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DIMENSIONS: A SUBGRADIENT
APPROACH

LAN WANG
University of Miami

XumING HE
University of Michigan

Regularized quantile regression (QR) is a useful technique for analyzing heteroge-
neous data under potentially heavy-tailed error contamination in high dimensions.
This paper provides a new analysis of the estimation/prediction error bounds of
the global solution of L;-regularized QR (QR-LASSO) and the local solutions of
nonconvex regularized QR (QR-NCP) when the number of covariates is greater
than the sample size. Our results build upon and significantly generalize the earlier
work in the literature. For certain heavy-tailed error distributions and a general
class of design matrices, the least-squares-based LASSO cannot achieve the near-
oracle rate derived under the normality assumption no matter the choice of the
tuning parameter. In contrast, we establish that QR-LASSO achieves the near-oracle
estimation error rate for a broad class of models under conditions weaker than
those in the literature. For QR-NCP, we establish the novel results that all local
optima within a feasible region have desirable estimation accuracy. Our analysis
applies to not just the hard sparsity setting commonly used in the literature, but
also to the soft sparsity setting which permits many small coefficients. Our approach
relies on a unified characterization of the global/local solutions of regularized QR
via subgradients using a generalized Karush—Kuhn-Tucker condition. The theory
of the paper establishes a key property of the subdifferential of the quantile loss
function in high dimensions, which is of independent interest for analyzing other
high-dimensional nonsmooth problems.

1. INTRODUCTION

The semiparametric technique of quantile regression (QR) provides a useful
alternative to least-squares regression and has been widely applied to data analysis

Wang and He’s research is partly supported by NSF FRGMS-1952373. The authors are grateful to the Co-Editor
and two anonymous referees, whose comments have helped to significantly improve the paper. They also thank Dr.
Alexander Giessing for his helpful comments and Dr. Yunan Wu for her latex help on an earlier draft of the paper.
Part of the results developed in this paper were made available as an earlier technical report (Wang, 2019). Address
correspondence to Lan Wang, Department of Management Science, University of Miami, Coral Gables, FL 33146,
USA; e-mail: lanwang @mbs.miami.edu.

© The Author(s), 2022. Published by Cambridge University Press 1


https://www.doi.org/10.1017/S0266466622000421
https://orcid.org/0000-0002-3217-0202
https://orcid.org/0000-0002-3442-4173
mailto:lanwang@mbs.miami.edu.

2 LAN WANG AND XUMING HE

in economics and finance since its introduction in the seminal paper of Koenker
and Bassett (1978). For example, a low quantile of the return distribution of an
investment portfolio provides an assessment of risk commonly known as Value at
Risk. Buchinsky (1994), Chamberlain (1994), Buchinsky (1998), Abadie, Angrist,
and Imbens (2002), Horowitz and Spokoiny (2002), Angrist, Chernozhukov, and
Ferndndez-Val (2006), Firpo, Fortin, and Lemieux (2009), Galvao, Lamarche, and
Lima (2013), Arellano and Bonhomme (2017), and Graham et al. (2018), among
others, employed QR to study the wage distribution. See also Linton and Whang
(2004), Horowitz and Lee (2005), Koenker and Xiao (2006), Chernozhukov and
Fernandez-Val (2011), Chernozhukov et al. (2013), Fitzenberger, Koenker, and
Machado (2013), Su and Hoshino (2016), Koenker (2017), and Koenker et al.
(2017) for other interesting applications of QR in economics. QR helps charac-
terize the entire conditional distribution and often leads to insightful discoveries
that would otherwise be imperceptible. It also has the appealing property of being
robust to heavy-tailed error distributions. By contrast, L;-regularized least-squares
regression, to be called LS-LASSO throughout the paper (Tibshirani, 1996), is
known to be vulnerable to heavy-tailed errors.

Let Y be a random variable, and let X = (xy, ... ,xp)T be a p-dimensional vector
of covariates. A linear QR model takes the form

Y=X'B*+¢, P(e <0|X) =1, forsome 0 <7 < I, 1)

where the error distribution of ¢ is generally heteroskedastic, and B* =
By, B - - ,,3; )T is the unknown parameter vector. In this formulation, both
€ and § may depend on the quantile level T of interest, but we ignore such
dependence in notation for simplicity. Model (1) implies that Qyx(t) = X’ B*,
where Qyx(t) = inf{t: Fyx(¢) > 7} is the tth conditional quantile of Y given X.
We are interested in estimating * in the setting where the number of covariates p
is much larger than the sample size n.

This paper develops a useful technique to study high-dimensional QR in a gen-
eral framework under a set of lean assumptions. Our theory relies on establishing a
key restricted strong convexity (RSC) property of the subdifferential of the quantile
loss function in high dimensions. Let S, (8) be any subgradient of the sample
quantile loss function (see more details in Section 2.3 of the main paper) and
denote A = 8 — B*. Theorem 1 of Section 2.2 shows that there exist some positive
constants «* and ¢* that do not depend on » or p such that

lo
(52(8) = $u(8"). 8) = a1 AIB = ' [ 22 1AL,

uniformly on {||A[|, < 1}NC, with high probability, where the set C, to be made
clearer later in the paper, depends on the specific regularization method and the
sparsity pattern of the true parameter 8*.

The subgradient approach leads to a unified analysis of both the global solution
of the L;-regularized QR (QR-LASSO) and the local solutions of nonconvex
regularized QR (QR-NCP) under a set of mild assumptions while allowing for
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a more general sparsity pattern of 8*. We include both QR-LASSO and QR-NCP
in the analysis because both types of penalty functions are of substantial interest
in the literature and in practice. QR-LASSO is computationally convenient due
to the convexity of the objective function, whereas QR-NCP helps alleviate the
estimation bias due to the potential over-penalization of the L,-penalty. For regu-
larized least-squares regression and generalized linear models in high dimensions,
an equivalent property of RSC has been shown to play a fundamental role in
theoretical analysis. However, such results are available only for differentiable
loss functions. The gradient function of the quantile loss is not even Lipschitz
continuous, which leads to substantial technical challenges. Our proof involves a
novel construction of a Lipschitz continuous lower bound and the use of modern
empirical processes techniques.

In the classical setting where the number of covariates is not large, Wang, Li,
and Jiang (2007), Li and Zhu (2008), Zou and Yuan (2008), Wu and Liu (2009),
Shows, Lu, and Zhang (2010), Kai, Li, and Zou (2011), Wagener, Volgushev,
and Dette (2012), Wang, Zhou, and Li (2013a), and Chen et al. (2019a), among
others, investigated regularized QR for variable selection. Several authors have
recently investigated QR in high dimensions. Belloni and Chernozhukov (2011)
was among the first to rigorously establish estimation error bounds for QR-
LASSO (see also Kato, 2011; Wang, 2013). More recently, Park, He, and Zhou
(2017) investigated multiple QR with high-dimensional covariates, Lee et al.
(2018) studied high-dimensional QR-LASSO with a change point, Harding and
Lamarche (2018) investigated QR-LASSO for panel data, and Chen, Liu, and
Zhang (2019b) explored QR for big data under memory constraint. Moreover,
adaptively weighted QR-LASSO or QR-NCP has been considered for better
variable selection performance in various settings (see Bradic, Fan, and Wang,
2011; Wang, Wu, and Li, 2012; Fan, Fan, and Barut, 2014; Zheng, Peng, and He,
2015, among others). High-dimensional semiparametric QR has been investigated
by Tang et al. (2013), Sherwood and Wang (2016), Zhong et al. (2016), Fan and
Lian (2018), Lv et al. (2018), and Honda, Ing, and Wu (2019), among others.

Inspired by the recent work, this paper makes several new contributions to the
fundamental theory of QR in the regime where the number of covariates p can
grow at an exponential rate of the sample size n.

o We show that QR-LASSO enjoys the near-oracle estimation error rate under a
set of lean assumptions. Our theory permits a rich class of error distributions
as well as a general class of random design matrices without requiring the
nonlinear eigenvalue condition. The estimation error rates are established under
not only the popular hard sparsity setting, but also a more relaxed soft sparsity
assumption which permits many covariates to have small effects.

e For QR-NCP, we show that all local minima within a feasible region have
desirable error bounds and achieve the minimax error rate of estimation. These
new results fill an important theoretical gap in the literature, because the
global minimizers for nonconvex objective functions are not always numerically
obtained or verifiable in practice.
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e We derive the quantile prediction error rate by a general characterization of the
prediction error based on subgradients.

Our results demonstrate that QR-LASSO enjoys near-oracle estimation error
rates for a much richer class of error distributions than LS-LASSO does. The theory
relies on conditions generally weaker than those in the current literature for LS-
LASSO and QR-LASSO. Our analysis of the local minima for QR-NCP is new.
Computation of the global solution of QR-NCP is infeasible in high dimensions.
On the other hand, the empirical results in the literature demonstrate that the
local solutions (obtained by different algorithms) of QR-NCP often significantly
reduce the bias of QR-LASSO. The existing theory of QR-NCP has been focused
on the existence of a local solution with good statistical properties. One main
contribution of our paper is to fill in the gap of the theory by establishing that any
solution satisfying the first-order condition (including global minimum) within a
given radius of the true value has the desirable statistical accuracy. This result
has important implications for the use of QR-NCP as an estimator for the QR
coefficient or as an initial value for inference (see Section 6 for more discussions).
The results substantially generalize those in Loh and Wainwright (2015), Mei, Bai,
and Montanari (2018), and Elsener and van de Geer (2018) on the properties of
local minima for differentiable loss functions. It is worth noting that the statistical
properties of local solutions are of broader interest. Even in low dimensions,
algorithms for many nonlinear problems (e.g., nonlinear generalized method of
moments (GMM)) only guarantee first-order solutions (e.g., stationary point).
Moreover, our subgradient approach is different from the techniques commonly
used in the literature of high-dimensional QR and is of significant independent
interest. The proposed technique is applicable to a large class of high-dimensional
nonsmooth problems, for instance, classification based on the hinge loss.

The rest of the paper is organized as follows. Section 2 introduces the back-
ground and a general characterization of the solution of regularized QR based on
subgradients. Section 3 presents the main theory on the estimation error bounds
for QR-LASSO and QR-SCAD in ultra-high dimensions. Section 4 studies the
quantile prediction error bounds. Section 5 reports results from a Monte Carlo
study. Section 6 concludes the paper with additional remarks. Appendixes A-D
contain detailed technical arguments.

1.1. Notation

For any vector v = (vi,...,v,)" € R?, ||| = \/>7_, v} denotes its L-norm,
[Vl = Zle [vi| denotes its Li-norm, and ||v||eo = Maxi<;<, |v;| denotes its Loc-
norm. Given an arbitrary index set S C {I,...,p}, vs denotes the subvector of v
containing the elements whose indices are in S, vse denotes the subvector of v
containing the elements whose indices are not in S, and |S| denotes the cardinality
of the index set S. For a real symmetric matrix M, A4, (M) denotes its largest
eigenvalue. For sequences of real positive numbers a, and b,, a, ~ b, means ¢; <
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a, /b, < c, for some positive constants ¢; and c,. The covariates X; = (x;jq, ... ,xi,,)T
are independent p-dimensional sub-Gaussian random vectors with variance proxy
{02, thatis, Vv e R?, V€ R, E{exp(tXiTv)} < exp{§02t2||v||%/2}, where ¢ is a
positive constant. In this paper, a number is referred to as “a constant” if it does
not depend on (n,p), but it is allowed to depend on the underlying probability
distributions of X; and ¢;. The indicator function of an event A, denoted by I(A),
takes the value one if A occurs and zero otherwise. We often write 1 as exp(—logp)
to emphasize that this term converges to zero at an exponential rate of logp. The
sign function sgn(f) = 1 if > 0; = —1 if # < 0; and takes its value in [—1, 1] if
t=0.

2. PRELIMINARIES

In this section, we briefly review regularized QR with convex and nonconvex
penalties, under the hard sparsity or soft sparsity assumption. We then elaborate
on how to use subgradients to characterize the regularized QR solutions, global or
local, with a general penalty function.

