Table 2 summarizes the results based on 1000 simulations runs, including the average of
the estimated mean value (M ean) and the average of the estimated 7-th quantile (Q,) based
on the sample. We also report the averaged duality gap (Dual) for each setting, which is an
estimate of the optimality of the achieved objectives. Furthermore, using a large independent
Monte Carlo sample of size one million, we evaluate the expected mean value (E(Mpean))
and the 7-th quantile (E(Q,)) when the estimated ITR is used to assign treatment for each
individual in the sample. We also report the number of infeasible (IF) cases in the last
column, where our algorithm fails to find a feasible solution among 1000 runs. We point out
that the infeasibility of the problem may due to the random samples that no such regime

satisfying the quantile constraint exists.

Table 3: Quantitative comparisons of the proposed algorithm (Alg) and the genetic algo-
rithm. We report the averaged objective value achieved by different algorithms, and the
averaged running times in seconds after repeating the simulation 1000 times, the values in
parentheses correspond to the sample standard deviations.

Mean 7 =0.10 7 =025
Error n  Method Obj. Time(s) Obj. Time(s) Obj. Time(s)

N(0,1) 500  Alg. 419 301 139  3.08 229  3.07
(0.24)  (0.18)  (0.15)  (0.20)  (0.04)  (0.25)

Genetic 4.14 597 124 2303 204 22.14

(0.18)  (1.61) (0.12) (2.79)  (0.05)  (3.16)

1000 Alg. 408 454 142 446 229  4.66
(0.13)  (0.38)  (0.05) (0.38) (0.07)  (0.16)

Genetic 420  6.95 122 3318  2.04  31.08

(0.13)  (1.64) (0.07) (4.97) (0.05) (2.92)

x2—5 500 Alg. 370 298  -056  3.08 068  2.89
(045)  (0.24) (0.12) (0.23) (0.15)  (0.17)

Genetic 378 642  -0.91 2394 051  20.35

(0.60) (1.24) (0.15) (4.76)  (0.16) (3.72)

1000 Alg. 387 315  -047 403 058  4.08
(0.42)  (0.20) (0.12) (0.28) (0.13)  (0.26)

Genetic 391 710  -0.83  39.10 053  31.85

(0.37)  (1.61) (0.12) (3.75) (0.11) (8.03)

First, the values Q, and E(Q;) reported in Table 2 confirm that the fairness constraints
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Figure 2: Empirical treatment effect distribution of mean optimal treatment regime (Mean-
Opt) and F-ITR under four setups, where we estimate the regimes using n = 500 samples,
and test on 1 million samples. In setups 1 and 2, the errors are from N (0, 1). In setup 1 we
set 7 =0.1, ¢ = 1, and in setup 2, we set 7 = 0.25, ¢ = 2. In setups 3 and 4, the errors are
from x2 — 5. In setup 3, we set 7 = 0.1, ¢ = —0.75, and in setup 4, we set 7 = 0.25, ¢ = 0.5.
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are satisfied. Second, we compare the performance of F-ITR with M-ITR (mean-optimal
ITR without fairness constraint) based on the testing samples. Figure 2 displays the density
plots of the estimated potential outcome distribution of F-ITR and that of M-ITR under four
different setups considered in the Monte Carlo experiment. It is observed that in setups 1,
3, and 4, F-ITR achieves substantially lower left-tail densities comparing with M-ITR while
does not reduce the mean performance significantly. In setup 2, we observe that the two
distributions do not differ significantly. This is because that the mean optimal treatment
regime also satisfies the quantile constraint. In this case, we observe that F-ITR almost
has the same distribution as M-ITR. These figures demonstrate that the proposed F-ITR
leads to improved performance at the left tail, with little sacrifice the overall average benefits.
Furthermore, we observe that when the quantile constraint is relatively relaxed, the achieved
mean value is very close to that of M-ITR. These observations demonstrate strong evidence
supporting the benefits of the proposed F-ITR.

