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The National Alzheimer’s Coordinating Center Uniform Data Set includes test
results from a battery of cognitive exams. Motivated by the need to model the
cognitive ability of low-performing patients we create a composite score from ten
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model for longitudinal studies with non-ignorable dropouts. Quantile regression
allows for modeling non-central tendencies. The partially linear model accom-

modates nonlinear relationships between some of the covariates and cognitive
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of dropout depends on the response. To handle this challenge, we propose a
weighted quantile regression estimator where the weights are inversely propor-
tional to the estimated probability a subject remains in the study. We prove that
this weighted estimator is a consistent and efficient estimator of both linear and
nonlinear effects.
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1 | INTRODUCTION

The Uniform Data Set (UDS), maintained by the National Alzheimer’s Coordinating Center, contains longitudinal data
of patients’ demographic information and other variables that may be related to Alzheimer’s disease. Understanding fac-
tors associated with cognitive decline is a major goal that researchers hope to achieve with the UDS. Patients are expected
to have appointments roughly once a year for ten years and the appointments include a battery of cognitive exams. These
tests measure attention, processing speed, executive function, episodic memory, and language. Analysis of these test
results on cognitively normal men and women have been used to model the average performance given a patient’s age,
years of education, and gender.! The residual of an individual’s performance on an exam can be used to assign a percentile,
using the common assumptions of normality of errors and constant variance. This can be used to provide a baseline of
performance for an individual that implicitly incorporates variables that were not included in the model, such as intel-
ligence.? Alternatively, fitting quantile regression models for multiple quantiles can provide an individual’s percentile
without requiring the assumptions of normality or constant variance, which are not plausible when modeling many of the
test scores.® A patient diagnosed with Alzheimer’s disease is often thought to have had the disease long before the diag-
nosis. Using longitudinal data to identify patients with slight changes in their cognitive ability could potentially be useful

Abbreviations: IPW, inverse probability weighting; UDS, Uniform Data Set.
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in earlier identifying Alzheimer’s patients.* The aforementioned models which control for age are particularly important
because there is expected to be some cognitive decline with age.> However, the previous models only used data from the
patients’ first visits, ignoring the repeated measurements.?* In addition, they assume that the relationships between the
variables are linear, while this article provides some evidence to the contrary. In this article, we propose a model of the
conditional quantile of a composite of test scores that can accommodate longitudinal observations, missing data due to
dropout, and nonlinear relationships. This model provides a flexible estimate of a conditional percentile that does not
depend on specifying the distribution of error terms.

There exist several challenges in the UDS that create significant difficulties for statistical analysis. Cognitive ability
is highly skewed and heterogeneous. Some of the covariates have nonlinear effects on cognitive ability. The longitudinal
structure of the data needs to be handled properly. Lastly, patients tended to drop out of the study before its conclusion.
Of the 5350 patients in the UDS who attended the first appointment, about 75% dropped out after four follow-up appoint-
ments. Only about 10% of patients remained in the study for eight follow-up visits, and less than 2% of the original 5350
patients attended all nine follow-up appointments. Additionally, the probability that a patient drops out may depend on
his or her cognitive ability at previous visits or covariates. Ignoring any of these features in the data can result in biased
analysis. Many of these features are not unique to the UDS and have been studied previously.®” However, this problem
has not been studied when all these challenges are present.

One of the appeals of quantile regression is it does not require any assumption about the distribution of the error
terms. Thus, quite naturally, there has been a lot of work in further relaxing the linearity assumption. A very popular
approach is to use B-splines to estimate an unknown function. Early work demonstrated that for a single covariate, using
B-splines to estimate an unknown nonlinear function can achieve the same, optimal, rate of convergence as least squares
regression with splines.®? Since then, using splines to provide more flexibility to quantile regression has been an active
area of research. Applications include, but are not limited to, varying coefficients,'? single index models,!! partially linear
models,'>13 and variable selection for nonlinear models.}41>

Research on longitudinal models for quantile regression has been an active area. One approach is to consider a fixed
effect for each individual and use a lasso penalty to avoid potentially over-fitting the model.!® Mixed effects quantile
models are also available.!” In this article, we take a GEE approach to estimating a quantile regression model using
longitudinal data. Similar approaches have been used in partially linear models,'® single index models,'® and using a
smoothed version of quantile loss to efficiently handle an extremely large number of predictors.?

Estimating the conditional quantile in the presence of missing data has been studied in the literature. For linear
quantile models with cross-sectional data, two popular approaches are imputation®*? and inverse probability weighting
(IPW).23-25 TPW has been proposed to estimate conditional quantiles using longitudinal data with dropouts,?%?’ where the
inverse of the probability of dropping out at a given time is used as the weight. The asymptotic normality of the estimator
has been derived for the special case of modeling the median.?” This work generalizes the IPW approach for data with
dropouts to the nonlinear model and develops the asymptotic statistical theory. Ignoring the longitudinal structure of
the data can result in biased estimation. Missing data is another inherent challenge that can yield biased estimates if
not handled properly. Partial linear quantile regression is a popular tool for analysis. Despite this, the literature lacks a
theoretically justified partially linear quantile regression estimator for the longitudinal setting with missing data.

Section 2 formally defines the dropout model and provides intuition for the proposed estimator. Asymptotic properties
are presented in Section 3. We demonstrate the performance of our estimator with Monte Carlo simulations in Section 4
and analyze the UDS in Section 5. We conclude with a discussion in Section 6.

2 | ESTIMATION

Let Y; be the univariate, continuous response of the ith subject at the jth time point, where i € {1, ... ,n} and
JE (1, ... ,m}. Let X = (X, ... ,Xl-jp)T eRPand Z; = (Zjj, ... ,Zl-jq)T € [0,1]7 be the linear and nonlinear predictors,
respectively, for the ith subject at the jth time point. Assuming nonlinear covariates are bounded is a fairly common
assumption®?® and without loss of generality we assume the support is [0, 1] for all nonlinear covariates. Define g()as
the nonlinear function for the dth nonlinear covariate and E (g5,(Zija)] = 0, for the identifiability of the model. We consider
the model of

q
Yij = X;—ﬁ* +a* + Zg; (Zijd) +e€jj = X;— * +g*(Zij) + €jj, (1)
d=1
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where ¢ and ¢; are independent when i # k and P(e; < 0|Xj;, Z;j) = 7. Note that f*, a*, g,¢) and ¢; all depend on 7,
but for ease of notation we are not indexing them by z. The nonlinear functions are unknown and estimated using
degree s B-splines with k,, quasi-uniform internal knots and J,, = k,, + s corresponding functions. Define wg(-) as the kth
B-spline for the dth variable, wq(Zjq) = [wd,l(Zijd), e Way, (Zijd)]T € R’» as the vector of B-splines for the dth variable
and w(Zy) = [l,wl(Zijl), ,wd(Zijd)]T € R¥:+1 as the vector of all spline functions for the ith subject at the jth time
point.

