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Over the past two decades, the study of self-similarity and fractality in discrete structures, particularly complex net-
works, has gained momentum. This surge of interest is fueled by the theoretical developments within the theory of
complex networks and the practical demands of real-world applications. Nonetheless, translating the principles of frac-
tal geometry from the domain of general topology, dealing with continuous or infinite objects, to finite structures in a
mathematically rigorous way poses a formidable challenge.

In this paper, we overview such theory that allows to identify and analyze fractal networks through the innate
methodologies of graph theory and combinatorics. It establishes the direct graph-theoretical analogues of topologi-
cal (Lebesgue) and fractal (Hausdorff) dimensions in a way that naturally links them to combinatorial parameters that
have been studied within the realm of graph theory for decades. This allows to demonstrate that the self-similarity in
networks is defined by the patterns of intersection among densely connected network communities. Moreover, the the-
ory bridges discrete and continuous definitions by demonstrating how the combinatorial characterization of Lebesgue
dimension via graph representation by its subsets (subgraphs/communities) extends to general topological spaces. Us-
ing this framework, we rigorously define fractal networks and connect their properties with established combinatorial
concepts, such as graph colorings and descriptive complexity.

The theoretical framework surveyed here sets a foundation for applications to real-life networks and future studies
of fractal characteristics of complex networks using combinatorial methods and algorithms.

The goal of this paper is to introduce to the broader re-
search community a theoretical and computational frame-
work designed for robust and rigorous analysis of self-
similarity and fractality in complex networks. The tradi-
tional definition of a fractal is an object whose Hausdorff
(fractal) dimension is greater than its Lebesgue (topolog-
ical) dimension. However, applying these concepts pre-
cisely to networks, particularly finite real-world networks,
is challenging. This is because topology traditionally con-
cerns continuous objects, which networks are not, and the
concepts of fractality and self-similarity typically apply to
infinite structures, unlike finite networks.

The theory we present here bridges these concepts with
well-established, clear, and comprehensible combinatorial
characteristics applicable to finite networks. For exam-
ple, a network’s self-similarity arises from the pattern of
overlaps between its densely connected communities. The
framework we have developed enables the rigorous defi-
nition, precise interpretation, and accurate estimation of
various properties of fractal networks.

I. INTRODUCTION

To David- soul of chaos community

Over the past two decades, research focusing on self-
similarity and fractality in discrete structures, such as partic-
ularly complex networks, has gained momentum'™. These
studies have yielded many valuable insights into the structure

and development of complex networks. However, they fre-
quently lack a precise and thorough mathematical basis, lead-
ing to uncertainties about what truly defines the self-similarity
and fractality of networks. This gap often makes it challeng-
ing to interpret the results of such research effectively.

Various ways of adapting the concepts of self-similarity
and fractality from general topology to discrete structures
like complex networks are possible. According to Mandel-
brot’s classical definition, a geometric fractal is a topological
space with the topological (Lebesgue) dimension being dif-
ferent from the fractal (Hausdorff) dimension. It is also com-
monly assumed that fractals exhibit a form of geometric self-
similarity”. Therefore, when studying self-similarity and frac-
tality of networks, it is crucial to develop appropriate discrete
analogues of aforementioned concepts.

A common approach is to consider a network as a finite
metric space, in which the distance between any two ver-
tices is determined by the length of the shortest path connect-
ing them. The network fractal dimension is then identified
with the Minkowski-Bouligand (box-counting) dimension'?.
More specifically, for a network ¢, suppose that V(¥) =
By U---UBy, is the minimal cover of % by [-boxes (sub-
networks of diameter at most /). Then the fractal dimension
d =d(¥) is defined by the relation

N~C-179, (1)

where C is a constant. This definition is often applied under

the assumption that it holds true for sufficiently large /.
While this approach is intuitive and easy to compute, it en-

counters several challenges in terms of mathematical rigor, in-
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terpretation and applications. These challenges include:

1) The approximate nature of the definition (1), which is
inherently asymptotic. This means that, strictly speaking, it
is applicable to sequences of networks ¥, ...,%, or random
network generation process when the network sizes approach
infinity, rather than to individual finite networks. However, in
many cases, it is necessary to analyze the self-similarity and
fractality of distinct finite networks that cannot be described
by an asymptotic model. In such cases, reliable estimation
of box-counting dimensions is problematic, because intrinsic
finiteness and discretness of real networks prevents the accu-
mulation of a sufficient number of data points to get reliable
finite approximations of continuous functions. This problem
has been previously noted in the literature®’.