2.1. Background

Consider arandom sample {Y;, X;}"_, satisfying model (1), where X; = (x;1, ..., xj) .
To explicitly incorporate the intercept term, we assume x;; = 1 for all i, and
correspondingly * = (8}, 8*")" where g* = (85,.... 8.

To avoid overfitting in the setting p > n, we consider estimating S* by
regularized QR:

B=B0=argmin{n” Zmy XTﬂ)+ZpM(|ﬁ,|>} @)

BERP =

where A = A, is positive tuning parameter controlling the complexity of the
solution, o, (1) = u{r —I(u < 0)} is the quantile loss function, 8 = (81, 87)T e R?,
and p,, (-) denotes a penalty function with tuning parameter A,. A larger value of
A, encourages sparser solutions.

QR-LASSO adopts the popular Li-penalty for which p,,(|8;]) = A,18;|. It is
computationally convenient due to its convex structure. Alternatively, one may
use a nonconvex penalty function, which can alleviate the bias associated with the
L;-penalty. Two popular choices of nonconvex penalty functions are the SCAD
penalty function (Fan and Li, 2001) and the MCP penalty function (Zhang, 2010).
The SCAD penalty function is defined as

a2 92
P10 = 2plip1 < 1+ TG < gy < )

HA?
(a~|—) ————I(|B| > ar), for some a > 2;




6 LAN WANG AND XUMING HE

whereas the MCP function has the form
132 CZ)\,2
Pu(1B) = 1(11 =5 )81 < @)+ S-1(Bl = ak). forsomea> 1.

Most of the existing literature on high-dimensional QR assumes that * satisfies a
hard sparsity constraint, especially

P
B eBols) ={BeR: ) 1B #0) <s—1}, 3)

=2

for some positive constant 1 < s < n, where 1(-) denotes the indicator function.
Hence, ||8*|lo < s and most of the components in 8* are exactly zero. As is
customary for a regression model in the classical setting, the intercept term is
always included in the model. The sparsity constraints are thus imposed on the
slope components of 8*. Note that this is a subtle difference from high-dimensional
least-squares regression where the intercept is generally taken as zero, which can
be done for mean regression without loss of generality by centering both the
response variable and the regressors. However, such a simplification does not carry
over to QR.

The hard sparsity constraint may be overly restrictive for some applications
which involve many weak signals, rather than just a few strong signals. This
paper also considers a more relaxed sparsity constraint, which allows g* to have
many smallish nonzero coefficients. More specifically, the soft sparsity constraint
assumes

p
B eBI(R) ={BeR: > |B] <R] €)

=2

for some positive number R, which may depend on the sample size. In (4), instead
of Li-norm, we may also use the L,-norm for some 0 < g < 1. The results of
the paper would still hold under minor modifications. It is worth noting that both
Bo(s) and B; (R) may depend on the quantile level t of interest. Discussions on the
identification of the population parameter By in the high-dimensional setting are
given in Appendix A.

2.2. Characterizing the Solutions for Regularized Quantile Regression

We now present a unified characterization of the regularized QR estimators,
including the global solution of QR-LASSO and the local solutions of QR-NCP,
based on a generalized Karush—-Kuhn-Tucker (KKT) condition for the convex
difference problem, characterized by subgradients.

A subgradient of a convex function g(8) at B is any vector £ € R” such that
g(B2) = g(B1) +ET(By — By) for all B,. The subdifferential of g(8) at B, denoted
by dg(B1), consists of all the subgradients of g(8) at j;.
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Let

0By =n""Y p.(Y;—X]B) ®

i=1

denote the sample quantile loss function. One can show that the subdifferential
30, (B) comprises vectors S,(B8) = (Su1(B), ... ,S,,p(ﬂ))T, where, forj=1,...,p,

S(B) =—1n"" Y xyl(Y; = X[ B > 0)

i=1
n n
+A=—on™Y gl (V=X B <0) —n' > xyi (6)
i=1 i=1
and

{0}, if Y, =X/ B #0,

Vi € .
[t—1,7], otherwise.

LetL,(B) =Q0,(B)+ Zf:z Dx, (| Bj]) be the regularized quantile objective function
in (2). We observe that for a general class of penalty functions, L, (8) can be written
as the difference of two convex functions in 3:

L,(B) =L,(8) —H(B),

where L,(8) = 0u(8) + .Y, |8 and H(B) = Y0, b (B)). where hy () is
differentiable. In the case of LASSO penalty, h, (8;) =0, for j=2,...,p, and thus

L.(B) coincides with L, (8). For the nonconvex SCAD penalty,
m(B) = | (B = 22181 +23D)/2a— )11 < 1] < a2
+ [A|,3,| —(a+ 1)A2/2]1(|,3j| > a3),
whereas for the nonconvex MCP function,
m(B) = | B2/Ca) 1181 < ax) + [n1B1 - ar22] 1 (18] = a2).

For the above convex difference optimization problem, an extension of the KKT
condition was given in Tao and An, 1997, which implies that the solution 8 =
B, ..., /3,,)T of (2), global or local, satisfies the following necessary condition:

VL,(B)—H'(B) =0, ™

where VZ,, (3) denotes some (not necessarily any) subgradient in the subdiffer-
ential of L, being evaluated at E and H/(B) = (0, (;3\2), - (B;,))T. Note that
L,(B) is the sum of two convex functions. In this paper, we consider stationary
points satisfying (7), which include the solutions given by popular algorithms.
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LEMMA 1. Let E be any stationary point of QR-LASSO or QR-NCP satisfying
(7). Then there exists a subgradient S,(B) € 00,/ (B) such that

S.(B) +Asgn(B) —H'(B) =0, 8)

where sgn(,B\) = (0, sgn(,gz), .. ,sgn(B;,))T.

Consider next a particular subgradient S, indQ, (B), given by
Se=n""> "X ©)
i=1

where & = I(¢; < 0) — 7. For regularized QR, A is usually selected such that the
event

Ap= {2 = collSullos} (10)

happens with high probability for some positive constant ¢y > 1. Such a penalty
was also considered in Belloni and Chernozhukov (2011) for QR-LASSO (see
also Kato (2011) for an extension to the group LASSO setting). The above
choice of A is motivated by the general principle of tuning parameter selection
in regularized least-squares regression (Bickel, Ritov, and Tsybakov, 2009) and
the KKT condition for a general convex difference problem (Tao and An, 1997).
Following the choice for LS-LASSO (Bickel et al., 2009), we take ¢y = 2 in the
subsequent analysis.

3. MAIN THEORY

In this section, we provide details on the theoretical properties of the regularized
QR estimator 8. For QR-LASSO, S denotes the global solution defined in (2),
which also satisfies (7). For QR-NCP, 8 denotes any local solution satisfying (7).

3.1. Geometric Structure of Regularized Quantile Regression
Estimators

Under the hard sparsity condition, the QR-LASSO estimator is known to lie in a
cone-shaped set with high probability. Let v = E— B*. Here, we go beyond the
setting of the L;-penalty and hard sparsity to characterize the geometric structure
of V.

Let S_ ={j:p #0, 2 <j=<p}and §=S_U{l}. Given a threshold a > 0,
letS_,={j: |/3j*| >a,2 <j<p} Let S, =S_,U{l}. The cardinality ||S||p = s
denotes the sparsity size under the hard sparsity condition. Under the soft sparsity
assumption, s can be much larger than #.

Let

Ty={veR:|vslh <3llvslhi}, (11
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Ty={veR vl §3||Vsa||1+4||ﬂ§g||1}, 12)
Ty ={veR :|lvaells <3llvalli}, 13)
Ty = {veR: vl <3llvs, Il +211B%]11}. (14)

where A is the index set corresponding to the s-largest (in absolute value) elements
of v. It is observed that I'; and FH are cone-shaped, but I'yy and FW are star-shaped.
For example, if v € 'y, then the whole line segment {#v|t € (0, 1)} is contained in
I'w. The sets I'y and fw depend on a, but we omit the dependence in notation for

simplicity.

We use f;(¢) to denote the conditional probability density function of €; given
X;, i =1,...,n. We also assume, without loss of generality, that the covariate
X_i=(xn,... ,x,-p)T is a (p — 1)-dimensional mean-zero random vector, and ¥ =

E(XiXiT) exists. Conditions (C1)—(C3) below constitute a set of basic assumptions
for establishing the statistical properties of the regularized QR estimator in high
dimensions.

Condition (C1). The conditional distribution of ¢; satisfies P(¢; < 0|X;) = T,
i=1,...,n. There exist positive constants mg and by such that inf ;. f;(¥) >
mg > 0, for all |¢| < by.

Condition(C2). The matrix X satisfies Ay (X) < k, < 00, and
vTEvzmlllvH%, for any v € C, as)

for some constant m;, where for QR-LASSO, C = I'y under the hard sparsity
assumption, and C = I'y, under the soft sparsity assumption whereas for QR-
NCP, C =R”.

Condition (C3). Let o, J =n! Zl lx There exist a constant m, > 0 and a

positive sequence of numbers §,, such that P(maxlﬁi,, aj2 < mx) >1-4,,
where §, — 0 as n — oo.

Remark 1. Condition (C1) imposes regularity conditions on the random error
distributions, which allow for heteroskedastic error distributions and do not
require the existence any moment. The constant by in (C1) may depend on the
probability distribution of X;, as described in Lemma C.2 of Appendix C. A
large class of heavy-tailed error distributions, such as the Cauchy distribution,
satisfy condition (C1). The restricted eigenvalue condition in (C2) is similar to
those imposed for regularized least-squares regression. For QR-LASSO, (15) is
exactly the same as the restricted eigenvalue condition for LS-LASSO as the
restriction sets I'y and I'yy have the same forms as those for LS-LASSO. For
QR-NCP, the requirement of C = R? amounts to assuming Api,(X) > m; > 0.
However, if we restrict our attention to a sparse local solution, then this can
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be replaced by weaker sparse eigenvalue condition in Zhang (2010). Finally,
condition (C3) is satisfied if the covariates have sub-Gaussian distributions. It
can also be satisfied when some of the covariates do not have sub-Gaussian
distributions. For example, if a small subset (say fixed size) of covariates
only have finite second moments, whereas the others follow the sub-Gaussian
distributions with bounded variance proxy, then (C3) still holds. Overall, the
above set of conditions is similar to or weaker than that in the literature for
high-dimensional QR. Some detailed comparisons are given in Remark 3 of
Section 3.3.

LEMMA 2 (QR-LASSO). Assume A = ko /logp/n, where ko > 4./m, is a
constant. Suppose conditions (Cl) and (C3) are satisfied. Then, with probability
at least 1 — 8, —2exp(—logp), (i)V € Ty under the hard sparsity assumption and
(ii) v € Ty under the soft sparsity assumption.

For QR-LASSO, the geometric structure is a result of the convexity of the
regularized quantile loss function. The first part of Lemma 2 under hard sparsity
was observed in Belloni and Chernozhukov (2011), whereas the result under soft
sparsity is new and is a generalization of Negahban et al. (2012). For QR-NCP,
the geometric structure is less transparent. Instead, the structure is implicit in the
derivation of the estimation error bound.

For QR-NCP, we have vV € Ty under the hard sparsity assumption and v € Tw
under the soft sparsity assumption with high probability. Due to the reliance on
the conditions of later theorems, we refer to Corollary | in Section 3.3 for a full
description of the results.

3.2. Properties of Subgradients in High Dimensions

We first state a useful property for the subgradient S, defined in (9). The following
lemma gives a high probability bound for its supremum norm.

LeMMA 3. Suppose conditions (C1) and (C3) are satisfied. We have

P(11Sulloe < 2/mylogp/n) = 18, —2exp(—logp).

The lemma suggests that the event A, defined in (10) occurs with a high
probability for an appropriate choice of A at the rate v/logp/n.