We consider longitudinal data with dropout. Define R;; as an indicator if the ith subject is observed at the jth time
point, it takes a value of one if this is true and zero otherwise. We assume a dropout structure. Each subject is assumed
to make their first appoint. If a subject misses an appointment then we assume they fail to show up at all follow-
ing appointments. That is, if R; = 0 then Ry =0 for all j > j and R;; =1 for all i € {1, ... ,n}. A missing at random
structure is assumed where the probability of dropout at time j depends on observations before time point j. Define
T; = [1, Y, ... sYi(j—l),X;E’ s X1y, 25, Zl.T(}._l)]T € Ri+U-DP+9 a5 the vector of all variables for subject i observed
before time point j and let Y;, X7, and Z{ represent the responses and predictors for the ith subject that would be observed if
they never dropped out of the study. Define ”; = P(R; = 1|Y;, X}, Z;), we assume a monotone missing at random pattern,

;=1 forall i€ (1,...,n},
z; =P (Ryj=1|Ty;) forall i€ ({1,...,n} and j€ {2, ... ,m},
P[Rl] = 1|Ri(j—l) = 0] =0.
To motivate our proposed estimator and provide intuition about why ignoring the dropout structure is problematic
we consider the ideal case where the functions g(-) are known. Define p.(u) = u[z — I(u < 0)], which is the quantile loss

function.? In this setting, we only need to estimate the linear coefficients and if the dropout structure is ignored one
approach is to minimize with respect to

n m g
;;RWT [Yij -XIp- ;g;(zijd)] ' o

This is the standard linear quantile regression estimator but it will be biased in this setting because of the dropouts. Define
w.(u) = 7 — I(u < 0), which is the derivative of p.(u) where it is defined. The expected value of the estimating equation
at the true value of g* is

n m q
22F {Ruxwr le - X B - Zg;(zijd)] } : (3)
d=1

i=1 j=1

If there are no dropouts, R;; = 1 for all i and j, then

q q
E {Ri,-xi,-wf lYg -X;B" - Zg:;(zi,-d)] } =E (X,E {wf le ~X;p" - Zg:;,(zi,-d)] [, }) =0. @)
d=1 d=1

However, with dropouts we have

q q
E {R]X,w lYi, -X[p - Zg:;(Zi,-d)] } =E <X,E {n;wf lYU -X[ B - Zg;(zwl [, }) : (5)
d=1 d=1

Note, 7 depends on Yj;_). In addition, Yj;_;) and Yj; are likely to be correlated in a longitudinal setting, so 7[‘;. cannot be
pulled out of the conditional expectation and the expected value of (5) is likely to not be zero and the estimator minimizing
(2) is likely to be inconsistent. This can be solved by instead minimizing,

n m . q
ZZ%pf le -XB - Zgﬁ;(zi,-d)] : (6)

i=1 j=1 "ij d=1

:sdi) SUONIPUOD) pue swo L oy 99§ “[KZ0Z/60/1Z] U0 AeiqyT SUIUO ASJIA “SOLBIQT IWBIA JO AWSIOAIUN AQ ShL6°WIS/Z00 1"01/10p/W0d Ao[iav ATeaqE[oul[uo;/:sdny Wwoiy papeojumod ‘91 “€Z0T ‘$STOL60T

110)/W09" K1

pi

ASULIIT suowo)) dAnear) a[qearjdde ayy £q paurdA0S a1e sad1IE Y asn JO S[NI 10J A1eIqIT dul[uQ £J[IA\ UO (SuonIpi



ﬂl_wl LEY_StatiStiCS MAIDMAN ET AL.

However, minimizing (6) is not realistic because it depends on knowing the true value of 7[‘; and g(-). We propose
replacing ﬂj with estimates, #;;, and using a B-spline transformation of Z; to estimate the unknown functions, g3(-).
Letn = P[R; = 1|T};,Ry = - - - = Ryj_1) = 1] and assume

__en(Tyy) | |
r,ij=—T forall ie {1, ...,n} and j€ {2, ... ,m}. @)
1+exp<Tijy;‘>

Let 7; be the maximum likelihood estimator of y;‘. Then 9 =(§,, ... .#,,)" is the MLE from the following
log-likelihood

n m
:

£(y) = ZZRL‘(}'—I) [RUT;}',- - log<1 + eTif’f')] ) 8)

i=1 j=2
Given the monotone missing pattern structure, n; = H’ ! and therefore #; = Hj;;ﬁu and #; = 1foralli € {1, ... ,n}.

The proposed estimator is
n m R

(B.b= argmin 33T |V~ {X[p+wzpE |, ©

BERPHL, §€quni 1j=1 ij

where é; € R, 81u(Zijk) = W(Zij) Tér, & = (&4, ... ,fq)T € R¥: and §(Z;) = w(Z;)"&. Similar partial linear conditional
quantile estimators have been considered for the case of longitudinal data with no missing data'® and cross-sectional
data with missing covariates.*° Linear longitudinal data with dropouts have also been considered, but weights are based
on the probability of dropout instead of the probability of being observed at a given time point.?*?” However, none of
the previously cited literature considers a partially linear quantile regression longitudinal model with dropouts. Note
the construction of the weights relies on the monotone missing pattern structure. Therefore the proposed estimator only
handles values that are missing due to monotone dropout and does not handle subjects missing an appointment at time
j but appearing at j + 1 or a subject being observed, but with some missing data. We assume the design is balanced, that
is the number of potential subject observations, m, remains the same for all subjects.

3 | ASYMPTOTIC PROPERTIES

This section outlines the asymptotic properties of the estimators from (9). First, we provide some technical definitions
and conditions.

Definition 1. Let r = d + v, where m is a positive integer and v € (0, 1]. Define H, as the collection of func-
tions h(-) on [0,1] whose mth derivative h™(-) satisfies the Holder condition of order v. That is, for any
h(-) € H,, there exists some positive constant C such that

|h(‘”(z') - h“”(z)' <ClZ -7 Vo<Z.z<lL (10)

Define the set H; = {Zgzlhk(z)lhk € H,}.

