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Abstract

In this work, we propose a novel framework for large-scale Gaussian process (GP) modeling.
Contrary to the global, and local approximations proposed in the literature to address the
computational bottleneck with exact GP modeling, we employ a combined global-local approach
in building the approximation. Our framework uses a subset-of-data approach where the subset
is a union of a set of global points designed to capture the global trend in the data, and a set
of local points specific to a given testing location to capture the local trend around the testing
location. The correlation function is also modeled as a combination of a global, and a local
kernel. The performance of our framework, which we refer to as TwinGP, is on par or better than
the state-of-the-art GP modeling methods at a fraction of their computational cost.

Keywords: Big Data, Inducing points, Kriging, Nonparametric Regression, Twinning.

1 Introduction

Gaussian process (GP) is a widely used Bayesian framework for nonparametric regression (Rasmussen

and Williams, 2005), and emulating computer models (Santner et al., 2003; Gramacy, 2020). The

objective is to approximate a latent function f(x),x ∈ Rd, for which a functional Gaussian prior

is assumed, and the posterior is obtained given the observed training data. The posterior mean

is treated as the point prediction at x, and the posterior variance gives the associated prediction

uncertainty. Regardless of being the best linear unbiased predictor under the assumed model, a major

drawback with GP modeling that limits its applicability to Big Data is its O(n3) computational

complexity, where n is the number of observations in the training data. This is because GP modeling

requires the inversion of an n×n kernel (or correlation) matrix Rnn involved in posterior estimation.

Building GP approximations that scale reasonably well with large n is an active area of research,

and the various methodologies to do so can be roughly grouped into two categories: (i) global, and

(ii) local approximations.

Global approximations generally (i) focus on a subset of the training data with m � n

observations resulting in a much smaller Rmm to invert (Chalupka et al., 2013), where the subset

can be randomly selected, based on clustering, or with active learning (Lawrence et al., 2002;

Keerthi and Chu, 2005), (ii) use a compactly supported kernel function (Gneiting, 2002) to generate

sparse Rnn, then exploit the sparsity to efficiently compute R−1nn (Kaufman et al., 2011), or (iii)
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approximate Rnn with a low m-rank matrix plus diagonal using m� n inducing points, that can

be inverted in O(m2n) (Quiñonero-Candela and Rasmussen, 2005). Local approximations essentially

(i) build a local GP model for each testing location (Gramacy and Apley, 2015), or (ii) partition

the training data into disjoint blocks and build independent GP for each block resulting in a block

diagonal Rnn that can be inverted efficiently (Das and Srivastava, 2010).

Global or local approximations alone can be insufficient depending upon the data. To model

a complex latent function f(x) that varies significantly locally, a larger m would be needed

to adequately summarize the data, be it subset of data approach or inducing points. Local

approximations where a local GP is fit in the neighborhood of the testing location ignore the global

trend and often result in over-confident predictions due to local over-fitting. On the other hand, local

approximations where independent GPs are fit on partitioned training data suffer from discontinuity

at the boundaries of the local regions. Park and Huang (2016) show that greater the discontinuity

lower the prediction accuracy, especially at the boundaries.

Snelson and Ghahramani (2007) build on the inducing points framework presented in Quiñonero-

Candela and Rasmussen (2005) to incorporate local trend. To begin with, the inducing points

framework makes the assumption that given the inducing points I, the training and testing

conditional distributions are independent, i.e, for any training location x and testing location

x∗, p(f(x), f(x∗)|I) = p(f(x)|I)p(f(x∗)|I). The fully independent conditional approximation

(FIC) given in Snelson and Ghahramani (2005) makes additional assumption that given I, the

conditional distribution of the latent function at any two locations (training and/or testing) xi,xj

are independent, i.e., p(f(xi), f(xj)|I) = p(f(xi)|I)p(f(xj)|I). Snelson and Ghahramani (2007)

later present partially independent conditional approximation (PIC) where the space is partitioned

into disjoint blocks and given I, the conditional distribution at any two locations are independent

only when they belong to separate blocks. The dependence within a block in PIC attempts to

capture the local trend, with the limitation that at boundaries of a block the dependence from

locations in neighboring blocks are ignored.