Theorem 1 provides a core result for establishing error bounds for QR-LASSO
and QR-NCP by showing that a type of restricted convexity condition holds with
high probability for any subgradient in the subdifferential of the sample quantile
loss function.

THEOREM 1 (Restricted strong convexity). Suppose conditions (C1)—(C3) are
satisfied. There exist some positive constants a*, c*, ay, and a,, such that for any
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subgradient S, € 30,(B),

I
(Su(B* + A) — S,(B*), A) = a*|| A — c* %HAHI, (16)

uniformly on {||All, < 1} N C, holds with probability at least 1 — 8, —
ayexp(—azlogp), where C is defined in condition (C2) and §,, — 0 is given in
condition (C3).

Remark 2. This theorem guarantees an RSC condition on {||A]|, < 1}NC.
Lemma C.4 in Appendix C shows that a slightly weaker result holds uni-
formly on {||A[], > 1} N C. Specifically, with probability at least 1 — §, —
arexp(—arlogp). (S,(8"+A)~$,(B).A) = al|Ally — ¢/ ZZ|[Ally.  uni-
formly on {||A||; > 1}NC. Similar RSC-type conditions have been considered
in the recent literature on high-dimensional M-regression (Negahban et al., 2012;
Loh and Wainwright, 2015, among others). However, the existing literature has
only considered smooth (second-order differential) loss functions. To the best
of our knowledge, this is the first time the RSC condition is established for a
nonsmooth loss function, which is more technically challenging due to the fact
the gradient function is not even Lipschitz continuous. Our proof is based on a
novel construction of a Lipschitz continuous lower bound and the application
of advanced empirical process theory techniques (e.g., peeling). Our approach

can be applied to other nonsmooth high-dimensional problems and is of interest
beyond QR.

3.3. Estimation Error Bounds

This subsection derives the L,-error and L;-error bounds for the estimator ,E under
both the hard sparsity assumption and the soft sparsity assumption. It is worth
emphasizing that the results here are nonasymptotic in the sense that the error
bounds hold for any (n,p) satisfying the stated conditions. The theory allows the
number of covariates p to grow at an exponential rate of the sample size n, often
called the ultra-high-dimensional setting. In the sequel, a*, ¢*, a;, and a, denote
the positive constants given in Theorem 1.

THEOREM 2 (QR-LASSO). Suppose conditions (C1)—(C3) are satisfied. Let . =
ko+/logp/n, where kg > 4./m, is a constant.

(i) (Hard sparsity case) Assume B* satisfies the hard sparsity assumption (3),
withn > (a})*slogp, where at = 4(2ko +c*) /a*.Then, with probability at least
1—44, —4exp(—logp) — 2a, exp(—ay logp),

IB — B*Il» < ajy/slogp/n and ||B— B*|li < 4ajsy/logp/n.

(ii) (Soft sparsity case) Assume B* satisfies the soft sparsity assumption (4). For
any R satisfying R > \/logp/n and ai/logp/nmax{2, R} < 1/2, we have, with
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probability at least 1 — 45, — 4exp(—logp) — 2a; exp(—a; logp),
1B~ 87112 < a3R'*(ogp/m'/*  and
1B = B*111 < 4(a3/1SaIRY (logp/m) "4 + 1 B |11,

where a5 = 2max{«/§a>f,\/ﬁ}, Sy=S_U{l}withS_,={j: |/3j*| >a2<
Jj <p}, and a > 0 is an arbitrary thresholding parameter.

Remark 3 (On the results of QR-LASSO for the hard sparsity case). In this
case, the L, estimation error of QR-LASSO has the rate v/slogp/n. This matches
the minimax optimal rate for LS-LASSO, established in Raskutti, Wainwright, and
Yu (2011) under the assumption of sub-Gaussian errors for the hard sparsity case.
In the oracle case (when the underlying model is known), the L, estimation error
has the rate /s/n. The above minimax rate is near-oracle up to a factor of order
J/logp, the price to pay for not knowing in advance which of the p covariates are
relevant.

The results in Theorem 2(i) for the hard sparsity case are inspired by the earlier
work of Belloni and Chernozhukov (2011) and Wang (2013), which obtained
the same rates for the L, error bound. However, our proof employs a different
technique and requires weaker conditions. Comparing with the conditions in
Belloni and Chernozhukov (2011), we relaxed the conditions on both ¥ and ;.
We have dropped their restricted nonlinearity condition on X (their condition D.4),
{E(1XT81%)}3/2

E(X[81%)

a condition is not needed for the parallel theory of LS-LASSO. Furthermore, if
the nonlinear impact coefficient g converges to zero at a sufficiently fast rate, this
may have a negative impact on the feasible range of n and p through the growth
condition \/slog(p Vv n) < O(q+/n) required in the main theorem (Theorem 2) of
Belloni and Chernozhukov (2011). Unlike Belloni and Chernozhukov (2011), we
do not require the conditional random error density f;(¢) to be continuously dif-
ferentiable nor the derivative to be uniformly bounded everywhere. We only need
a uniform lower bound for f;(¢) in a neighborhood of zero. Our assumptions are
also significantly weaker than those in Wang (2013), which required independent
and identically distributed (i.i.d.) random errors and a restricted isometry-type
condition in addition to the restricted eigenvalue condition.

which would require g :=infscq 520 > 0 for some restricted set A. Such

Remark 4 (On the results of QR-LASSO for the soft sparsity case). The results
in Theorem 2(ii) for the soft sparsity case are new for high-dimensional QR. The
soft sparsity scenario allows for dense small coefficients. The radius of the L;-ball
B (R) is allowed to shrink or diverge with the sample size n. In this case, we obtain
the L, error rate R'/?(logp/n)'/* for QR-LASSO, which also matches the minimax
optimal rate in the soft sparsity case for LS-LASSO in Raskutti et al. (2011). The
L;-error bound is larger than the L, error bound. However, one may still achieve an
L;-consistency rate under additional structural assumptions on 8*. As suggested
by an anonymous referee, let us consider an example of an approximately sparse
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model for illustration. Without loss of generality, we assume |85| > |85 > - >
|B, !, and that there exists a positive integer ¢ < p such that g/logp/n = o(1)
and ; = (3¥~/logp/n, forj=g+1,...,p. Then 37___ |B| = O(J/Togp/n).

Taking a = |B;| and assuming R is bounded, the result in Theorem 2(ii) implies
that ||B — B*[1 = O(q'2R"2(logp/m) /).

Remark 5. The regularization parameter A is taken to be of the order v/logp/n,
the universal penalty level introduced in Donoho and Johnstone (1994). The
literature of regularized high-dimensional regression often focuses on statistical
analysis with a penalty parameter of this order (e.g., Bickel et al., 2009). In practice,
an appealing approach (Belloni and Chernozhukov, 2011) is to directly simulate
A as the (1 — «)-quantile of the distribution of c||§n||oo, for some small « > 0.
This is feasible by observing that the distribution of ||§,,| | 18 pivotal. With this
simulated A, the same estimation error bound would hold with probability at least
1 —a —46, —4exp(—logp) —2a; exp(—ay logp).

Remark 6. Lemma B.1 in Appendix B demonstrates that for a certain class of
heavy-tailed error distributions and a general class of design matrices, there is a
positive probability that LS-LASSO cannot achieve the near-oracle rate derived
under the normality assumption no matter the choice of the tuning parameter. In
contrast, the results for regularized QR in this paper hold for a much larger class of
error distributions. Our results, hence, provide strong evidence for the robustness
and broader applicability of QR in high dimensions.

Theorem 3 gives the estimation error bounds for the feasible local solutions
of QR-NCP. The nonconvex penalty function is assumed to satisfy the following
general conditions. The penalty function p, (#) is defined on the real line and
is symmetric about zero. It is assumed to be nondecreasing and concave for
t € [0, + 00), with a continuous derivative p;, (¢) on (0, 4+00) and lim,_, o1 p} () = A.
For t > 0, p, () is nonincreasing in . Furthermore, there exists a constant yy > 0
such that the function f — p; (f) + %0[2 is convex. This class of nonconvex penalty
functions, in particular, includes the popular choices SCAD and MCP penalties
discussed in Section 2.1.

THEOREM 3 (QR-NCP). Let A = ko+/logp/n, where ky > 4max{2./m,,c*}.
Suppose conditions (C1)—(C3) are satisfied. Consider any feasible local solution
B such that ||B||1 < «, for some k > ||B*||1, and the KKT condition (7) is satisfied.

(i) (Hard sparsity case) Assume B* satisfies the hard sparsity assumption (3).

If Jlogp/n < 32;:0 and a* > %yo, then, with probability at least 1 — 46, —

dexp(—logp) — 2a; exp(—azlogp),

1B —B*1l2 < ai/slogp/n, and ||B—B*||\ < 4dis\/logp/n,

where a} = %.
(i) (Soft sparsity case) Assume B* satisfies the soft sparsity assumption (4). If

J/logp/n < max{R, 32’(“:0 } and a* > yy, then, with probability at least 1 — 46, —
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4exp(—logp) — 2a; exp(—azlogp),
1B - Bl < &R (logp/m)'/*,  and
1B = B*Il < 4a3y/ISIR" (logp/m)'/* + 211 B3 |11,

3+/2kq ko
2(a*=y0)’ Y a*—n

where aj = 2max[ } and |S,| is defined the same as in

Theorem 2.

Remark 7. The assumption of the KKT condition (7) is satisfied for the local
solutions corresponding to the SCAD or MCP penalty function. The side condition
||,§| |1 <k as was also adopted in Loh and Wainwright (2015) in order to focus on
sensible local solutions. The high-probability error bound in this theorem applies
to any feasible local solution within the radius « of the true value *. A careful
examination of the proof reveals that « can diverge to oo as long as «/logp/n =
o(1). It is noted that we do not restrict the local solution to be sparse even for the
hard sparsity setting. In practice, one would not wish to choose an exceedingly
large «, as the conditions of the theorem suggest that the non-asymptotic bounds
hold with a larger n when « is larger.

Embedded in the proof of Theorem 3 is a result on the geometric structure of the
local solution of QR-NCP. Unlike the result in Lemma 2 about the geometric struc-
ture of the global solution of QR-LASSO, the result for QR-NCP in Corollary 1 is
new.

COROLLARY 1 (QR-NCP). Assume the conditions of Theorem 3 are satisfied.
Then, with probability at least 1 — 45, —4exp(—logp) —2a, exp(—az logp), where
ay and ay are the positive constants in Theorem I, we have (i)V € f‘H under the
hard sparsity assumption and (ii) vV € Ty under the soft sparsity assumption.

4. QUANTILE PREDICTION ERROR BOUNDS

Finally, we establish theoretical guarantees for the prediction error bounds of the
regularized QR estimators in high dimensions. The empirical quantile prediction
error is given by

R.(B) = 0.(B) — 0.(BY),

where the sample quantile loss function Q,(8) is defined in (5). Our result does
not impose restrictions on which regularized procedure is used. Specifically, the
prediction error is evaluated using E, either the global solution from QR-LASSO
or a local solution from QR-NCP.

A key result of this section is a general characterization of the prediction error
bound based on subgradients. Consider any two subgradients S,, and S, in 00,(B).
The convexity of the loss function Q,(8) implies that

On(B) = 0u(B™) +S4(B) (B — B, a7)
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0.(B%) = 0u(B)+S.(B)" (B — BY). (18)

Combining inequalities (17) and (18), we immediately obtain

10.(B) — 0u(B)| < max {[1S2(B*)loos 12 (B) 1o } 1B — B*I11.

This leads to simple bounds for the prediction error for the general case (global or
local solution, hard or soft sparsity).

THEOREM 4. Let A = ko+/logp/n, where kg > 4 max{2./m,, c*}. With probability
at least 1 — 8, —2exp(—logp), we have

IR.(B)| < 41||B - B*I1. (19)

Corollary 2 summarizes the results for the quantile prediction error. These
results are new for high-dimensional QR. Our results extend the prediction error
bound for the LS-LASSO (see Greenshtein and Ritov, 2004; Bunea, Tsybakov,
and Wegkamp, 2007; Bickel et al., 2009; Raskutti et al., 2011). Unlike QR, the
precision error bound for LS-LASSO is usually studied based on the least-squares
loss function n~!' Y7, (¢, — X”y)%. Our approach can also be applied to other
(possibly nondifferentiable) convex loss functions.