2) Limitation in applications of the definition only to par-
ticular network models, with many important classes of net-
works failing to exhibit a well-defined fractal dimension. This
is particularly true for random scale-free networks, where the
number of boxes N; decreases exponentially with [, thereby
making the box-counting definition inapplicable. The com-
mon workaround of classifying these networks as non-self-
similar seems more of a semantic solution than an exact rigor-
ous one. Furthermore, even when a network’s box-counting
dimension can be determined, correlating it with the net-
work’s structural or topological characteristics remains a chal-
lenge.

3) Limited understanding of self-similarity. The box-
counting definition aligns with the concept of self-similarity
as preservation of network properties under a length-scale
transformation!. Thus, it mostly describes statistical self-
similarity. However, geometric fractals have a stronger char-
acteristic in the form of geometric self-similarity: they consist
of parts topologically similar to the entire structure, not just
exhibiting similar features at different scales.

4) Lack of a matching definition of topological dimension,
which is necessary for definition of fractal networks. The
conventional topological network dimension is 1, while the
box-counting dimension is usually greater than 1. This makes
almost all graphs fractal in terms of Mandelbrot’s definition.
Such understanding of fractality is not practically useful.

The observations above indicate that straightforwardly ap-
plying continuous concepts to discrete objects, like networks,
can pose challenges. Consequently, there is a significant need
to cultivate an understanding of network dimensionality, self-
similarity, and fractality rooted in the fundamental principles
and methodologies inherent in graph theory and combina-
torics.

In this paper, we overview such an approach, that was first
introduced and developed in®. It establishes the direct graph-
theoretical analogues of topological (Lebesgue) and fractal
(Hausdorff) dimensions in a way that naturally links them to
combinatorial parameters well known to graph theorists and
first introduced to link graph theory with category theory. This
approach allows to demonstrate that, roughly speaking, self-
similarity of networks is defined by the patterns of intersec-
tion between dense network communities. Using this natural
and intrinsic to networks framework, one can rigorously de-
fine fractal networks and link their properties to established

combinatorial concepts, such as graph colorings and descrip-
tive complexity.

II. TOPOLOGICAL AND FRACTAL DIMENSIONS OF
NETWORKS

This section describes definitions and properties of graph-
theoretical equivalents of Lebesgue and Hausdorff dimensions
of topological spaces.

A. Basic definitions from graph theory.

In mathematical terms, a network is a graph. The following
standard graph-theoretical definitions will be used through-
out this paper. Consider a graph G with the vertex set V(G)
and the edge set E(G). A graph H is a subgraph of G, if
V(H) CV(G) and E(H) C E(G). A subgraph G[U] is in-
duced by a vertex subset U C V(G), if it contains all edges
with both endpoints in U.

The notation x ~ y is used to denote that the vertices x and
y are adjacent (connected by an edge). A vertex degree deg(v)
is a number of vertices adjacent to the vertex v. A vertex of de-
gree 1 is called a pendant vertex. The maximum vertex degree
of G is denoted by A(G).

A graph is connected, if there is a path between any pair
of vertices; otherwise it is disconnected. In the latter case, a
graph is a disjoint union of connected subgraphs called con-
nected components.

We use G to denote the complement of G, i.e. a graph on
the same vertex set where two vertices are adjacent if and only
if they are not adjacent in G. The connected components of G
are referred to as co-connected components of G. A graph is
2-connected if it remains connected after the removal of any
vertex. All graphs considered in this paper are assumed to be
connected.

A complete graph is a graph where every pair of vertices
is linked by an edge. The notations K, P,, and C, refer to
the complete graph, the path and the cycle on n vertices, re-
spectively. A star graph, noted as K ,, is a graph consisting
of n+ 1 vertices where one vertex has a degree of n and the
remaining n vertices are pendant.

A clique of G is a subset of its vertices that form a complete
subgraph. A family of cliques ¢ = (Cy, ...,Cy,) of G is a clique
cover, if every edge uv € E(G) is contained in some clique
from €.

A hypergraph 7 = (¥ (5¢),& (7)) extends the concept
of a graph. In a hypergraph, the edge set &(J#) can contain
any subset of the vertex set ¥ (J¢), i.e, an edge can join any
number of vertices. In other words, the edge set of a hyper-
graph is a set system, i.e. a collection of subsets of a finite
set ¥ () The rank of a hypergraph, r(.5¢), is defined as the
maximal size of its edges.

A hypergraph J# can be transformed into a simple graph
through the concept of an intersection graph L = L(7¢). In
this graph, each vertex vg represents an edge E in ¢, and
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two vertices vg,vp € V(L) are adjacent if their correspond-
ing edges intersect, i.e., ENF # 0. If G = L(J7), then G is
said to be represented by the set system &(5¢). In essence,
G encodes the intersection pattern of the set system &(.7¢),
and, conversely, the vertices of G are encoded by the sets from

A hypergraph 7 is termed strongly k-colorable if its ver-
tices can be colored using colors from the set 1,. ..,k such that
no two vertices within the same edge share the same color.
The sets of vertices sharing a common color are referred to as
color classes.