Let tx(z) = E(xjjx |z = z) and

Ri() = arg 1anZE 501Xy Z4) (X — eZ)) |

heH] i=1 j=1

The function h*() is the weighted projection of f(-) into ! under the L, norm, where the weights fii Oy, )
are included to account for possibly heterogeneous errors. Define &y = X — hy(Zy), & = (i, - ,6ip)T € RP,
8 =8}, ....8, )T € R™P and A, = (81, ... ,8um)'| € R™>P_ Define H as the mn X p matrix with Hy_1)4jx = W (Zy).
Then X = H + A,,. Similar definitions have been used for partially linear quantile regression models to derive asymptotic
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properties of the linear coefficients, while accounting for the nonlinear estimates.3!32 For a vector a define ||a||, as the

Euclidean norm. For a square matrix A define Amax(A) as the maximum eigenvalue of A and for any matrix A define
[|All2 = V Amax(ATA). Below are the conditions used to prove the theoretical results.

(C1) (Conditions on the random error) The random error e; has the conditional distribution function Fj; and
continuous conditional density function f;;. The conditional density function, f;, is uniformly bounded away
from 0 and infinity in a neighborhood of zero and its first derivative fU’ has a uniform upper bound in a

neighborhood of zero, for i € {1, ... ,n} and j € {1, ... ,m}. In addition E[elf]‘.] <oo forallie{l,...,n} and
je {1, ... ,m}.
(C2) (Conditions on the covariates) There exist positive constants M; and M, such that, for all i € {1, ... ,n},

jefl, ... ,m},and k € {1, ... ,p}, [ Xyx| <M, E[5lfj‘.] < M; and E[Xj;] = 0. Let f,_ be the pdf of the kth nonlinear
covariate. The joint density of the nonlinear predictors is absolutely continuous and the density, f(z), is
bounded away from zero and infinity by positive constants. There exists positive constants c¢; and ¢, such that
c1 < fp (@) < cpforallk € {1, ... ,q} and z; € [0, 1]. There exist finite positive constants C; and C, such that with
probability one

C1 £ Amax (n_IXTX) <G Cy £ Amax (n_lATA) <G

(C3) (Condition on the non-linear functions) For r = m +v > 1.5, g, € M.

(C4) (Condition on the B-spline basis) The number of internal knots, k,,, satisfies k,, ~ n'/?*1_In addition, the internal
knots are quasi-uniform. That is, the ratio of the maximum and minimum distance between knots is bounded above
by a positive constant.

(C5) (Condition on the dropout probability) There exist 0 < ay and a, <1 such that a, < r/; < a, for all

ij) € (L, ... ,n} x {2, ... ,m}.
ex;(Tl;yj)

1+exp(T;yj>
of 7; hold for all j € {2, ... ,m} and ||dn;(Ty;, y)/dy||, and ||0*;(Ty,y)/dydy ||, are bounded in a neighborhood
ofy]i“ forallje {2, ... ,m}andi€e {1, ... ,n}.

(C6) (Condition on the estimator of weights) Define, r;(Ty;, v;) = . Assume conditions for asymptotic normality

Conditions similar to C1 have been used for cross-sectional linear quantile regression with complete data.>* The most
prominent deviation is the assumption of a finite fourth moment for the error terms. This is used because the responses
are used as predictors when modeling dropout probability. The proof of our central limit theorem relies on these pre-
dictors having a bounded fourth moment to apply Lindeberg’s conditions. Similar assumptions have been made for this
reason for quantile regression models that use IPW.2* The assumptions for the nonlinear variables stated in Condition
C2 are fairly common in work that models additive nonlinear functions with B-splines because under these assumptions
one can establish lower bounds for the minimum eigenvalue of the B-spline transformed covariates Gram matrix.>33433
The assumption that the linear terms are bounded is fairly common in quantile regression and the assumption that the
variables have mean zero can be done by centering the predictors. Condition C3 provides that only reasonably smooth
functions can be estimated by the proposed method. Condition C4 assumes that k, increases at the optimal rate for esti-
mating g*(-).2® Conditions C5 and C6 provide that the differences between the true and estimated probabilities have a
well-defined Taylor approximation.

Let I(y*) be the Fisher information matrix corresponding to (8), F; be an m X m diagonal matrix with jth diagonal

T
entry of f;;(0|1Xj;, Zy), k; = [ll/r(é"il), ve(en)Rn /75, .., Wr(eim)Rim/ﬂ?m] € R™, and

I, =E[§/Fi5].
T, = E[8/kik/ &),
~ =) T
Egjk = I(k S])E —*WT(EU)(SUTik for k € {2, ... ,m},
ij
Ty = (2;.2, ,z;m)T.

The following theorem presents asymptotic properties of the estimator for n - oo and m fixed.
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Theorem 1. LetX,, =X, — Zj’iZZ‘.ng(y*)‘lE;j. Under conditions (C1)-(C6),

Vn(B - g = N (0,27'5,2), (11)

%Z Z Ry [§k(zij) _g* (Zij)] 2 _ 0, [n—z/(zm)] ) (12)

i=1 j=1

Theorem 1 proves that the estimator g(-) achieves the optimal rate of convergence for nonlinear estimators of additive
functions.?® In addition, the linear terms have a central limit theorem. Note if the true weights were used the asymptotic
variance would be £7'Z,X ", thus estimating the weights reduces the variance. A phenomenon that has previously been
observed, and discussed, for IPW estimators.3°

4 | MONTE CARLO STUDIES

We perform a simulation study to compare the proposed method for estimating effects with existing ones in the literature.
We consider four covariates with linear effects, Xj, ... , X, and two covariates with nonlinear effects, Z; and Z,, that do
not change across time. In the simulations we keep the values of the predictors fixed but generate the initial values from a
distribution. The variable X; has a Uniform(0,1) distribution and X,, X3, X, follow the standard normal distribution. The
nonlinear variables Z; and Z, follow a Uniform(0,1) and Uniform(—1, 1) distribution, respectively. The jth response for
the ith subject is determined as follows,

Yy = X1 + Xoi + Xz + Xy + sinQ2xZy) + Z5, + €. (13)

Letting (&1, ... »&m) ~ Nin(0,X) where the (i,j)th element of X is 0.75/7!, we consider three settings for the errors:
(1) 5 = 28y, (2) e = 2X3;&;, and (3) €5 = exp(2&;) — exp(2). Settings 2 and 3 are interesting cases for quantile regres-
sion because due to heteroscedasticity or asymmetric errors, least squares regression with an assumption of normal
errors would provide an incomplete description of the conditional distribution. For instance in setting 2, ;' = 1 + Cbz‘l(r)
where ®@;! is the inverse CDF of the normal distribution with mean 0 and variance ¢2. While By is not part of
(13) depending on 7 and the distribution of ¢; there may be a non-zero intercept. For setting (1) f; = CD;l(r); 2)
fy =0and (3) f; = F;l(r), where I';! is the inverse CDF of a log-normal distribution that has been centered to have
mean zero.
The probabilities of returning at time j are generated from the following model,

exp(x ~ iy

P(R;=1|Rij.1 = 1) = .
J o 1+ exp(x — Yij-1)

(14

Under this model, an individual with higher responses is more likely to drop out and the probability of dropping out
will tend to increase with time. In the presented simulations k = 4. The supplemental material includes results for the
heteroscedastic setting, setting (2), where k € {3,5}. All variables available before time point j are included as linear
predictors when estimating (14). The supplemental material includes results where Y;;_; in (14) is replaced with Yizj—v
but a misspecified model is fit that does not include the squared term.