Finally, we evaluate the performance and computational speed of the proposed new
algorithm. We apply the proposed algorithm and the genetic algorithm to estimate the
mean-optimal ITR (M-ITR) and quantile-optimal ITR (maximizing the 7-th quantile of
the potential outcome distribution). Note that the genetic algorithm is not applicable to
F-ITR. Table 3 compares the average computational time and estimated values based on
100 simulation runs. For M-ITR, the new algorithm achieves similar values as the genetic
algorithm does, while reducing the computational time by about one third. For Q-ITR, the
new algorithm achieves significantly better values and only requires a small fraction of the

computational time of the genetic algorithm.

Example 2 (Dynamic ITR) We consider a two-stage example and generate the data from

the model
Y; = 1+xi1+ai1{1—3(a:i1—().2)2}—|—$i2+a1-2{1—5(%2—0.4)2}—1—(1+0.5a2-1—aﬂwil+O.5aig—ai2x¢2)€i,

where ;1 and x;|{z;1, a;1} are generated from uniform distributions on [0,1] and [z, 241 +1],

respectively, and a; |z and ap|{x;1, a1, 20} are generated from Bernoulli(expit(—0.5+4 z;1))
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and Bernoulli(expit(—1+z;2)), respectively. Similarly as in the previous example, we consider
two different distributions for the random error ¢;: the standard normal distribution N (0, 1)
and the asymmetric 0.5 - (x2 — 5) distribution. We consider sequential ITRs of the form
(A1, A), where A; = 1{c1 X7 + by < 0}, and Ay = 1{ce X5 + by < 0}. We consider the
dynamic F-ITR in Appendix F. We aim to optimize the mean value under different quantile
constraints Q, > ¢ for different 7 and q. We consider sample size n = 1000 or 2000

The simulation results are summarized in Table 4. For both normal and chi-square errors,
we provide in the first line the mean of the M-ITR (without constraint) together with its
10% and 25%-th quantiles as benchmarks. It is observed that for both error distributions,
the F-ITR has only slightly smaller mean than M-ITR but satisfies the conditional quantile
constraints well. In contrast, for normal error the M-ITR has negative 0.10 quantile, for the
chi-square error, the M-ITR has negative 0.10 and 0.25 quantiles, suggesting that the M-ITR
may have undesirable effects for fragile individuals. Our proposed F-ITR achieve the desired

constraints, and achieve near-optimal mean treatment effects as the duality gap is small.

6.2 Application

We apply the proposed method to analyze the ACTG175 dataset from the R package
speff2trial. This dataset contains 2,139 HIV-infected patients. These patients are ran-
domly assigned to one of the four treatments including zidovudine (AZT) monotherapy,
AZT+didanosine(ddl), AZT+zalcitabine(ddC), and ddI monotherapy. The goal of the trial
is to determine if the treatment with one drug (monotherapy) is better than the treat-
ment with two drugs (combination therapy) in patients with CD4-T cells between 200 and
500/mm?3. See Hammer et al. (1996) for more details.

In exploratory analysis, we observe heteroscedastic treatment effects and high asymmetry
in the outcome variable distribution. It was known in the medical literature that the patients
who had taken AZT before entering the trial, treated with ddI or AZT+ddl are better than
continuing to take AZT alone. We thus consider the problem of how to assign treatment
to the patients who had taken AZT before the trial, to either continued treatment with
AZT+ddl combination or the ddl monotherapy. Denote A; = 1 if patient ¢ is assigned to
the AZT+ddI therapy, and A; = 0 if the patient is assigned to the ddI monotherapy. The
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Table 4: Simulation studies of F-ITR in dynamic settings. Under different quantile con-
straints, where we require the 7-th quantile of the treatment effect is at least ¢, we report
the averaged treatment effects of sample mean M e, sample quantile Q, sample duality
gap (Dual), the corresponding population mean treatment E(Myean), the population quan-
tile E(Q,), and the percentage of infeasible cases (IF) among the total 1000 simulations.