Other definitions will be introduced as needed.

B. Lebesgue dimension of networks

We begin by discussing the Lebesgue dimension, starting
with its general topology definition. Let X be a compact met-
ric space. A family € = {Cy : @ € A} of open subsets of X is
termed a cover if X = Jgeq Ca- A cover € is classified as a
k-cover if each point x € X is contained in no more than k sets
from ¥. It is an €-cover if the diameter of every set C; in €
is at most €. If a cover is both an €-cover and a k-cover, it is
referred to as an (&,k)-cover.

The Lebesgue dimension of a X, denoted as dimy (X), is de-
fined as the minimal integer k such that for any € > 0 there
exists an (&,k+ 1)-cover of X. So, the Lebesgue dimension of
a metric space is determined using k-covers comprised of sets
with arbitrarily small diameters. This concept can be naturally
adapted to graphs by considering graph k-covers by subgraphs
of smallest possible diameter, i.e. by cliques. The correspond-
ing parameter is known in graph theory as a rank dimension’
dimg(G), which is defined precisely as the minimal integer k
such that G has a clique k-cover. Consequently, the Lebesgue
dimension dimy (G) of a graph is equated to its rank dimen-
sion dimg(G) minus 1.

Interestingly, this association connects the Lebesgue di-
mension of a graph with graph representation by a particular
type of set systems. This connection enables the establish-
ment of relationships between the fractality of a graph and its
descriptive complexity, as discussed in Section II C 4. Specif-
ically, the following fact is a reformulation of a theorem due
to C. Berge:

Theorem 1. '° dim; (G) < k if and only if G is an intersection
graph of a hypergraph of rank < k+ 1.

No less interestingly, this connection with set system repre-
sentation can be extended from graph theory back to general
topology, thereby reinforcing the validity of the proposed as-
sociation. It has been demonstrated in® that compact metric
spaces X share a similar property: dimy (X) < k— 1 if and only
if X can be approximately represented, with any chosen level
of accuracy, by a hypergraph of rank at most & in such a way
that any two points of X are close to each other whenever the
hypergraph edges corresponding to these points have a non-
empty intersection. Formally, this property is established by
the following theorem:

Theorem 2. 8 Let X be a compact metric space with a metric
p. Then dimy (X) < k if and only if for any € > O there exists a
number 0 < 8 < € and a hypergraph € (€) on a finite vertex
set V(€ (€)) with an edge set E((€)) = {ex :x € X }, which
satisfies the following conditions:

1) rank(#(€)) <k+1;

2) exNey # 0 for every x,y € X such that p(x,y) < 0;

3) p(x,y) < € for every x,y € X such that exNe, # 0;

4) for every v € V(' (€)) the set X, = {x € X : v € ey} is
open.

C. Hausdorff dimension of networks.

Identifying the Hausdorff dimension of graphs presents a
greater challenge, as the underlying continuous definition is
more intricate. Specifically, the continuous Hausdorff dimen-
sion relies on the concept of a measure. Informally, a measure
is a function that allocates a non-negative numerical "size" to
particular subsets of a given set, extending traditional notions
of length, area and volume. The measure (as any probability
distribution) should be countably additive, i.e. the measure
of a countable union of disjoint sets equals the sum of their
individual measures.

The d-dimensional Jordan measure defines the volume of a
bounded set X in Euclidean space as the limit of the volumes
of finite covers of X by disjoint hyperrectangles, where a d-
dimensional hyperrectangle R = [a1,b1) X -+ X [ag,bq) is a
Cartesian product of semi-open intervals. The d-dimensional
Lebesgue measure is defined similarly, with the limit taken
over all countable covers of X by (not necessarily disjoint)
hyperrectangles. Finally, the d-dimensional Hausdorff mea-
sure of the set X is given as ¢ (X) = limg_,0 /(X ), where
HA(X) = inf{Y ey diam(C)?}, and the infimum is taken
over all e-covers of X. These 3 measures are related: the Jor-
dan and Lebesgue measures of set X are equal, if the former
exists, while Lebesgue and Hausdorff measures of so-called
Borel sets (i.e. sets formed by intersections, complements and
countable unions of open sets) differ only by a constant factor.