We consider two different methods of estimating effects: the proposed inverse probability weighting method (IPW)
and the method which ignores the dropout and only uses the complete observations (Naive). The Naive method would
yield consistent estimates if the data were missing completely at random. Additionally, we compare results to the setting
in which all data is observed (Oracle). This hypothetical situation is unattainable in practice but is useful for comparing
the IPW and Naive methods to the gold standard.

When using B-splines the number of internal knots needs to be set. Many different approaches can be used to identify
the number of internal knots, such as cross-validation and AIC. In the UDS analysis internal knots from zero to nine were
evaluated using BIC, following suggestions from previous work using B-splines with quantile regression.!>1837:38 With
one exception, zero internal knots provided the smallest BIC value for all quantile models. The one exception was for
the IPW approach with = = 0.9, where one internal knot provided the minimum BIC value. In the simulations and the
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UDS analysis cubic B-splines with no internal knots were used for all models and variables. We decided to use the same
number of internal knots, zero, for all models and test the use of this selection in the simulations. However, there are two
boundary knots and J,, = 3 because cubic B-splines are used.

We estimate the 7 = 0.5 and = = 0.7 quantiles for the settings where m = 2 and m = 3 and n € {100,500, 1000}. We
report results for = = 0.5 for settings 1 and 3 and report = = 0.7 for setting 2, because non-central quantiles are more
interesting when the errors are heteroscedastic. The supplemental material includes results for = = 0.7 for settings 1 and
3 and 7 = 0.5 for setting 2. One hundred replications are used for all settings. We report the bias of the estimator for each
coefficient (§ ), the mean squared error of the estimator for the linear coefficient vector (MSE), and the mean squared
error of the estimator of the nonlinear functions (gMSE). Let f, be the estimate of kth coefficient in the Ith simulation
and similarly define gj.. Then,

100 4
. 1 " .
MSE(H) : 755 > X (B = B’
I=1k=1
1 100 1 n 2 2
gMSE 1 =05 3 (Bio = B)* + — 3 | D 8u(ai) — g @) | 13
=1 n i=1 [ k=1
100

Bias(fo) : | o= 3 A~ ;.
=1

The bias and MSE results are presented in Tables 1-3. In Tables 1 and 2, the results consistently show that MSE and
gMSE tend to decrease with n for the IPW method. In addition, the Naive method’s bias does not decrease with n and thus
as n increases the MSE of the IPW method is smaller than the Naive method. For gMSE the two methods are performing
similarly. Note for smaller sample sizes the MSE of the Naive method can be smaller than that of IPW. The motivation for
IPW is to provide an unbiased estimator, but the weights increase the variance of the estimator. At smaller sample sizes

TABLE 1 MSE results for r = 0.5 from setting 1, normal errors.

Method m n Bias(ﬁl) Bias(ﬁz) Bias(ﬁ3) Bias(ﬁ4) MSE(B) gMSE
Oracle 2 100 0.1689 0.0141 0.0226 0.0073 0.8341 0.3213
Naive 2 100 0.1074 0.0612 0.0620 0.0344 0.8253 0.3302
IPW 2 100 0.1167 0.0081 0.0366 0.0028 0.9431 0.3698
Oracle 3 100 0.1365 0.0144 0.0419 0.0032 0.6612 0.2672
Naive 3 100 0.0514 0.0785 0.0913 0.0719 0.7140 0.2825
IPW 3 100 0.1071 0.0248 0.0481 0.0120 0.8853 0.3355
Oracle 2 500 0.0172 0.0125 0.0208 0.0038 0.1297 0.0635
Naive 2 500 0.0479 0.0530 0.0609 0.0444 0.1342 0.0617
IPW 2 500 0.0123 0.0182 0.0219 0.0037 0.1364 0.0707
Oracle 3 500 0.0206 0.0151 0.0146 0.0047 0.1152 0.0538
Naive 3 500 0.0814 0.0762 0.0810 0.0696 0.1423 0.0545
IPW 3 500 0.0608 0.0373 0.0337 0.0164 0.1428 0.0650
Oracle 2 1000 0.0148 0.0079 0.0017 0.0069 0.0666 0.0313
Naive 2 1000 0.0656 0.0495 0.0424 0.0497 0.0759 0.0329
IPW 2 1000 0.0142 0.0144 0.0086 0.0115 0.0732 0.0354
Oracle 3 1000 0.0262 0.0075 0.0004 0.0059 0.0551 0.0279
Naive 3 1000 0.0947 0.0711 0.0651 0.0722 0.0777 0.0320
IPW 3 1000 0.0353 0.0280 0.0182 0.0242 0.0681 0.0366
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TABLE 2 MSE results for r = 0.7 from setting 2, heteroscedastic errors.