Error n T q Mmean QIO% 925% Dual E(Mmean) E(QIO%) E(Q25%) IF

N(0,1) 1000 / / 341 -080 137 / 3.18 ~0.71 1.41 /
010 0.00 329 041 1.8  0.15 3.12 0.16 1.86 0
(0.17)  (0.33) (0.21) (0.09)  (0.11) (0.41)  (0.16) /
020 314 060 1.98 0.34 3.06 0.42 1.93 0
(0.18)  (0.25) (0.19) (0.14)  (0.11) (0.32)  (0.08) /
025 1.60 314 036 173 0.19 3.18 0.31 184 32%
(0.26) (0.52) (0.21) (0.11)  (0.15) (0.32)  (0.16) /
170 3.09 049 186 0.22 3.09 0.40 1.83  16.3%
(0.33) (0.26) (0.18) (0.16)  (0.12) (0.47)  (0.15) /
2000 0.10 0.00 3.15 028 182 020 3.16 0.19 1.91 0
(0.14) (0.24) (0.16) (0.18)  (0.04) (0.30)  (0.14) /
020 314 035 188 0.15 3.18 0.27 1.86 0
(0.12)  (0.16) (0.08) (0.11)  (0.04) 0.27)  (0.07) /
025 1.60 320 013 181 0.8 3.16 0.07 179  8.3%
(0.27) (0.21) (0.15) (0.18)  (0.11) (0.61)  (0.13) /
170 312 034 183 0.13 3.18 0.25 189 9.0%
(0.10) (0.29) (0.12) (0.22)  (0.16) (0.24)  (0.11) /
X2 1000 / /319 -—321 —078 / 3.24 —2.80  —043 /
(0.38) (0.61) (0.57)  / (0.16) (1.05)  (0.77) /
010 0.00 278 025 123 0.19 2.91 0.21 1.36 0
(0.26) (0.16) (0.11) (0.26)  (0.13) (0.26)  (0.03) /
020 269 042 139 0.18 2.81 0.36 143 1.3%
(0.24) (0.13) (0.09) (0.38)  (0.15) (0.12)  (0.03) /
1.00 303 005 117 027 2.74 —0.08 118 3.8%
(0.45) (0.07) (0.16) (0.27)  (0.32) NA

110 287 014 123 020 2.94 0.01 134 21.2%
(0.43) (0.41) (0.19) (0.16)  (0.14) (0.38)  (0.14) /
2000 0.10 0.00 279 025 130 0.1 2.93 0.18 1.41 0
(0.20) (0.18) (0.13) (0.10)  (0.09) (0.31)  (0.02) /
020 270 034 124  0.19 2.82 0.38 1.38 0
(0.23) (0.12) (0.14) (0.10)  (0.13) 0.17)  (0.03) /

025 1.00 299 —018 130 014  —0.33 1.22 3.1%
(0.33) (0.40) (0.11) (0.15)  (0.15)  (0.55)  (0.23)  /
110 289 —0.04 126 0.23 2.98 —~0.07 118  23.8%
(0.24) (0.56) (0.07) (0.23)  (0.13) (0.49) 0.14 /

outcome is the CD4 count at 96+5 weeks from baseline (denoted as CD496) as it is a crucial
measure of the progression for HIV-infected patients.

We consider two covariates for estimating the treatment regimes, which are the baseline
weights of the patients, and the baseline CD4-T cell counts. We then estimate the M-
ITR, Q-ITR (maximizing the 0.25-th quantile), and the F-ITR (under the constraint that
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Table 5: Estimated quantiles and means of different treatment regimes for ACTG175 data
analysis.

Method @ 25 M

0.25-th Quantile-optimal 263.0 346.5
Mean-optimal 219.3 403.9
F-ITR 232.4  398.7

the 0.25-th quantile is lower bounded by 230). (It has been observed that when CD4 is
below 200 cells/mm?3, the risk of serious health problems increases. For example, the risk
of PCP (fungal pneumonia) and chest infections rise steeply when the CD4 falls below 200
cells/mm?). The results are summarized in Table 5. We observe that the 0.25-quantiles
and the means are significantly different for the Q-ITR and the M-ITR. Meanwhile, with a

quantile constraint, the estimated mean of the F-ITR is close to the mean of M-ITR.