The discontinuity problem alluded to before with local approximations that build independent

GPs on partitioned training data is generally addressed by using some form of weighted averaging

of the independent GPs (Tresp, 2000; Rasmussen and Ghahramani, 2001; Gramacy and Lee, 2008;

Chen and Ren, 2009; Deisenroth and Ng, 2015). Park and Apley (2018) present a patching of the

independent GPs (PK) where they augment the training data with a set of pseudo observations

located at the boundaries of neighboring regions, and impose continuity by enforcing two neighboring

GPs to make identical predictions at the pseudo locations common to them. Though the discontinuity
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problem can be accounted for, the global trend remains elusive for local approximations.

In this work we propose a novel methodology to capture both global and local trend in GP

modeling. We first select a set of observations from the training data, independent of the testing

location, to capture the global trend. The global point set is then supplemented with observations

from the neighborhood of a given testing location to capture the local trend. The global trend is

modeled using a power exponential kernel whose hyperparameters are learned based on the global

points alone, and the local trend is modeled using a compactly supported kernel with a single

hyperparameter that is predetermined based on the global points. Both kernels act on the combined

set of global and local points of size m� n, resulting in an additive kernel. Vanhatalo and Vehtari

(2008) also use an additive kernel where the global trend is modeled with FIC and local trend with

a compactly supported kernel, however, contrary to our approach, their compactly supported kernel

acts on the full training data and requires the training data to have lattice structure to efficiently

invert the kernel matrix by exploiting its sparsity. Our framework does not impose any restrictions

on the training data, and scales well in higher dimensions as we do not rely on the sparsity of the

compactly supported kernel matrix for efficient inversion. Furthermore, unlike FIC and PIC, we do

not make any assumptions on the conditional distributions.

We refer to our methodology as TwinGP owing to the twin set of training points and kernels

involved. The remainder of the article is organized as follows. Section 2 provides a brief review of

GP and introduces notation. Section 3 presents the new TwinGP framework. Section 4 gives an

illustration of TwinGP using a 1d function, and in Section 5 we compare TwinGP with popular global,

and local GP approximations for emulation as well as modeling real world datasets. Finally, in

Section 6 we provide our concluding remarks.

2 Gaussian Process Review

Denote the training data as {Xn,Yn} := {xi, yi}ni=1 such that the inputs xi ∈ Rd and output yi ∈ R,

for all i. Let

yi = f(xi) + εi, for i = 1, . . . , n, (1)

where εi
iid∼ N (0, ν2) is the random noise in the output. Our aim is to estimate the latent function

f(·) from the training data. In GP modeling, we assume that f(·) to be a realization from a Gaussian

process:

f(x) ∼ GP(µ, τ 2R(x, ·)), (2)
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where µ τ2, and R(·, ·) are the mean, variance, and correlation function of the GP, respectively. The

correlation function is defined as Cor{f(u), f(v)} = R(u,v), which is a positive definite function

with R(u,u) = 1. We use the names correlation function and kernel function interchangeably in

this paper. Please refer to the books Santner et al. (2003) and Gramacy (2020) for details on GP

modeling.

From (1) and (2), we have Yn ∼ Nn(µ1n, τ
2Rnn + ν2In), where Rnn is the n× n correlation

matrix whose ijth element is R(xi,xj), 1n := [1, . . . , 1]′, and In is the n× n identity matrix. Let

η = ν2/τ2, known as nugget. Given an arbitrary testing location x∗ ∈ Rd, we are interested in

finding the conditional distribution of f(x∗)|Yn.

Define the 1×n correlation vector as R(x∗,Xn) := [R(x∗,x1), . . . ,R(x∗,xn)]. In keeping with the

notation, we have R(Xn,x
∗) = R(x∗,Xn)′ and Rnn = R(Xn,Xn) := [R(x1,Xn); . . . ;R(xn,Xn)].