Method m n Bias(8,) Bias(f,) Bias(f;) Bias(8,) MSE(f) gMSE
Oracle 2 100 0.0755 0.0096 0.0205 0.0058 0.2273 0.0797
Naive 2 100 0.1727 0.0213 0.0252 0.0059 0.2408 0.0822
IPW 2 100 0.0976 0.0141 0.0171 0.0010 0.2607 0.0934
Oracle 3 100 0.0533 0.0048 0.0222 0.0028 0.1655 0.0708
Naive 3 100 0.2019 0.0298 0.0313 0.0124 0.1983 0.0656
IPW 3 100 0.1015 0.0221 0.0275 0.0021 0.1999 0.0814
Oracle 2 500 0.0437 0.0004 0.0104 0.0014 0.0274 0.0102
Naive 2 500 0.1497 0.0073 0.0171 0.0101 0.0489 0.0102
IPW 2 500 0.0463 0.0000 0.0105 0.0015 0.0352 0.0113
Oracle 3 500 0.0325 0.0003 0.0091 0.0007 0.0223 0.0089
Naive 3 500 0.1956 0.0115 0.0192 0.0142 0.0598 0.0090
IPW 3 500 0.0428 0.0033 0.0106 0.0013 0.0335 0.0104
Oracle 2 1000 0.0575 0.0061 0.0055 0.0054 0.0148 0.0066
Naive 2 1000 0.1635 0.0119 0.0114 0.0117 0.0367 0.0065
IPW 2 1000 0.0704 0.0080 0.0068 0.0063 0.0167 0.0069
Oracle 3 1000 0.0581 0.0061 0.0051 0.0056 0.0123 0.0071
Naive 3 1000 0.2194 0.0152 0.0147 0.0144 0.0562 0.0072
IPW 3 1000 0.0842 0.0098 0.0088 0.0077 0.0186 0.0076

TABLE 3 MSE results for z = 0.5 from setting 3, asymmetric errors.

Method m n Bias(f#,) Bias($,) Bias(f;) Bias(f,) MSE(f) gMSE
Oracle 2 100 0.1300 0.0114 0.0343 0.0019 0.8363 0.4263
Naive 2 100 0.0837 0.0148 0.0253 0.0186 0.5577 0.2670
IPW 2 100 0.0720 0.0216 0.0232 0.0108 0.6104 0.3012
Oracle 3 100 0.1479 0.0108 0.0465 0.0093 0.6446 0.3377
Naive 3 100 0.0789 0.0267 0.0360 0.0283 0.3885 0.1619
IPW 3 100 0.0592 0.0288 0.0314 0.0229 0.4082 0.1947
Oracle 2 500 0.0113 0.0138 0.0202 0.0015 0.1250 0.0618
Naive 2 500 0.0110 0.0190 0.0278 0.0091 0.0919 0.0449
IPW 2 500 0.0091 0.0166 0.0213 0.0060 0.1056 0.0518
Oracle 3 500 0.0160 0.0155 0.0172 0.0039 0.1091 0.0541
Naive 3 500 0.0254 0.0197 0.0223 0.0119 0.0704 0.0336
IPW 3 500 0.0222 0.0232 0.0172 0.0038 0.0831 0.0404
Oracle 2 1000 0.0143 0.0084 0.0024 0.0056 0.0639 0.0315
Naive 2 1000 0.0263 0.0188 0.0093 0.0138 0.0480 0.0238
IPW 2 1000 0.0273 0.0155 0.0035 0.0123 0.0521 0.0276
Oracle 3 1000 0.0299 0.0089 0.0002 0.0054 0.0530 0.0274
Naive 3 1000 0.0303 0.0173 0.0143 0.0166 0.0339 0.0180
IPW 3 1000 0.0423 0.0150 0.0092 0.0126 0.0418 0.0215
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the bias-variance tradeoff may not be advantageous enough to support using IPW. Thus suggesting the proposed method
is better suited to larger sample sizes. The results presented in Table 3, from the asymmetric setting are not as support-
ive of the IPW approach because the Naive method is consistently beating IPW with respect to MSE. Thus suggesting
in data with a lot of noise that adding additional variance through the estimation and application of weights may not
be helpful.

In addition, to estimation accuracy, we also provided coverage results. To derive confidence intervals we use a boot-
strap approach. Many different bootstrap approaches have been proposed that apply to quantile regression, but much
of the research has been focused on cross-sectional data.>>*> We re-sample the subjects with replacement, re-estimate
the weights and then fit a new model, repeating what has been done for similar methods.?®* For the Naive and Ora-
cle methods a similar approach is used but without weights. In the simulations, we use 100 bootstrap iterations. Then
90% confidence intervals are calculated by using the 0.05 and 0.95 quantiles of the bootstrap coefficients across the 100
iterations.

In Tables 4-6 we report coverage of the confidence intervals and their average length. Coverage is the proportion of
times the true parameter was in a calculated confidence interval and thus the correct coverage would be 0.9. For the case
of normally distributed or heteroscedastic errors, Tables 4 and 5 respectively, both methods tend to have coverage close to
0.9 for smaller sample sizes. However, for larger samples sizes the coverage for the Naive method can be noticeably worse
than IPW due to the non-diminishing bias of the Naive estimator. This is particularly true for f; in the heteroscedastic
case, recall that in this setting X; influenced both the location and scale of the response. In that setting with n = 1000
the coverage of the IPW approach for m = 2 and m = 3 is 0.82 and 0.77 respectively. While the coverage for the Naive
approach is 0.49 and 0.16. The coverages using IPW do not meet the benchmarks of 0.9 but the IPW coverage is much
closer to 0.9 than the Naive approach. Similar, but less drastic patterns can be seen for the other coefficients. Again, Table 6
demonstrates that in this setting the IPW method does not improve much upon the Naive method. The coverages are
similar, but the lengths of the IPW intervals are larger. Note, in all settings the IPW lengths are longer, but this is expected
because the weights increase the variance of the estimator.

TABLE 4 Coverage (and average length) for bootstrap confidence intervals of each coefficient from simulation setting 1, normal errors
with 7 = 0.5.

Coverage (length) gy Coverage (length) ; Coverage (length) g7 Coverage (length) g;

Method m n C.lL C.I. C.I C.I
Oracle 2 100 0.92 (2.67) 0.91 (0.84) 0.93 (0.86) 0.96 (0.84)
Naive 2 100 0.93 (2.72) 0.92 (0.85) 0.91 (0.86) 0.96 (0.86)
IPW 2 100 0.91 (2.82) 0.93 (0.88) 0.92 (0.88) 0.99 (0.88)
Oracle 3 100 0.91 (2.49) 0.9 (0.78) 0.91 (0.78) 0.9 (0.76)
Naive 3 100 0.91 (2.49) 0.93(0.8) 0.92 (0.78) 0.91 (0.78)
IPW 3 100 0.9 (2.62) 0.95 (0.85) 0.92 (0.83) 0.93 (0.82)
Oracle 2 500 0.94 (1.13) 0.9 (0.34) 0.85(0.33) 0.92 (0.33)
Naive 2 500 0.93 (1.13) 0.88 (0.34) 0.84 (0.34) 0.9 (0.33)
IPW 2 500 0.94 (1.21) 0.91 (0.36) 0.86 (0.37) 0.95 (0.36)
Oracle 3 500 0.91 (1.02) 0.95 (0.31) 0.89 (0.31) 0.95 (0.31)
Naive 3 500 0.88 (1.03) 0.82(0.32) 0.81 (0.32) 0.82(0.31)
IPW 3 500 0.91 (1.15) 0.89 (0.35) 0.86 (0.35) 0.9 (0.34)
Oracle 2 1000  0.94(0.8) 0.94 (0.23) 0.92 (0.23) 0.9 (0.24)
Naive 2 1000 0.92 (0.79) 0.84 (0.23) 0.84 (0.23) 0.84 (0.24)
IPW 2 1000  0.94(0.85) 0.94 (0.25) 0.93 (0.25) 0.88 (0.26)
Oracle 3 1000  0.92(0.72) 0.93 (0.21) 0.92 (0.21) 0.93 (0.22)
Naive 3 1000  0.91(0.73) 0.81 (0.22) 0.75(0.21) 0.78 (0.23)