COROLLARY 2.

(1) (Slow rate, without sparsity assumption) Let E be the QR-LASSO or QR-NCP
estimator. For any tuning parameter A, for any n, we have

IR,(B)| < 24|IB*|l,,  for LASSO,
IR.(B)| <41(|1B*|li +R), for QR-NCP.

(i) (QR-LASSO, faster rate) Let E be the QR-LASSO estimator. Assume the
conditions of Theorem 2 are satisfied. Then, with probability at least 1 —46,, —

4exp(—logp) —2a; exp(—az logp),

|R,l(B\)| <Dbislogp/n, hard sparsity case,
IRu(B)| < b3 (a3y/1SaIR"* (logp/n)*/* + B3 |11 (logp/m) /),

soft sparsity case,

where b} = 16koa}, by = 16ky, and ay, a;, and S, are defined the same as in
Theorem 2.

(iii)) (OR-NCPF, faster rate) Let E be the QR-NCP estimator. Assume the condi-
tions of Theorem 3 are satisfied. Then, with probability at least 1 — 46, —
4exp(—logp) —2a; exp(—azlogp),
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|R,,(E)| <Dbjislogp/n, hard sparsity case,
IRy(B)| < b3[2a5V/1S4IR"(logp/m)** +1185 11 (logp/m) '],

soft sparsity case,

where b} = 4koa;, b} = 8ko, and aj, a;, and S, are defined the same as in
Theorem 3.

Remark 8. The rate in (i) is known as the “slow rate” for prediction error in the
literature on LS-LASSO. It is obtained without assuming any structure for 8* or
any assumption on the design matrix. In (ii) and (iii), the rates for the hard sparsity
case are the same as the so-called “fast rate” in the literature for LS-LASSO. The
upper bounds for the soft sparsity case in (ii) and (iii) permit faster rates when
the true value 8* has certain desirable structural properties, particularly when the
number of relatively large signals in §* is of a relatively small order, whereas the
number of relatively small signals is much smaller relative to R. For example, for
the example of the approximately sparse model discussed in Remark 4, we have
|R,1(E)| = 0(q'*R'*(logp/n)**) in the soft sparsity case for both QR-LASSO
and QR-NCP. Finally, we note that for all these scenarios, we require overall milder
conditions on the random error distributions than those required in the literature
for LS-LASSO.

5. A MONTE CARLO EXPERIMENT

In this section, we carry out a Monte Carlo experiment to confirm some of the
theoretical findings about LASSO or SCAD regularized QR versus least-squares
regression under the same form of penalization.

We generate (X, Xa, ...,X,) from the multivariate normal distribution N, (0, X)
with £ = (0j1)pxp and o = 0.5 1 < j, k < p. For the regression parameter f*,
we consider two different models.

e Model 1 (sparser model): 8* = (2,1, 1.5, 1.75,0;_4)T,

e Model 2 (denser model): 8* = %(ln,Og_n)T,

e Model 3 (dense model): B* = (2,1,1.5,1.75,ﬁ§‘,...,ﬂ;)T, where ,Bj* =
0.5)7*/Togp/n, forj=35,...,p,

where 0; denotes the k-dimensional vector of zeros, whereas 1; denotes the k-
dimensional vector of ones. For each model, we consider three different random
error distributions for ¢;: the N(0, 1) distribution, the mixture normal distribution
aN(0,1) + (1 —a)N(0, 10?) where a ~ Bernoulli(0.95), and the Cauchy distribu-
tion with location 0 and scale 1.

We consider LS_Oracle, QR_Oracle, LS_LASSO, QR_LASSO, LS_SCAD
(SCAD regularized least-squares regression), and QR_SCAD (SCAD regularized
QR), where the quantile methods are based on t = 0.5, and LS_Oracle and
QR_Oracle are computed using the true model structure. For n = 100 and p = 500,
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FI1GURE 1. Box plots of the L, estimation error for Model 1 based on six methods: LS_Oracle,
QR_Oracle, LS_LASSO, QR_LASSO, LS_SCAD, and QR_SCAD.

the box plots for the L,-errors of the six methods based on 1,000 simulation runs
for Models 1-3 are given in Figures 1-3, respectively.

For the LASSO penalty, the tuning parameter is selected using a fivefold
cross-validation. For the SCAD penalty, the tuning parameter is selected using
a high-dimensional BIC procedure (Wang, Kim, and Li, 2013b; Lee, Noh, and
Park, 2014, among others). We observe from Figure | that for normal random
errors, LS-LASSO is slightly more efficient than QR-LASSO, but its performance
deteriorates substantially for the mixture normal random errors and Cauchy errors.
The nonconvex SCAD penalty leads to smaller L, error than the LASSO penalty.
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Model 2 (normal error) Model 2 (mixture normal error)
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FIGURE 2. Box plots of the L, estimation error for Model 2 based on six methods: LS_Oracle,
QR_Oracle, LS_LASSO, QR_LASSO, LS_SCAD, and QR_SCAD.

Figure 2 suggests that for the denser model under consideration, QR-LASSO
and QR-SCAD have similar performance to that of LS-LASSO and LS-SCAD
for the normal errors and have much smaller error for the mixture normal errors
and Cauchy errors. Similar observations are obtained from Figure 3 for the dense
model.

Finally, to investigate the effects of different sample sizes, we consider Model 1
with the mixture normal error distribution as the sample size varies between 100
and 800. Figure 4 depicts the L, errors for LS_LLASSO, QR_LASSO, LS_SCAD,
and QR_SCAD in this setting. The plot suggests that the L, error decreases as n
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Model 3 (Gaussian error) Model 3 (mixture normal error)
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F1GURE 3. Box plots of the L, estimation error for Model 3 based on six methods: LS_Oracle,
QR_Oracle, LS_LASSO, QR_LASSO, LS_SCAD, and QR_SCAD.

increases. It also suggests that for the heavy-tailed error distribution, regularized
QR substantially outperforms regularized least-squares regression.

6. DISCUSSION

By developing a new and unified subgradient approach, we present several signif-
icant results on the fundamental properties of regularized QR in high dimensions,
where the number of covariates can grow at an exponential rate of the sample size.
We demonstrate that QR-LASSO enjoys the near-oracle rate in estimation error for
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FIGURE 4. The L, estimation error with varying sample sizes (Model 1, mixture normal error).

a much richer class of error distributions than LS-LASSO does. The result renders
theoretical support for the wide applicability of QR in high-dimensional problems.
Our analysis is carried out under both the hard sparsity and the soft sparsity models.
We also prove that any feasible local solution of QR with some commonly used
nonconvex penalty functions, such as SCAD or MCP, enjoys the same estimation
error rates, making the theoretical results more meaningful to practical algorithms
which often yield a local optimum instead of a global one.

The unified approach based on subgradients can be useful for studying other
high-dimensional problems involving a nonsmooth loss function. Hence, it is
of independent interest. For example, the support vector machine (SVM) is a
powerful binary classification tool with high accuracy and great flexibility. The
sample loss function for SVM is given by

n' Y (-YX[ B,

i=1

where Y; € {1, — 1}, and (1 —u) = max{1 —u, 0} denotes the hinge loss. As another
example, we consider the rank loss function for robust high-dimensional regression
(e.g., Wang et al., 2020) given by

[n=D]" Y > i —xI By — (v, —xI ).
i#f
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Both examples involve nonsmooth loss functions. The subgradient techniques
developed in this paper can be applied to study the statistical properties of the
global and local solutions of the corresponding regularized estimation problems in
high dimensions when p > n.

The results of the paper are also useful for inference procedures for high-
dimensional QR, which need an initial value (see, for example, Belloni, Cher-
nozhukov, and Kato, 2014; Zhao, Kolar, and Liu, 2014; Bradic and Kolar, 2017;
Belloni, Chernozhukov, and Kato, 2019).

APPENDIX A. Parameter Identification in High Dimensions

LetX = (X1, ...,Xp) be the n x p matrix of covariates, where Xj denotesthejth(j=1,...,p)
column of the matrix of covariates. In the classical asymptotic framework where p is smaller
than n, it is usually assumed that X has a full column rank, which allows to uniquely
identify B*. In contrast, in the high-dimensional scenario where p > n, 8* is generally
not identifiable in the absence of additional structural assumptions as X has at most column
rank n.

In high dimensions, 8* in general is not uniquely defined. Suppose model (1) is satisfied
by B* = ;. Consider the affine space {8* € R” : Xp* = X }. We emphasize that the error
bounds derived in this paper apply to any 8* from this affine space and does not require the
unique identification.

Let Ker(X) = {8 € R” : XB = 0} be the null space of X. If g* satisfies (1), then g* +
B also satisfies (1), V B € Ker(X). The extent of identifiability can be measured by the
diameter of the set No(X) = Ker(X) NB, defined as maxgepn, (x) 118112, where B = By (s)
under the hard sparsity assumption, whereas B = B (R) under the soft sparsity assumption.
The following lemma characterizes the properties of the diameter of Ny(X).

LEMMA A.l. Assume the vector X_; = (Xiz,...,Xi[,)’ is a mean-zero sub-Gaussian
random vector.

() (Hard sparsity case) Assume Npin(s) = infy.|jyj=1,v|lo<s V' =V > 0, where £ =
E(XiX}). Then

P(ﬁgvg&) 18Il =0) > 1 — o} exp(—a3 logp),

where af and o are positive constants.
(i) (Soft sparsity case) Assume log(p) = o(n). Then
-1/2

ﬂg]g&)llﬁllzfa/émm Ry/logp/n) > 1 —af exp(—aj logp),

P(
for all n sufficiently large, where o, o, and o are positive constants, and &y, is
the smallest eigenvalue of X.

The above lemma can be considered as a generalization of Lemma 1 of Raskutti et al.
(2011) to the random covariates case. From this lemma, it can be seen that under some
general conditions, Ker(X) = {0} with high probability for the hard sparsity case, i.e., the
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sparse B* satisfying (1) is unique, whereas for the soft sparsity case, Ker(X) is a shrinking
neighborhood around 0 with high probability if £ 1/*R/logp/n — 0.

Proof of Lemma A.1. (i) (Hard sparsity case) Consider Cy(s) = {# € R? : ||0]|o =1,
[101lo < 2s}. Applying Lemma D.1 with t = 1,,,;,,(s5) /2, we have

Pl sup [n X601 ~ B0 IXOIB)] 2 min(s)/2]
0eCi(s)

< ajexp ( —ynmin (nrzm-n (s)/(4af), Nmin (S)/(ZO’XZ)) + 2slogp>, (A.D

for some positive constants o) and «p. We argue by contradiction and assume
maxgen,(x) [1B1l2 # 0. Then there exists a 6 # 0 in By(s) such that X0 = 0. Let
6=0 /110112, then 6 € C(s). It follows from (A.1) that there exist some positive constants
o} and o such that with probability at least 1 — o exp(—a3n),

n~ X613 = 6"0 — tin()/2 = Nmin (5)/2 > 0,

which contradicts the assumption X = 0.
(ii) (Soft sparsity case) By Lemma D.1, there exist some positive constants « and oy
such that V¢ > 0,

{ sup [ Y1x0113 — B 1x0)13)| zz} < ayexp(—anmin(/ot,1/02) + 2klogp),
0eC(k)
where C(k) = {0 € RP : ||0]]2 < 1,]|0]|g < 2k} for an arbitrary k > 1. Taking t = &,;,,/54

and k = %oz 1 min(l2 / crf , l/axz) I 0’;}) , for all n sufficiently large, we have

P{ sup [ YIx013 — Ex0113)| < z} > 1 —ayexp(—anmin(? /ot t/02)/2).
6eC(k)

Then the same argument as in Lemmas 12 and 13 of Loh and Wainwright (2012) for their
(F.8) leads to

_ Emi _
nHIXOIZ = 22110113 — c'n~ dogp)IelI],
for all 6 € RP, with probability at least 1 — ozT exp ( - aé‘ n), for all n sufficiently large, for
some positive constants ¢/, aT, and a;. This implies that, for any 6 € Ker(X) NB(R),

Smin 1613 — ¢'R*n~ ' ogp,

0=n""IIX613 > 2

or maxgen,x) 110112 < d/sn_liiz/ 2R«/logp/n for some positive constant o’ with probability
at least 1 — a’l" exp ( - aé‘n), for all n sufficiently large. Hence, the conclusion follows. W

APPENDIX B. Performance Lower Bound for LASSO with
Heavy-Tailed Errors

The LS-LASSO estimator ELS is defined as

B =arg min{@n)~' Y (¥i—x7 B2+ 11111 . (B.1)

BeRP i=1
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Suppose €; = Y; —XiTﬂ* (i=1,...,n) are independent Cauchy(0,1) random variables with

the density function f(¢) = and the characteristic function ¢ (f) = E[e’¢!] = ¢~

VteR.