The joint distribution of f(x∗) and f(Xn) := [f(x1), . . . , f(xn)]′ is given byf(x∗)

f(Xn)

 ∼ Nn+1

( µ

µ1n

 , τ2
 1 R(x∗,Xn)

R(Xn,x
∗) Rnn + ηIn

).
Then, the conditional distribution of f(x∗)|Yn, is given by

f(x∗)|Yn ∼ N (µ(x∗), σ2(x∗)),

where

µ(x∗) = µ+ R(x∗,Xn)[Rnn + ηIn]−1(Yn − µ1n), (3)

σ2(x∗) = τ2
{

1−R(x∗,Xn)[Rnn + ηIn]−1R(Xn,x
∗)
}
. (4)

There exists a multitude of correlation functions in the literature (Rasmussen and Williams,

2005, Ch.4), each with their own set of correlation parameters θ that are estimated from the training

data. The empirical Bayes estimate of µ, τ2, η, and θ are given as follows (Santner et al., 2003):

µ̂ =
1′n[Rnn + ηIn]−1Yn

1′n [Rnn + ηIn]−1 1n
, (5)

τ̂2 =
1

n
(Yn − µ̂1n)′[Rnn + ηIn]−1(Yn − µ̂1n), (6)

θ̂, η̂ = arg min
θ, η > 0

n log τ̂2 + log |Rnn + ηIn|. (7)

As evident from the above equations, much of the complexity in GP modeling stems from the
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computation of [Rnn + ηIn]−1 and |Rnn + ηIn|, both requiring O(n3) operations. In the next

section, we propose our methodology to address this computational bottleneck for large n.

3 Global-Local Gaussian Process

In order to circumvent the O(n3) computational complexity, we build the GP using only m� n

points form the training data. Contrary to the global approximation methodologies in the literature

where the m points are chosen from the training data or artificially generated, so as to summarize

the whole data, we use a combination of g global points and l local points such that m = g + l. The

g global points are independent of the testing location, while the l local points are specific to the

testing location x∗.

To capture the global trend, and local trend with respect to x∗, the kernel function R(·, ·) is

also modeled as a combination of two kernel functions (Ba and Joseph, 2012; Harari and Steinberg,

2014), i.e.,

R(xa,xb) = (1− λ)G(xa,xb) + λL(xa,xb), λ ∈ [0, 1]. (8)

G is designed to capture the global trend in the data, while L captures the local trend around x∗.

The hyperparameter λ controls the proportion of global and local trends used in building R.

Let Xm ⊂ Xn represent the m training points, then Gmm = G(Xm,Xm), and Lmm =

L(Xm,Xm). With this setup, instead of inverting Rnn + ηIn in (3)-(7), we need only invert

Rmm + ηIm where

Rmm = (1− λ)Gmm + λLmm. (9)

Thus, the computational complexity of fitting the GP reduces to O(m3). In the subsections that

follow, we present how to efficiently locate the m training points, the final predictive equations, and

how the kernel function R(·, ·) in (8) is determined.

3.1 Global and Local Points

Denote the global training points as Xg, and the local training points as Xl, we have Xm = Xg ∪Xl.

Ideally, for a given testing location x∗, we should be denoting Xm as Xm(x∗) = Xg ∪Xl(x
∗), a

technicality we omit for ease of notation.

The objective we desire to achieve with Xg is to sufficiently model the global trend in the
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training data. Mak and Joseph (2018) proposed a nonparametric and model-free data reduction

technique known as support points that can produce a small set of points to represent the full

dataset. Support points are obtained by minimizing the energy distance (Székely and Rizzo, 2013)

between its empirical distribution and that of the dataset using difference-of-convex programming.

However, support points need not be a subset of the full dataset. Given the support points, Joseph

and Vakayil (2022) use sequential nearest neighbor assignment to sample from the dataset. Even

still, computing support points as given in Mak and Joseph (2018) is O(n2). Later, Vakayil and

Joseph (2022) present an efficient sampling algorithm named Twinning that minimizes the energy

distance in O(n log n). Since we are dealing with large datasets in this work, we will use Twinning

to find Xg.

Given the testing location x∗, Xl is obtained as the l nearest neighbors to x∗ in Xn \Xg, a

task that can be performed efficiently with kd-tree in O(l log l). Figure 1 gives a depiction of the

global and local training points identified for a given testing location, for a 1d example. One can

observe from the figure that fitting a GP on the local points alone, shown as green diamonds,

will clearly underpredict at the testing location, and it is shown to be not optimal (Emery, 2009).

In laGP proposed by Gramacy and Apley (2015), the nearest neighbors are supplemented with

active learning, however, an optimization is required at each testing location that adds to the

computational complexity. On the other hand, our method makes use of the predetermined global

points (blue circles) to capture the global trend, and therefore, nearest neighbors alone as the local

points will suffice. This reduces the computational burden in our framework.

3.2 Predictive equations

At this stage, given x∗, we have identified Xm. Assume that the kernel function R is fully determined.