IPW 3 1000  0.97 (0.83) 0.91 (0.25) 0.9 (0.24) 0.91 (0.25)
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TABLE 5 Coverage (and average length) for bootstrap confidence intervals of each coefficient from simulation setting 2,

heteroscedastic errors with 7 = 0.7.

Method
Oracle
Naive
IPW
Oracle
Naive
IPW
Oracle
Naive
IPW
Oracle
Naive
IPW
Oracle
Naive
IPW
Oracle
Naive

IPW

TABLE 6
errors with 7 =

Method
Oracle
Naive
IPW
Oracle
Naive
IPW
Oracle
Naive
IPW
Oracle
Naive
IPW
Oracle
Naive
IPW
Oracle
Naive

IPW

100
100
100
100
100
100
500
500
500
500
500
500
1000
1000
1000
1000
1000
1000

Coverage (length) g}
C.I.

0.9 (1.43)

0.82 (1.42)
0.84 (1.46)
0.9 (1.29)

0.8 (1.29)

0.89 (1.38)
0.86 (0.52)
0.7 (0.52)

0.83 (0.57)
0.91 (0.47)
0.55 (0.47)
0.84 (0.55)
0.82 (0.34)
0.49 (0.33)
0.82 (0.37)
0.81 (0.31)
0.16 (0.31)
0.77 (0.36)

Coverage (length) g7
C.I

0.92 (0.42)
0.92 (0.42)
0.92 (0.44)
0.89 (0.38)
0.91 (0.38)
0.88 (0.42)
0.91 (0.11)
0.92 (0.11)
0.94 (0.12)
0.94 (0.1)

0.88 (0.1)

0.92(0.11)
0.96 (0.06)
0.91 (0.07)
0.93 (0.07)
0.92 (0.06)
0.85 (0.06)
0.9 (0.07)

Coverage (length) p;
C.I.

0.95 (0.41)
0.91 (0.41)
0.91 (0.43)
0.96 (0.37)
0.92 (0.37)
0.92 (0.39)
0.9 (0.11)
0.88 (0.11)
0.91 (0.13)
0.9 (0.1)
0.85 (0.1)
0.88 (0.12)
0.94 (0.06)
0.86 (0.06)
0.89 (0.07)
0.93 (0.05)
0.74 (0.06)
0.88 (0.06)

Coverage (length) g;
C.I

0.93 (0.38)
0.94 (0.38)
0.93 (0.39)
0.92 (0.34)
0.88 (0.34)
0.87 (0.36)
0.94 (0.11)
0.94 (0.12)
0.93 (0.12)
0.94 (0.1)

0.88 (0.1)

0.88 (0.12)
0.92 (0.06)
0.88 (0.06)
0.91 (0.07)
0.89 (0.06)
0.8 (0.06)

0.91 (0.07)

Coverage (and average length) for bootstrap confidence intervals of each coefficient from simulation setting 3, asymmetric

0.5.

m
2
2
2
3
3
3
2
2
2
3
3
3
2
2
2
3
3
3

n
100
100
100
100
100
100
500
500
500
500
500
500
1000
1000
1000
1000
1000
1000

Coverage (length) gy
C.I.

0.91 (3.02)
0.92 (2.51)
0.92 (2.61)
0.9 (2.62)

0.96 (2.08)
0.96 (2.14)
0.91 (1.06)
0.92 (0.88)
0.93 (0.94)
0.91 (0.98)
0.89 (0.74)
0.92 (0.8)

0.92 (0.76)
0.92 (0.64)
0.93 (0.69)
0.89 (0.7)

0.94 (0.54)
0.91 (0.6)

Coverage (length) g7
C.I

0.9 (0.96)

0.93 (0.78)
0.92 (0.81)
0.9 (0.86)

0.93 (0.64)
0.93 (0.66)
0.9 (0.31)

0.91 (0.26)
0.87 (0.28)
0.94 (0.29)
0.9 (0.23)

0.93 (0.24)
0.95 (0.22)
0.95 (0.18)
0.93 (0.2)

0.93 (0.21)
0.94 (0.16)
0.93 (0.17)

Coverage (length) ﬁ;
C.I.

0.95 (0.96)
0.92 (0.8)
0.92(0.83)
0.94 (0.86)
0.93 (0.66)
0.94 (0.68)
0.85 (0.31)
0.86 (0.26)
0.86 (0.28)
0.88 (0.29)
0.86 (0.22)
0.89 (0.24)
0.92 (0.22)
0.91 (0.18)
0.92(0.2)
0.9 (0.2)
0.89 (0.15)
0.91 (0.17)

Coverage (length) g;
C.I.

0.95 (0.96)
0.93 (0.8)
0.94 (0.83)
0.85 (0.84)
0.91 (0.64)
0.89 (0.67)
0.9 (0.3)
0.94 (0.26)
0.92 (0.28)
0.94 (0.28)
0.95(0.22)
0.96 (0.24)
0.94 (0.23)
0.92 (0.19)
0.91(0.2)
0.93 (0.21)
0.92 (0.16)
0.93 (0.17)
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The supplemental material includes results for = = 0.7 for settings 1 and 3, and for = = 0.5 for setting 2. Those
results are similar to what was discussed above, in settings 1 and 2 the advantage of the IPW approach becomes
clear for larger sample sizes while in setting 3 IPW does not offer much of a benefit. The supplemental material
also includes results for the heteroscedastic error case but with different rates of dropout, specifically with x € {3, 5}.
Recall, k is the intercept of the dropout model and x = 4 in the presented results. In both settings, the IPW method
outperforms the Naive method with respect to MSE when the sample size is larger. When there are fewer dropouts
both approaches provide reasonable coverage but with more dropouts the Naive method provides very poor coverage
for larger sample sizes, while the IPW approach provides close to the expected coverage of 0.9. Finally, the supple-
mental material presents results for heteroscedastic errors with a misspecified model for the probability of a subject
not dropping out. As mentioned earlier the model relies on a squared term of the previous response but the fitted
model only includes linear variables. In that setting, the IPW approach does worse than the Naive approach both in
terms of coverage and MSE. Suggesting that a reasonable model for the weights is needed, an issue we discuss more
in Section 6.

