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Regularized quantile regression (QR) is a useful technique for analyzing heteroge-
neous data under potentially heavy-tailed error contamination in high dimensions.
This paper provides a new analysis of the estimation/prediction error bounds of
the global solution of L1-regularized QR (QR-LASSO) and the local solutions of
nonconvex regularized QR (QR-NCP) when the number of covariates is greater
than the sample size. Our results build upon and significantly generalize the earlier
work in the literature. For certain heavy-tailed error distributions and a general
class of design matrices, the least-squares-based LASSO cannot achieve the near-
oracle rate derived under the normality assumption no matter the choice of the
tuning parameter. In contrast, we establish that QR-LASSO achieves the near-oracle
estimation error rate for a broad class of models under conditions weaker than
those in the literature. For QR-NCP, we establish the novel results that all local
optima within a feasible region have desirable estimation accuracy. Our analysis
applies to not just the hard sparsity setting commonly used in the literature, but
also to the soft sparsity setting which permits many small coefficients. Our approach
relies on a unified characterization of the global/local solutions of regularized QR
via subgradients using a generalized Karush–Kuhn–Tucker condition. The theory
of the paper establishes a key property of the subdifferential of the quantile loss
function in high dimensions, which is of independent interest for analyzing other
high-dimensional nonsmooth problems.

1. INTRODUCTION

The semiparametric technique of quantile regression (QR) provides a useful
alternative to least-squares regression and has been widely applied to data analysis
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in economics and finance since its introduction in the seminal paper of Koenker
and Bassett (1978). For example, a low quantile of the return distribution of an
investment portfolio provides an assessment of risk commonly known as Value at
Risk. Buchinsky (1994), Chamberlain (1994), Buchinsky (1998), Abadie, Angrist,
and Imbens (2002), Horowitz and Spokoiny (2002), Angrist, Chernozhukov, and
Fernández-Val (2006), Firpo, Fortin, and Lemieux (2009), Galvao, Lamarche, and
Lima (2013), Arellano and Bonhomme (2017), and Graham et al. (2018), among
others, employed QR to study the wage distribution. See also Linton and Whang
(2004), Horowitz and Lee (2005), Koenker and Xiao (2006), Chernozhukov and
Fernández-Val (2011), Chernozhukov et al. (2013), Fitzenberger, Koenker, and
Machado (2013), Su and Hoshino (2016), Koenker (2017), and Koenker et al.
(2017) for other interesting applications of QR in economics. QR helps charac-
terize the entire conditional distribution and often leads to insightful discoveries
that would otherwise be imperceptible. It also has the appealing property of being
robust to heavy-tailed error distributions. By contrast, L1-regularized least-squares
regression, to be called LS-LASSO throughout the paper (Tibshirani, 1996), is
known to be vulnerable to heavy-tailed errors.

Let Y be a random variable, and let X = (x1, . . . ,xp)T be a p-dimensional vector
of covariates. A linear QR model takes the form

Y = XTβ∗ + ε, P(ε ≤ 0|X) = τ, for some 0 < τ < 1, (1)

where the error distribution of ε is generally heteroskedastic, and β∗ =
(β∗

1,β
∗
2, . . . ,β

∗
p )

T is the unknown parameter vector. In this formulation, both
ε and β may depend on the quantile level τ of interest, but we ignore such
dependence in notation for simplicity. Model (1) implies that QY|X(τ ) = XTβ∗,
where QY|X(τ ) = inf{t : FY|X(t) ≥ τ } is the τ th conditional quantile of Y given X.
We are interested in estimating β∗ in the setting where the number of covariates p
is much larger than the sample size n.

This paper develops a useful technique to study high-dimensional QR in a gen-
eral framework under a set of lean assumptions. Our theory relies on establishing a
key restricted strong convexity (RSC) property of the subdifferential of the quantile
loss function in high dimensions. Let Sn(β) be any subgradient of the sample
quantile loss function (see more details in Section 2.3 of the main paper) and
denote � = β −β∗. Theorem 1 of Section 2.2 shows that there exist some positive
constants α∗ and c∗ that do not depend on n or p such that

〈
Sn(β)−Sn(β

∗),�
〉 ≥ α∗||�||22 − c∗

√
logp

n
||�||1,

uniformly on {||�||2 ≤ 1}∩C, with high probability, where the set C, to be made
clearer later in the paper, depends on the specific regularization method and the
sparsity pattern of the true parameter β∗.

The subgradient approach leads to a unified analysis of both the global solution
of the L1-regularized QR (QR-LASSO) and the local solutions of nonconvex
regularized QR (QR-NCP) under a set of mild assumptions while allowing for
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a more general sparsity pattern of β∗. We include both QR-LASSO and QR-NCP
in the analysis because both types of penalty functions are of substantial interest
in the literature and in practice. QR-LASSO is computationally convenient due
to the convexity of the objective function, whereas QR-NCP helps alleviate the
estimation bias due to the potential over-penalization of the L1-penalty. For regu-
larized least-squares regression and generalized linear models in high dimensions,
an equivalent property of RSC has been shown to play a fundamental role in
theoretical analysis. However, such results are available only for differentiable
loss functions. The gradient function of the quantile loss is not even Lipschitz
continuous, which leads to substantial technical challenges. Our proof involves a
novel construction of a Lipschitz continuous lower bound and the use of modern
empirical processes techniques.

In the classical setting where the number of covariates is not large, Wang, Li,
and Jiang (2007), Li and Zhu (2008), Zou and Yuan (2008), Wu and Liu (2009),
Shows, Lu, and Zhang (2010), Kai, Li, and Zou (2011), Wagener, Volgushev,
and Dette (2012), Wang, Zhou, and Li (2013a), and Chen et al. (2019a), among
others, investigated regularized QR for variable selection. Several authors have
recently investigated QR in high dimensions. Belloni and Chernozhukov (2011)
was among the first to rigorously establish estimation error bounds for QR-
LASSO (see also Kato, 2011; Wang, 2013). More recently, Park, He, and Zhou
(2017) investigated multiple QR with high-dimensional covariates, Lee et al.
(2018) studied high-dimensional QR-LASSO with a change point, Harding and
Lamarche (2018) investigated QR-LASSO for panel data, and Chen, Liu, and
Zhang (2019b) explored QR for big data under memory constraint. Moreover,
adaptively weighted QR-LASSO or QR-NCP has been considered for better
variable selection performance in various settings (see Bradic, Fan, and Wang,
2011; Wang, Wu, and Li, 2012; Fan, Fan, and Barut, 2014; Zheng, Peng, and He,
2015, among others). High-dimensional semiparametric QR has been investigated
by Tang et al. (2013), Sherwood and Wang (2016), Zhong et al. (2016), Fan and
Lian (2018), Lv et al. (2018), and Honda, Ing, and Wu (2019), among others.

Inspired by the recent work, this paper makes several new contributions to the
fundamental theory of QR in the regime where the number of covariates p can
grow at an exponential rate of the sample size n.

• We show that QR-LASSO enjoys the near-oracle estimation error rate under a
set of lean assumptions. Our theory permits a rich class of error distributions
as well as a general class of random design matrices without requiring the
nonlinear eigenvalue condition. The estimation error rates are established under
not only the popular hard sparsity setting, but also a more relaxed soft sparsity
assumption which permits many covariates to have small effects.

• For QR-NCP, we show that all local minima within a feasible region have
desirable error bounds and achieve the minimax error rate of estimation. These
new results fill an important theoretical gap in the literature, because the
global minimizers for nonconvex objective functions are not always numerically
obtained or verifiable in practice.
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• We derive the quantile prediction error rate by a general characterization of the
prediction error based on subgradients.

Our results demonstrate that QR-LASSO enjoys near-oracle estimation error
rates for amuch richer class of error distributions than LS-LASSOdoes. The theory
relies on conditions generally weaker than those in the current literature for LS-
LASSO and QR-LASSO. Our analysis of the local minima for QR-NCP is new.
Computation of the global solution of QR-NCP is infeasible in high dimensions.
On the other hand, the empirical results in the literature demonstrate that the
local solutions (obtained by different algorithms) of QR-NCP often significantly
reduce the bias of QR-LASSO. The existing theory of QR-NCP has been focused
on the existence of a local solution with good statistical properties. One main
contribution of our paper is to fill in the gap of the theory by establishing that any
solution satisfying the first-order condition (including global minimum) within a
given radius of the true value has the desirable statistical accuracy. This result
has important implications for the use of QR-NCP as an estimator for the QR
coefficient or as an initial value for inference (see Section 6 for more discussions).
The results substantially generalize those in Loh andWainwright (2015), Mei, Bai,
and Montanari (2018), and Elsener and van de Geer (2018) on the properties of
local minima for differentiable loss functions. It is worth noting that the statistical
properties of local solutions are of broader interest. Even in low dimensions,
algorithms for many nonlinear problems (e.g., nonlinear generalized method of
moments (GMM)) only guarantee first-order solutions (e.g., stationary point).
Moreover, our subgradient approach is different from the techniques commonly
used in the literature of high-dimensional QR and is of significant independent
interest. The proposed technique is applicable to a large class of high-dimensional
nonsmooth problems, for instance, classification based on the hinge loss.

The rest of the paper is organized as follows. Section 2 introduces the back-
ground and a general characterization of the solution of regularized QR based on
subgradients. Section 3 presents the main theory on the estimation error bounds
for QR-LASSO and QR-SCAD in ultra-high dimensions. Section 4 studies the
quantile prediction error bounds. Section 5 reports results from a Monte Carlo
study. Section 6 concludes the paper with additional remarks. Appendixes A–D
contain detailed technical arguments.

1.1. Notation

For any vector v = (v1, . . . ,vp)T ∈ R
p, ||v||2 =

√∑p
i=1 v

2
i denotes its L2-norm,

||v||1 = ∑p
i=1 |vi| denotes its L1-norm, and ||v||∞ = max1≤i≤p |vi| denotes its L∞-

norm. Given an arbitrary index set S ⊆ {1, . . . ,p}, vS denotes the subvector of v
containing the elements whose indices are in S, vSc denotes the subvector of v
containing the elements whose indices are not in S, and |S| denotes the cardinality
of the index set S. For a real symmetric matrix M, λmax(M) denotes its largest
eigenvalue. For sequences of real positive numbers an and bn, an ∼ bn means c1 ≤
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an/bn ≤ c2 for some positive constants c1 and c2. The covariates Xi = (xi1, . . . ,xip)T

are independent p-dimensional sub-Gaussian random vectors with variance proxy
ζ 2
0 , that is, ∀ v ∈ R

p, ∀ t ∈ R, E{exp(tXTi v)} ≤ exp{ζ 2
0 t

2||v||22/2}, where ζ0 is a
positive constant. In this paper, a number is referred to as “a constant” if it does
not depend on (n,p), but it is allowed to depend on the underlying probability
distributions of Xi and εi. The indicator function of an event A, denoted by I(A),
takes the value one ifA occurs and zero otherwise.We often write 1

p as exp(− logp)
to emphasize that this term converges to zero at an exponential rate of logp. The
sign function sgn(t) = 1 if t > 0; = −1 if t < 0; and takes its value in [−1,1] if
t = 0.

2. PRELIMINARIES

In this section, we briefly review regularized QR with convex and nonconvex
penalties, under the hard sparsity or soft sparsity assumption. We then elaborate
on how to use subgradients to characterize the regularized QR solutions, global or
local, with a general penalty function.

2.1. Background

Consider a random sample {Yi,Xi}ni=1 satisfyingmodel (1), whereXi = (xi1, . . . ,xip)′.
To explicitly incorporate the intercept term, we assume xi1 = 1 for all i, and
correspondingly β∗ = (β∗

1,β
∗T− )T where β∗− = (β∗

2, . . . ,β
∗
p )

T .
To avoid overfitting in the setting p � n, we consider estimating β∗ by

regularized QR:

β̂ ≡ β̂(λ) ≡ arg min
β∈Rp

{
n−1

n∑
i=1

ρτ (Yi−XTi β)+
p∑
j=2

pλn(|βj|)
}
, (2)

where λ = λn is positive tuning parameter controlling the complexity of the
solution, ρτ (u) = u{τ − I(u< 0)} is the quantile loss function, β = (β1,β

T−)T ∈R
p,

and pλn(·) denotes a penalty function with tuning parameter λn. A larger value of
λn encourages sparser solutions.

QR-LASSO adopts the popular L1-penalty for which pλn(|βj|) = λn|βj|. It is
computationally convenient due to its convex structure. Alternatively, one may
use a nonconvex penalty function, which can alleviate the bias associated with the
L1-penalty. Two popular choices of nonconvex penalty functions are the SCAD
penalty function (Fan and Li, 2001) and the MCP penalty function (Zhang, 2010).
The SCAD penalty function is defined as

pλ(|β|) = λ|β|I(|β| < λ)+ aλ|β|− (β2 +λ2)/2

a−1
I(λ ≤ |β| ≤ aλ)

+ (a+1)λ2

2
I(|β| > aλ), for some a> 2;



6 LAN WANG AND XUMING HE

whereas the MCP function has the form

pλ(|β|) = λ
(
|β|− β2

2aλ

)
I(|β| < aλ)+ aλ2

2
I(|β| ≥ aλ), for some a> 1.

Most of the existing literature on high-dimensional QR assumes that β∗ satisfies a
hard sparsity constraint, especially

β∗ ∈ B0(s) = {
β ∈ R

p :
p∑
j=2

I(βj �= 0) ≤ s−1
}
, (3)

for some positive constant 1 ≤ s � n, where I(·) denotes the indicator function.
Hence, ||β∗||0 ≤ s and most of the components in β∗ are exactly zero. As is
customary for a regression model in the classical setting, the intercept term is
always included in the model. The sparsity constraints are thus imposed on the
slope components of β∗. Note that this is a subtle difference from high-dimensional
least-squares regression where the intercept is generally taken as zero, which can
be done for mean regression without loss of generality by centering both the
response variable and the regressors. However, such a simplification does not carry
over to QR.