7 Discussion

To conclude, we propose a new framework for fairness-aware optimal ITR estimation under
a quantile constraint. We show that the proposed estimator satisfies the quantile constraint,
and achieves the optimal mean treatment effects asymptotically. Our extensive simulation
studies demonstrate that though the estimator is derived from a highly nonconvex problem,
our proposed algorithm achieves high-quality solutions in practice.

In practice, it is important to properly choose the quantile level 7 and the threshold ¢
in our proposed model (2). In one of the motivating examples, we aim to control the tail
behavior of the treatment results. Thus, in such applications, we suggest that we let 7 be
0.05 or 0.10, and g be 0 or a small positive number, where we assume that a positive result
means that the patient benefits from the treatment. In future work, we will discuss with
practitioners and make better recommendations.

Unlike the unconstrained mean-optimal ITR approach, the proposed method does not
achieve the Fisher consistency in general even if the decision space increases. We argue here
that by imposing a practically meaningful quantile constraint, the Fisher’s consistency holds

asymptotically. In particular, for the unconstrained approach, as the functional space of the
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decision rule f increases, it is reasonable to assume that in expectation, the treatment effects
are positive for all individuals, i.e., E{Y;*(f)|z;} = 0 for all z;. Meanwhile, as mentioned
above, the main motivation of imposing the quantile/fairness constraint is to ensure vast
majority of the patients would benefit from the treatment. That is, some lower tail of the

distribution of treatment effects is positive. Then, if we impose a constraint that

Qo.os{Y*(f)} =0,

this constraint is satisfied by the optimal solution to the unconstrained I'TR problem by our
assumption. Thus, the two solutions coincide, and the Fisher’s consistency is satisfied.

For future work, our proposed method can be potentially generalized to achieve group
fairness. In particular, suppose that we have a small number of K groups of patients. The
groups can be defined by gender, age, or income status. We can then require the quantile
constraint to be satisfied for each group by imposing multiple constraints. For example,
suppose that we have two groups of patients. Denote the two groups as G; and G,. With a
slight abuse of notation, to ensure that the two groups get fair results, we may impose the

constraints

Q. (Y*(f)) =qforie Gy, k=1,2.

In this case, we have multiple constraints, and by a similar Lagrangian dual approach as we
propose to tackle our original problem with a single constraint, we can potentially solve the
problem. We will study this problem from both algorithmic and statistical perspectives in

the future.
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Appendix

A Proof of Proposition 1

Proof. First, we show that an optimal A* for problem (7) exits. By the definition of the
Lagrangian dual function, we have that £(\) in (7) is an infimum of a collection of linear
functions. Thus, it holds that £()) is a convex function. Also, it is not difficult to see that
as A — +o0, we have £(\) — +00. Thus, together with the convexity of £(A), we have that
L(A) has compact level sets. That is, for any a € R, the set {\ : L(A) < a} is compact.
By the Bolzano-Weistrass Theorem, there exists an optimal Lagrangian multiplier A\* that
minimizes L£(\).

Then, given the optimal Lagrangian multiplier A*. Since, by assumption, the primal
solution B exists, we have that the function M (B) is bounded above. We have that a dual

optimal solution B exists. [ |

B Proof of Theorem 2

Proof. In the proof, for ease of presentation, we let the constraint for the primal problem be
QT(IB) = q.

We consider the case where the optimal Lagrangian multiplier A* = 0 or \* > 0. We
first have that, if A* = 0, we have that 8* = argmax M\(B) by (8). Since @T(B) > ¢ by the
feasibility of B, we have B is also a primal optimal solution, and our clam holds.

If \* > 0, we show in Lemma 12 that one of the two cases hold
i. There exists a dual optimal solution such that O, (8) = ¢.

ii. There exist at least two solutions achieve the dual optimal objective, denoted as B and

@, such that O,(8) < q and O,(8') > .