5 | ANALYSIS OF THE UNIFORM DATA SET

In this section, we analyze data from the National Alzheimer’s Coordinating Center’s UDS. In particular, we are interested
in the effects of covariates on cognitive ability. To measure cognitive ability, we create a composite cognitive (CC) score
which is the sum of standardized scores from the logical memory IA and IIA tests, digit span backwards test, animals,
vegetables, and Boston naming tests, digit symbol, Trail A and B tests, and the mini-mental state exam.*>*” The scores
for the Trail A and B tests are times until completion, where a shorter time is interpreted as indicative of higher cognitive
ability, unlike the other tests. To handle this discrepancy, we instead record the time to complete as a percentage of the
maximum score observed, 150 for Trail A and 300 for Trail B. Under this transformation the quicker the completion time
the lower the score. All binary predictors were treated as linear variables. Specifically, female (sex), belonging to any
group besides non-Hispanic white (race2), have hypertension (hyperten), diabetic (diabetes), have had a stroke (stroke),
have been depressed in the last 2 years (depression), history of alcohol abuse (alcohol), and current smoker (smoke). In
addition, years of education (education) were treated as linear due to a limited number of values. While the nonlinear
predictors are the continuous variables, age, cognitive score at the initial appointment (CC1), and days from the initial
visit (dfiv).

In the NACC dataset, data was collected on the first visit and patients were asked to return for nine follow-up visits
spaced about 1 year apart. Though many patients followed-up for 1 or 2 years, very few patients remained for all ten
visits and we restrict the analysis to the first five follow-up visits. The data does not specify whether an appointment was
missed or not but includes the total number of appointments and the time between appointments. Each visit number
is recorded as the total number of attended appointments the patient had up to that point, and thus the data follows
a monotone missing structure. The length between visits can vary with 96% of follow-up time being between 245 and
694 days. No patients were removed for having too long, or short, a time between visits. The proposed method works
only for monotone missing data patterns and thus any individuals that made appointments, but had missing values,
were removed from the analysis. To study the covariates’ effects on cognitive decline, we define the response variable as
the difference in CC scores between the initial visit and each follow-up visit (CCdift). We consider patients aged 65 or
older at the initial visit. A patient was removed if he or she increased their CC score from the initial CC score by more
than 1. Such a large increase suggests that the score is not reliable. About 7% of patients were removed because of this
restriction.

The number of patients at each follow-up appointment and the means and standard deviations of the vari-
ables are provided in Table 7. Notable changes are the number of patients dropping from 3581 to 2381, the per-
centage with hypertension increasing from 0.58 to 0.67, and the average decrease in CC score increasing from
0.03 to 0.14.

Table 8 contains the estimates of the linear covariates in the UDS for the proposed IPW method and the Naive method
at z = 0.9 and also includes results for a Naive and IPW approach for a mean model, where squared error loss is used. The
90% confidence intervals are created using the same bootstrap approach used for the simulations in Section 4. We focus
on the 0.9 conditional quantile because that corresponds to larger declines in CC scores, which would be patients that
are more likely to be at risk for non-normal cognitive decline. Note, the coefficients for the IPW and Naive approaches
are different. For the models of = = 0.9, there are noticeable differences between the coefficient estimates of race2, stroke,
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TABLE 7 Means (and standard deviations for non-binary variables) of patients at each follow-up appointment.

Follow-up appointment 1 2 3 4 5

Patients observed 3581 3424 3254 2381 1728

Sex 0.67 0.67 0.67 0.67 0.66

race2 0.21 0.21 0.21 0.21 0.2
Hyperten 0.58 0.61 0.64 0.66 0.67
Diabetes 0.12 0.13 0.13 0.13 0.14

Stroke 0.02 0.03 0.03 0.03 0.04
Depression 0.17 0.17 0.18 0.18 0.2

Alcohol 0.03 0.03 0.03 0.04 0.04
Smoke 0.03 0.02 0.03 0.02 0.02
Education 15.59 (2.94) 15.6 (2.93) 15.6 (2.93) 15.62 (2.92) 15.71 (2.87)
dfiv 435.44 (143.73) 849.24 (196.92) 1248.53 (222.95) 1641.45 (241.53) 2012.09 (239.84)
Age 76.69 (6.88) 77.74 (6.83) 78.69 (6.72) 79.64 (6.62) 80.52 (6.54)
cc1 6.46 (0.88) 6.48 (0.88) 6.49 (0.88) 6.52(0.87) 6.58 (0.86)
ccdiff 0.03 (0.43) 0.05 (0.48) 0.07 (0.52) 0.11 (0.57) 0.14 (0.64)

Note: The means for variables from sex to smoke are the proportion of patients that belong to that group. Patients observed is the number of patients observed at
a given visit.

TABLE 8 Linear coefficient estimates for quantile regression, with = = 0.9 and mean regression (with 90% bootstrapped confidence
intervals).

Coefficient QR IPW QR Naive LS IPW LS Naive

(Intercept) 0.3718 (—0.0616, 0.7706) 0.2317 (0.0012, 0.4852) —0.1934 (—0.4966, 0.0354) —0.2349 (—0.4705, —0.0226)
Sex —0.0257 (—0.0575, 0.0126) —0.0256 (—0.0488, 0.0016) —0.0403 (—0.0701, —0.0105)  —0.0433 (—0.0663, —0.0160)
race2 0.0167 (—0.0219, 0.0583) 0.0489 (0.0191, 0.0752) 0.0951 (0.0499, 0.1395) 0.1206 (0.0845, 0.1642)
Hyperten 0.0240 (0.0031, 0.0511) 0.0155 (—0.0020, 0.0380) —0.0008 (—0.0246, 0.0269) —0.0082 (—0.0333, 0.0170)
Diabetes 0.0638 (0.0085, 0.1141) 0.0373 (0.0049, 0.0695) 0.0674 (0.0256, 0.1126) 0.0464 (0.0104, 0.0849)
Stroke 0.2653 (0.1018, 0.3767) 0.1467 (0.0794, 0.2204) 0.0732 (0.0024, 0.1538) 0.0489 (—0.0142, 0.1276)
Depression 0.1464 (0.1003, 0.2012) 0.1078 (0.0753, 0.1360) 0.1167 (0.0771, 0.1487) 0.0852 (0.0581, 0.1116)
Alcohol —0.1039 (—0.1679, —0.0205)  —0.0747 (—0.1308, 0.0020) —0.1057 (—0.2173, —0.029) —0.0906 (—0.1878, —0.0196)
Smoke 0.0504 (—0.0097, 0.1199) 0.0335 (—0.0146, 0.1086) 0.0648 (—0.0088, 0.1231) 0.0765 (0.0102, 0.1266)
Education —0.0055 (—0.0098, 0.0017) —0.0075 (—0.0106, —0.0027)  —0.0111 (—0.0160, —0.0045)  —0.0135 (—0.0174, —0.0069)