Let Ym be the response vector corresponding to Xm, i.e., Ym = [Yg; Yl] where Yg and Yl are

the response vectors corresponding to Xg and Xl, respectively. The conditional distribution of

f(x∗)|Ym is given by N (µ(x∗), σ2(x∗)), where

µ(x∗) = µ̂m + R(x∗,Xm)[Rmm + ηIm]−1(Ym − µ1m), (10)

σ2(x∗) = τ̂2m

{
1−R(x∗,Xm)[Rmm + ηIm]−1R(Xm,x

∗)
}
, (11)

µ̂m =
1′m[Rmm + ηIm]−1Ym

1′m[Rmm + ηIm]−11m
, (12)

τ̂2m =
1

m
(Ym − µ̂m1m)′[Rmm + ηIm]−1(Ym − µ̂m1m). (13)
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Figure 1: Illustration of the training points (global and local) identified for a given training data and testing
location with TwinGP.

For the prediction of a noisy observation, we have y∗|Ym ∼ N (µ(x∗), σ2η(x
∗)), where µ(x∗) is the

same as given in (10), but σ2η(x
∗) changes to

σ2η(x
∗) = τ̂2m

{
1 + η −R(x∗,Xm)[Rmm + ηIm]−1R(Xm,x

∗)
}
. (14)

Furthermore, Rmm + ηIm can be deconstructed as follows,

Rmm + ηIm =

Rgg + ηIg Rgl

Rlg Rll + ηIl

 (15)

=

(1− λ)Ggg + λLgg + ηIg (1− λ)Ggl + λLgl

(1− λ)Glg + λLlg (1− λ)Gll + λLll + ηIl

 . (16)

Since Rgg = (1−λ)Ggg +λLgg is independent of the testing location x∗, Rgg and [Rgg +ηIg]
−1 can

be predetermined before testing. For a given x∗, the computational effort in inverting Rmm + ηIm
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can be significantly reduced by using block matrix inversion as follows,

[Rmm + ηIm]−1 =

Σ−1gg + Σ−1gg RglS
−1RlgΣ

−1
gg −Σ−1gg RglS

−1

−S−1RlgΣ
−1
gg S−1

 , (17)

where Σgg = Rgg + ηIg, and S = Rll −RlgΣ
−1
gg Rgl, thereby, per testing location we need only

invert S, a small l × l matrix.

3.3 Correlation Functions

To model the global trend, we use the popular power exponential kernel function (Sacks et al., 1989),

G(xa,xb) = exp

(
−

d∑
i=1

|xia − xib|α

θig

)
, α ∈ (0, 2], θig > 0. (18)

Denote the hyperparameters of G as θg, we have θg = {θ1g , . . . , θdg , α}. They can be estimated with

respect to Xg alone, i.e., independent of the testing location,

µ̂g =
1′g[Ggg + ηgIg]

−1Yg

1′g[Ggg + ηgIg]−11g
, (19)

τ̂2g =
1

g
(Yg − µ̂g1g)′[Ggg + ηgIg]

−1(Yg − µ̂g1g), (20)

θ̂g = arg min
θg

g log τ̂2g + log |Ggg + ηgIg|. (21)

We have constrained α ∈ [1, 2] in the optimization assuming the latent function f(·) to be reasonably

smooth and not too wiggly.

To model the local trend, we use compactly supported correlation functions (Gneiting, 2002),

which ensures identifiability of the local correlation parameters with respect to the global correlation

parameters. Specifically, we use Wendlands’s compactly supported radial function (Wendland,

2004),

L(xa,xb) =

(
(q + 1)

‖xa − xb‖2
θl

+ 1

)
max

{
0,

(
1− ‖xa − xb‖2

θl

)}q+1

, q = bd
2
c+ 2 (22)

where ‖·‖2 is the `2 norm and buc is the largest integer lesser than or equal to u. L has a single

hyperparameter θl which we set as the covering radius (Fasshauer, 2007, p. 22) for Xg to cover Xn,
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i.e.,

θ̂l = min {ρ : Xn ⊆ ∪gi=1Bρ(xi), xi ∈ Xg, ∀i} , (23)

where Bρ(x) is a closed ball of radius ρ centered at x. Setting θl as in (23) makes it independent of

the testing location, thereby, allowing us to precompute Lgg in (16) leading to the computational

gains with block matrix inversion (17). In addition, almost surely for any testing location x∗ there

exists at least one global training point such that the local kernel is active between them, i.e.,

there exists xg ∈ Xg : L(x∗,xg) > 0. The motivation here is that we do not wish L to neglect the

correlation between x∗ and Xg.