Considering the two cases separately, for case (i), there exists a dual optimal solution B such
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that @T(B) = ¢. By the weak duality, we have

—~~

M(B) = M(B) + A {q — O.(8)} = M(B),

and our claim holds as desired. Note that in this case, the dual optimal solution actually
also achieves the primal optimality.

We then focus on case (ii). Given the multiplier A*, there exist multiple solutions achieve
the dual optimality. Suppose that there are m of them. Let these solutions be B(,....8(m)

be the sequence of solutions ranked by their corresponding primal objective values that

o~ o~

M(Buy) < M(B) <+ < M(Bimy).

Meanwhile, by the dual optimality, we have that

NM(Buy) + MO, (By) = M(Bray) + A Qr(Bz) = - = M(Bimy) + A* Oy (Bimy)-
Since \* > 0, we have
0. (Bw) = 9 (Bz) = -+ = O (Bmy)-

Meanwhile, by our assumption, we have that there exists some k € [m] such that

0. (Bwy) = 4= Or(Bprsn))-

This shows that there exists a dual solution, B41) in this case, that satisfies the primal
constraint, and the duality gap is upper bounded by X(@T(B(kﬂ) — ¢q). Note that by the
discrete nature of the sample quantile function QT(-), the primal solution’s corresponding
sample quantile value is 0. (,@), which might be different from ¢q. We thus have, the duality
bound can be bounded by X{@T(,B(Hl)) - @T(,@)}, which concludes our proof. [

Lemma 12. For the dual problem (8), suppose that the optimal Lagrangian multiplier \* >
0. One of the following two cases must hold that

1. There exists a dual optimal solution such that @T(B) =q.
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1. There exist at least two solutions achieve the dual optimal objective, denoted as B and

B, such that Q,(B) < q and Q.(B) > q.

Proof. We prove the lemma by contradiction. We assume the contrary that @T(B) < q for
all dual optimal solutions B that achieve the dual optimal objective. (Note that the other
case @T(B) < ¢ follows by similar arguments.) We have that

L(AY) = maxiﬁmize M\(ﬂ) + A\*{q— @A(,B)}

= maximize M(8) + X*{g — Q\(8)},
en
where B = argmaxg.g (), //\/\l(ﬂ)(ﬁ), by the fact that Q,(3) = y; for some i € [n].
By our assumption that @T(B) is strictly less than ¢. As shown in Lemma 13, we have
that for small € > 0, we have
L(\* + ) = maximize M(B)+ (\ +2){g— C.(B)}
en

< maximize M\(B) + A*{q — @T(ﬁ)}

Le[n]

— L.

However, since A\* is the optimal Lagrangian multiplier by our assumption, it minimizes the

function £(A*). The above result gives a contradiction, and our result holds as desired. W

Lemma 13. Suppose that the dual optimal Lagrangian multiplier \* > 0. Let B =
argmax{ﬂ(ﬁ) ; @T(ﬁ) =y} for £ = 1,...,n. With loss of generality, assume y; < ys <
oo < Yp. It holds that if 0 < & < mingea, . n) {M(B(efl)) — M(,B(Z)},

.....

LN + ) = minimizeM(B) + (\* + £){q — 0,(8)}.

Le[n]
Proof. When we perturb the optimal A* to A* + ¢, the corresponding dual solution becomes

~

g = argglaxﬂw) +(\ +e){g— 0. (B)}.

By our choice of ¢, it is not difficult to see that our claim holds as desired. [ |
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C Proof of Proposition 4

Proof. For ease of presentation, we denote by M (,é) and QT(,B) the sample mean and 7-th
quantile of the treatment effects following deterministic decision rule f; = ﬂ(XZTB > 0).