The hard sparsity constraint may be overly restrictive for some applications
which involve many weak signals, rather than just a few strong signals. This
paper also considers a more relaxed sparsity constraint, which allows β∗ to have
many smallish nonzero coefficients. More specifically, the soft sparsity constraint
assumes

β∗ ∈ B1(R) = {
β ∈ R

p :
p∑
j=2

|βj| ≤ R
}

(4)

for some positive number R, which may depend on the sample size. In (4), instead
of L1-norm, we may also use the Lq-norm for some 0 < q < 1. The results of
the paper would still hold under minor modifications. It is worth noting that both
B0(s) and B1(R) may depend on the quantile level τ of interest. Discussions on the
identification of the population parameter β0 in the high-dimensional setting are
given in Appendix A.

2.2. Characterizing the Solutions for Regularized Quantile Regression

We now present a unified characterization of the regularized QR estimators,
including the global solution of QR-LASSO and the local solutions of QR-NCP,
based on a generalized Karush–Kuhn–Tucker (KKT) condition for the convex
difference problem, characterized by subgradients.

A subgradient of a convex function g(β) at β1 is any vector ξ ∈ R
p such that

g(β2) ≥ g(β1)+ ξT(β2 −β1) for all β2. The subdifferential of g(β) at β1, denoted
by ∂g(β1), consists of all the subgradients of g(β) at β1.
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Let

Qn(β) = n−1
n∑
i=1

ρτ (Yi−XTi β) (5)

denote the sample quantile loss function. One can show that the subdifferential
∂Qn(β) comprises vectors Sn(β) = (Sn1(β), . . . ,Snp(β))T , where, for j= 1, . . . ,p,

Snj(β) =− τn−1
n∑
i=1

xijI(Yi−XTi β > 0)

+ (1− τ)n−1
n∑
i=1

xijI(Yi−XTi β < 0)−n−1
n∑
i=1

xijvi (6)

and

vi ∈
{

{0}, if Yi−XTi β �= 0,

[τ −1,τ ], otherwise.

Let Ln(β) =Qn(β)+∑p
j=2 pλn(|βj|) be the regularized quantile objective function

in (2).We observe that for a general class of penalty functions, Ln(β) can be written
as the difference of two convex functions in β:

Ln(β) = L̃n(β)−H(β),

where L̃n(β) = Qn(β) + λ
∑p

j=2 |βj| and H(β) = ∑p
j=2 hλ(βj), where hλ(.) is

differentiable. In the case of LASSO penalty, hλ(βj) = 0, for j= 2, . . . ,p, and thus
L̃n(β) coincides with Ln(β). For the nonconvex SCAD penalty,

hλ(βj) =
[
(β2

j −2λ|βj|+λ2)/(2(a−1))
]
I
(
λ ≤ |βj| ≤ aλ

)
+

[
λ|βj|− (a+1)λ2/2

]
I
(|βj| > aλ

)
,

whereas for the nonconvex MCP function,

hλ(βj) =
[
β2
j /(2a)

]
I
(|βj| < aλ

)+
[
λ|βj|−aλ2/2

]
I
(|βj| ≥ aλ

)
.

For the above convex difference optimization problem, an extension of the KKT
condition was given in Tao and An, 1997, which implies that the solution β̂ =
(β̂1, . . . ,β̂p)

T of (2), global or local, satisfies the following necessary condition:

∇L̃n(β̂)−H′(β̂) = 0, (7)

where ∇L̃n(β̂) denotes some (not necessarily any) subgradient in the subdiffer-
ential of L̃n being evaluated at β̂, and H′(β̂) = (0,h′

λ(β̂2), . . . ,h′
λ(β̂p))

T . Note that
L̃n(β) is the sum of two convex functions. In this paper, we consider stationary
points satisfying (7), which include the solutions given by popular algorithms.
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Lemma 1. Let β̂ be any stationary point of QR-LASSO or QR-NCP satisfying
(7). Then there exists a subgradient Sn(β) ∈ ∂Qn(β) such that

Sn(β̂)+λsgn(β̂)−H′(β̂) = 0, (8)

where sgn(β̂) = (0,sgn(β̂2), . . . ,sgn(β̂p))T .

Consider next a particular subgradient S̃n in ∂Qn(β), given by

S̃n = n−1
n∑
i=1

Xiξi, (9)

where ξi = I(εi < 0)− τ . For regularized QR, λ is usually selected such that the
event

�n = {
λ ≥ c0||̃Sn||∞

}
(10)

happens with high probability for some positive constant c0 > 1. Such a penalty
was also considered in Belloni and Chernozhukov (2011) for QR-LASSO (see
also Kato (2011) for an extension to the group LASSO setting). The above
choice of λ is motivated by the general principle of tuning parameter selection
in regularized least-squares regression (Bickel, Ritov, and Tsybakov, 2009) and
the KKT condition for a general convex difference problem (Tao and An, 1997).
Following the choice for LS-LASSO (Bickel et al., 2009), we take c0 = 2 in the
subsequent analysis.

3. MAIN THEORY

In this section, we provide details on the theoretical properties of the regularized
QR estimator β̂. For QR-LASSO, β̂ denotes the global solution defined in (2),
which also satisfies (7). For QR-NCP, β̂ denotes any local solution satisfying (7).

3.1. Geometric Structure of Regularized Quantile Regression
Estimators

Under the hard sparsity condition, the QR-LASSO estimator is known to lie in a
cone-shaped set with high probability. Let v̂ = β̂ − β∗. Here, we go beyond the
setting of the L1-penalty and hard sparsity to characterize the geometric structure
of v̂.

Let S− = { j : β∗
j �= 0, 2 ≤ j ≤ p} and S = S− ∪ {1}. Given a threshold a > 0,

let S−a = { j : |β∗
j | > a,2 ≤ j ≤ p}. Let Sa = S−a ∪ {1}. The cardinality ||S||0 = s

denotes the sparsity size under the hard sparsity condition. Under the soft sparsity
assumption, s can be much larger than n.

Let


H = {
v ∈ R

p : ||vSc ||1 ≤ 3||vS||1
}
, (11)
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W = {
v ∈ R

p : ||vSca ||1 ≤ 3||vSa ||1 +4||β∗
Sca

||1
}
, (12)


̃H = {
v ∈ R

p : ||vAc ||1 ≤ 3||vA||1
}
, (13)


̃W = {
v ∈ R

p : ||vSca ||1 ≤ 3||vSa ||1 +2||β∗
Sca

||1
}
, (14)

where A is the index set corresponding to the s-largest (in absolute value) elements
of v. It is observed that
H and 
̃H are cone-shaped, but
W and 
̃W are star-shaped.
For example, if v ∈ 
W , then the whole line segment {tv|t ∈ (0,1)} is contained in

W . The sets 
W and 
̃W depend on a, but we omit the dependence in notation for
simplicity.

We use fi(t) to denote the conditional probability density function of εi given
Xi, i = 1, . . . ,n. We also assume, without loss of generality, that the covariate
X−i = (xi2, . . . ,xip)T is a (p−1)-dimensional mean-zero random vector, and � =
E(XiXTi ) exists. Conditions (C1)–(C3) below constitute a set of basic assumptions
for establishing the statistical properties of the regularized QR estimator in high
dimensions.

Condition (C1). The conditional distribution of εi satisfies P(εi ≤ 0|Xi) = τ ,
i= 1, . . . ,n. There exist positive constantsm0 and b0 such that inf1≤i≤n fi(t) ≥
m0 > 0, for all |t| ≤ b0.

Condition(C2). The matrix � satisfies λmax(�) ≤ ku < ∞, and

vT�v≥ m1||v||22, for any v ∈ C, (15)

for some constantm1, where for QR-LASSO,C= 
H under the hard sparsity
assumption, andC= 
W under the soft sparsity assumption whereas for QR-
NCP, C = R

p.

Condition (C3). Let σ̂ 2
j = n−1∑n

i=1 x
2
ij. There exist a constant mx > 0 and a

positive sequence of numbers δn such that P
(
max1≤j≤p σ̂ 2

j ≤ mx
) ≥ 1− δn,

where δn → 0 as n→ ∞.

Remark 1. Condition (C1) imposes regularity conditions on the random error
distributions, which allow for heteroskedastic error distributions and do not
require the existence any moment. The constant b0 in (C1) may depend on the
probability distribution of Xi, as described in Lemma C.2 of Appendix C. A
large class of heavy-tailed error distributions, such as the Cauchy distribution,
satisfy condition (C1). The restricted eigenvalue condition in (C2) is similar to
those imposed for regularized least-squares regression. For QR-LASSO, (15) is
exactly the same as the restricted eigenvalue condition for LS-LASSO as the
restriction sets 
H and 
W have the same forms as those for LS-LASSO. For
QR-NCP, the requirement of C = R

p amounts to assuming λmin(�) ≥ m1 > 0.
However, if we restrict our attention to a sparse local solution, then this can
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be replaced by weaker sparse eigenvalue condition in Zhang (2010). Finally,
condition (C3) is satisfied if the covariates have sub-Gaussian distributions. It
can also be satisfied when some of the covariates do not have sub-Gaussian
distributions. For example, if a small subset (say fixed size) of covariates
only have finite second moments, whereas the others follow the sub-Gaussian
distributions with bounded variance proxy, then (C3) still holds. Overall, the
above set of conditions is similar to or weaker than that in the literature for
high-dimensional QR. Some detailed comparisons are given in Remark 3 of
Section 3.3.

Lemma 2 (QR-LASSO). Assume λ = k0
√
logp/n, where k0 ≥ 4

√
mx is a

constant. Suppose conditions (C1) and (C3) are satisfied. Then, with probability
at least 1−δn−2exp(− logp), (i) v̂ ∈ 
H under the hard sparsity assumption and
(ii) v̂ ∈ 
W under the soft sparsity assumption.

For QR-LASSO, the geometric structure is a result of the convexity of the
regularized quantile loss function. The first part of Lemma 2 under hard sparsity
was observed in Belloni and Chernozhukov (2011), whereas the result under soft
sparsity is new and is a generalization of Negahban et al. (2012). For QR-NCP,
the geometric structure is less transparent. Instead, the structure is implicit in the
derivation of the estimation error bound.

For QR-NCP, we have v̂ ∈ 
̃H under the hard sparsity assumption and v̂ ∈ 
̃W

under the soft sparsity assumption with high probability. Due to the reliance on
the conditions of later theorems, we refer to Corollary 1 in Section 3.3 for a full
description of the results.

3.2. Properties of Subgradients in High Dimensions

We first state a useful property for the subgradient S̃n defined in (9). The following
lemma gives a high probability bound for its supremum norm.

Lemma 3. Suppose conditions (C1) and (C3) are satisfied. We have

P
(||̃Sn||∞ ≤ 2

√
mx logp/n

) ≥ 1− δn−2exp(− logp).

The lemma suggests that the event �n defined in (10) occurs with a high
probability for an appropriate choice of λ at the rate

√
logp/n.

Theorem 1 provides a core result for establishing error bounds for QR-LASSO
and QR-NCP by showing that a type of restricted convexity condition holds with
high probability for any subgradient in the subdifferential of the sample quantile
loss function.

Theorem 1 (Restricted strong convexity). Suppose conditions (C1)–(C3) are
satisfied. There exist some positive constants a∗, c∗, a1, and a2, such that for any
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subgradient Sn ∈ ∂Qn(β),

〈
Sn(β

∗ +�)−Sn(β
∗),�

〉 ≥ a∗||�||22 − c∗
√
logp

n
||�||1, (16)

uniformly on {||�||2 ≤ 1} ∩ C, holds with probability at least 1 − δn −
a1 exp(−a2 logp), where C is defined in condition (C2) and δn → 0 is given in
condition (C3).

Remark 2. This theorem guarantees an RSC condition on {||�||2 ≤ 1}∩C.
Lemma C.4 in Appendix C shows that a slightly weaker result holds uni-
formly on {||�||2 > 1} ∩ C. Specifically, with probability at least 1 − δn −
a1 exp(−a2 logp), 〈Sn(β∗ +�)−Sn(β∗),�〉 ≥ a∗||�||2 − c∗

√
logp
n ||�||1, uni-

formly on {||�||2 > 1}∩C. Similar RSC-type conditions have been considered
in the recent literature on high-dimensional M-regression (Negahban et al., 2012;
Loh and Wainwright, 2015, among others). However, the existing literature has
only considered smooth (second-order differential) loss functions. To the best
of our knowledge, this is the first time the RSC condition is established for a
nonsmooth loss function, which is more technically challenging due to the fact
the gradient function is not even Lipschitz continuous. Our proof is based on a
novel construction of a Lipschitz continuous lower bound and the application
of advanced empirical process theory techniques (e.g., peeling). Our approach
can be applied to other nonsmooth high-dimensional problems and is of interest
beyond QR.

3.3. Estimation Error Bounds

This subsection derives the L2-error and L1-error bounds for the estimator β̂ under
both the hard sparsity assumption and the soft sparsity assumption. It is worth
emphasizing that the results here are nonasymptotic in the sense that the error
bounds hold for any (n,p) satisfying the stated conditions. The theory allows the
number of covariates p to grow at an exponential rate of the sample size n, often
called the ultra-high-dimensional setting. In the sequel, a∗, c∗, a1, and a2 denote
the positive constants given in Theorem 1.

Theorem 2 (QR-LASSO). Suppose conditions (C1)–(C3) are satisfied. Let λ =
k0

√
logp/n, where k0 ≥ 4

√
mx is a constant.

(i) (Hard sparsity case) Assume β∗ satisfies the hard sparsity assumption (3),
with n> (a∗

1)
2s logp, where a∗

1 = 4(2k0+c∗)/a∗.Then, with probability at least
1−4δn−4exp(− logp)−2a1 exp(−a2 logp),
||β̂ −β∗||2 ≤ a∗

1

√
s logp/n and ||β̂ −β∗||1 ≤ 4a∗

1s
√
logp/n.