We need to specify two more parameters: λ and ηl. We could estimate them using empirical

Bayes methods as before, but since we have unused data in the training set, we can do the estimation

in a different and more robust fashion. We sample {Xv,Yv} from {Xn,Yn}\{Xg,Yg} by Twinning

to create a validation set. Now, we can estimate λ and ηl by minimizing the prediction error:

λ̂, η̂l = arg min
λ∈[0,1], ηl>0

MSE(λ) (24)

= arg min
λ∈[0,1], ηl>0

∑
x∈Xv

(yx − µ(x))2,

where µ(x) is obtained as given in (10) with η = (1− λ)ηg + ληl.

3.4 Computational complexity

The TwinGP procedure is summarized in Algorithm 1. The computational complexity of TwinGP

can be deconstructed as follows,

Testing

(i) Identifying Xl for a given x∗ is on average O(log n) using kd-tree.

(ii) The complexity in computing µ(x∗) and σ2(x∗) is dictated by inversion of Rmm. With block

matrix inversion as given in (17), computing [Rmm + ηIm]−1 is O(g2l).

Training

(i) Obtaining a twinning sample to identify Xg is on average O(n log n).

(ii) The complexity in estimating θg is dictated by inversion of Ggg + ηgIg that is O(g3).
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(iii) θl can be estimated efficiently with a kd-tree in O(n log g).

(iv) The complexity in estimating λ and ηl is similar to testing, i.e., O(g2l) per validation point.

Overall complexity

Thus, the overall computational complexity of TwinGP is O(g3 + tg2l), where t is the number of

testing locations. If we select g to be order of
√
n, the training complexity reduces to O(n1.5), a

substantial improvement over O(n3).

Algorithm 1 TwinGP

1: Input training set {Xn,Yn} and testing locations X∗t
2: Identify global training points Xg (Section 3.1)
3: Estimate θg as in (21)
4: Estimate θl as in (23)
5: Estimate λ and ηl as in (24)
6: for x∗ ∈ X∗t do
7: Identify local training points Xl (Section 3.1)
8: Compute µ(x∗) and σ2(x∗) (Section 3.2)

9: end for
10: return {µ(x∗), σ2(x∗)}, ∀x∗ ∈ X∗t

4 1d Illustration

Here we illustrate how TwinGP overcomes the shortcomings of purely local or global GP approxima-

tions. Consider the following function from Gramacy and Lee (2012),

f(x) =
sin 10πx

2x
+ (x− 1)4, x ∈ [0.5, 2.5]. (25)

We first generate the training dataset with n = 500 observations, where x1, . . . , xn are selected on a

uniform grid in [0.5, 2.5], and we add a Gaussian noise to each observation as follows,

yi = f(xi) + εi, εi ∼ N (0, 0.01), ∀i = 1, . . . , 500. (26)

The testing set at 2, 000 locations are also selected on a uniform grid in [0.5, 2.5]. Plot (a) in Figure

2 depicts f(x), the 500 training locations, and the prediction from a full GP modeled using the

mlegp (Dancik and Dorman, 2008) package. As evident, f(x) is recovered extremely well with a full

GP, in addition, the confidence intervals are tight.
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Figure 2: Prediction and 2σ confidence interval (shaded region) with full GP, laGP, SGPR, and TwinGP to
model the 1d function in (25).

To demonstrate the global GP approximation method, we use SGPR (Titsias, 2009) implemented

in GPyTorch (Gardner et al., 2018). SGPR is a low-rank GP approximation where the inducing

points and kernel hyperparameters are estimated with a variational learning approach. For local

approximation we use laGP (Gramacy and Apley, 2015) implemented in the laGP (Gramacy, 2016)

package. For each testing location, laGP starts with a set of training points in its neighborhood and

then sequentially adds more training points so as to minimize the predictive variance.