We first prove that there exists a B that if we follow the stochastic ITR f (xi,ﬁ) =
P(f; = 1) = {1 + exp(—x; 3)}~", the corresponding objective can be arbitrarily close to the
objective achieved by the deterministic ITR f; = ]l(X;rB > 0), and the quantile constraint
is approximately satisfied by the stochastic ITR. We have that for any 5 and § > 0, there
exists some 3 such that ‘IL(XZTB > 0) — {1+ exp(—xj,@)}_l‘ < 6 for all x;. (Note that
here we implicitly assume that x; # 0. If we indeed have some x; = 0, we may perturb
the data by letting all x; = x; + § for some § such that all x; # 0.) This implies that
by considering stochastic ITRs that f(x;,8) = P(f; = 1) = {1 + exp(—x/3)}7!, we have
for any given €; > 0, there exists some ,[;, such that the corresponding objective satisfies
M (B) > M (B) — ¢ and the corresponding quantile constraint satisfies @T(B) > QT(B) —£1.

In addition, we have that by our assumptions that all outcomes are bounded, and B
achieves the quantile constraint in population. Also, as shown above, for any £; > 0, there
exists some 3 such that @T(B) > éT(B) —e1. We thus have that if n is large enough, problem
(6) is feasible. Note that as n — oo both M\(B) and M(ﬁ) converge to M(8) = E(Y*(83)).
Meanwhile, we have /\//\1(5) > M(B) — &1. We then have for any &, > 0, the solution to our
problem (6), ,[;, satisfies that M(B) > M(B) — €1 — €9 with probability approaching one,
and satisfies the quantile constraint in (6). Since €; and ey are arbitrary, our claim follows

as desired. ]

D Proof of Theorem 5

Proof. Denote by P,, the empirical measure of the observed samples. Let 3* be a minimizer

to the loss function under the quantile constraint in expectation that

B* = argmax M(3), subject to Q,(8) = ¢.
BeB
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First, we have that as Q,(3*) = ¢, by Theorem 1 of Wang et al. (2018a), it is not difficult to
see that, as n increases, @T(,B*) > ¢—C -n~Y2 for some constant C' with probability goes to
1. Thus, we have that as n increases, (3* is a feasible point for problem (6) with probability
goes to 1.

Meanwhile, by the definition that B\ is the maximizer for the empirical mean function
under the constraint, we have that for any n large enough, M (,@) > M (B*) for all B* € B
and satisfies @T(ﬁ*) > ¢ — C'-n~'? with high probability. Thus, we only need to prove that
M(B) — M(B) in probability.

By our assumption that 3 € B, and B is compact, we have that B\ is bounded. This
implies that {M\(ﬁ) : B € B} belongs to a Donsker class because it is not difficult to see

M (B) is Lipschitz continuous with respect to 3. Consequently, we have

—~

V{M(B) — M(B)} = Op().

Our claim holds as desired. [ |

E Proof of Theorem 6

Proof. The proof is based on an application of Theorem 5.6 of Steinwart et al. (2007).
Specifically, let G be the function class

G = {M(B) - M(B*): Be Q.(q)},

where 3% € argmaxgeg () M(B), and Q,(¢) = {B : Q. (8%) = ¢}. We first have that
E(g) < 0 for any g € G as 3* is a maximizer in expectation. Note that our loss function
is Lipschitz conitnuous with respect to 3. Denote that Lipschitz constant as Cp, we have
lg| < CL|B — B*||. As we assume that 3 € B(M), we have |g| < B = 2M Cy. Consequently,

squaring both sides and taking expectations, we have E(¢?) < E(g) + 4B2.
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Next, for the covering number N(B_lg, €, LQ(PH)), we have

log N(B7'G, e, Ly(P,)) <log N(B"{M(B) : B B(M)},e, Ly(P,))
< log N(B(M), Be/Cy,, Ly(Py,))
< log N(B(1),2¢, Ly(P,)).

Thus, by Theorem 2.1 of Steinwart et al. (2007), we have that for some constant C,

suplog N(B™'G, e, Ly(P,)) < Ce 2.
Py,
Consequently, by Theorem 5.6 of Steinwart et al. (2007), there exists a constant C's such

that for all n > 1 and 7 > 1, we have that
P*(M(B) < M(B*) = Cse(n, C1, B, 7)) < e,

where

1 4
8(72,01,3,7') =B <E+\/—ﬁ

Our claim holds as desired. [ |

) + (B+01)%.