Hausdorff dimension dimp(X) of the set X is defined as
the threshold at which the Hausdorff measure of X transitions
from infinity to a finite value:

dimyg(X) =inf{s > 0: 7 (X) < o}. (2)

The Hausdorff dimension is particularly effective in calcu-
lating the measures of self-similar sets’. Additionally, it has a
connection to the descriptive complexity of various mathemat-
ical objects!!"!2. Finally, Lebesgue and Hausdorff dimension
of are related as follows:

dimp(X) < dimy(X). 3)

Considering these definitions and properties, a well-
founded graph analogue of the continuous Hausdorff dimen-
sion should satisfy the following criteria:
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FIG. 1. The embeddings of the graphs P4 (a path with 4 vertices) and Cg
(a cycle with 6 vertices) into the 2-dimensional space formed by the ten-
sor product Ky X K3, together with their respective minimal covers by hyper-
rectangles, each having a volume of 6. Consequently, the volumes of both
graphs P4 and Cg are determined to be 6.

1) It should be related to the graph Lebesgue dimension as
in (3).

2) It should be defined in relation to an equivalent of the
Hausdorff measure for graphs.

3) It should be associated with self-similarity of graphs.

4) Tt should be linked to the descriptive complexity of
graphs.

It turned out that the graph parameter satisfying all these
requirements do exist: it is so-called product dimension'3>,
also referenced in various sources as Prague dimension'®
or NeSetril-Rodl dimension'’. Originally introduced in the
1970s, it emerged in the context of attempts to describe graphs
in terms of abstract algebra.

Tensor product of graphs G and G, is the graph G| x G
with the vertex set V(G x Gy) = V(G)) x V(G;) with two
vertices (u1,uz) and (vi,v,) being adjacent whenever u; and
vy are adjacent in Gy, and u and v, are adjacent in G;. Prod-
uct dimension dimp(G) is the minimal integer d such that
G is an induced subgraph of a tensor product of d complete
graphs'3.

It is posited that the Hausdorff dimension of a graph can be
equated to the Prague dimension of its complement, minus 1:
dimy (G) = dimp(G) — 1. In what follows, we will substanti-
ate this association.

Several equivalent definitions of product dimension, and
consequently, of Hausdorff dimension, exist!> 1821 In our
context, it is important that the Hausdorff dimension, just as
Lebesgue dimension, can be associated with clique covers, as
well as with graph representation by set systems (see Theorem
3).

An equivalent k-cover of a graph G is a cover composed of
k subgraphs, each being a disjoint union of cliques. This can
also be defined as a clique cover where the cliques are colored
in k colors so that intersecting cliques have different colors.
A clique cover is separating, if for any two distinct vertices
there exists at least one clique that includes one vertex but not
the other.

The following theorem summarizes slightly reformulated
results obtained in previous studies:

Theorem 3. 31320 The following statements are equivalent:

a) dimy (G) <k.

b) There exists a separating equivalent k + 1-cover of G;

c) G is an intersection graph of strongly k + 1-colorable
hypergraph without multiple edges;

d) G can be embedded into the k + 1-dimensional integer
grid in such a way that two vertices are adjacent if and only if
the corresponding grid points share a coordinate.

Using Theorem 3, it can be shown that our definition of
graph Hausdorff dimension indeed meets the conditions 1) -
4).

1. Relation between Lebesgue and Hausdorff dimensions of
graphs allows to identify fractal graphs.

This relation immediately follows from Theorem 1 and
Theorem 3c, since by definition, any strongly (k + 1)-
colorable hypergraph has a rank of at most K+ 1. This al-
lows to define fractal graphs in a manner analogous to that for
topological spaces: a graph G is a fractal if

dimL(G) < dlmH(G) “4)

For instance, the order 2 and order 3 Sierpinski gasket
graphs S, and S3 depicted on Fig. 2 and Fig. 3 satisfy
this definition: each vertex of these graphs is covered by
two cliques, indicating that dimy.(S2) = dimg(S3) = 1, while
the cliques can be colored using three colors, showing that
dimy (S2) = dimp(S3) = 2. As a matter of fact, it can be
shown that a Sierpinski gasket graph of any order is a frac-
tal graph , with Lebesgue and Hausdorff dimensions equal to
1 and 2, respectively®. Fractal graphs are discussed in more
detail in Section III.

2. Hausdorff dimension is associated with a network
measure.

The key problems in this context are twofold: firstly, identi-
fying an appropriate analogue for the "volume" of a network,
and secondly, determining if this "volume" really defines the
Hausdorff dimension as we understand it. To address these
questions, we introduce and explore a network equivalent of
the Jordan measure (which, in a finite topology, is equivalent
to the Hausdorff measure) and then establish its connection to
the Hausdorff dimension.