Assume min| <j<p E(|x;]) > ¢« > 0. The B\LS estimator is called a nondegenerate solution
if it has at least one nonzero component. We consider the asymptotic regime where logp =
o(n).

_ 1
w(1+€2)’

LeEmmA B.1. Consider the setting described above. Let ag be any positive constant,
and consider an arbitrary ) € (0,aq). Let ELS be any nondegenerate solution of (B.1)
corresponding to ,. Then there exist some constants {1 > 0 and 0 < ¢ < 1 such that if
(n,p) satisfies p > 5, logp < n/4, and /logp/n < &1, then

P(IIBY =Bl > 1) = 2,
where the constants {1 and ¢y do not depend on (n, p).

Loh (2017) showed that if one chooses the tuning parameter A at the regular rate
J/Togp/n, which is the theoretical choice that leads to the near-oracle performance of LS-
LASSO for normal random errors, then the KKT condition for LS-LASSO may not hold for
Cauchy random errors. The above lemma strengthens the result by showing that a different
choice of A cannot fix the problem. Indeed, for any A € (0, agp), the L;-estimation error of
LS-LASSO has a positive probability to exceed one. This paper shows that QR-LASSO is
still consistent in this case with A ~ /Iog p/n. This lemma, hence, renders strong support for
the robustness of QR-LASSO in high dimensions. Related to this, Fan et al. (2014) showed
that for a specially designed fixed design matrix, LS-LASSO cannot be sign-consistent
unless a certain signal condition is satisfied. Fan, Li, and Wang (2017) investigated the
estimation of high-dimensional mean regression in the absence of symmetry and light-tailed
assumptions, but their conditions exclude Cauchy random errors.

It is worth noting that the above probability bound is nonasymptotic and holds for all n
sufficiently large and does not become smaller as n increases. Although this lemma focuses
on the Cauchy random error for a clean presentation, analogous inconsistency results hold
more generally for the class of a-stable distributions with o € (0,2). Specifically, €; has
an a-stable distribution with scale parameter & if its characteristic function E{exp(ite;)} =
exp(—&%)#|%), V t € RP. The standard Cauchy distribution is an a-stable distribution with
o =& =1 (see Nolan (2003) for an introduction to stable distributions).

Proof of Lemma B.1. Assume the contrary is true, that is, ||B\LS — B*||1 <1 for some
A € (0,ap). As ,BLS is a nondegenerate solution, it has at least one nonzero component.
Without loss of generality, we assume S jLS # 0, for some 1 <j < p. By the KKT condition,
B\LS must satisfy
ef (17 'XTX)(B* = B + e n™ X" e + asign(BF) = 0, (B.2)

where ¢; is a p-dimensional unit vector with the j entry being one and all the other entries
being zero.

Consider the event 2,1 = {| |§||Oo < 12(3}. By Lemma D.2, P(2,;1) > 1 —
2exp(—logp). On Q,,
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le] (1" X'X)(B* = B < llef (0 XX oo 1(B* — B
< IZlleol1(B* = By
< 12¢511(8* = B")I1.-

As |)\sign(B;.LS )| < ap, it follows from the KKT condition (B.2) that on the event £2,,1, we
have |ean_1XTe| <agp+ 12{3.

Conditional on X;, e n™ !XT = n~"XT'€ has a Cauchy(0, n=" 31, |x1) distribution,
by checking the form of its characteristic function. By the property of Cauchy distribution,
we have

ag+12¢g ) }
nil Z?:l |-xij|
Note that n= 1S |x;i| on Qp, ean—lee has a Cauchy(0, b) distribution with 0 <

b < 12¢j. Consider the event Q2,5 = {minlsjfp n1 Z?:l |xjj| > 5*/2}. By Lemma D.3,
P(R2,7) > 1 —2exp(—logp). On the event 2,7,

11
P(lefn=1xTe| > ag +12¢) = 2EX,{7 - —arctan(
J 2

2
P(lef n™'X'e| > ag+12¢p) = 1 — —arctan (¢, (29 +2440))-
T

Hence, on the event §,,1 N2, with probability at least 1 — 2arctan (¢, Y 2ag +2420)),
there is a contradiction. We thus have

P(I1B* = BX11y > 1) = P(I1B* — B 111 > 11 N Q20) P21 N Q2)
2
> (1 — ;arctan(gf1 2ag +24§0)))(1 —4exp(—logp))
2
>(1- ;arctan(ggl(zao +24£0))) /5.

The result of the lemma holds with the ¢; defined in Lemma D.3 and ¢ = (1 -
2 arctan (¢, ! (2ag +24¢0))) /5. [ ]

T
APPENDIX C. Proofs of the Main Theory

We provide below proofs of Theorems 1-4. Proofs of other results are given in Appendix D.
To prove Theorem 1, we will first establish that the lower bound stated in the theorem
holds with high probability for

Un(8) =n~ 1Y XTI All(e; < X] A) = 1(e; < 0)), (C.1)
i=1

which is (S,,(ﬁ* +A) =Sy (BY), A) corresponding to a specific choice of subgradient in
00, (B). Note that U, (A) is not Lipschitz continuous in A. We start by constructing a
Lipschitz continuous lower bound of Uy (A).

We observe that XiTA and I(¢; < Xl.TA) —I(¢; < 0) always have the same sign. Further-

more, if Xl.TA >0, I(¢; < Xl.TA) —I(¢; < 0) is nonzero only 0 < ¢; < XI.TA; similarly, if



ANALYSIS OF REGULARIZED QUANTILE REGRESSION

XI.TA <0, I(e; < XZ.TA) —I(¢; < 0) is nonzero only ile.TA < €; < 0. Hence,

n n
Up(A)=n"! > X A0 <€ <X]A) —n! D OXTAIX] A <€ <0)
i=1 i=1

n
>p! D 1610 < 6 < XT A) +1X] A < ¢, < 0)]

i=1

n
> 171 leiloe (X] Avpya, K] A),

i=1

where b is a positive constant, and

1, if |u| > 2|a| and ua > 0,
¢a) = 1+, if |a < |u| < 2Ja] and ua > 0,
0, otherwise,
1, if Jul < <,
vy =12-2" 0<% <u<d,
0, otherwise,
(pa(u)’ a > O
1
u
2a 4 a  2a
p.(u),a <0
1
u
2|al -|al la|  2|al
va’(”)
u

-a -dl2 ar o

25
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for some @ € R and @’ > 0. Note that ap,(u) and a'vy (u) are both Lipschitz in u:
laga(u1) — aga(up)| < lug — ua] and @' vy (uy) — a've (up)| < 2lug —ua]. We also note
that

I(u>2a>0)+1(u<2a<0) <eps(u) <I(lu| > l|al), (C.2)
v () <I(Ju| <d), (C.3)
1 — vy () <I(ul > d /2). (C4)

Define

n
Vip(8) =171 " €iloe, (X] Ayvpy g, OXT A
i=1
Then Uy (A) > Vyp(A), ¥V b > 0. As Lemma C.1 suggests, V;,;,(A) is a Lipschitz-continuous
lower bound of Uy, (A).

LEMMA C.1. Let ge (&) = |€|pe(E)vps(§), where 5 > 0 is a constant. Then g¢(§) is
Lipschitz-continuous in &,

|ge (&) —ge ("] <36 —¢']. (C.5)

Proof. Case I: When § = 0, we have vps(€) = vps(€') =0, and (C.5) is satisfied. So we
only need to consider the scenario where 6 > 0.

CaseII: |£] > b8 > 0 and |£/| > bS > 0. In this case, vps(£) = vps(£’) = 0. Hence, (C.5)
holds trivially.

Case III: Assume § > 0, but case II is not satisfied. Then at least one of £ or £ has
absolute value no larger than 3. Without loss of generality, we assume |§| < bs. Then

|8e (&) —ge (M| < lelpe (&) |vps (&) —vps(EN] +lel|pe €) — pe (€))] vps(E)
< [E] < b8

< AlE-¥| = l5—¢] =
<3lg-¢|.

Hence, (C.5) holds. On the other hand, if |&’| < 8, we can bound |g¢(£) — ge(€)]

by lellpe (&) — 9e (€N vps (€) + [€lge (§")vps (§) — vps(€')] and the conclusion follows
similarly. |

By an application of the dominated convergence theorem, we can prove that there exists
a positive constant bg such that V b > by,

1
Ex {7 2)%1(X] Al = bl1Al12/2) | < SE{] 8)). (C.6)

LeEmMA C.2. Assume conditions (C1) and (C2) hold, and let by be the aforementioned
positive constant. Then there exists a positive constant kg such that

E(Vup(A)) = a*||Al3,

uniformly on {||Allp < 1}NC, VY b > by.
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Proof. We will first prove (C.6). Write
Ex.{ 7 8)21(X7 Al z bllA12/2)}
xTa)?
=B{XT A Exd ——L " 1(1XF Al > b||A|/2) ).
(] a7} X'{E{(XiTA)Z} CNERINEYRY
&/ a)?
‘We first note that E{ W } < 1. Furthermore,
{ X/ A)?
E{(xT A)?}
< P{IX] Al = bl|All2/2}
P N
b2||Al13 R

1(1X7 Al = bl|Al12/2) # 0]

. XTI A)?
By the dominated convergence theorem, Ex, ’ % (1xT'Al > W)] —0asb—

oo. Hence, there exists a positive constant by, whose choice only depends on the probability
distributions of X;, such that V b > b, we have

&Ia? o blIAlL
EX.[WI(W Al> T)} <1,2. (C.7)

‘We have

E(Vip(A))
n

=n""Y "E{leilge OX] Aveyjap, X/ A)}
i=1

! ZEX [Ea[leil {17 A > 26> 0) +1(x] & <26 < O)I1X] Al < blIAIL/2) |

0

1 1x7'al/2 .
=n 2 Ex id+f —0)fi(0dt)1(|XT A| < b||A|]2/2
n ; x{(/o ifi(t)dt 7|fo|/2( Dfi(0) z) (1x7' Al < bl1Al/ )}

n IX7'Al/2
! ZEX{(/O iA0) +f;(—t)]dz)l(|X,TA| < b||A||2/2)}
i=1

m
e 1 CASR CANERINEEY

_™m T A2 _ ™0 T A27(1wT
- 2B [{(Xi A) } - EX[{(X,» AA(XT Al >b||A||2/2)}

mo
= B[ 87
> a*[|All3,
where a* = (mgm1)/8, the first inequality applies (C.2) and (C.4), the second inequality
applies condition (C1), the second last inequality applies (C.6), and the last inequality
follows from condition (C2). |
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For an arbitrary 0 < § < 1, let S2(8) = {A : ||Allp = 6}. Let I'(r) = {A : A €
S$>(8), ||All1 <t||All2}NC, for an arbitrary ¢ > 0. Lemma C.3 establishes a concentration
inequality for

n
Vip(A) =11 " l€ilge, (X] Ayvpjaj, KT A),
i=1

where b > by is a positive constant. Consider the event A,| = {maxlﬁfl, 6}2 < my}, where

3].2 =n"! Z?:lngj' Then P(A,;1) > 1 — &, where 8, — 0 as n — oo.