F Dynamic Treatment Regime with Intermediate Out-
come

In this section, we extend the dynamic treatment regime discussed in Section 5 to the more
general case where we observe intermediate outcome at each stage. Similar to Section 5, we
consider 2-stage dynamic treatment regime for ease of presentation, and the methods and
results for the general T-stage case can be easily generalized. We also assume that the data
are from some SMART trial.

The main difference between the setup with intermediate outcome is that after the first
stage, we observe an intermediate outcome Y;(I) for sample i, and after the second stage,

we observe an outcome Yi(2). Let Hi(l) = Xi(l) and Hi(2) = (Xi(l)T,Agl),)/i(l),Xi(Q)T)T. We
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consider candidate stochastic F-ITR indexed by 8 = {8™", 3} such that fi(H J ) ,BU)) =
IP’(A@ = 1\H.(j)) = {1 + exp(— H(j UM} for j =1,2.
Suppose we have random samples {XZ , Z( ), yf ), XZ@)7 az(?), yi(2)}ie[n]7 and we let hgl) = Xgl)a

and h® — (x0T O 0 L OTyT

T 0 v dr N

. We consider a backward fitting approach to estimat-

ing the optlmal F-ITR. Specifically, letting ¢\ (8®) = o/ f@(m®, 8®) + (1 — o?){1 —

)

f(z)(h@) )}, we estimate the regime for stage 2 by

7 7

,3(2) € argmax./(/l\@)(ﬁ ), subject to Q (B ) > q— Cy/\/n, (13)

where M®(8®) and 0P (B®) are the estimators for the mean and 7»-th quantile of out-

come in stage 2 that

M®(B®) = argmin,n Y e (B2)(y* — )2,

i=1

and

2(8%) = argmingn " 3 et (B2)pr, (9 - q),

and Cy is a constant.

After getting 3(2), we estimate the regime for stage 1. First, similar to (11), we let

Da®

: 1) g @) 3
I w80 w5
agl)(l — a@))

2 2

(") =

. fi(l)(hl(l)7/6(1))(1 _ fi(2)(hz(2)’a(2)))

mi(1 — )
(1<1_——;)§7r() (1= 0w ) 1P, )
(1(1— a:)ig —~ ZI(Q))) (1= fPm®, 8M) (1 - f2m®, 3R)).
— — Mg

Then, we estimate the F-ITR at stage 1 by

~

B = argmaxﬂ/t\(ﬂ ), subject to Q (B )= q, — Cy/v/n, and @T(,@(l)) >q—C/vn,
30
(14)
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where

M(BY) = argminn™ 31" (B) (" + 47— p)?

i=1

is the estimator of the mean of total outcome, and

n

9.(BY) = argmingn ' > i (BW)p. (" + 4 — q)

i=1

is the estimator for the 7-th quantile of the total outcome, and

QU(BY) = argmingn ™t Y c:(BV ) (4 ~ 0),
i=1
where ¢;(80) = al” fOMY, B0Y + (1 — ") {1 = fFOMDY, BDY, is the estimator for the
71-th quantile of the stage 1 intermediate outcome.
For the estimator B = {3(1),3(2)} derived above, we can get similar Op(n~"?) rate of
convergence to the optimal risk M (3*), while satisfying the quantile constraints by backward

induction and similar arguments in the proof of Theorem 6.

Theorem 14. Suppose that B* = {87, 85} belongs to a compact set B(M), where M > 0 is

a constant. Then we have that for all T = 1 we have
P*(M(B) = M(B*) —¢) =1—¢ 7,

where P* denotes the outer probability for possibly nonmeasureable sets, and ¢ = O(n=/?).

Or, equivalently,

IM(B) — M(B¥)| = Op(n™).

In addition, we have that, with probability goes to 1,
QW(BY) = g1, QP (BY) = o, and Q-(B) > q,

where Q(TP(B(D) denotes the Ti-th quantile of the stage 1 intermediate outcome, Qg) (B?)

denotes the To-th quantile of the stage 2 intermediate outcome, and Q.(8) denotes the T-th

quantile of the total outcome.
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