(ii) (Soft sparsity case) Assume β∗ satisfies the soft sparsity assumption (4). For
any R satisfying R≥ √

logp/n and a∗
1

√
logp/nmax{2,R} < 1/2, we have, with
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probability at least 1−4δn−4exp(− logp)−2a1 exp(−a2 logp),
||β̂ −β∗||2 ≤ a∗

2R
1/2(logp/n)1/4 and

||β̂ −β∗||1 ≤ 4
(
a∗
2

√|Sa|R1/2(logp/n)1/4 +||β∗
Sca

||1),

where a∗
2 = 2max

{√
2a∗

1,
√
a∗
1

}
, Sa = S−a ∪ {1} with S−a = { j : |β∗

j | > a,2 ≤
j≤ p}, and a> 0 is an arbitrary thresholding parameter.

Remark 3 (On the results of QR-LASSO for the hard sparsity case). In this
case, the L2 estimation error of QR-LASSO has the rate

√
s logp/n. This matches

the minimax optimal rate for LS-LASSO, established in Raskutti, Wainwright, and
Yu (2011) under the assumption of sub-Gaussian errors for the hard sparsity case.
In the oracle case (when the underlying model is known), the L2 estimation error
has the rate

√
s/n. The above minimax rate is near-oracle up to a factor of order√

logp, the price to pay for not knowing in advance which of the p covariates are
relevant.

The results in Theorem 2(i) for the hard sparsity case are inspired by the earlier
work of Belloni and Chernozhukov (2011) and Wang (2013), which obtained
the same rates for the L2 error bound. However, our proof employs a different
technique and requires weaker conditions. Comparing with the conditions in
Belloni and Chernozhukov (2011), we relaxed the conditions on both � and εi.
We have dropped their restricted nonlinearity condition on� (their condition D.4),

which would require q := infδ∈A,δ �=0
{E(|XTi δ|2)}3/2
E(|XTi δ|3) > 0 for some restricted setA. Such

a condition is not needed for the parallel theory of LS-LASSO. Furthermore, if
the nonlinear impact coefficient q converges to zero at a sufficiently fast rate, this
may have a negative impact on the feasible range of n and p through the growth
condition

√
s log(p∨n) ≤ O(q

√
n) required in the main theorem (Theorem 2) of

Belloni and Chernozhukov (2011). Unlike Belloni and Chernozhukov (2011), we
do not require the conditional random error density fi(t) to be continuously dif-
ferentiable nor the derivative to be uniformly bounded everywhere. We only need
a uniform lower bound for fi(t) in a neighborhood of zero. Our assumptions are
also significantly weaker than those in Wang (2013), which required independent
and identically distributed (i.i.d.) random errors and a restricted isometry-type
condition in addition to the restricted eigenvalue condition.

Remark 4 (On the results of QR-LASSO for the soft sparsity case). The results
in Theorem 2(ii) for the soft sparsity case are new for high-dimensional QR. The
soft sparsity scenario allows for dense small coefficients. The radius of the L1-ball
B1(R) is allowed to shrink or diverge with the sample size n. In this case, we obtain
the L2 error rate R1/2(logp/n)1/4 for QR-LASSO, which also matches the minimax
optimal rate in the soft sparsity case for LS-LASSO in Raskutti et al. (2011). The
L1-error bound is larger than the L2 error bound. However, one may still achieve an
L1-consistency rate under additional structural assumptions on β∗. As suggested
by an anonymous referee, let us consider an example of an approximately sparse
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model for illustration. Without loss of generality, we assume |β∗
2 | ≥ |β∗

3 | ≥ · · · ≥
|β∗
p |, and that there exists a positive integer q < p such that q

√
logp/n = o(1)

and βj = ( 12 )
j−q√logp/n, for j = q+ 1, . . . ,p. Then

∑p
j=q+1 |β∗

j | = O(
√
logp/n).

Taking a = |β∗
q | and assuming R is bounded, the result in Theorem 2(ii) implies

that ||β̂ −β∗||1 = O(q1/2R1/2(logp/n)1/4).

Remark 5. The regularization parameter λ is taken to be of the order
√
logp/n,

the universal penalty level introduced in Donoho and Johnstone (1994). The
literature of regularized high-dimensional regression often focuses on statistical
analysis with a penalty parameter of this order (e.g., Bickel et al., 2009). In practice,
an appealing approach (Belloni and Chernozhukov, 2011) is to directly simulate
λ as the (1− α)-quantile of the distribution of c||̃Sn||∞, for some small α > 0.
This is feasible by observing that the distribution of ||̃Sn||∞ is pivotal. With this
simulated λ, the same estimation error bound would hold with probability at least
1−α −4δn−4exp(− logp)−2a1 exp(−a2 logp).

Remark 6. Lemma B.1 in Appendix B demonstrates that for a certain class of
heavy-tailed error distributions and a general class of design matrices, there is a
positive probability that LS-LASSO cannot achieve the near-oracle rate derived
under the normality assumption no matter the choice of the tuning parameter. In
contrast, the results for regularized QR in this paper hold for a much larger class of
error distributions. Our results, hence, provide strong evidence for the robustness
and broader applicability of QR in high dimensions.

Theorem 3 gives the estimation error bounds for the feasible local solutions
of QR-NCP. The nonconvex penalty function is assumed to satisfy the following
general conditions. The penalty function pλ(t) is defined on the real line and
is symmetric about zero. It is assumed to be nondecreasing and concave for
t ∈ [0, +∞), with a continuous derivative p′

λ(t) on (0,+∞) and limt→0+ p′
λ(t) = λ.

For t > 0, pλ(t) is nonincreasing in t. Furthermore, there exists a constant γ0 > 0
such that the function t �→ ρλ(t)+ γ0

2 t
2 is convex. This class of nonconvex penalty

functions, in particular, includes the popular choices SCAD and MCP penalties
discussed in Section 2.1.

Theorem 3 (QR-NCP). Let λ = k0
√
logp/n, where k0 ≥ 4max{2√mx,c∗}.

Suppose conditions (C1)–(C3) are satisfied. Consider any feasible local solution
β̂ such that ||β̂||1 < κ , for some κ > ||β∗||1, and the KKT condition (7) is satisfied.
(i) (Hard sparsity case) Assume β∗ satisfies the hard sparsity assumption (3).

If
√
logp/n < 2a∗

3κk0
and a∗ > 3

4γ0, then, with probability at least 1− 4δn −
4exp(− logp)−2a1 exp(−a2 logp),
||β̂ −β∗||2 ≤ a∗

3

√
s logp/n, and ||β̂ −β∗||1 ≤ 4a∗

3s
√
logp/n,

where a∗
3 = 6k0

4a∗−3γ0
.

(ii) (Soft sparsity case) Assume β∗ satisfies the soft sparsity assumption (4). If√
logp/n<max{R, 2a∗

3κk0
} and a∗ > γ0, then, with probability at least 1−4δn−
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4exp(− logp)−2a1 exp(−a2 logp),
||β̂ −β∗||2 ≤ a∗

4R
1/2(logp/n)1/4, and

||β̂ −β∗||1 ≤ 4a∗
4

√|Sa|R1/2(logp/n)1/4 +2||β∗
Sca

||1,

where a∗
4 = 2max

{
3
√
2k0

2(a∗−γ0)
,

√
k0

a∗−γ0

}
, and |Sa| is defined the same as in

Theorem 2.

Remark 7. The assumption of the KKT condition (7) is satisfied for the local
solutions corresponding to the SCAD orMCP penalty function. The side condition
||β̂||1 ≤ κ as was also adopted in Loh and Wainwright (2015) in order to focus on
sensible local solutions. The high-probability error bound in this theorem applies
to any feasible local solution within the radius κ of the true value β∗. A careful
examination of the proof reveals that κ can diverge to ∞ as long as κ

√
logp/n=

o(1). It is noted that we do not restrict the local solution to be sparse even for the
hard sparsity setting. In practice, one would not wish to choose an exceedingly
large κ , as the conditions of the theorem suggest that the non-asymptotic bounds
hold with a larger n when κ is larger.

Embedded in the proof of Theorem 3 is a result on the geometric structure of the
local solution of QR-NCP. Unlike the result in Lemma 2 about the geometric struc-
ture of the global solution of QR-LASSO, the result for QR-NCP in Corollary 1 is
new.

Corollary 1 (QR-NCP). Assume the conditions of Theorem 3 are satisfied.
Then, with probability at least 1−4δn−4exp(− logp)−2a1 exp(−a2 logp), where
a1 and a2 are the positive constants in Theorem 1, we have (i) v̂ ∈ 
̃H under the
hard sparsity assumption and (ii) v̂ ∈ 
̃W under the soft sparsity assumption.

4. QUANTILE PREDICTION ERROR BOUNDS

Finally, we establish theoretical guarantees for the prediction error bounds of the
regularized QR estimators in high dimensions. The empirical quantile prediction
error is given by

Rn(β̂) = Qn(β̂)−Qn(β
∗),

where the sample quantile loss function Qn(β) is defined in (5). Our result does
not impose restrictions on which regularized procedure is used. Specifically, the
prediction error is evaluated using β̂, either the global solution from QR-LASSO
or a local solution from QR-NCP.

A key result of this section is a general characterization of the prediction error
bound based on subgradients. Consider any two subgradients Sn and Sn in ∂Qn(β).
The convexity of the loss function Qn(β) implies that

Qn(β̂) ≥ Qn(β
∗)+Sn(β

∗)T(β̂ −β∗), (17)
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Qn(β
∗) ≥ Qn(β̂)+Sn(β̂)T(β̂ −β∗). (18)

Combining inequalities (17) and (18), we immediately obtain

|Qn(β̂)−Qn(β
∗)| ≤ max

{||Sn(β∗)||∞,||Sn(β̂)||∞
}||β̂ −β∗||1.

This leads to simple bounds for the prediction error for the general case (global or
local solution, hard or soft sparsity).

Theorem 4. Let λ = k0
√
logp/n, where k0 ≥ 4max{2√mx,c∗}. With probability

at least 1− δn−2exp(− logp), we have

|Rn(β̂)| ≤ 4λ||β̂ −β∗||1. (19)

Corollary 2 summarizes the results for the quantile prediction error. These
results are new for high-dimensional QR. Our results extend the prediction error
bound for the LS-LASSO (see Greenshtein and Ritov, 2004; Bunea, Tsybakov,
and Wegkamp, 2007; Bickel et al., 2009; Raskutti et al., 2011). Unlike QR, the
precision error bound for LS-LASSO is usually studied based on the least-squares
loss function n−1∑n

i=1(εi − XTi γ )2. Our approach can also be applied to other
(possibly nondifferentiable) convex loss functions.

Corollary 2.

(i) (Slow rate, without sparsity assumption) Let β̂ be the QR-LASSO or QR-NCP
estimator. For any tuning parameter λ, for any n, we have

|Rn(β̂)| ≤ 2λ||β∗||1, for LASSO,

|Rn(β̂)| ≤ 4λ(||β∗||1 +R), for QR-NCP.

(ii) (QR-LASSO, faster rate) Let β̂ be the QR-LASSO estimator. Assume the
conditions of Theorem 2 are satisfied. Then, with probability at least 1−4δn−
4exp(− logp)−2a1 exp(−a2 logp),
|Rn(β̂)| ≤ b∗

1s logp/n, hard sparsity case,

|Rn(β̂)| ≤ b∗
2

(
a∗
2

√|Sa|R1/2(logp/n)3/4 +||β∗
Sca

||1(logp/n)1/2),
soft sparsity case,

where b∗
1 = 16k0a∗

1, b
∗
2 = 16k0, and a∗

1, a
∗
2, and Sa are defined the same as in

Theorem 2.
(iii) (QR-NCP, faster rate) Let β̂ be the QR-NCP estimator. Assume the condi-

tions of Theorem 3 are satisfied. Then, with probability at least 1− 4δn −
4exp(− logp)−2a1 exp(−a2 logp),
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|Rn(β̂)| ≤ b∗
3s logp/n, hard sparsity case,

|Rn(β̂)| ≤ b∗
4

[
2a∗

4

√|Sa|R1/2(logp/n)3/4 +||β∗
Sca

||1(logp/n)1/2
]
,

soft sparsity case,

where b∗
3 = 4k0a∗

3, b
∗
4 = 8k0, and a∗

3, a
∗
4, and Sa are defined the same as in

Theorem 3.

Remark 8. The rate in (i) is known as the “slow rate” for prediction error in the
literature on LS-LASSO. It is obtained without assuming any structure for β∗ or
any assumption on the design matrix. In (ii) and (iii), the rates for the hard sparsity
case are the same as the so-called “fast rate” in the literature for LS-LASSO. The
upper bounds for the soft sparsity case in (ii) and (iii) permit faster rates when
the true value β∗ has certain desirable structural properties, particularly when the
number of relatively large signals in β∗ is of a relatively small order, whereas the
number of relatively small signals is much smaller relative to R. For example, for
the example of the approximately sparse model discussed in Remark 4, we have
|Rn(β̂)| = O(q1/2R1/2(logp/n)3/4) in the soft sparsity case for both QR-LASSO
andQR-NCP. Finally, we note that for all these scenarios, we require overall milder
conditions on the random error distributions than those required in the literature
for LS-LASSO.

5. A MONTE CARLO EXPERIMENT

In this section, we carry out a Monte Carlo experiment to confirm some of the
theoretical findings about LASSO or SCAD regularized QR versus least-squares
regression under the same form of penalization.

We generate (X1,X2, . . . ,Xp) from the multivariate normal distribution Np(0,�)

with � = (σjk)p×p and σjk = 0.5| j−k|, 1≤ j,k≤ p. For the regression parameter β∗,
we consider two different models.

• Model 1 (sparser model): β∗ = (2,1,1.5,1.75,0Tp−4)
T ,

• Model 2 (denser model): β∗ = 3
n (1n,0

T
p−n)T ,

• Model 3 (dense model): β∗ = (2,1,1.5,1.75,β∗
5, . . . ,β

∗
p )

T , where β∗
j =

(0.5) j−4√logp/n, for j= 5, . . . ,p,

where 0k denotes the k-dimensional vector of zeros, whereas 1k denotes the k-
dimensional vector of ones. For each model, we consider three different random
error distributions for εi: the N(0,1) distribution, the mixture normal distribution
aN(0,1)+ (1− a)N(0,102) where a ∼ Bernoulli(0.95), and the Cauchy distribu-
tion with location 0 and scale 1.