LemmMmA C.3. For an arbitrary b > by, define

Zn() = sup |Vyup(A)—E(Vyp(A))]. (C.8)
A€l (1)

Then there exists a positive constant ¢* which does not depend on (n,p,t) such that on the
event Ay,
*2 [2

P(Z(t) = c*18\/logp/n) < exp(— 616? logp).

Proof. First, we note that by (C.2) and (C.3),V A € I' (1),
0 < lejloe; X[ A)vpjjajp K] A) < 16l 1(X] Al > leil) 1(1X] Al < b8) < bS.

If we change one observation of the sample, the value of Z,(f) changes at most 2b5/n. By
the bounded difference inequality, ¥V s > 0,

2

ns
P(Z,(t) —E(Zy() = s) <exp(— —5==)- C.9
(Zn(H) —EZn() 2 5) < exp(= 575) (C9)
Next, we evaluate E(Z,(7)). Let {m,...,m,} be a Rademacher sequence of Bernoulli

random variables independent of (Xj,¢;). Let ge¢(§) = |€]|pe(§)vps(§) be the function
defined in Lemma C.1. We have

E(Z,(®)

n
< 2E(n,X,s)( sup no ! Znigei (XiTA)) (symmetrization)
AL i
n
< 12E(x.)Ex((x.e)( sup n7] Zn,-XiTA) (contraction)
AeT() o

n
<12 sup [|A|ExErx(n 1) 7iXilloo)
A€l () i1

n

< 1268BxErx (11D 7iXilloo)s (C.10)
i=1

where the first inequality follows from the symmetrization theorem (van der Vaart and

Wellner, 1996), and the second inequality applies Lemma C.1 and the contraction theorem
(Ledoux and Talagrand, 2013). Next, we will evaluate Ej,|X(n_1||Z;’:1 7iXilloo). We
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observe that, for 1 <j < p, conditional on Xj, n! Z?:l 7iX;j is mean-zero sub-Gaussian
2) 1/2

ij

variables (van de Geer, 2016, Lem. 17.5), we have

n n
— — 1/2
Eﬂ‘x(]rilai( n I‘Z”ixij‘) <./2log(2p)/n 1m@lx (n Iinzj) /
sisr 5 <j<p P
< /2mylog(2p)/n

on the event A,,1. Hence, on A,,1,

with parameter bounded by n_l( X . By the property of sub-Gaussian random

|
E(Z,(1)) < Ec*tc?\/logp/n, (C.11)
where ¢* = 48, /my. Taking s = %c*t&/logp/n in (C.9), we have that on A,;1,
272
P(Zy(t) = c*18\/logp/n) < exp(— 2 logp). m

Proof of Theorem 1. The proof consists of two steps. At the first step, we will establish
that the lower bound stated in the theorem holds with high probability for U, (A) defined in
(C.1), which is (Sn (B*+A) —S,(8%), A) corresponding to a specific choice of subgradient
in 00, (B). At the second step, we will show that the lower bound holds for an arbitrary
choice of subgradient in 00y, ().

Step 1. Note that U, (A) > V,;,(A), ¥V b > 0. We will first prove that, for an arbitrary
b > by, there exist some positive constants a; and a, such that with probability at least
1 =8, —ajexp(—azlogp),

logp
an(A)Za*IIAII%—C*IIAlh,/% (C.12)

uniformly over all A € $>(8) NC, where ¢* is the positive constant in Lemma C.3, and a;
and ay (specified later in this proof) only depend on the probability distributions of X; and
¢;. Recall that S5(8) = {A : [|A]l = 8}, 0 < § < 1. Since 0 < § < 1, we have HﬁH;
Noting that V,,(A) is always nonnegative, we only need to verify (C.12) for A satisfying

a*[|Al3 —c*[|All1y 1"% > 0. It is sufficient to consider A € S, (8), where

~ A *
S2(8):{A:A6S2(8)HC, 1 < 1alh <Ls /L}.
Al T ¢ logp

Lemma C.2 ensures that E(V,,;,(A)) > a*llAH% for any A € §2(8). We verify (C.12) by
proving

> 1.

Al
HA[l2

Jlogp/n (C.13)

holds uniformly for A € EQ(S) with probability at least 1 — aj exp(—aplogp) for some
positive constants a1 and a,. We will prove (C.13) by employing a peeling technique (see,
e.g., van der Vaart and Wellner, 1996; van de Geer, 2000, and the references therein). Write
Al

[A[l2

Vb (A) —E(Vyp(A))| < ¢*5

h(A) and g(h(A)) = c*8h(A)y/logp/n.
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Define
B ={A: 2" <g(h(A) <2"u}NS(8), m=1,...,M,

where u = c*8./logp/n, and M is taken as the smallest positive integer such that M >
a8 /nTogp. Note that if A € By, then 2"~ < h(A) <2",m=1,...,M.
Let E = {theeventin (C.13) holds forall A € §2(5)}. Recall the event A, =

{maxlﬁjfp?sz < my}, where ’c?j2 =n"! f’:lxlgj. Then, on the event A,,1, we have

P(EX) <

M=

P(EI A € S55(8) N By, such that [V, (A) — E(Vyp(A))] > g(h(A)))

3
X

Me

P( sup [V (8) = E(Vp(A))| > 82"~ flogp/n)

m=1  AeSH($NC, 2m—I<h(a)<2m

Me

exp ( —ay2¥" 2og p) (by LemmaC.3, taking a, = ¢*2/(1662))

3
LN

M=

exp(—ma2 logp) (noting m <2¥"2 m=1,2,...)

m=1
o0
<exp(—azlogp) Y _ (exp(—azlogp))™
m=0

_ _exp(=azlogp)
1 —exp(—azlogp)
<ajexp(—azlogp),

(sum of a geometric series)

where a; = 1 4+ exp(—aplog2), and the third inequality applies Lemma C.3 on the event

Ap1. Note that P(A,1) > 1 — 4§y, for §, — 0. Hence, with probability at least 1 — §,, —

ay exp(—aplogp), Un(A) > a*llAll% —c*||A]14/ 10% uniformly over all A € S»(8)NC.
Step 2. We now consider an arbitrary subgradient S,(8) = (Sn](ﬁ),...,Snp(ﬁ))T in

a0n(B).
According to (6), Sj(ﬁ),j =1,...,p, has the form

n n
Spi(B) = —tn 1Y w01y il — X[ B < 0)
i=1

i=1

=Y i+ (1= )bl — XT B = 0),

i=1
where v; =0 if ¥; —Xl.T,B #0,and v; € [t — 1, 7]; otherwise, i = 1, ...,n. Hence,
(Sn(B*+ A) = Sa(B*), A)

n n
>p! > xT Al < XTA)—1(e; < 0)] - n! XAl =x] A)

i=1 i=1
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n
—n~ Y XTI All(e; = 0)

i=1
n n
= Un(®) =~ 3] Al = X[ &) =0~ 3T IX] AllGei = 0).
i=1 i=1

Consider any A such that ||A]|o < 1. Consider the event G, = {U,(A) < k0||A||% -
c*||All1+/Togp/n}. We have

P({S0(8) = $u(8). A) < kol Al = ¢*[|AI]1 Viogp/n)
< P(U,,(A) —n S IXT AN = XT A) + 1 = 0)
i=1

< kollAIB = ¢*11Al11 Vogp/n, G5 ) +P(Gn)

<pP(n! > oIx! Al(Ie; = X A) +1(e; = 0) > 0) + P(Gy)
=1

<0+ 6, +ajexp(—aylogp) = 8, +ay exp(—as logp),

where the last inequality follows because ¢; is assumed to have a continuous density (e.g.,
Ruppert and Carroll, 1980, Lem. A.1). This proves the theorem. |

We first present a lemma that shows that the uniform lower bound in Theorem 1 on
{l1A]]2 < 1} NC can be extended to {||A[[], > 1} NC.

LEMMA C.4. Suppose conditions (C1)—(C3) are satisfied. There exist some positive
constants a*, c¢*, ay, and ay, such that for any subgradient S, € 3Qp(B), with probability
at least 1 — 6, — a1 exp(—aa logp),

1
(Sa(B) — Su(B*), A) > a*||All — c* %HAHI, (C.14)

uniformly on {||A||a > 1}NC, where the positive constants a*, ¢*, aj, and ay are those
defined in Theorem 1.

Proof. We first observe that, VO <s < 1,Vt e R,
1[I(e; <) —1(¢; < 0)] = 1[I(¢; < 51) —1(e; < 0)] = 0.
We thus have, VO <s < 1,

n
Un(A) =n"" Y XT All(e; < XT A) —1(e; < 0)]
i=1

n! ZXiT(sA)[I(ei <X'sA)—1(e; < 0)]

= =
i=1

1
s

= 1Un(sA). (C.15)
s
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For [|A]]» > 1, we take s = || € (0,1) in (C.15) to rescale A to HAII and obtain

A
Un<A)_||A||2Un(IIAII )
[IAll7 [logp
= 18l (e —e* oty 5 )
ng
= a*[|Ally = ¥ Al = (C.16)

with probability at least 1 — 3, — a exp(—ap logp), where the second inequality applies
Theorem 1. Furthermore, arguing the same way as in the proof of Theorem 1, we can show
that the above lower bound holds for an arbitrary subgradient S, (8) in 00, (8). | |

Proof of Theorem 2 (QR-LASSO). Let Ebe the QR-LASSO estimator. Then there
exists some subgradient Sy, (8) € 0, (8) such that

(Sn(B) +rsgn(B), *—B) =0, (C.17)

where sgn(E) = (0, sgn(ﬁz), ., sgn(,gp))T.
Letv= B — B*. We will first use proof by contradiction to show that

P(IIVll2 = 1) = 1 —28, — 2exp(—logp) —aj exp(—az logp).

Let Ay = {1 > 2||’§n||oo}‘ The choice of A and Lemma 3 imply that P(A,) > 1 —
— 2exp(—logp). Assume |[V]|, > 1. Define the event B, = {(S,,(E) — Sn(B*),0) =

a*|[Vlla — c*|Pll1/logp/n}. If |l > 1, Lemma C.4 implies that P(B,) > 1 —

8p — ajexp(—aplogp). It follows that P(A, N By) > 1 — 25, — 2exp(—logp) —

ay exp(—aplogp). It is sufficient to show that a contradiction occurs on the event A, N By;1.
To see the contradiction, we first observe that on B,;1, (C.17) implies that

(= asgn(B) — Sn(B*), ) = a*[[ 7|l — c*|[ 7|11 y/logp/n. (C.18)
On the other hand, by Holder’s inequality,
(—2sgn(B) —Sp(B*), ) < A+ 1182 (B oo Pl -

As the argument in Step 2 of the proof of Theorem 1 implies, for an arbitrary subgradient
Sn(+), on the event Ay, ||Sp(B*)|lco < 2A with probability one. Hence, on Ay,

(— Asgn(B) — Sn(B*). ) < 1.5ko/logp/n|P]l;. (€19)
(C.18) and (C.19) together imply that
a*||Vll2 = (2ko +c*)y/logp/n| V111 (C.20

(i) (Hard-sparsity case) The proof of Lemma 2 ensures that on the event A, we have ve 'y
and hence |[V]|| < 44/5|[V]|2. Then, by (C.20), a* < 4(2ky+ c*)+/slogp/n. This contradicts
with the assumption n > (a’f)zslogp, where aj = 4(2k +c*)/a*.

(ii) (Soft sparsity case) The proof of Lemma 2 ensures that on the event A,, we have
Vely={veR’:|vsll| <3llvs,IIi +4||ﬂ§‘2||1}, where S; = S_, U {1} with the index
set S_y ={j: |,3]?"| > a,2 <j < p} and S5 denotes the complement of S, in {1,2,...,p}.