diabetes, and depression. For the quantile models the signs of the coefficients are the same but if we account for the confi-
dence intervals there are differences in significance. The IPW approach identifies hypertension and alcohol as significant
variables, but the Naive approach does not, while the Naive approach identifies race2 and education as significant, while
the IPW does not. Which of these results is correct is difficult to say because previous studies have found all of these
variables related to cognitive differences.*8->!

A comparison of the mean and quantile models presented in Table 8 highlights that a model of the conditional quantile
is providing information that would be lost by only modeling the conditional mean. The results show that the differences
in the conditional 0.9 quantile between the two categories for race are smaller than the differences observed for the condi-
tional mean. While the 0.9 quantile coefficient estimates for stroke and hypertension are noticeably larger than the mean
model estimates. Figure 1 plots how the quantile regression coefficients for race2 change with z, and provides a com-
parison to the mean regression estimate. Similar plots are provided for the other variables in the supplemental material,

:sdi) SUONIPUOD) pue swo L oy 99§ “[KZ0Z/60/1Z] U0 AeiqyT SUIUO ASJIA “SOLBIQT IWBIA JO AWSIOAIUN AQ ShL6°WIS/Z00 1"01/10p/W0d Ao[iav ATeaqE[oul[uo;/:sdny Wwoiy papeojumod ‘91 “€Z0T ‘$STOL60T

110)/W09" K1

pi

ASULIIT suowo)) dAnear) a[qearjdde ayy £q paurdA0S a1e sad1IE Y asn JO S[NI 10J A1eIqIT dul[uQ £J[IA\ UO (SuonIpi



MAIDMAN ET AL. Statistics “WIL EY—Iﬂ

race2

0.15
1

Effect

0.00
|

0.0 0.2 0.4 0.6 0.8 1.0

Quantile

FIGURE 1 Naive (black) and IPW (red) coefficient estimates for the race2 covariate. The solid lines are estimates from quantile
regression at the deciles and the dashed lines are estimates from least squares.

tau=0.9

Effect

age

FIGURE 2 Naive (black) and IPW (red) nonlinear fits for age. Dashed lines are one bootstrap standard error above and below the 0.9
quantile estimate.

with education and stroke coefficients showing noticeable differences by the quantiles. These estimates changing by the
quantile are evidence that quantile regression is providing insight about differences at the conditional quantiles that
would be lost by only considering mean regression.

Figures 2-4 present the nonlinear fits for age, CC1, and dfiv. Differences between the IPW and Naive methods are most
noticeable for CC1 and dfiv, seen in Figures 3 and 4, respectively. In addition, these figures present noticeably nonlinear
effects. The confidence bands tend to be wider at the extremes, where there are fewer observations with those values.
Similar plots for the other quantiles and mean models are available in the supplemental material.
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tau=0.9
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CC1

FIGURE 3 Naive (black) and IPW (red) nonlinear fits for CC1, cognitive score at the initial appointment. Dashed lines are one
bootstrap standard error above and below the 0.9 quantile estimate.
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dfiv

FIGURE 4 Naive (black) and IPW (red) nonlinear fits for dfiv, days from the initial visit. Dashed lines are one bootstrap standard error
above and below the 0.9 quantile estimate.

6 | DISCUSSION

This article proposes a GEE approach with IPW to estimate a partial linear quantile regression model using longitudinal
data with monotone missing values. There are alternative approaches to estimating a quantile regression model, as well
as different types of missing data. For instance, a mixed effects approach is a popular alternative to GEE models that
this article does not cover. In addition, observations can have a non-monotone missing pattern. For instance, a subject
appears at time 1, is missing at time 2 but then appears again at time 3. In addition, a subject can be observed but have
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missing values. The missing model of (9) could be updated to account for this, where the weights would be the inverse
of the probability a subject had complete data. However, how to account for both missing values and a dropout structure
using IPW is not immediately clear to us. One could consider imputing values instead of using the inverse weighting
approach.

An alternative approach in monotone missing models is to use IPW where the weights are inverses of the probability
a subject would drop out at their observed dropout time. Say subject i drops out at time 4 then #; = #,#;(1 — #j4). In this
framework the objective function of (9) is replaced by

iﬁ;liRij,}T vy - { X8+ wzpTe }|. (15)
=1

i=1

In a weighted model when an observation is deemed unlikely then that observation receives more weight. The intu-
ition is that less likely observations should be weighted more heavily to account for similar observations that are likely
missing. However, if the weights are very large this creates unstable estimates. A potential advantage of modeling each
observation, instead of modeling the overall monotone pattern, is the weights may tend to be smaller because for any
individual that dropped out of the study the overall probability of dropout will be smaller than the probability they would
be observed at any specific time point. In addition, the structure of (9) can more easily accommodate different missing
structures discussed earlier because the weights can vary with subject and time, whereas the weights in (15) can only vary
by subject.

If the proposed model and missing data framework are relevant there remains work that can be done on this problem.
One major challenge is the optimal estimation of the weights. In our simulations and applied analysis we propose using
all the available variables to fit a glm model, but alternative approaches exist. For instance, one could consider fitting
a more flexible, nonlinear model such as using splines to provide a more flexible estimate of the missing probabilities.
This would be one potential way to guard against a misspecified model, though these approaches often require a sim-
plifying assumption of an additive model to avoid the curse of dimensionality. If the dimension of the predictors for
the missing probability model is a concern then one could consider model selection. Model selection for glm models is
well studied and all the available tools such as information criteria or penalized estimators would apply to this setting.
What is not as clear, is how the results or conditions needed for Theorem 1 may change with how the weights were esti-
mated. An in-depth exploration of the different approaches for estimating the weights would be an interesting extension
of this work.
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