In our approach, the graph equivalent of Euclidean space
is conceptualized as the tensor product of d complete graphs
(K,)? = K, x --- x K,. For simplicity, we can assume that
the vertices of each complete graph are the integers from 1
to n. The d-dimensional rectangle R is a subgraph of (K,)¢,
that is defined as a tensor product of complete subgraphs R =
KylJ1] x -+ x Ky[Jy4] (Fig. 1), where Ji,...,J; are non-empty
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FIG. 2. Self-similarity of S3, the Sierpinski gasket graph of order 3. Top: an equivalent separating 3-cover. The cliques comprising the cover are color-coded
in red, blue, and green; cliques of the same color are non-intersecting, as required by the definition. Consequently, the Hausdortf dimension of S5 is determined
to be 2. Bottom: contractions of S3 produced by similarity mappings associated with each color. Each contraction results from merging the vertices of cliques
of the given color; in addition, we depict non-contracted edges. These contractions are each isomorphic to a Sierpinski gasket graph of order 2, and the union of
non-contracted edges from all three contractions produces the original graph S3, thus exemplifying its self-similar nature.

subsets of {1,...,n}. The volume of R is naturally determined
as vol(R) = [1%, |/;| (Fig. 1).

It is known, that every graph G is can be embedded into
(K,)? with sufficiently large d and n'3. Given such an embed-
ding, a set of disjoint rectangles % = {R!,...,R"™} constitutes
a rectangle co-cover of G, if it covers all vertices and all pairs
of non-adjacent vertices of G (Fig. 1). The d-measure of a
graph G is defined as follows:

minmin R),Gisem i d,
Gy = B Rg,%vol( ), G is embeddable into (K,)%;
+oo, otherwise

e
Here, the first minimum is taken over all embeddings G of
the complement graph G into (K, ), and the second minimum
— over all rectangle co-covers of an embedding. For instance,
Fig. 1 shows that the 2-dimensional volumes of the path P4
and the cycle Cg are both equal 6. The key task now is to

prove that this defined function indeed qualifies as a measure,
i.e. itis additive. This is established by the following theorem:

Theorem 4. & Let G and G, be two graphs, and G1 U G» be
their disjoint union. Then

H(GLUGy) = #(G)+.4(Gy) (6)

Thus, similarly to the continuous definition, we can define
a Hausdorff dimension of a graph G as the minimal integer d
for which .7#%(G) is finite. This leads precisely to the product
dimension of G.

In addition, Hausdorff measure can be linked to network
descriptive complexity (see Subsection I1C4).
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3. Hausdorff dimension is associated with self-similarity of
networks.

Informally, a metric space X with a metric d is self-similar,
if it is comprised of parts similar to itself. Formally, the self-
similarity can be defined using the notion of a contraction®.
A mapping f: X — X is a contraction, if d(f(u),f(v)) <
od(u,v) for all u,v € X, where a < 1 is called its similar-
ity ratio. The space X is self-similar, if there exists a family

of contractions fi,..., fx such that X = (J*_; fi(X).

This continuous definition cannot be directly applied to dis-
crete metric spaces such as networks, since for them con-
tractions in the aforementioned sense do not exist. Instead,
the self-similarity of networks can be rigorously defined as
follows. In this section, it is convenient to assume that ev-
ery vertex is adjacent to itself. For two graphs G and H, a
homomorphism'3 is a mapping f : V(G) — V (H) which maps
adjacent vertices to adjacent vertices. A homomorphism f is a
similarity mapping, if inverse images of adjacent vertices are
also adjacent. In other words, similarity mapping contracts
some edges in such a way that images and inverse images of
cliques remain cliques. With a similarity mapping f we can
associate a subgraph G/ of G, which is formed by all edges
that are not contracted (Fig. 2).

A family of graph similarity mappings fi, ..., fx is a con-
tracting family, if every edge of G is contracted by some map-
ping. Then a graph G is self-similar, if G = Uf:l G'i (Fig. 2).
It turned out that network self-similarity defined in such a way
is directly associated with its Hausdorff dimension:

Theorem 5. 8 Graph G is self-similar with a contracting fam-
ily of k similarity mappings if and only if dimy (G) < k. Fur-
thermore, these mappings can be constructed from the cor-
responding equivalent separating k-cover, whose existence is
guaranteed by Theorem 3.

The concept of self-similarity applied to the Sierpinski gas-
ket graph S3 is illustrated by Fig. 2.

In general, a family of similarity mappings satisfying The-
orem 5 is not unique; therefore, it is logical to search for
the most parsimonious similarity mappings. The degree of a
graph’s self-similarity can be quantified by the smallest num-
ber of similarity mappings in a contracting family, i.e. by its
Hausdorff dimension. A smaller number of similarity map-
pings signifies a more compact packing of a network by its
contractions, indicating a higher degree of self-similarity. For
the same reasons, when there are multiple families of simi-
larity mappings of minimal size, it makes sense to focus on
those with the smallest images, that is, those with the fewest
number of cliques associated with each color in the corre-
sponding equivalent separating k-covers. For comparing the
self-similarity of networks of varying sizes, the Hausdorff di-
mension can be normalized.