Under the soft sparsity assumption, we have a|S—,| < 21;:2 |,B;“| < R, where |S_,| denotes
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the cardinality of the set S—,. Hence, |S—4| < a~1R. Since ve 'y, we have

V11 < 4(1Ws, 1+ ||/3§“5||1) <4(Va~ 'R+ 17|12 +R), (C.21
which holds for any a > 0. Taking a = R/3, we obtain
[V111 < 4[21V[2+R]. (C.22)

Hence, (C.20) contradicts with the assumption a} y/logp/nmax{2,R} < 1/2.

Define the event D, = {|[V]l2 < 1}. In the above, we have verified that P(D,1) >
1 —28, — 2exp(—logp) — aj exp(—az logp). Define B,y = {(Sn(B) — Su(B*), B— B*) =
a*|[’17]|% —c*|Vll1v/Togp/n}. By Theorem 1, on D1, P(Byp) > 1 — 8, — aj exp(—az logp).
From now on, we consider the event A, N D, NBy,1. We have P(A, N D, NBy1) >
1 —44, —4exp(—logp) —2aj exp(—aylogp). By the convexity of |||, we have

1B*I11 = 11BIl = (sen(B), B* — B). (C.23)
Combining (C.23) with (C.17), we have
(Sn(B), B* —B) = —(rsgn(B), B* —B) = »(1IBIl1 — 1IB*I11). (C.24)

On By, (C.24) implies that
(=Su(B*), B—B*) = a*|PI3+2(11Bll = 11B*I11) = <*[7111/logp/n.
Applying Holder’s inequality, we have
a*|P115 + A (11B1I = 118*111) = *I7111Viogp/n < 11Sn(B*)lloo V11
Rearranging terms and applying the triangle inequality, we obtain
a*|[7113 < (+c*Viogp/n+ 11528l loc) Il
< (2ko +c*)y/logp/n| W1 (C.25)
(i) For the hard sparsity case, on Ay, |[V]|1 < 44/s|[V]|2. Then (C.25) implies
IPll2 < a}y/slogp/n.

We also obtain [[V]|] < 4afsy/logp/n.
(i1) For the soft sparsity case, on Ay, (C.25) and (C.21) imply that

7l < 2max[aT\/a*]R+ 1,/1ogp/n,,/aTRl/Z(logp/n)l/“],
for any a > 0. Taking a = /logp/n, we have

Va=1R+1/logp/n = /R + (logp/m)'/2(logp/m)'/* < V2R(ogp/n)'/*.
‘We obtain

7112 < a5RY2 (ogp/m) /4,
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where a} = 2max ’ﬁa’f, Ja} ] The same reasoning that leads to (C.22) also implies that

VI S4(\/|Sa|||7||2+||ﬂ§gll1)
< 4(a3/18alR"/* (logp/m ' * + 1183 111).
for any a > 0, where |S,| denotes the cardinality of the set S. |

Proof of Theorem 3 (QR-NCP). The proof is based on the same idea as iE the proof
of Theorem 2 but is more involved. We consider any feasible local solution 8 such that
[1B111 <k and (8) is satisfied. Then there exists some subgradient S, (8) € 30, (B) such
that

(Sn(B) +rsgn(B) —H'(B), B* —B) =0, (C.26)

wherf H'(B) = (0.1} (B2), ... ,h;\(ﬂp))T and sgn(B) = (0,sgn(By), .. .,sgn(ﬂp))T. Denote
v=p8-B*

Let Kn = {A = 4||§n||oo}, where A satisfies the condition of Theorem 3. Lemma 3
implies that P(A,) > 1 — 8, — 2exp(—logp). Let By = {(Su(B) — Su(8*).9) =
a*|llp —c*Iﬁ/\III«/logp/n}. If |Vl > 1, Lemma C.4 implies that P(B,) > 1 — 8, —
aj exp(—aplogp). We have P(Ay, NBu1) > 1 —28, —2exp(—logp) — aj exp(—ap logp).
We will first use proof by contradiction to show that

P(|[7]l2 < 1) > 1 —28, —2exp(—logp) —aj exp(—az logp).

Assume |[V]|o > 1. Itis sufficient to show that a contradiction occurs on the event A nNBy1.
On the event B,,1, by (C.26), we have

I
(H'(B) — xsgn(B) = Su(B"). T) = 17112 = " [Vl =0 o8P, (€27
On the other hand, by Holder’s inequality,
(H'(B) — rsgn(B) — Sn(B*), D) < [IIH'(B) — hsgn(B)lloo + 1Sa (B oo P11

Note that —H(B-) +4||B—l1 = pa(B-) = X2)_, P (1] We have ||H' (B) = 2sgn(B) oo =
[19py (Bl)| loo, which is upper bounded by A (see, e.g., Loh and Wainwright, 2015, Lem. 4).
Furthermore, on A, [|S;(8*)||co < A/4. Hence,

~ ~ S5h
(H'(B) — Asgn(B) — Sp(B*), V) < ?”ﬂh- (C.28)

By the choice of A, (C.27) and (C.28) together imply that

~ 3 3k
a*[|Vll2 < (5r/4+c*logp/n) V|1 < EMW]M =< Tvlogp/n.

. . . *
Hence, we have a contradiction under the assumption /logp/n < 32/ch0'

Define the event D,; = {|[Vl|2 < 1}. In the above, we have verified that E(Dnl) >
1 — 26, — 2exp(—logp) —aj exp(—az logp). Define Byp = {{Su(B) — Su(B*). B — B*) =
a |m|2—c |Vl11+/Togp/n}. By Theorem 1, on Dy, P(Byp) > 1 —n —ar exp(—azlogp).
From now on, we consider the event An N Dy N By We have P(An N Dy NByp) =
1 —44, —4exp(—logp) —2aj exp(—aylogp).
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By the assumption on the penalty function, X || 4| I% —H(B-)+X\||B=]]1 is convex in B.
This convexity property implies that

(2208713 = H(B™) + 2118 1h] = (2211815 — H(B-) + MIB-I11]

> (yoB —H'(B) + rsgn(B), B* - B).

So we have

Pr(BE) —pa(B) + %(Ilﬂ*llﬁ —11B113)

> (—H'(B)+ rsgn(B), B* — B)+vo(B. B*)— vollBll2.

Or equivalently,

Pr(B2) =pr(B)+ 118" = BII3 = (~ H' (B + Asen(B). " —B). (C.29)
It follows from (C.26) and (C.29) that

(Sa(B). B*—B)

=—(—H'(B)+rsgn(B). B* — B) = pr(B-) —pr(B*) — ?nvn% (C.30)
By Theorem 1, on B,

(Sn(B) = Su(B*), B—B*) = a*|D115 — c* |Vl 1v/logp/n. (C31)
(C.30) and (C.31) together imply that

(= $u(B). D) = (a* = v0/2) P15+ (pa(B—) — pa(B)) — c*|¥ll1v/logp/n.

Applying Holder’s inequality, we have

(@ = 10/2)IP13 + (P2 (B—) — pr(B*)) — c*IWll1v/logp/n < 1S4 (B")loolIF 111

Hence,

(@* = 0/2)IF113 < (p2.(B*) = p2.(B-) + (¢*Vlogp/n+11Su(B)loo) P11

On A, we have 1S (B ) loo < %, and the choice of A implies c*/logp/n < %. We, hence,
have

~ A
(@ —y0/2)I113 < (P2(B*) —pa(B-)) + CLLE (C.32)

(i) Hard sparsity case. Write v = (,,92)7, where 7 = B) — B} corresponding to the
intercept term, and 7_ = B_ — B*. Recall S_ = {j : ,3]?“ #0,2<j<p},S§=S_U{l},
and ||S||p = s is the model sparsity size under the hard sparsity condition. Let /3;_ denote
the (s — 1)-subvector of 8* consisting of the elements in S_. Let 8., Vs_, and Ve be defined
similarly. Note that under the hard sparsity assumption, ﬁg‘f is a (p — s)-dimensional zero
vector. By the subadditivity property of the penalty function p; (), we have p, (|t] +12]) >
pr(lt1]) —pa(r2]) for any t1,#, € R, due to the observation |#;| < |f| + |¢t] +t2|. Applying
the subadditivity property, we have

PABE) —pa(B=) < pa(BE ) — [pa(BE +9s5) —pa(s_)] = psGs_) —piFse).  (C.33)
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By the assumption on the penalty function and Lemma 4 of Loh and Wainwright (2015),
we have

Y0, ~ Y0, ~
APl Sm(’v)+70IIVII§ spms,wpmsc)ntpmw7°||v||%. (C34)

Combining (C.32) with (C.33) and (C.34), we have
. , 3 1 1 3
(a* =3y0/4)IPll5 < EPAGS,) - EPAWSC) + pr(ﬂ) < EPA(?S), (C.35)

where Vg = (V] ,/ﬁgi)T. As py(¢) is a A-Lipschitz continuous function of ¢ (Loh and
Wainwright, 2015, Lem. 4), we have p; (Vs) < A|[Vs|1. Hence,

3A 3A .
(@ —3y0/4)IF113 < S sl < V5l lla.

We have proved |[V]|> < aj+/slogp/n, where a3 = %. From the above and the

argument for Lemma 1, [|vac||1 < 3]||vall1, where A denotes the index set corresponding to
the s-largest (in magnitude) elements of v. Hence, |[V]|| < 4a3s+/logp/n. (ii) Soft sparsity
case. Consider Sy = S—, U {1}, where S_, ={j: |/3;"| > a,2 <j < p}and ais an arbitrary
positive constant. Applying the subadditivity property of the penalty function p; (-), we have

Pi(BE) —pr(B-)
<[pa(B5_) +PA(/3§Z)] —[Pr(Bs_, +7sc) — (B +95_,)]
=p2.0s_,) —PrOs) +pr(Bse)- (C.36)

Moreover, similarly as (C.34), we have
YO, ~ 2 YO~ 2
A <pa() + 7“ VI3 <paQs_,) +pi0se) +pa(1) + 7” vll5. (C.37)

Combining (C.32) with (C.36) and (C.37) and noting p;, (/3;5) <A |/3§C [l1 < AR, we have

3
(@ =3y0/4) P15 < 21’)\(5 )— PA(\SC)+ PA(\I)+PA(ﬁSc
3 1
EPACS(,)— 5P10sg) +M1Bge 11 (C.38)

As pr(se) = Mgl — B111Psc |13, we have
* 2 3 1 *
(@ =0) V115 = SADs, 11 = SAPsglli + 1B - (C.39)

Similarly, as the derivation for (C.21), |[Vs,||; <va~ 'R+ 1|[V]|>. We have

- 3 -
(@ —yo)lIP113 < E\/crllre+1A||v||2 +AR.

Hence,

1911y < 2max -0

Sy Vo R+ W logp/n Vho/ @ = yo)R'(logp/m/*}.
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As in the proof of Theorem 2, taking a = /logp/n leads to va~ 1R+ 1./Togp/n <
V 2R(logp/n)l/4. We then obtain
19112 < a4R"*(ogp/m '/,
3v/2ko ko

2(a@*—=y0)’V a* =1
ensures that |[Vsc |} < 3|[Vs, |11 + 2185 |1 Hence,
a

where aj = 2max{ } On the event of A, the argument for Lemma 1

1V < 2(2v|SaIII?II2+IIﬁ§§||1)
=<2(2;/1SalR"* (logp/m) '/ + 1185 I11).
for any a > 0, where |S,| denotes the cardinality of the set S. |

Proof of Theorem 4. Inequalities (17) and (18) imply that

101 (B) — 0n(B*)| < max {1S,(B")T (B —B*)1,1S.(B) (B — )1}
< max {15 (B loos [1Sn(B) 1o J11B — B¥11.