We consider LS_Oracle, QR_Oracle, LS_LASSO, QR_LASSO, LS_SCAD
(SCAD regularized least-squares regression), and QR_SCAD (SCAD regularized
QR), where the quantile methods are based on τ = 0.5, and LS_Oracle and
QR_Oracle are computed using the true model structure. For n= 100 and p= 500,
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Figure 1. Box plots of the L2 estimation error for Model 1 based on six methods: LS_Oracle,
QR_Oracle, LS_LASSO, QR_LASSO, LS_SCAD, and QR_SCAD.

the box plots for the L2-errors of the six methods based on 1,000 simulation runs
for Models 1–3 are given in Figures 1–3, respectively.

For the LASSO penalty, the tuning parameter is selected using a fivefold
cross-validation. For the SCAD penalty, the tuning parameter is selected using
a high-dimensional BIC procedure (Wang, Kim, and Li, 2013b; Lee, Noh, and
Park, 2014, among others). We observe from Figure 1 that for normal random
errors, LS-LASSO is slightly more efficient than QR-LASSO, but its performance
deteriorates substantially for the mixture normal random errors and Cauchy errors.
The nonconvex SCAD penalty leads to smaller L2 error than the LASSO penalty.
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Figure 2. Box plots of the L2 estimation error for Model 2 based on six methods: LS_Oracle,
QR_Oracle, LS_LASSO, QR_LASSO, LS_SCAD, and QR_SCAD.

Figure 2 suggests that for the denser model under consideration, QR-LASSO
and QR-SCAD have similar performance to that of LS-LASSO and LS-SCAD
for the normal errors and have much smaller error for the mixture normal errors
and Cauchy errors. Similar observations are obtained from Figure 3 for the dense
model.

Finally, to investigate the effects of different sample sizes, we consider Model 1
with the mixture normal error distribution as the sample size varies between 100
and 800. Figure 4 depicts the L2 errors for LS_LASSO, QR_LASSO, LS_SCAD,
and QR_SCAD in this setting. The plot suggests that the L2 error decreases as n
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Figure 3. Box plots of the L2 estimation error for Model 3 based on six methods: LS_Oracle,
QR_Oracle, LS_LASSO, QR_LASSO, LS_SCAD, and QR_SCAD.

increases. It also suggests that for the heavy-tailed error distribution, regularized
QR substantially outperforms regularized least-squares regression.

6. DISCUSSION

By developing a new and unified subgradient approach, we present several signif-
icant results on the fundamental properties of regularized QR in high dimensions,
where the number of covariates can grow at an exponential rate of the sample size.
We demonstrate that QR-LASSO enjoys the near-oracle rate in estimation error for
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Figure 4. The L2 estimation error with varying sample sizes (Model 1, mixture normal error).

a much richer class of error distributions than LS-LASSO does. The result renders
theoretical support for the wide applicability of QR in high-dimensional problems.
Our analysis is carried out under both the hard sparsity and the soft sparsitymodels.
We also prove that any feasible local solution of QR with some commonly used
nonconvex penalty functions, such as SCAD or MCP, enjoys the same estimation
error rates, making the theoretical results more meaningful to practical algorithms
which often yield a local optimum instead of a global one.

The unified approach based on subgradients can be useful for studying other
high-dimensional problems involving a nonsmooth loss function. Hence, it is
of independent interest. For example, the support vector machine (SVM) is a
powerful binary classification tool with high accuracy and great flexibility. The
sample loss function for SVM is given by

n−1
n∑
i=1

(1−YiXT
i β)+,

where Yi ∈ {1,−1}, and (1−u)+ =max{1−u,0} denotes the hinge loss. As another
example, we consider the rank loss function for robust high-dimensional regression
(e.g., Wang et al., 2020) given by[
n(n−1)

]−1∑∑
i�=j

∣∣(Yi−xTi β)− (Yj−xTj β)
∣∣.
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Both examples involve nonsmooth loss functions. The subgradient techniques
developed in this paper can be applied to study the statistical properties of the
global and local solutions of the corresponding regularized estimation problems in
high dimensions when p� n.

The results of the paper are also useful for inference procedures for high-
dimensional QR, which need an initial value (see, for example, Belloni, Cher-
nozhukov, and Kato, 2014; Zhao, Kolar, and Liu, 2014; Bradic and Kolar, 2017;
Belloni, Chernozhukov, and Kato, 2019).

APPENDIX A. Parameter Identification in High Dimensions

LetX= (X1, . . . ,Xp) be the n×pmatrix of covariates, whereXj denotes the jth (j= 1, . . . ,p)
column of the matrix of covariates. In the classical asymptotic framework where p is smaller
than n, it is usually assumed that X has a full column rank, which allows to uniquely
identify β∗. In contrast, in the high-dimensional scenario where p � n, β∗ is generally
not identifiable in the absence of additional structural assumptions as X has at most column
rank n.

In high dimensions, β∗ in general is not uniquely defined. Suppose model (1) is satisfied
by β∗ = β∗

0 . Consider the affine space {β∗ ∈R
p :Xβ∗ =Xβ∗

0 }.We emphasize that the error
bounds derived in this paper apply to any β∗ from this affine space and does not require the
unique identification.

Let Ker(X) = {β ∈ R
p : Xβ = 0} be the null space of X. If β∗ satisfies (1), then β∗ +

β also satisfies (1), ∀ β ∈ Ker(X). The extent of identifiability can be measured by the
diameter of the set N0(X) = Ker(X)∩B, defined as maxβ∈N0(X) ||β||2, where B = B0(s)
under the hard sparsity assumption, whereas B= B1(R) under the soft sparsity assumption.
The following lemma characterizes the properties of the diameter of N0(X).

Lemma A.1. Assume the vector X−i = (Xi2, . . . ,Xip)
′ is a mean-zero sub-Gaussian

random vector.

(i) (Hard sparsity case) Assume ηmin(s) = infv:||v||2=1,||v||0≤s v′�v > 0, where � =
E(XiX′

i). Then

P
(

max
β∈N0(X)

||β||2 = 0
) ≥ 1−α∗

1 exp(−α∗
2 logp),

where α∗
1 and α∗

2 are positive constants.
(ii) (Soft sparsity case) Assume log(p) = o(n). Then

P
(

max
β∈N0(X)

||β||2 ≤ α′ξ−1/2
min R

√
logp/n

) ≥ 1−α∗
1 exp(−α∗

2 logp),

for all n sufficiently large, where α∗
1 , α

∗
2 , and α′ are positive constants, and ξmin is

the smallest eigenvalue of �.

The above lemma can be considered as a generalization of Lemma 1 of Raskutti et al.
(2011) to the random covariates case. From this lemma, it can be seen that under some
general conditions, Ker(X) = {0} with high probability for the hard sparsity case, i.e., the
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sparse β∗ satisfying (1) is unique, whereas for the soft sparsity case, Ker(X) is a shrinking

neighborhood around 0 with high probability if ξ
−1/2
min R

√
logp/n→ 0.

Proof of Lemma A.1. (i) (Hard sparsity case) Consider C1(s) = {θ ∈ R
p : ||θ ||2=1,

||θ ||0 ≤ 2s}. Applying Lemma D.1 with t = ηmin(s)/2, we have

P
{

sup
θ∈C1(s)

∣∣n−1||Xθ ||22 −E(n−1||Xθ ||22)
∣∣ ≥ ηmin(s)/2

}
≤ α2 exp

(
−α1nmin

(
η2min

(
s)/(4σ 4

x ),ηmin(s)/(2σ
2
x )

)+2s logp
)
, (A.1)

for some positive constants α1 and α2. We argue by contradiction and assume
maxβ∈N0(X) ||β||2 �= 0. Then there exists a θ �= 0 in B0(s) such that Xθ = 0. Let

θ̃ = θ/||θ ||2, then θ̃ ∈ C1(s). It follows from (A.1) that there exist some positive constants
α∗
1 and α∗

2 such that with probability at least 1−α∗
1 exp(−α∗

2n),

n−1||Xθ̃ ||22 ≥ θ̃ ′�θ̃ −ηmin(s)/2 ≥ ηmin(s)/2 > 0,

which contradicts the assumption Xθ̃ = 0.
(ii) (Soft sparsity case) By Lemma D.1, there exist some positive constants α1 and α2

such that ∀ t > 0,{
sup

θ∈C(k)

∣∣n−1||Xθ ||22 −E(n−1||Xθ ||22)
∣∣ ≥ t

}
≤ α2 exp

(−α1nmin(t2/σ 4
x ,t/σ 2

x )+2k logp
)
,

where C(k) = {θ ∈ R
p : ||θ ||2 ≤ 1,||θ ||0 ≤ 2k} for an arbitrary k ≥ 1. Taking t = ξmin/54

and k = 1
4α1min(t2/σ 4

x ,t/σ 2
x ) n

logp , for all n sufficiently large, we have

P
{

sup
θ∈C(k)

∣∣n−1||Xθ ||22 −E(n−1||Xθ ||22)
∣∣ < t

}
≥ 1−α2 exp

(−α1nmin(t2/σ 4
x ,t/σ 2

x
)
/2

)
.

Then the same argument as in Lemmas 12 and 13 of Loh and Wainwright (2012) for their
(F.8) leads to

n−1||Xθ ||22 ≥ ξmin

2
||θ ||22 − c′n−1(logp)||θ ||21,

for all θ ∈ R
p, with probability at least 1−α∗

1 exp
(−α∗

2n
)
, for all n sufficiently large, for

some positive constants c′, α∗
1 , and α∗

2 . This implies that, for any θ ∈ Ker(X)∩B(R),

0 = n−1||Xθ ||22 ≥ ξmin

2
||θ ||22 − c′R2n−1 logp,

or maxθ∈N0(X) ||θ ||2 ≤ α′ξ−1/2
min R

√
logp/n for some positive constant α′ with probability

at least 1−α∗
1 exp

(−α∗
2n

)
, for all n sufficiently large. Hence, the conclusion follows. �

APPENDIX B. Performance Lower Bound for LASSO with
Heavy-Tailed Errors

The LS-LASSO estimator β̂LS is defined as

β̂LS = arg min
β∈Rp

{
(2n)−1

n∑
i=1

(Yi−XTi β)2 +λ||β−||1
}
. (B.1)
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Suppose εi = Yi−XTi β∗ (i= 1, . . . ,n) are independent Cauchy(0,1) random variables with

the density function f (ε) = 1
π(1+ε2)

, and the characteristic function φ(t) = E[eiεt] = e−|t|,
∀ t ∈ R.

Assumemin1≤j≤pE(|xij|) ≥ ζ∗ > 0. The β̂LS estimator is called a nondegenerate solution
if it has at least one nonzero component. We consider the asymptotic regime where logp=
o(n).

Lemma B.1. Consider the setting described above. Let a0 be any positive constant,
and consider an arbitrary λ ∈ (0,a0). Let β̂LS be any nondegenerate solution of (B.1)
corresponding to λ. Then there exist some constants ζ1 > 0 and 0 < ζ2 < 1 such that if
(n,p) satisfies p≥ 5, logp≤ n/4, and

√
logp/n≤ ζ1, then

P
(||β̂LS−β∗||1 > 1

) ≥ ζ2,

where the constants ζ1 and ζ2 do not depend on (n,p).

Loh (2017) showed that if one chooses the tuning parameter λ at the regular rate√
logp/n, which is the theoretical choice that leads to the near-oracle performance of LS-

LASSO for normal random errors, then the KKT condition for LS-LASSOmay not hold for
Cauchy random errors. The above lemma strengthens the result by showing that a different
choice of λ cannot fix the problem. Indeed, for any λ ∈ (0,a0), the L1-estimation error of
LS-LASSO has a positive probability to exceed one. This paper shows that QR-LASSO is
still consistent in this case with λ ∼ √

logp/n. This lemma, hence, renders strong support for
the robustness of QR-LASSO in high dimensions. Related to this, Fan et al. (2014) showed
that for a specially designed fixed design matrix, LS-LASSO cannot be sign-consistent
unless a certain signal condition is satisfied. Fan, Li, and Wang (2017) investigated the
estimation of high-dimensional mean regression in the absence of symmetry and light-tailed
assumptions, but their conditions exclude Cauchy random errors.

It is worth noting that the above probability bound is nonasymptotic and holds for all n
sufficiently large and does not become smaller as n increases. Although this lemma focuses
on the Cauchy random error for a clean presentation, analogous inconsistency results hold
more generally for the class of α-stable distributions with α ∈ (0,2). Specifically, εi has
an α-stable distribution with scale parameter ξ if its characteristic function E{exp(itεi)} =
exp(−ξα |t|α), ∀ t ∈ R

p. The standard Cauchy distribution is an α-stable distribution with
α = ξ = 1 (see Nolan (2003) for an introduction to stable distributions).

Proof of Lemma B.1. Assume the contrary is true, that is, ||β̂LS−β∗||1 ≤ 1 for some
λ ∈ (0,a0). As β̂LS is a nondegenerate solution, it has at least one nonzero component.
Without loss of generality, we assume β̂LSj �= 0, for some 1 ≤ j≤ p. By the KKT condition,

β̂LS must satisfy

eTj (n−1
X
T
X)(β∗ − β̂LS)+ eTj n

−1
X
Tε +λsign(β̂LSj ) = 0, (B.2)

where ej is a p-dimensional unit vector with the j entry being one and all the other entries
being zero.

Consider the event �n1 = {||�̂||∞ ≤ 12ζ 20 }. By Lemma D.2, P(�n1) ≥ 1 −
2exp(− logp). On �n1,
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|eTj (n−1
X

′
X)(β∗ − β̂LS)| ≤ ||eTj (n−1

X
′
X)||∞||(β∗ − β̂LS)||1

≤ ||�̂||∞||(β∗ − β̂LS)||1
≤ 12ζ 20 ||(β∗ − β̂LS)||1.