4. Lebesgue and Hausdorff dimensions are linked to the
descriptive complexity of networks.

Theorems 1 and 3 provide a framework to understand graph
Lebesgue and Hausdorff dimensions, as well as fractality,
from the information theory perspective. Consider a graph
G with Lebesgue dimension dimy,(G) = k. According to this,
G is represented by a set system of rank k+ 1. Therefore, each
vertex in G is represented by k+ 1 "coordinates," comprising
the corresponding set in the system. Notably, these coordi-
nates are unordered, and the adjacency of a pair of vertices
u and v is defined by the existence of a common coordinate
between u and v (see Fig. 3).

Similarly, Theorem 3d posits that graphs with a Hausdorff
dimension dimy(G) = k are characterized by k + 1 coordi-
nates as well. However, in this case, the coordinates are or-
dered vectors, and the adjacency of two vertices is identified
by the presence of a shared coordinate in the same position.

In this context, non-fractal networks are graphs where set
and vector representations are equivalent, meaning that the
additional information provided by the order of coordinates
is not necessary for their description. In contrast, fractal net-
works possess extra structural features that necessitate the use
of additional information contained in vector representations
for their complete encoding. This concept is visually exem-
plified in Fig. 3.

The connection between network Hausdorff dimension and
information complexity can be further explored using the con-
cept of Kolmogorov complexity. In simple terms, the Kol-
mogorov complexity K(s) of a string s is the length of the
shortest encoding of that string that allows to reconstruct it
without any loss of information?>.

Every network can be encoded using the string represen-
tation of its adjacency matrix. The Kolmogorov complexity
K(G) of a network G can thus be defined as the Kolmogorov
complexity of this string”*. Note that a network G and its
complement G contain the same information; therefore, an
encoding for one encodes the other as well.

The definition directly implies that K(G) = O(n?). An n-
vertex network can be also represented by a list of its edges,
with the endpoints of each edge encoded in binary form and
concatenated with the binary representation of n. This ap-
proach leads to the estimation K(G) < 2mlog(n) +log(n) =
O(mlog(n))>>*,

The Hausdorff measure and dimension of a graph G provide
means to derive more detailed estimates of its Kolmogorov
complexity. Suppose that G has a Hausdorff dimension d,
and both G and its complement G are connected (otherwise,
each connected or co-connected component can be encoded
separately). In this case, G has a finite measure J#%(G) deter-
mined by the volume of G embedded in the tensor product of d
complete graphs. It can be shown® that the minimal rectangle
co-cover of a graph that is both connected and co-connected
consists of a single rectangle

Ky x---xKp,, @)

where #4(G) =pi-...- pa.
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FIG. 3. Left Panel: the Sierpinski gasket graph of order 2, S», with a cover by 3 cliques that are colored in red, blue, and green. Each vertex of S5 is covered
by two cliques, indicating that dimy (S,) = 1. The cliques are colored using three colors, suggesting that dimg (S;) = 2. This combination of Lebesgue and
Hausdorff dimensions shows that Sy is a fractal. Middle Panel: a schematic illustration of how S, is represented by a set system of rank 2. Alongside each
vertex in the left panel, the corresponding set that encodes it is displayed. Right Panel: embedding of S, into a 3-dimensional grid. The vector representing

each vertex is indicated next to the corresponding vertex in the left panel.

Thus, using the embedding of G into (7), G (and conse-
quently G) can be encoded by assigning each vertex v a vector
of its coordinates in this embedding ¢ (v) = (¢1 (v), ..., ¢4(v))
with ¢;(v) € 1,...,p;. This encoding can be represented as a
string containing the binary representations of the coordinates
¢;(v), each using log(p;) bits, and concatenated with the bi-
nary representations of integers n and py, ..., ps. The length of
this string is:

d
(n+1) Y log(p;)+log(n) = (n+ 1)log(#(G)) +log(n).
=1

®)
This leads to the following estimate:
Proposition 1.
K(G) < (n+1)log(£(G)) +log(n) ©)

A rougher estimate can be derived by noting that p; <n due
to the minimality of the rectangle (7). Consequently,

K(G) < (n+ 1)dlog(n) = O(dnlog(n)). (10)

thereby indicating that the Hausdorff dimension can serve as
a measure of a network’s descriptive complexity.