The above inequality holds for any subgradients Sy, (8), S, (8) € 0, (8). We take S, (8*) =
n~1 YL X;&;, where & = I(¢; < 0) — 7. By Lemma 3, P(% > 4(IS5(8")|loc) = 1 — 8, —
2exp(—logp). We take gn(ﬁ) to be the subgradient satisfying (8), whose existence is
guaranteed by the KKT condition for the convex difference program (Tao and An, 1997).
Then

Sn(B)+rsgn(B) —H'(B-) =0, (C.40)

where H’ ()is c}gﬁned in Section 2.3 of the main paper. Note that for QR-LASSO, H'(-) =0
and thus ||S,(B)|lco = A, whereas for QR-NCP, note that —H(8) + A||8]l1 = pr(B) =
fzsz(mﬂ)- We have ||H'(B) — Asgn(B)|loo = |10ps(B=)|lco, Which is upper bounded

by A (e.g., Loh and Wainwright, 2015, Lem. 4). Hence, ||§,,(//3\)||OO <A Summarizing
the above, we have with probability at least 1 — 8, — 2exp(—logp), |Qn(B) — On(B*)| <
4r1B = Bl [ |

APPENDIX D. Additional Technical Results

LEMMA D.1. For an arbitrary k > 2, let C(k) = {0 € RP : ||0]1p < 1,1|0]lg < k}. Then
there exist some positive constants o1 and oy such thatV t > 0,

Pl sup |n=tixo13 — E o) = 1]
0eC(k)

5azexp(—alnmin(tz/a?,t/af)+klogp). (D.1)

Proof. This is a minor extension of Lemma 15 of Loh and Wainwright (2012) to allow X
to include an intercept term. We provide below an outline of the derivation. First, we show
that the exponential inequality in Lemma 14 of Loh and Wainwright (2012) can be extended
to allow X to include an intercept term. Specifically, write X = (1, X), where 1, denotes an
n x 1 column vector of ones and X is an n x (p — 1) matrix of covariates where each row is
a sub-Gaussian vector and the rows are independent. For an arbitrary p x 1 vector 6, write
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6 = (61.8"). Then n™"||X0|[3 = 67 +n~"||X8|[3 + 2610~ "1,,X0. For any 6 € R” and any
t>0,

pllix613 - Eqx613)] = ]
= P[[IRBI3 — EWIKOIR)| = mi/2] + P[ 20001, %0 = mey2].

Consider any fixed 6 such that ||#|| < 1. By Lemma 14 of Loh and Wainwright
(2012), the first term at the right side of the inequality is upper bounded by 2exp
(— clnmin(tz/af,t/af)) for some positive constant cj. Observing that n! 1;}25 is an
average of i.i.d. sub-Gaussian random variables, the second term at the right side of the
inequality is upper bounded by exp ( —coni?) axz) for some positive constant c;. Therefore,

P[{ 1X6113 — E(X012)| > m] < cyexp(— eynmin(2 /ot t/02)), (D.2)

for some positive constants ¢3 and c4. Using this exponential inequality and applying the
same technique as in the proof of Lemma 15 of Loh and Wainwright (2012) (noting that
s > 1 in that lemma is arbitrary) establishes the desired result. |

LeEmMA D.2. Assume the conditions of Lemma B.1 are satisfied. We have

P(IIZ]loe < 1228) = 1 —2exp(—logp).

AProof. First, by the Cauchy—Sc}Evarz inequality, |fjk| =|n"! 27: 1 X%k < (ijj)l/ 2
(ij)l/z, V1 <jk<p.Hence, |[|Z||cc < maxlijfpn_l Z?:lx,zj- Since in this lemma
X;j is sub-Gaussian with variance proxy bounded by ;g, we have X = E(xl.zj) < 4;&, j=
1,...,p. A mean-zero random variable x is subexponential with parameter (;3, b), denoted
by SE({*Z,b), if E{e™} < exp({fzz/Z) for ant |7| < %. The sub-Gaussian property of x;;
implies that xl?j - E(xl.zj) ~ SE(256¢5,16¢2).j=1.....p.

Applying Bernstein’s inequality for subexponential random variables, V ¢t > 0,

2

)} D.3)

2565 162

P(n_l | ;(xizj —E()| > t) <2exp { - gmin(

=

Taking t = 32{3./10;; p/n and noting that we assume logp < n/4, by the union bound, we
have

P(lgaép@jj— 5l > 16¢3/logp/n) < 2exp(—logp).

This implies with probability at least 1 —2exp(—logp), we have P(||§| loo < 12{3) |

LeEmMA D.3. Assume the conditions of Lemma B. 1 are satisfied. If \/logp/n < &1, where
¢1 = &/ (32¢80), then

n

P(min | > 2)>1—2ex —logp).
lﬂgpglxyl_c*/ > p(~logp)
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Proof. We will first verify that if a random variable x is sub-Gaussian with variance
proxy {g, then |x| is subexponential. The sub-Gaussian property of x implies that E(lx|F) <

(2;5)]‘/ 2k (k/2), for any positive integer k > 1. We consider below the moment generating
function of |x| — E(|x|). For any € R,

E{exp[t(jx| —E(x])]}

o0

S B[l —E(x))]

k!
k=2

0 kok—1g[[ 1k k
< 1+Zf 2 E[|X|k’+ (E(IxD)"]

k=2
s zkzkE |x| ]

<1+ Z
(2r)k(2;§)k/2kr(k/2)

1+ k!

k=2

oo
<1+ ezt
k=2

1
2,22

<1432 = for |t < —
= ey ||_8€§0

< exp(32e%¢5 1),

where the second last inequality follows by noting I'(k/2) < (k/2)k/ 2 and k17K < el/e
for any k > 2, and by Stirling’s approximation k!> (k/e)k. Hence, |x| — E(|x]) ~
SE(6462§3,8e§0). Applying the Bernstein’s inequality for subexponential random
variables, we have

2

t
— D.4
64¢2¢3 8eto )} -4

P(n| X":(|x,-,-| ~E(xgl))| > 1) = 2exp | - 5 min
i=1

V t > 0. Taking t = 16e¢p~/logp/n in (D.4) and noting that we assume logp < n/4, by the
union bound, we have

n
P( max n*1’2(|xlj| —E(|xl-j|)‘ > 16e§0,/10gp/n) < 2exp(—logp).
i=1

Isj=p

Hence, with probability at least 1 —2exp(—logp),

n
> Ixijl = Elxij) — 16ego+/logp/n, forallj=1,....p

i=1

As minj <j<p E(lx;j]) > &« > 0 and 32ep+/logp/n < {x, the conclusion of the lemma
follows. |
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Proof of Lemma 1. This result follows from the generalized KKT condition of the
convex difference program (Tao and An, 1997). We provide a self-contained derivation
below.

(i) The result for the global minimum of QR-LASSO follows directly from the definition
of subgradient. To see this, let E: arg minﬁ{Qn(ﬁ) + A|B—1} denote the global minimum
of QR-LASSO. Then

{Qn(B) +21B-1} = {Qn(B) +1IB-1} = 0, (B—B) =0,

where 0, denotes a p-dimensional zero vector. Hence, by the definition of subgradient, we

have 0, € 3{Qn(B) +AIB—1}. ~
(ii) Now, consider the case of QR-NCP. Let 8 denote a local minimum of L, (8) =

Ly(B) — H(B). where Ly (B) = Qn(B) +1 X2, |8j and H(B) = 3_7_, hy.(B;). Then there

exists a neighborhood U ofﬁsuch that L, (B) > L, (B), forall B € U. Hence, V g € U,
Ly(B)—La(B) = H(B)—H(B) = (H' (BN (B—B), (D.5)

where H'(B) = (0, h;\(,@z), - (,@,))T, and the second inequality follows because H(f)
is convex and differentiable. The convexity of L, and (D.5) implies that H’ (E) € oL, (E).
This finishes the proof. |

Proof of Lemma 2 (QR-LASSO). The proof of the result under hard sparsity was given
in Belloni and Chernozhukov (2011). We include it here for completeness and to facilitate
the proof for the result under soft sparsity. Consider the event A, = {A >2| |§n oo } where A
satisfies the conditions of Lemma 2. Lemma 3 ensures that P(Aj) > 1 —§, —2exp(—logp).
Recall 7 = B — B*. By the definition of B, Qn(B) + AlIB_Il1 < @n(B*) + Al|B%||1. This
implies

0n(B) — 0n(B*) < M(I1BX 111 — 118X +9=111) < A(IFsll1 — IFsell1)- (D.6)

On the other hand, the convexity of O, (-) guarantees that on A,

- ~ o~ A
On(B) — On(B*) = SnVZ_HVHlHSnHoo2_5(|r"\s||1+|r"\50||1)« D.7)

Putting (D.6) and (D.7) together, we have v € I'y.
Under the soft sparsity assumption, by a similar argument as above for (D.6) and (D.7),
we obtain that on A,

20118 +=111 = 1B 111) < I¥s, |11 +Pse 11, (D.8)
where S_, ={j: |,3JT"| >a,2 <j<p}and S; = S—,U{1}. On the other hand,

1BZ +V-[l1 = 1BZ1I1

> (I1Bs_, +Vscll — |Iﬂ§}l~ +Vs_,l11) = (11B5_, I +||/3§‘2||1)

= Wsgl11 = 1Ps_, 111 = 2l1Bse 1h

> Vg Il = IWs, 11 = 21185 I11- (D.9)
Combining (D.8) with (D.9), we have

2(IWsg Il = 195, 11 = 21185 [11) < Vs, 111 +Psgl 1

Hence, v € [y under the soft sparsity assumption. |



ANALYSIS OF REGULARIZED QUANTILE REGRESSION 1

Proof of Lemma 3. Let A,;| = {max14<p 52 < my}, where 3}2 n~! ” Then

P(A;;1) > 1—6,, where §, - O asn — oo by condltlon(C3) On the event A1, by the union
bound, we have

(||S,,||oo > 2/mylogp/n) P( max ‘n IZx,/&] > 2,/mxlogp/n)

Mm

P( lzxgél} > ZW)

=1

~.

As —1 <§&; <1 —r1, & is a sub-Gaussian random variable with parameter bounded by one.
Hence,

n
P(‘n_1 inj%'i’ > 2,/mxlogp/n)
i=1

< ZEX{exp(— M)} <2exp(—2logp).
2=y lxg
We have
P(Balloc > 2y/mylogp/n) < 2exp logp —2logp) = 2exp(~logp).
This proves the lemma. |

Proof of Corollary 1 (QR-NCP). The geometric structures of the local solutions for
QR-NCP are implied by the derivation in the proof of Theorem 3.
For the hard sparsity case, it follows from the first inequality of (C.35) that

3 1 1
(@ —3yo/4) P15 < EP,\(?S,) - EPA@S”)‘*‘ Emﬁ?l)
2 @5) — =pa ()
< 50 21% vse)
3
PMAA)_ *PA(AAC

where A is the index set of the largest s elements of Vin magnitude. This implies 3p; (V4) —
P).(Vac) > 0. Lemma 5 of Loh and Wainwright (2015) implies that 0 < 3p; (V4) — py (V4c) <
A(3IWallr — [Wacllr) or [[Vacllt < 3[[all1-

For the soft sparsity case, it follows from (C.39) that

1 3

Mgl < SHs,+AlBg 1,

2 a 2 a

or |Vsg I < 31Ws, 11 +211Bge 11 u

Proof of Corollary 2. The result in (i) for QR-NCP follows immediately from Theo-
rem 4. To establish the result in (i) for QR-LASSO, let 7= B — 8* = (¥;,7"_)’, where B
denotes the QR-LASSO estimator. By the definition of E we have

RaB)| < A(11BZ 11 = 1182 +9-111)- (D-10)
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Note that as ||8* +V_||1 > ||18*|l1 — |[v=||1, the right-hand side of (D.10) immediately
implies that

IRaB)] < 2 (20182 11 = 1F-111) < 2117111 < 2418111

The results in (ii) and (iii) follow immediately by combining Theorem 4 with the L-
estimation error bound derived in Theorems 2 and 3. |
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