As |λsign(β̂LSj )| ≤ a0, it follows from the KKT condition (B.2) that on the event �n1, we

have |eTj n−1
X
Tε| ≤ a0 +12ζ 20 .

Conditional on Xj, e
T
j n

−1
X
Tε = n−1

X
T
j ε has a Cauchy(0, n−1∑n

i=1 |xij|) distribution,
by checking the form of its characteristic function. By the property of Cauchy distribution,
we have

P
(|eTj n−1

X
Tε| > a0 +12ζ0

) = 2EXj

{1
2

− 1

π
arctan

( a0 +12ζ0
n−1∑n

i=1 |xij|
)}

.

Note that n−1∑n
i=1 |xij| on �n, eTj n

−1
X
Tε has a Cauchy(0, b) distribution with 0 <

b < 12ζ0. Consider the event �n2 = {
min1≤j≤p n−1∑n

i=1 |xij| ≥ ζ∗/2
}
. By Lemma D.3,

P(�n2) ≥ 1−2exp(− logp). On the event �n2,

P
(|eTj n−1

X
′ε| > a0 +12ζ0

) ≥ 1− 2

π
arctan

(
ζ−1∗ (2a0 +24ζ0)

)
.

Hence, on the event �n1 ∩�n2, with probability at least 1− 2
π arctan

(
ζ−1∗ (2a0 + 24ζ0)

)
,

there is a contradiction. We thus have

P
(||β∗ − β̂LS||1 > 1

) ≥ P
(||β∗ − β̂LS||1 > 1

∣∣�n1 ∩�n2
)
P(�n1 ∩�n2)

≥ (
1− 2

π
arctan

(
ζ−1∗ (2a0 +24ζ0)

))
(1−4exp(− logp))

≥ (
1− 2

π
arctan

(
ζ−1∗ (2a0 +24ζ0)

))
/5.

The result of the lemma holds with the ζ1 defined in Lemma D.3 and ζ2 = (
1 −

2
π arctan

(
ζ−1∗ (2a0 +24ζ0)

))
/5. �

APPENDIX C. Proofs of the Main Theory

We provide below proofs of Theorems 1–4. Proofs of other results are given in Appendix D.
To prove Theorem 1, we will first establish that the lower bound stated in the theorem

holds with high probability for

Un(�) = n−1
n∑
i=1

XTi �[I(εi ≤ XTi �)− I(εi ≤ 0)], (C.1)

which is
〈
Sn(β∗ +�)−Sn(β∗),�

〉
corresponding to a specific choice of subgradient in

∂Qn(β). Note that Un(�) is not Lipschitz continuous in �. We start by constructing a
Lipschitz continuous lower bound of Un(�).

We observe that XTi � and I(εi ≤ XTi �)− I(εi ≤ 0) always have the same sign. Further-

more, if XTi � > 0, I(εi ≤ XTi �) − I(εi ≤ 0) is nonzero only 0 < εi ≤ XTi �; similarly, if
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XTi � < 0, I(εi ≤ XTi �)− I(εi ≤ 0) is nonzero only if XTi � < εi ≤ 0. Hence,

Un(�) = n−1
n∑
i=1

XTi �I(0 < εi ≤ XTi �)−n−1
n∑
i=1

XTi �I(XTi � < εi ≤ 0)

≥ n−1
n∑
i=1

|εi|
[
I(0 < εi < XTi �)+ I(XTi � < εi ≤ 0)

]
≥ n−1

n∑
i=1

|εi|ϕεi(X
T
i �)νb||�||2(XTi �),

where b is a positive constant, and

ϕa(u) =

⎧⎪⎨⎪⎩
1, if |u| > 2|a| and ua> 0,

−1+ |u|
a , if |a| ≤ |u| ≤ 2|a| and ua> 0,

0, otherwise,

νa′(u) =

⎧⎪⎨⎪⎩
1, if |u| < a′

2 ,

2− 2|u|
a′ , if 0 < a′

2 ≤ |u| ≤ a′,
0, otherwise,
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for some a ∈ R and a′ ≥ 0. Note that aϕa(u) and a′νa′(u) are both Lipschitz in u:
|aϕa(u1) − aϕa(u1)| ≤ |u1 − u2| and |a′νa′(u1) − a′νa′(u1)| ≤ 2|u1 − u2|. We also note
that

I(u> 2a> 0)+ I(u< 2a< 0) ≤ ϕa(u) ≤ I(|u| > |a|), (C.2)

νa′(u) ≤ I(|u| ≤ a′), (C.3)

1−νa′ (u) ≤ I(|u| ≥ a′/2). (C.4)

Define

Vnb(�) = n−1
n∑
i=1

|εi|ϕεi(X
T
i �)νb||�||2()XTi �.

ThenUn(�) ≥Vnb(�), ∀ b> 0. As Lemma C.1 suggests, Vnb(�) is a Lipschitz-continuous
lower bound of Un(�).

Lemma C.1. Let gε(ξ) = |ε|ϕε(ξ)νbδ(ξ), where δ ≥ 0 is a constant. Then gε(ξ) is
Lipschitz-continuous in ξ ,∣∣gε(ξ)−gε(ξ

′)
∣∣ ≤ 3|ξ − ξ ′|. (C.5)

Proof. Case I: When δ = 0, we have νbδ(ξ) = νbδ(ξ
′) = 0, and (C.5) is satisfied. So we

only need to consider the scenario where δ > 0.
Case II: |ξ | > bδ > 0 and |ξ ′| > bδ > 0. In this case, νbδ(ξ) = νbδ(ξ

′) = 0. Hence, (C.5)
holds trivially.

Case III: Assume δ > 0, but case II is not satisfied. Then at least one of ξ or ξ ′ has
absolute value no larger than bδ. Without loss of generality, we assume |ξ | ≤ bδ. Then∣∣gε(ξ)−gε(ξ

′)
∣∣ ≤ |ε|ϕε(ξ)︸ ︷︷ ︸

≤ |ξ | ≤ bδ

∣∣νbδ(ξ)−νbδ(ξ
′)
∣∣︸ ︷︷ ︸

≤ 2
bδ |ξ−ξ ′|

+|ε|∣∣ϕε(ξ)−ϕε(ξ
′)
∣∣︸ ︷︷ ︸

≤ |ξ−ξ ′|
νbδ(ξ

′)︸ ︷︷ ︸
≤1

≤ 3|ξ − ξ ′|.
Hence, (C.5) holds. On the other hand, if |ξ ′| ≤ τδ, we can bound |gε(ξ) − gε(ξ ′)|
by |ε||ϕε(ξ) − ϕε(ξ

′)| νbδ(ξ) + |ε|ϕε(ξ
′)|νbδ(ξ) − νbδ(ξ

′)| and the conclusion follows
similarly. �

By an application of the dominated convergence theorem, we can prove that there exists
a positive constant b0 such that ∀ b≥ b0,

EXi

{
(XTi �)2I

(|XTi �| ≥ b||�||2/2
)} ≤ 1

2
E
{
(XTi �)2

}
. (C.6)

Lemma C.2. Assume conditions (C1) and (C2) hold, and let b0 be the aforementioned
positive constant. Then there exists a positive constant k0 such that

E(Vnb(�)) ≥ a∗||�||22,
uniformly on {||�||2 ≤ 1}∩C, ∀ b≥ b0.
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Proof. We will first prove (C.6). Write

EXi

{
(XTi �)2I

(|XTi �| ≥ b||�||2/2
)}

= E
{
(XTi �)2

}
EXi

{ (XTi �)2

E
{
(XTi �)2

} I(|XTi �| ≥ b||�||2/2
)}
.

We first note that E
{

(XTi �)2

E
{
(XTi �)2

}} ≤ 1. Furthermore,

P
{ (XTi �)2

E
{
(XTi �)2

} I(|XTi �| ≥ b||�||2/2
) �= 0

}
≤ P

{|XTi �| ≥ b||�||2/2
}

≤ 4E
{
(XTi �)2

}
b2||�||22

≤ 4ku
b2

.

By the dominated convergence theorem, EXi

{
(XTi �)2

E
{
(XTi �)2

} I(|XTi �| ≥ b||�||2
2

)} → 0 as b→
∞. Hence, there exists a positive constant b0, whose choice only depends on the probability
distributions of Xi, such that ∀ b≥ b0, we have

EXi

{ (XTi �)2

E
{
(XTi �)2

} I(|XTi �| ≥ b||�||2
2

)}
≤ 1/2. (C.7)

We have

E
(
Vnb(�)

)
= n−1

n∑
i=1

E
{|εi|ϕεi ()X

T
i �νb||�||2 (XTi �)

}
≥ n−1

n∑
i=1

EXi
{
Eεi|Xi

[|εi| {I(XTi � > 2εi > 0
)+ I

(
XTi � < 2εi < 0

)}]
I
(|XTi �| ≤ b||�||2/2

)}

= n−1
n∑
i=1

EXi
{(∫ |XTi �|/2

0
tfi(t)dt+

∫ 0

−|XTi �|/2
(−t)fi(t)dt

)
I
(|XTi �| ≤ b||�||2/2

)}

= n−1
n∑
i=1

EXi
{(∫ |XTi �|/2

0
t
[
fi(t)+ fi(−t)

]
dt
)
I
(|XTi �| ≤ b||�||2/2

)}
≥ m0

4
EXi

{
(XTi �)2I

(|XTi �| ≤ b||�||2/2
)}

= m0

4
EXi

{
(XTi �)2

}
− m0

4
EXi

{
(XTi �)2I

(|XTi �| > b||�||2/2
)}

≥ m0

8
EXi

{
(XTi �)2

}
≥ a∗||�||22,
where a∗ = (m0m1)/8, the first inequality applies (C.2) and (C.4), the second inequality
applies condition (C1), the second last inequality applies (C.6), and the last inequality
follows from condition (C2). �
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For an arbitrary 0 < δ ≤ 1, let S2(δ) = {� : ||�||2 = δ}. Let 
(t) = {� : � ∈
S2(δ), ||�||1 ≤ t||�||2}∩C, for an arbitrary t > 0. Lemma C.3 establishes a concentration
inequality for

Vnb(�) = n−1
n∑
i=1

|εi|ϕεi(X
T
i �)νb ||�||2(XTi �),

where b≥ b0 is a positive constant. Consider the event An1 = {max1≤j≤p σ̂ 2
j ≤mx}, where

σ̂ 2
j = n−1∑n

i=1 x
2
ij. Then P(An1) ≥ 1− δn, where δn → 0 as n→ ∞.

Lemma C.3. For an arbitrary b≥ b0, define

Zn(t) = sup
�∈
(t)

∣∣Vnb(�)−E(Vnb(�))
∣∣. (C.8)

Then there exists a positive constant c∗ which does not depend on (n,p,t) such that on the
event An1,

P
(
Zn(t) ≥ c∗tδ

√
logp/n

) ≤ exp
(− c∗2t2

16b2
logp

)
.

Proof. First, we note that by (C.2) and (C.3), ∀ � ∈ 
(t),

0 ≤ |εi|ϕεi(X
T
i �)νb ||�||2(XTi �) ≤ |εi| I

(|XTi �| > |εi|
)
I
(|XTi �| ≤ bδ

) ≤ bδ.

If we change one observation of the sample, the value of Zn(t) changes at most 2bδ/n. By
the bounded difference inequality, ∀ s> 0,

P
(
Zn(t)−E(Zn(t)) ≥ s

) ≤ exp
(− ns2

4b2δ2
)
. (C.9)

Next, we evaluate E(Zn(t)). Let {π1, . . . ,πn} be a Rademacher sequence of Bernoulli
random variables independent of (Xi,εi). Let gε(ξ) = |ε|ϕε(ξ)νbδ(ξ) be the function
defined in Lemma C.1. We have

E(Zn(t))

≤ 2E(π,X,ε)

(
sup

�∈
(t)
n−1

n∑
i=1

πigεi(X
T
i �)

)
(symmetrization)

≤ 12E(X,ε)Eπ |(X,ε)

(
sup

�∈
(t)
n−1

n∑
i=1

πiX
T
i �

)
(contraction)

≤ 12 sup
�∈
(t)

||�||1EXEπ |X
(
n−1||

n∑
i=1

πiXi||∞
)

≤ 12tδEXEπ |X
(
n−1||

n∑
i=1

πiXi||∞
)
, (C.10)

where the first inequality follows from the symmetrization theorem (van der Vaart and
Wellner, 1996), and the second inequality applies Lemma C.1 and the contraction theorem
(Ledoux and Talagrand, 2013). Next, we will evaluate Eπ |X

(
n−1||∑n

i=1πiXi||∞
)
. We
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observe that, for 1 ≤ j ≤ p, conditional on Xi, n
−1∑n

i=1πixij is mean-zero sub-Gaussian

with parameter bounded by n−1(∑n
i=1 x

2
ij

)1/2. By the property of sub-Gaussian random
variables (van de Geer, 2016, Lem. 17.5), we have

Eπ |X
(
max
1≤j≤pn

−1∣∣ n∑
i=1

πixij
∣∣) ≤ √

2log(2p)/n max
1≤j≤p

(
n−1

n∑
i=1

x2ij
)1/2

≤ √
2mx log(2p)/n

on the event An1. Hence, on An1,

E(Zn(t)) ≤ 1

2
c∗tδ

√
logp/n, (C.11)

where c∗ = 48
√
mx. Taking s= 1

2c
∗tδ√logp/n in (C.9), we have that on An1,

P
(
Zn(t) ≥ c∗tδ

√
logp/n

) ≤ exp
(− c∗2t2

16b2
logp

)
. �

Proof of Theorem 1. The proof consists of two steps. At the first step, we will establish
that the lower bound stated in the theorem holds with high probability for Un(�) defined in
(C.1), which is

〈
Sn(β∗ +�)−Sn(β∗),�

〉
corresponding to a specific choice of subgradient

in ∂Qn(β). At the second step, we will show that the lower bound holds for an arbitrary
choice of subgradient in ∂Qn(β).