Ill.  FRACTAL NETWORKS

Recall that fractal networks are the networks for which their
Hausdorff dimension differ from Lebesgue dimension. A spe-
cific example of such fractal networks, the Sierpinski gasket
graphs, was examined in previous sections. In this section,
we discuss other types of fractal networks and specifically il-
lustrate how network fractality connects to the classic graph-
theoretical concept of edge coloring.

A. Fractality as a generalization of edge coloring dichotomy.

The concept of edge k-coloring is similar to vertex color-
ing, requiring that edges sharing a common vertex receive
different colors. The edge chromatic number of a graph G,
denoted as x'(G), is the smallest number of colors needed for
its edge coloring. A classical theorem by V. Vizing® estab-
lishes that the edge chromatic number of any graph can only
be either A(G) or A(G) + 1, where A(G) is the graph’s maxi-
mum degree. This leads to a famous dichotomy that classifies
all graphs into two categories: class 1, where x'(G) = A(G),
and class 2, where ¥'(G) = A(G) + 1. It is worth noting that
despite this fact, determining the exact edge chromatic num-
ber of a given graph is a computationally hard algorithmic
problem!”; furthermore, a similar dichotomy does not exist
for vertex coloring”'.

Separation of networks into non-fractals and fractals is a
generalization of the class 1/class 2 dichotomy. Essentially,
edge k-coloring can be viewed as a specific instance of a sepa-
rating equivalent k-cover, where each clique is an edge. In the
case of triangle-free graphs (those without cliques of size 3),
this type of separating equivalent k-cover is the only possible
option. Therefore, triangle-free fractal networks are precisely
triangle-free graphs of class 2.

However, the connection between fractality and edge col-
oring goes deeper than that. A notable link can be established
for cubic graphs, i.e. graphs with all vertices having the degree
of three. Cubic graphs are not only studied in graph theory,
but also arise in topology, physics and analysis of complex
networks>%?7,

A notable category of cubic fractals is exemplified by the
remarcable class of snarks®®*. A snark is defined as a 2-
connected, triangle-free cubic graph of class 2. Snarks rep-
resent a significant and long-studied class of graphs, whose
structural properties are still incompletely understood®”. The
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FIG. 4. Examples of snarks. Left: Petersen graph. Right: flower snark>!.

discovery of a new non-trivial snark is considered a sub-
stantial scientific achievement (hence the term coined by M.
Gardner?®), paralleling the discovery of new fractals. Many
known snarks exhibit a high degree of symmetry and are con-
structed through recursive procedures, as shown in Fig. 4.
This analogy is quite apt since snarks are indeed fractal graphs
with a Hausdorff dimension of dimy(G) = 2. Moreover, it
can be demonstrated that snarks are the foundational cubic
fractals, in that every 2-connected cubic fractal can be trans-
formed into a snark through a sequence of elementary oper-
ations, including the removal of triangles and the subsequent
contraction of pendant vertices created by this process®.

It should be also noted that the relation between graph
Lebesgue and edge chromatic number implies that calculat-
ing the former is an NP-hard (i.e. algorithmically hard) prob-
lem. It follows from the NP-hardness of the edge chromatic
number problem for triangle-free cubic graphs>.

B. Fractality of random networks.

The concept of network fractality extends the dichotomy
of edge coloring beyond cubic graphs to encompass stan-
dard random network models, including scale-free graphs and
Erd6s-Rényi graphs. For these types of networks, it is possible
to establish analogues of Vizing theorem.

A scale-free network is characterized by a degree distribu-
tion that asymptotically follows a power law, meaning the
probability that a vertex has a degree d can be approxi-
mated by the function ad~%*, where a is a constant and o
is the scaling exponent. Scale-free networks are among the
most extensively studied types of complex networks, with nu-
merous examples found in physics, social sciences, biology,
medicine and other fields’>. Most models of scale-free net-
works are based on variants of the preferential attachment
scheme, where new vertices preferentially connect to exist-
ing higher-degree vertices. An alternative mathematically
rigorous model proposed in*3** describes an n-vertex scale-
free network G(n, ) with scaling exponent @, constructed
by assigning an ith vertex a weight w; = (%)1/ % and connect-
ing each pair of vertices 7, j by an edge with the probability

WiWj

pii=1—e "n .

jFor scale-free graphs built according to this model, there is
an analogue of Vizing theorem. To formulate it, we define a
random event as occurring with high probability if its proba-
bility approaches 1 as n — oo,

Theorem 6. 3 For a scale-free graph G = G(n, o), where o >
% , with high probability the Lebesgue dimension dimy(G)
is either A(G) — 2 or A(G) — 1, while the Hausdorff dimen-
sion dimg (G) can take one of four possible values: A(G) —

2,A(G) — 1,A(G),A(G) + 1.

Erd6s-Rényi random graphs, denoted as G(n, p), are gener-
ated by independently adding edges between pairs of vertices
with a probability p. It has been demonstrated that the con-
clusions of Theorem 6 are applicable to sparse Erd&s-Rényi
random graphs where p = ,%a and o > %8.

Combining Theorem 6 with known asymptotic of maximal
degrees®>>7 provides insights into the asymptotic behavior
of the Hausdorff dimension of scale-free graphs produced by
the preferential attachment scheme and of sparse Erdés-Rényi
graphs. Specifically, with high probability dimg (G) = O(+/n)
for preferential attachment graphs and dimgy(G) = O(logn)
for sparse ErdGs-Rényi graphs G = G(n, nia) with appropriate
a. For dense Erd6s-Rényi graphs, the asymptotic behavior of
their Hausdorff dimension has been described in'®:

Theorem 7. '© For any fixed edge probability p, there are
constants ¢ and C such that with high probability

n

— 1 <dimy (G(n,p)) <C (11)

c —1.
logn logn

IV. EXPERIMENTAL APPLICATIONS

When applying the described framework to real-world
complex networks, it is crucial to acknowledge that the data
used to construct these networks often contains noise. Con-
sequently, the likelihood of identifying meaningful commu-
nities as perfect cliques in real networks is low. Therefore,
in practical computations, it is advisable to relax the model’s
constraints by substituting cliques with dense network com-
munities identified using one of many community detection
algorithms®. Furthermore, focusing on dense communities
enhances the robustness of estimations, since a clique can be
disrupted by the absence of a single edge, while a dense com-
munity exhibits greater resilience to edge removal.

Utilizing this approach, we calculated the Lebesgue and
Hausdorff dimensions of several real-life networks®. A partic-
ularly notable result was that approximately one third of these
networks were identified as fractals. While our sample size
was limited, it is compelling to observe that such prevalence
of fractals notably exceeds the predictions made by theoreti-
cal estimations for the network models previously discussed.
This finding implies that these models might not fully capture
intricate topological features of real networks, such as self-
similarity and fractality, indicating a potential need for more
refined and nuanced modeling approaches.
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An interesting example from the field of biology involves
the analysis of phylogenetic networks used to represent the
structure of biological populations. In such networks, vertices
represent the genomes of population members, with adjacency
indicating genetic closeness between genomes.

We analyzed the Hausdorff dimensions of genetic networks
from Hepatitis C virus populations sampled from infected in-
dividuals during acute and chronic stages of infection®. Our
findings revealed that the Hausdorff dimensions for chronic
stage populations are statistically significantly lower com-
pared to those in acute stages. This outcome has biolog-
ical significance as it implies a gradual evolution of intra-
host viral populations towards increased self-similarity over
the course of the infection. This trend indicates a progres-
sive self-organization within viral populations, leading to the
emergence of structural patterns in their composition. This
points to a dynamic mechanism driving their formation in later
infection stages, possibly linked to a higher level of adaptation
and specialization among viral variants.

This observation is consistent with previously reported
reductions in the Kolmogorov complexity of viral popula-
tions (measured for genomes rather than for phylogenetic
networks)>®. It also corroborates recent models of viral anti-
genic cooperation**™3, suggesting that viral populations can
exhibit complex behaviors and adapt to host environments as
quasi-social systems.

V. CONCLUDING REMARKS

The concepts initially introduced in® and discussed in this
paper are expected to be useful for theoretical explorations of
network models, as well as for analyzing experimental net-
works encountered in various research areas. Moreover, iden-
tifying and examining fractal properties in networks can now
be approached as well-defined algorithmic problems. Exam-
ples of such problems include recognizing fractal networks
and computing measures that indicate the extent to which a
given network approaches fractality.

Another significant area for future research is gaining a
more profound understanding of the structural characteristics
of fractal networks and identifying network growth models
that are capable of generating fractal structures. A type of
model that shows promise in this area are the specialization
models of network growth**. These models are based on the
principle that as a network expands, it undergoes specializa-
tion in certain functions it is meant to perform. The model
links the components involved in this specialization process to
network motifs (statistically significant subnetworks) respon-
sible for specific functions. These motifs are replicated across
the network through a predefined specialization process, re-
sulting in a network that exhibits a modular and self-similar
structure. However, there are undoubtedly other approaches
that can also be explored.

Finally, the proposed framework can be generalized by sub-
stituting cliques with dense subgraphs and by the extending
it to directed graphs. These generalizations hold significant
value for practical applications, yet the development of corre-

sponding rigorous methodologies remains an ongoing task.
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