Step 1. Note that Un(�) ≥ Vnb(�), ∀ b > 0. We will first prove that, for an arbitrary
b ≥ b0, there exist some positive constants a1 and a2 such that with probability at least
1− δn−a1 exp(−a2 logp),

Vnb(�) ≥ a∗||�||22 − c∗||�||1
√
logp

n
(C.12)

uniformly over all � ∈ S2(δ)∩C, where c∗ is the positive constant in Lemma C.3, and a1
and a2 (specified later in this proof) only depend on the probability distributions of Xi and
εi. Recall that S2(δ) = {� : ||�||2 = δ}, 0 < δ ≤ 1. Since 0 < δ ≤ 1, we have ||�||1||�||2 ≥ 1.
Noting that Vn(�) is always nonnegative, we only need to verify (C.12) for � satisfying

a∗||�||22 − c∗||�||1
√

logp
n ≥ 0. It is sufficient to consider � ∈ S̃2(δ), where

S̃2(δ) =
{
� : � ∈ S2(δ)∩C, 1 ≤ ||�||1

||�||2 ≤ a∗
c∗ δ

√
n

logp

}
.

Lemma C.2 ensures that E(Vnb(�)) ≥ a∗||�||22 for any � ∈ S̃2(δ). We verify (C.12) by
proving∣∣Vnb(�)−E(Vnb(�))

∣∣ ≤ c∗δ
||�||1
||�||2

√
logp/n (C.13)

holds uniformly for � ∈ S̃2(δ) with probability at least 1− a1 exp(−a2 logp) for some
positive constants a1 and a2. We will prove (C.13) by employing a peeling technique (see,
e.g., van der Vaart and Wellner, 1996; van de Geer, 2000, and the references therein). Write

h(�) = ||�||1
||�||2 and g(h(�)) = c∗δh(�)

√
logp/n.
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Define

Bm = {� : 2m−1μ ≤ g(h(�)) ≤ 2mμ}∩ S̃2(δ), m= 1, . . . ,M,

where μ = c∗δ
√
logp/n, and M is taken as the smallest positive integer such that 2M ≥

a∗δ
c∗

√
n/ logp. Note that if � ∈ Bm, then 2m−1 ≤ h(�) ≤ 2m, m= 1, . . . ,M.

Let E = {the event in (C.13) holds for all � ∈ S̃2(δ)}. Recall the event An1 =
{max1≤j≤p σ̂ 2

j ≤ mx}, where σ̂ 2
j = n−1∑n

i=1 x
2
ij. Then, on the event An1, we have

P(Ec) ≤
M∑
m=1

P
(
∃ � ∈ S̃2(δ)∩Bm such that |Vnb(�)−E(Vnb(�))| > g(h(�))

)

≤
M∑
m=1

P
(

sup
�∈S2(δ)∩C, 2m−1≤h(�)≤2m

|Vnb(�)−E(Vnb(�))| > c∗δ2m−1
√
logp/n

)

≤
M∑
m=1

exp
(

−a22
2m−2 logp

)
(by LemmaC.3, taking a2 = c∗2/(16b2))

≤
M∑
m=1

exp
(

−ma2 logp
)

(noting m≤ 22m−2, m= 1,2, . . .)

≤ exp(−a2 logp)
∞∑
m=0

(
exp(−a2 logp)

)m
= exp(−a2 logp)

1− exp(−a2 logp) (sum of a geometric series)

≤ a1 exp(−a2 logp),

where a1 = 1+ exp(−a2 log2), and the third inequality applies Lemma C.3 on the event
An1. Note that P(An1) ≥ 1− δn, for δn → 0. Hence, with probability at least 1− δn −
a1 exp(−a2 logp), Un(�) ≥ a∗||�||22 − c∗||�||1

√
logp
n uniformly over all � ∈ S2(δ)∩C.

Step 2. We now consider an arbitrary subgradient Sn(β) = (Sn1(β), . . . ,Snp(β))T in
∂Qn(β).

According to (6), Sj(β), j= 1, . . . ,p, has the form

Snj(β) = −τn−1
n∑
i=1

xij+n−1
n∑
i=1

xijI(Yi−XTi β ≤ 0)

−n−1
n∑
i=1

[vi+ (1− τ)]xijI(Yi−XTi β = 0),

where vi = 0 if Yi−XTi β �= 0, and vi ∈ [τ −1,τ ]; otherwise, i= 1, . . . ,n. Hence,〈
Sn(β

∗ +�)−Sn(β
∗),�

〉
≥ n−1

n∑
i=1

XTi �[I(εi ≤ XTi �)− I(εi ≤ 0)]−n−1
n∑
i=1

|XTi �|I(εi = XTi �)
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−n−1
n∑
i=1

|XTi �|I(εi = 0)

= Un(�)−n−1
n∑
i=1

|XTi �|I(εi = XTi �)−n−1
n∑
i=1

|XTi �|I(εi = 0).

Consider any � such that ||�||2 ≤ 1. Consider the event Gn = {Un(�) < k0||�||22 −
c∗||�||1

√
logp/n}. We have

P
(〈
Sn(β)−Sn(β

∗),�
〉
< k0||�||22 − c∗||�||1

√
logp/n

)
≤ P

(
Un(�)−n−1

n∑
i=1

|XTi �|(I(εi = XTi �)+ I(εi = 0)
)

< k0||�||22 − c∗||�||1
√
logp/n,Gcn

)
+P

(
Gn

)
≤ P

(
n−1

n∑
i=1

|XTi �|(I(εi = XTi �)+ I(εi = 0)
)
> 0

)+P(Gn)

≤ 0+ δn+a1 exp(−a2 logp) = δn+a1 exp(−a2 logp),
where the last inequality follows because εi is assumed to have a continuous density (e.g.,
Ruppert and Carroll, 1980, Lem. A.1). This proves the theorem. �

We first present a lemma that shows that the uniform lower bound in Theorem 1 on
{||�||2 ≤ 1}∩C can be extended to {||�||2 > 1}∩C.

Lemma C.4. Suppose conditions (C1)–(C3) are satisfied. There exist some positive
constants a∗, c∗, a1, and a2, such that for any subgradient Sn ∈ ∂Qn(β), with probability
at least 1− δn−a1 exp(−a2 logp),〈
Sn(β)−Sn(β

∗),�
〉 ≥ a∗||�||2 − c∗

√
logp

n
||�||1, (C.14)

uniformly on {||�||2 > 1} ∩C, where the positive constants a∗, c∗, a1, and a2 are those
defined in Theorem 1.

Proof. We first observe that, ∀ 0 < s< 1, ∀ t ∈ R,

t
[
I(εi ≤ t)− I(εi ≤ 0)

] ≥ t
[
I(εi ≤ st)− I(εi ≤ 0)

] ≥ 0.

We thus have, ∀ 0 < s< 1,

Un(�) = n−1
n∑
i=1

XTi �[I(εi ≤ XTi �)− I(εi ≤ 0)]

≥ 1

s
n−1

n∑
i=1

XTi (s�)[ I(εi ≤ XTi s�)− I(εi ≤ 0)]

= 1

s
Un(s�). (C.15)
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For ||�||2 > 1, we take s= 1
||�||2 ∈ (0,1) in (C.15) to rescale � to �

||�||2 and obtain

Un(�) ≥ ||�||2Un
( �

||�||2
)

≥ ||�||2
(
a∗ − c∗ ||�||1

||�||2

√
logp

n

)
≥ a∗||�||2 − c∗||�||1

√
logp

n
, (C.16)

with probability at least 1− δn − a1 exp(−a2 logp), where the second inequality applies
Theorem 1. Furthermore, arguing the same way as in the proof of Theorem 1, we can show
that the above lower bound holds for an arbitrary subgradient Sn(β) in ∂Qn(β). �

Proof of Theorem 2 (QR-LASSO). Let β̂ be the QR-LASSO estimator. Then there
exists some subgradient Sn(β) ∈ ∂Qn(β) such that〈
Sn(β̂)+λsgn(β̂), β∗ − β̂

〉 = 0, (C.17)

where sgn(β̂) = (0,sgn(β̂2), . . . ,sgn(β̂p))
T .

Let v̂= β̂ −β∗. We will first use proof by contradiction to show that

P
(|| v̂ ||2 ≤ 1

) ≥ 1−2δn−2exp(− logp)−a1 exp(−a2 logp).
Let �n = {

λ ≥ 2||̃Sn||∞
}
. The choice of λ and Lemma 3 imply that P(�n) ≥ 1 −

δn − 2exp(− logp). Assume ||̂v||2 > 1. Define the event Bn1 = {〈
Sn(β̂) − Sn(β∗),̂v

〉 ≥
a∗||̂v||2 − c∗||̂v||1

√
logp/n

}
. If ||̂v||2 > 1, Lemma C.4 implies that P(Bn1) ≥ 1 −

δn − a1 exp(−a2 logp). It follows that P(�n ∩ Bn1) ≥ 1 − 2δn − 2exp(− logp) −
a1 exp(−a2 logp). It is sufficient to show that a contradiction occurs on the event �n∩Bn1.

To see the contradiction, we first observe that on Bn1, (C.17) implies that〈−λsgn(β̂)−Sn(β
∗), v̂

〉 ≥ a∗|| v̂ ||2 − c∗|| v̂ ||1
√
logp/n. (C.18)

On the other hand, by Hölder’s inequality,〈−λsgn(β̂)−Sn(β
∗), v̂

〉 ≤ {
λ+||Sn(β∗)||∞

}||̂v||1.
As the argument in Step 2 of the proof of Theorem 1 implies, for an arbitrary subgradient
Sn(·), on the event �n, ||Sn(β∗)||∞ ≤ 2λ with probability one. Hence, on �n,〈−λsgn(β̂)−Sn(β

∗), v̂
〉 ≤ 1.5k0

√
logp/n||̂v||1. (C.19)

(C.18) and (C.19) together imply that

a∗|| v̂ ||2 ≤ (2k0 + c∗)
√
logp/n||̂v||1. (C.20)

(i) (Hard-sparsity case) The proof of Lemma 2 ensures that on the event�n, we have v̂∈ 
H
and hence ||̂v||1 ≤ 4

√
s||̂v||2. Then, by (C.20), a∗ ≤ 4(2k0+c∗)

√
s logp/n. This contradicts

with the assumption n> (a∗1)2s logp, where a∗1 = 4(2k0 + c∗)/a∗.
(ii) (Soft sparsity case) The proof of Lemma 2 ensures that on the event �n, we have

v̂ ∈ 
W = {
v ∈ R

p : ||vSca ||1 ≤ 3||vSa ||1 +4||β∗
Sca

||1
}
, where Sa = S−a ∪{1} with the index

set S−a = { j : |β∗
j | > a,2 ≤ j ≤ p} and Sca denotes the complement of Sa in {1,2, . . . ,p}.

Under the soft sparsity assumption, we have a|S−a| ≤ ∑p
i=2 |β∗

i | ≤ R, where |S−a| denotes
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the cardinality of the set S−a. Hence, |S−a| ≤ a−1R. Since v̂ ∈ 
W , we have

|| v̂ ||1 ≤ 4
(||̂vSa ||1 +||β∗

Sca
||1

) ≤ 4
(√

a−1R+1|| v̂ ||2 +R
)
, (C.21)

which holds for any a> 0. Taking a= R/3, we obtain

|| v̂ ||1 ≤ 4
[
2|| v̂ ||2 +R

]
. (C.22)

Hence, (C.20) contradicts with the assumption a∗1
√
logp/nmax{2,R} < 1/2.

Define the event Dn1 = {||̂v||2 ≤ 1
}
. In the above, we have verified that P(Dn1) ≥

1− 2δn − 2exp(− logp) − a1 exp(−a2 logp). Define Bn2 = {〈
Sn(β̂) − Sn(β∗), β̂ − β∗〉 ≥

a∗||̂v||22−c∗||̂v||1
√
logp/n

}
. By Theorem 1, on Dn1, P(Bn2) ≥ 1−δn−a1 exp(−a2 logp).

From now on, we consider the event �n ∩Dn1 ∩ Bn1. We have P(�n ∩Dn1 ∩ Bn1) ≥
1−4δn−4exp(− logp)−2a1 exp(−a2 logp). By the convexity of ||β||1, we have
||β∗||1 −||β̂||1 ≥ 〈

sgn(β̂), β∗ − β̂
〉
. (C.23)

Combining (C.23) with (C.17), we have〈
Sn(β̂), β∗ − β̂

〉 = −〈
λsgn(β̂), β∗ − β̂

〉 ≥ λ
(||β̂||1 −||β∗||1

)
. (C.24)

On Bn2, (C.24) implies that〈−Sn(β
∗), β̂ −β∗〉 ≥ a∗||̂v||22 +λ

(||β̂||1 −||β∗||1
)− c∗||̂v||1

√
logp/n.

Applying Hölder’s inequality, we have

a∗||̂v||22 +λ
(||β̂||1 −||β∗||1

)− c∗||̂v||1
√
logp/n≤ ||Sn(β∗)||∞|| v̂ ||1.

Rearranging terms and applying the triangle inequality, we obtain

a∗||̂v||22 ≤ (
λ+ c∗

√
logp/n+||Sn(β∗)||∞

)||̂v||1
≤ (2k0 + c∗)

√
logp/n||̂v||1. (C.25)

(i) For the hard sparsity case, on �n, ||̂v||1 ≤ 4
√
s||̂v||2. Then (C.25) implies

||̂v||2 ≤ a∗1
√
s logp/n.

We also obtain ||̂v||1 ≤ 4a∗1s
√
logp/n.

(ii) For the soft sparsity case, on �n, (C.25) and (C.21) imply that

|| v̂ ||2 ≤ 2max
{
a∗1

√
a−1R+1

√
logp/n,

√
a∗1R

1/2(logp/n)1/4
}
,

for any a> 0. Taking a= √
logp/n, we have√

a−1R+1
√
logp/n=

√
R+ (logp/n)1/2(logp/n)1/4 ≤ √

2R(logp/n)1/4.

We obtain

|| v̂ ||2 ≤ a∗2R1/2(logp/n)1/4,
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where a∗2 = 2max
{√

2a∗1,
√
a∗1

}
. The same reasoning that leads to (C.22) also implies that

|| v̂ ||1 ≤ 4
(√|Sa||| v̂ ||2 +||β∗

Sca
||1

)
≤ 4

(
a∗2

√|Sa|R1/2(logp/n)1/4 +||β∗
Sca

||1
)
,

for any a> 0, where |Sa| denotes the cardinality of the set Sa. �

Proof of Theorem 3 (QR-NCP). The proof is based on the same idea as in the proof
of Theorem 2 but is more involved. We consider any feasible local solution β̂ such that
||β̂||1 ≤ κ and (8) is satisfied. Then there exists some subgradient Sn(β) ∈ ∂Qn(β) such
that〈
Sn(β̂)+λsgn(β̂)−H′(β̂), β∗ − β̂

〉 = 0, (C.26)

where H′(β̂) = (0,h′λ(β̂2), . . . ,h
′
λ(β̂p))

T and sgn(β̂) = (0,sgn(β̂2), . . . ,sgn(β̂p))
T . Denote

v̂= β̂ −β∗.
Let �̃n = {

λ ≥ 4||̃Sn||∞
}
, where λ satisfies the condition of Theorem 3. Lemma 3

implies that P(�̃n) ≥ 1 − δn − 2exp(− logp). Let Bn1 = {〈
Sn(β̂) − Sn(β∗),̂v

〉 ≥
a∗||̂v||2 − c∗||̂v||1

√
logp/n

}
. If ||̂v||2 > 1, Lemma C.4 implies that P(Bn1) ≥ 1− δn −

a1 exp(−a2 logp). We have P(�̃n ∩Bn1) ≥ 1− 2δn − 2exp(− logp) − a1 exp(−a2 logp).
We will first use proof by contradiction to show that

P
(|| v̂ ||2 ≤ 1

) ≥ 1−2δn−2exp(− logp)−a1 exp(−a2 logp).
Assume ||̂v||2 > 1. It is sufficient to show that a contradiction occurs on the event �̃n∩Bn1.

On the event Bn1, by (C.26), we have〈
H′(β̂)−λsgn(β̂)−Sn(β

∗), v̂
〉 ≥ a∗|| v̂ ||2 − c∗|| v̂ ||1

√
logp

n
. (C.27)

On the other hand, by Hölder’s inequality,〈
H′(β̂)−λsgn(β̂)−Sn(β

∗), v̂
〉 ≤ {||H′(β̂)−λsgn(β̂)||∞ +||Sn(β∗)||∞

}||̂v||1.
Note that−H(β−)+λ||β−||1 = pλ(β−) =∑p

j=2 pλ(|βj|).We have ||H′(β̂)−λsgn(β̂)||∞ =
||∂pλ(β̂−)||∞, which is upper bounded by λ (see, e.g., Loh andWainwright, 2015, Lem. 4).
Furthermore, on �̃n, ||Sn(β∗)||∞ ≤ λ/4. Hence,〈
H′(β̂)−λsgn(β̂)−Sn(β

∗), v̂
〉 ≤ 5λ

4
||̂v||1. (C.28)

By the choice of λ, (C.27) and (C.28) together imply that

a∗|| v̂ ||2 ≤ (
5λ/4+ c∗

√
logp/n

)||̂v||1 ≤ 3

2
λ||̂v||1 ≤ 3κk0

2

√
logp/n.

Hence, we have a contradiction under the assumption
√
logp/n< 2a∗

3κk0
.

Define the event Dn1 = {||̂v||2 ≤ 1
}
. In the above, we have verified that P(Dn1) ≥

1− 2δn − 2exp(− logp) − a1 exp(−a2 logp). Define Bn2 = {〈
Sn(β̂) − Sn(β∗), β̂ − β∗〉 ≥

a∗||̂v||22−c∗||̂v||1
√
logp/n

}
. By Theorem 1, on Dn1, P(Bn2) ≥ 1−δn−a1 exp(−a2 logp).

From now on, we consider the event �̃n ∩Dn1 ∩ Bn1. We have P(�̃n ∩Dn1 ∩ Bn1) ≥
1−4δn−4exp(− logp)−2a1 exp(−a2 logp).
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By the assumption on the penalty function, γ0
2 ||β||22−H(β−)+λ||β−||1 is convex in β.

This convexity property implies that[γ0
2

||β∗||22 −H(β∗−)+λ||β∗−||1
]− [γ0

2
||β̂||22 −H(β̂−)+λ||β̂−||1

]
≥ 〈

γ0β̂ −H′(β̂)+λsgn(β̂), β∗ − β̂
〉
.

So we have

pλ(β∗−)−pλ(β̂−)+ γ0

2

(||β∗||22 −||β̂||22
)

≥ 〈−H′(β̂)+λsgn(β̂), β∗ − β̂
〉+γ0

〈
β̂,β∗〉−γ0||β̂||2.

Or equivalently,

pλ(β∗−)−pλ(β̂−)+ γ0

2
||β∗ − β̂||22 ≥ 〈−H′(β̂)+λsgn(β̂), β∗ − β̂

〉
. (C.29)

It follows from (C.26) and (C.29) that〈
Sn(β̂), β∗ − β̂

〉
= −〈−H′(β̂)+λsgn(β̂), β∗ − β̂

〉 ≥ pλ(β̂−)−pλ(β∗−)− γ0

2
|| v̂ ||22. (C.30)

By Theorem 1, on Bn2,〈
Sn(β̂)−Sn(β

∗), β̂ −β∗〉 ≥ a∗||̂v||22 − c∗||̂v||1
√
logp/n. (C.31)

(C.30) and (C.31) together imply that〈−Sn(β
∗), v̂

〉 ≥ (
a∗ −γ0/2

)||̂v||22 + (
pλ(β̂−)−pλ(β∗−)

)− c∗||̂v||1
√
logp/n.

Applying Hölder’s inequality, we have(
a∗ −γ0/2

)||̂v||22 + (
pλ(β̂−)−pλ(β∗−)

)− c∗||̂v||1
√
logp/n≤ ||Sn(β∗)||∞|| v̂ ||1.

Hence,(
a∗ −γ0/2

)||̂v||22 ≤ (pλ(β∗−)−pλ(β̂−))+ (
c∗

√
logp/n+||Sn(β∗)||∞

)||̂v||1.
On �̃n, we have ||Sn(β∗)||∞ ≤ λ

4 , and the choice of λ implies c∗√
logp/n≤ λ

4 . We, hence,
have(
a∗ −γ0/2

)||̂v||22 ≤ (
pλ(β∗−)−pλ(β̂−)

)+ λ

2
||̂v||1. (C.32)

(i) Hard sparsity case. Write v̂ = (̂v1,̂v
T−)T , where v̂1 = β̂1 − β∗

1 corresponding to the
intercept term, and v̂− = β̂− − β∗−. Recall S− = { j : β∗

j �= 0, 2 ≤ j ≤ p}, S = S− ∪ {1},
and ||S||0 = s is the model sparsity size under the hard sparsity condition. Let β∗

S− denote
the (s−1)-subvector of β∗ consisting of the elements in S−. Let β∗

Sc , v̂S− , and v̂Sc be defined
similarly. Note that under the hard sparsity assumption, β∗

Sc is a (p− s)-dimensional zero
vector. By the subadditivity property of the penalty function pλ(·), we have pλ(|t1 + t2|) ≥
pλ(|t1|)−pλ(|t2|) for any t1,t2 ∈ R, due to the observation |t1| ≤ |t2|+ |t1 + t2|. Applying
the subadditivity property, we have

pλ(β∗−)−pλ(β̂−) ≤ pλ(β∗
S−)− [

pλ(β∗
S− + v̂Sc)−pλ(̂vS−)

] = pλ(̂vS−)−pλ(̂vSc). (C.33)
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By the assumption on the penalty function and Lemma 4 of Loh and Wainwright (2015),
we have

λ||̂v||1 ≤ pλ(̂v)+ γ0

2
|| v̂ ||22 ≤ pλ(̂vS−)+pλ(̂vSc)+pλ(̂v1)+ γ0

2
|| v̂ ||22. (C.34)

Combining (C.32) with (C.33) and (C.34), we have(
a∗ −3γ0/4

)||̂v||22 ≤ 3

2
pλ(̂vS−)− 1

2
pλ(̂vSc)+ 1

2
pλ(̂v1) ≤ 3

2
pλ(̂vS), (C.35)

where v̂S = (̂v1,̂v
T
S−)T . As pλ(t) is a λ-Lipschitz continuous function of t (Loh and

Wainwright, 2015, Lem. 4), we have pλ(̂vS) ≤ λ||̂vS|1. Hence,(
a∗ −3γ0/4

)||̂v||22 ≤ 3λ

2
||̂vS||1 ≤ 3λ

2

√
s|| v̂ ||2.

We have proved ||̂v||2 ≤ a∗3
√
s logp/n, where a∗3 = 6k0

4a∗−3γ0
. From the above and the

argument for Lemma 1, ||vAc ||1 ≤ 3||vA||1, where A denotes the index set corresponding to
the s-largest (in magnitude) elements of v. Hence, ||̂v||1 ≤ 4a∗3s

√
logp/n. (ii) Soft sparsity

case. Consider Sa = S−a ∪{1}, where S−a = { j : |β∗
j | > a,2 ≤ j ≤ p} and a is an arbitrary

positive constant. Applying the subadditivity property of the penalty function pλ(·), we have
pλ(β∗−)−pλ(β−)

≤ [
pλ(β∗

S−a)+pλ(β∗
Sca

)
]− [

pλ(β∗
S−a + v̂Sca)−pλ(β∗

Sca
+ v̂S−a )

]
= pλ(̂vS−a)−pλ(̂vSca)+pλ(β∗

Sca
). (C.36)

Moreover, similarly as (C.34), we have

λ||̂v||1 ≤ pλ(̂v)+ γ0

2
|| v̂ ||22 ≤ pλ(̂vS−a)+pλ(̂vSca)+pλ(̂v1)+ γ0

2
|| v̂ ||22. (C.37)

Combining (C.32) with (C.36) and (C.37) and noting pλ(β∗
Sca

) ≤ λ||β∗
Sca

||1 ≤ λR, we have

(
a∗ −3γ0/4

)||̂v||22 ≤ 3

2
pλ(̂vS−a)− 1

2
pλ(̂vSca)+ 1

2
pλ(̂v1)+pλ(β∗

Sca
)

≤ 3

2
pλ(̂vSa)− 1

2
pλ(̂vSca)+λ||β∗

Sca
||1. (C.38)

As pλ(̂vSca) ≥ λ||̂vSca ||1 − γ0
2 ||||̂vSca ||22, we have(

a∗ −γ0
)||̂v||22 ≤ 3

2
λ||̂vSa ||1 − 1

2
λ||̂vSca ||1 +λ||β∗

Sca
||1. (C.39)

Similarly, as the derivation for (C.21), ||̂vSa ||1 ≤
√
a−1R+1||̂v||2. We have

(
a∗ −γ0

)|| v̂ ||22 ≤ 3

2

√
a−1R+1λ|| v̂ ||2 +λR.

Hence,

|| v̂ ||2 ≤ 2max
{ 3k0
2(a∗ −γ0)

√
a−1R+1

√
logp/n,

√
k0/(a∗ −γ0)R

1/2(logp/n)1/4
}
.
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As in the proof of Theorem 2, taking a = √
logp/n leads to

√
a−1R+1

√
logp/n ≤√

2R(logp/n)1/4. We then obtain

|| v̂ ||2 ≤ a∗4R1/2(logp/n)1/4,

where a∗4 = 2max
{

3
√
2k0

2(a∗−γ0)
,

√
k0

a∗−γ0

}
. On the event of �̃n, the argument for Lemma 1

ensures that ||̂vSca ||1 ≤ 3||̂vSa ||1 +2||β∗
Sca

||1. Hence,

|| v̂ ||1 ≤ 2
(
2
√|Sa||| v̂ ||2 +||β∗

Sca
||1

)
≤ 2

(
2a∗4

√|Sa|R1/2(logp/n)1/4 +||β∗
Sca

||1
)
,

for any a> 0, where |Sa| denotes the cardinality of the set Sa. �

Proof of Theorem 4. Inequalities (17) and (18) imply that

|Qn(β̂)−Qn(β
∗)| ≤ max

{|Sn(β∗)T (β̂ −β∗)|,|Sn(β̂)T (β̂ −β∗)|}
≤ max

{||Sn(β∗)||∞,||Sn(β̂)||∞
}||β̂ −β∗||1.

The above inequality holds for any subgradients Sn(β),Sn(β) ∈ ∂Qn(β). We take Sn(β∗) =
n−1∑n

i=1Xiξi, where ξi = I(εi < 0)− τ . By Lemma 3, P
(
λ ≥ 4||Sn(β∗)||∞

) ≥ 1− δn −
2exp(− logp). We take Sn(β̂) to be the subgradient satisfying (8), whose existence is
guaranteed by the KKT condition for the convex difference program (Tao and An, 1997).
Then

Sn(β̂)+λsgn(β̂)−H′(β̂−) = 0, (C.40)

whereH′(·) is defined in Section 2.3 of the main paper. Note that for QR-LASSO,H′(·) = 0
and thus ||Sn(β̂)||∞ = λ, whereas for QR-NCP, note that −H(β) + λ||β||1 = pλ(β) =∑p

j=2 pλ(|βj|). We have ||H′(β̂)−λsgn(β̂)||∞ = ||∂pλ(β̂−)||∞, which is upper bounded

by λ (e.g., Loh and Wainwright, 2015, Lem. 4). Hence, ||Sn(β̂)||∞ ≤ λ. Summarizing
the above, we have with probability at least 1− δn − 2exp(− logp), |Qn(β̂)−Qn(β∗)| ≤
4λ||β̂ −β∗||1. �

APPENDIX D. Additional Technical Results

Lemma D.1. For an arbitrary k ≥ 2, let C(k) = {θ ∈ R
p : ||θ ||2 ≤ 1,||θ ||0 ≤ k}. Then

there exist some positive constants α1 and α2 such that ∀ t > 0,

P
{

sup
θ∈C(k)

∣∣n−1||Xθ ||22 −E(n−1||Xθ ||22)
∣∣ ≥ t

}
≤ α2 exp

(−α1nmin(t2/σ 4
x ,t/σ 2

x )+ k logp
)
. (D.1)

Proof. This is a minor extension of Lemma 15 of Loh andWainwright (2012) to allow X
to include an intercept term. We provide below an outline of the derivation. First, we show
that the exponential inequality in Lemma 14 of Loh andWainwright (2012) can be extended
to allow X to include an intercept term. Specifically, writeX= (1n,X̃), where 1n denotes an
n×1 column vector of ones and X̃ is an n× (p−1) matrix of covariates where each row is
a sub-Gaussian vector and the rows are independent. For an arbitrary p×1 vector θ , write
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θ = (θ1,θ̃
′)′. Then n−1||Xθ ||22 = θ21 +n−1||X̃θ̃ ||22+2θ1n

−11′
nX̃θ̃ . For any θ ∈ R

p and any
t > 0,

P
[∣∣||Xθ ||22 −E(||Xθ ||22)

∣∣ ≥ nt
]

≤ P
[∣∣||X̃θ̃ ||22 −E(||X̃θ̃ ||22)

∣∣ ≥ nt/2
]
+P

[∣∣2θ1n−11′
nX̃θ̃

∣∣ ≥ nt/2
]
.

Consider any fixed θ such that ||θ ||2 ≤ 1. By Lemma 14 of Loh and Wainwright
(2012), the first term at the right side of the inequality is upper bounded by 2exp(− c1nmin(t2/σ 4

x ,t/σ 2
x )

)
for some positive constant c1. Observing that n−11′

nX̃θ̃ is an
average of i.i.d. sub-Gaussian random variables, the second term at the right side of the
inequality is upper bounded by exp

(−c2nt
2/σ 2

x
)
for some positive constant c2. Therefore,

P
[∣∣||Xθ ||22 −E(||Xθ ||22)

∣∣ ≥ nt
]

≤ c3 exp
(− c4nmin(t2/σ 4

x ,t/σ 2
x )

)
, (D.2)

for some positive constants c3 and c4. Using this exponential inequality and applying the
same technique as in the proof of Lemma 15 of Loh and Wainwright (2012) (noting that
s≥ 1 in that lemma is arbitrary) establishes the desired result. �

Lemma D.2. Assume the conditions of Lemma B.1 are satisfied. We have

P
(||�̂||∞ ≤ 12ζ 20

) ≥ 1−2exp(− logp).

Proof. First, by the Cauchy–Schwarz inequality, |�̂jk| = |n−1∑n
i=1 xijxik| ≤ (�̂jj)

1/2

(�̂jk)
1/2, ∀ 1 ≤ j,k ≤ p. Hence, ||�̂||∞ ≤ max1≤j≤p n−1∑n

i=1 x
2
ij. Since in this lemma

xij is sub-Gaussian with variance proxy bounded by ζ 20 , we have �jj = E(x2ij) ≤ 4ζ 20 , j =
1, . . . ,p. A mean-zero random variable x is subexponential with parameter (ζ 2∗ ,b), denoted
by SE(ζ 2∗ ,b), if E{etx} ≤ exp(ζ 2∗ t2/2) for ant |t| ≤ 1

b . The sub-Gaussian property of xij
implies that x2ij−E(x2ij) ∼ SE(256ζ 40 ,16ζ 20 ), j= 1, . . . ,p.

Applying Bernstein’s inequality for subexponential random variables, ∀ t > 0,

P
(
n−1∣∣ n∑

i=1

(x2ij−E(x2ij))
∣∣ > t

)
≤ 2exp

{
− n

2
min

( t2

256ζ 40
,

t

16ζ 20

)}
. (D.3)

Taking t = 32ζ 20
√
logp/n and noting that we assume logp ≤ n/4, by the union bound, we

have

P
(
max
1≤j≤p |�̂jj−�jj| > 16ζ 20

√
logp/n

) ≤ 2exp(− logp).

This implies with probability at least 1−2exp(− logp), we have P(||�̂||∞ ≤ 12ζ 20 ) �

Lemma D.3. Assume the conditions of Lemma B.1 are satisfied. If
√
logp/n≤ ζ1, where

ζ1 = ζ∗/(32eζ0), then

P
(

min
1≤j≤p

n∑
i=1

|xij| ≥ ζ∗/2
)

≥ 1−2exp(− logp).
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Proof. We will first verify that if a random variable x is sub-Gaussian with variance
proxy ζ 20 , then |x| is subexponential. The sub-Gaussian property of x implies that E(|x|k) ≤
(2ζ 20 )k/2k
(k/2), for any positive integer k≥ 1. We consider below the moment generating
function of |x|−E(|x|). For any t ∈ R,

E
{
exp

[
t(|x|−E(|x|))]}

= 1+
∞∑
k=2

tkE
[
(|x|−E(|x|))k]

k!

≤ 1+
∞∑
k=2

tk2k−1E
[|x|k+ (E(|x|))k]

k!

≤ 1+
∞∑
k=2

tk2kE
[|x|k]
k!

≤ 1+
∞∑
k=2

(2t)k(2ζ 20 )k/2k
(k/2)

k!

≤ 1+
∞∑
k=2

(4eζ0t)
k

≤ 1+32e2ζ 20 t
2 for |t| ≤ 1

8eζ0

≤ exp(32e2ζ 20 t
2),

where the second last inequality follows by noting 
(k/2) ≤ (k/2)k/2 and k1/k ≤ e1/e

for any k ≥ 2, and by Stirling’s approximation k!≥ (k/e)k. Hence, |x| − E(|x|) ∼
SE(64e2ζ 20 ,8eζ0). Applying the Bernstein’s inequality for subexponential random
variables, we have

P
(
n−1

∣∣∣ n∑
i=1

(|xij|−E(|xij|))
∣∣∣ > t

)
≤ 2exp

{
− n

2
min

( t2

64e2ζ 20
,

t

8eζ0

)}
, (D.4)

∀ t > 0. Taking t = 16eζ0
√
logp/n in (D.4) and noting that we assume logp ≤ n/4, by the

union bound, we have

P
(
max
1≤j≤pn

−1
∣∣∣ n∑
i=1

(|xij|−E(|xij|)
∣∣∣ > 16eζ0

√
logp/n

)
≤ 2exp(− logp).

Hence, with probability at least 1−2exp(− logp),

n∑
i=1

|xij| ≥ E(|xij|)−16eζ0
√
logp/n, for all j= 1, . . . ,p.

As min1≤j≤pE(|xij|) ≥ ζ∗ > 0 and 32eζ0
√
logp/n ≤ ζ∗, the conclusion of the lemma

follows. �
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Proof of Lemma 1. This result follows from the generalized KKT condition of the
convex difference program (Tao and An, 1997). We provide a self-contained derivation
below.

(i) The result for the global minimum of QR-LASSO follows directly from the definition
of subgradient. To see this, let β̂ = arg minβ {Qn(β)+λ|β−|} denote the global minimum
of QR-LASSO. Then{
Qn(β)+λ|β−|}−{

Qn(β̂)+λ|β̂−|} ≥ 0Tp (β − β̂) = 0,

where 0p denotes a p-dimensional zero vector. Hence, by the definition of subgradient, we
have 0p ∈ ∂{Qn(β̂)+λ|β̂−|}.

(ii) Now, consider the case of QR-NCP. Let β̂ denote a local minimum of Ln(β) =
L̃n(β)−H(β), where L̃n(β) = Qn(β)+λ

∑p
j=2 |βj| and H(β) = ∑p

j=2 hλ(βj). Then there

exists a neighborhood U of β̂ such that Ln(β) ≥ Ln(β), for all β ∈ U. Hence, ∀ β ∈ U,

L̃n(β)− L̃n(β̂) ≥ H(β)−H(β̂) ≥ (H′(β̂))T (β − β̂), (D.5)

where H′(β̂) = (0,h′λ(β̂2), . . . ,h
′
λ(β̂p))

T , and the second inequality follows because H(β)

is convex and differentiable. The convexity of Ln and (D.5) implies that H′(β̂) ∈ ∂L̃n(β̂).
This finishes the proof. �

Proof of Lemma 2 (QR-LASSO). The proof of the result under hard sparsity was given
in Belloni and Chernozhukov (2011). We include it here for completeness and to facilitate
the proof for the result under soft sparsity. Consider the event�n = {

λ ≥ 2||̃Sn||∞
}
, where λ

satisfies the conditions of Lemma 2. Lemma 3 ensures that P(�n) ≥ 1−δn−2exp(− logp).
Recall v̂ = β̂ − β∗. By the definition of β̂, Qn(β̂) + λ||β̂−||1 ≤ Qn(β∗) + λ||β∗−||1. This
implies

Qn(β̂)−Qn(β
∗) ≤ λ

(||β∗−||1 −||β∗− + v̂−||1
) ≤ λ

(||̂vS||1 −||̂vSc ||1
)
. (D.6)

On the other hand, the convexity of Qn(·) guarantees that on �n,

Qn(β̂)−Qn(β
∗) ≥ S̃n̂v≥ −|| v̂ ||1||̃Sn||∞ ≥ −λ

2

(||̂vS||1 +||̂vSc ||1
)
. (D.7)

Putting (D.6) and (D.7) together, we have v̂ ∈ 
H .
Under the soft sparsity assumption, by a similar argument as above for (D.6) and (D.7),

we obtain that on �n,

2
(||β∗− + v̂−||1 −||β∗−||1

) ≤ ||̂vSa ||1 +||̂vSca ||1, (D.8)

where S−a = { j : |β∗
j | > a,2 ≤ j≤ p} and Sa = S−a∪{1}. On the other hand,

||β∗− + v̂−||1 −||β∗−||1
≥ (||β∗

S−a + v̂Sca ||1 −||β∗
Sca

+ v̂S−a ||1
)− (||β∗

S−a ||1 +||β∗
Sca

||1
)

= ||̂vSca ||1 −||̂vS−a ||1 −2||β∗
Sca

||1
≥ ||̂vSca ||1 −||̂vSa ||1 −2||β∗

Sca
||1. (D.9)

Combining (D.8) with (D.9), we have

2
(||̂vSca ||1 −||̂vSa ||1 −2||β∗

Sca
||1

) ≤ ||̂vSa ||1 +||̂vSca ||1.
Hence, v̂ ∈ 
W under the soft sparsity assumption. �
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Proof of Lemma 3. Let An1 = {max1≤j≤p σ̂ 2
j ≤ mx}, where σ̂ 2

j = n−1∑n
i=1 x

2
ij. Then

P(An1) ≥ 1−δn, where δn → 0 as n→ ∞ by condition(C3). On the event An1, by the union
bound, we have

P
(||̃Sn||∞ > 2

√
mx logp/n

) = P
(
max
1≤j≤p

∣∣n−1
n∑
i=1

xijξi
∣∣ > 2

√
mx logp/n

)

≤
p∑
j=1

P
(∣∣n−1

n∑
i=1

xijξi
∣∣ > 2

√
mx logp/n

)
.

As −τ ≤ ξi ≤ 1− τ , ξ is a sub-Gaussian random variable with parameter bounded by one.
Hence,

P
(∣∣n−1

n∑
i=1

xijξi
∣∣ > 2

√
mx logp/n

)
≤ 2EX

{
exp

(− 4mx logp

2n−1∑n
i=1 x

2
ij

)} ≤ 2exp
(−2logp

)
.

We have

P
(||̃Sn||∞ > 2

√
mx logp/n

) ≤ 2exp
(
logp−2logp

) = 2exp(− logp).

This proves the lemma. �

Proof of Corollary 1 (QR-NCP). The geometric structures of the local solutions for
QR-NCP are implied by the derivation in the proof of Theorem 3.

For the hard sparsity case, it follows from the first inequality of (C.35) that(
a∗ −3γ0/4

)||̂v||22 ≤ 3

2
pλ(̂vS−)− 1

2
pλ(̂vSc)+ 1

2
pλ(̂v1)

≤ 3

2
pλ(̂vS)− 1

2
pλ(̂vSc)

≤ 3

2
pλ(̂vA)− 1

2
pλ(̂vAc),

where A is the index set of the largest s elements of v̂ in magnitude. This implies 3pλ(̂vA)−
pλ(̂vAc) ≥ 0. Lemma 5 of Loh andWainwright (2015) implies that 0≤ 3pλ(̂vA)−pλ(̂vAc) ≤
λ
(
3||̂vA||1 −||̂vAc ||1

)
or ||̂vAc ||1 ≤ 3||̂vA||1.

For the soft sparsity case, it follows from (C.39) that

1

2
λ||̂vSca ||1 ≤ 3

2
λ||̂vSa ||1 +λ||β∗

Sca
||1,

or ||̂vSca ||1 ≤ 3||̂vSa ||1 +2||β∗
Sca

||1. �

Proof of Corollary 2. The result in (i) for QR-NCP follows immediately from Theo-
rem 4. To establish the result in (i) for QR-LASSO, let v̂ = β̂ − β∗ = (̂v1,̂v

′−)′, where β̂

denotes the QR-LASSO estimator. By the definition of β̂, we have

|Rn(β̂)| ≤ λ
(
||β∗−||1 −||β∗− + v̂−||1

)
. (D.10)
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Note that as ||β∗− + v̂−||1 ≥ ||β∗−||1 − ||̂v−||1, the right-hand side of (D.10) immediately
implies that

|Rn(β̂)| ≤ λ
(
2||β∗−||1 −||̂v−||1

)
≤ 2λ||β∗−||1 ≤ 2λ||β∗||1.

The results in (ii) and (iii) follow immediately by combining Theorem 4 with the L1-
estimation error bound derived in Theorems 2 and 3. �
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