For TwinGP we set the number of global points g = 22 and local points l = 25. For SGPR

the number of inducing points is set to be m = g + l, and for laGP l + 10 training locations are

considered per testing location, i.e., start with l neighborhood points and then sequentially add 10

more points. Plots (b), (c), and (d) in Figure 2 give the predictions and 2σ confidence intervals

from laGP, SGPR, and TwinGP respectively. As expected, laGP predictions are discontinuous owing

to its local nature, while SGPR produces smooth prediction neglecting the local oscillations of f(x).
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On the other hand, TwinGP gives comparable predictions to the full GP. The total computation

time for training and testing with the four methods are given in Figure 2. We can clearly see the

computational saving with TwinGP over the full GP, which will be even more substantial with large

datasets as we demonstrate in the next section.

5 Experiments

In this section, we make an extensive analysis of TwinGP performance on several emulation, and real

world datasets, compared to other scalable GP modeling frameworks. Similar to Section 4, in our

experiments we include SGPR for global approximation, laGP for local approximation, and patchwork

kriging (PK) by Park and Apley (2018) introduced in Section 1. All the experiments presented in

this section are carried out on a 2.6 GHz 6-Core Intel i7-9750H processor with 16 GB memory. We

apply the following general settings for the different modeling frameworks, unless stated otherwise.

TwinGP: The number of global points g is set as min{50d, max{b
√
nc, 10d}}, i.e., at least 10d points

are chosen to model the global trend, with an upper bound of 50d. The local trend is modeled

with l = max{25, 3d} points. The number of validation points used for estimating λ and η is

set as 2g. The θg hyperparameter optimization is done with grid initialization and multi-starts

as outlined in Basak et al. (2022).

SGPR: For a fair comparison with TwinGP, we set the number of inducing points to be m = g+ l. We

follow the implementation provided in GPyTorch documentation1. The number of iterations

in hyperparameter optimization is modified from constant 100 to min{250, b50 log (1 + d)c},

and a learning rate of 0.05 is used instead of 0.01. In addition, separate lengthscales are learnt

per dimension.

laGP: For each testing location, we start with l training points in its neighborhood and sequentially

add 10 more points to the design that minimize the predictive variance. The aGPsep function

provided in the R package by Gramacy (2016) is used to execute laGP in parallel. For emulation

datasets where there is no observation noise, the nugget parameter is set to 10−7, and for real

world datasets the nugget is set to NULL in which case it is estimated.

PK: The training locations are partitioned into K disjoint blocks such that each block contains at

least 10d points. The spatial tree algorithm used to make the partition benefits from K being

1https://docs.gpytorch.ai/en/latest/examples/02_Scalable_Exact_GPs/SGPR_Regression_CUDA.html
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a power of 2, hence, we set K = 2blog2
n

10d
c. The number of pseudo observations B introduced

at the boundaries of neigboring blocks to enforce continuity between the neighboring GPs is

set to be 3. Our choice of B is conservative as the complexity of PK scales proportionally to

B3. We use the MATLAB implementation of PK provided by the author2.

5.1 Evaluation criteria

The performance of the different modeling frameworks is assessed based on their prediction accuracy

and total computation time. The prediction accuracy is quantified with root mean squared error

(RMSE) and negative log predictive density (NLPD). RMSE measures the quality of point predictions

from the model, while NLPD measures how well the predicted posterior distribution fits the testing

data. Lower the RMSE and NLPD values, better the performance of the model. Given the testing

set {X∗t ,Y∗t } with t testing locations, we have

RMSE =

√√√√1

t

t∑
i=1

{y∗i − µ(x∗i )}2, (27)

NLPD =
1

2t

t∑
i=1

[
{y∗i − µ(x∗i )}2

σ2(x∗i )
+ log{2πσ2(x∗i )}

]
. (28)

5.2 Emulation

We consider three emulation problems here, the piston simulation function (Kenett and Zacks,

2021), the borehole function (Morris et al., 1993), and the Dette & Pepelyshev function (Dette

and Pepelyshev, 2010). For a given emulation experiment, the input dimensions are scaled to [0, 1]

and n = 10, 000 training locations are sampled uniformly from a d-dimensional hypercube, i.e.,

Xn ∼ Unif(0, 1)n×d, and 2, 000 deterministic Sobol sequence in d dimensions are the testing locations.

A GP is modeled on the training locations using TwinGP, SGPR, laGP, and PK. The performance of

the fitted models is assessed based on the criteria given in Section 5.1. The procedure is repeated

for 50 iterations with different training locations sampled similary, while the testing locations

remain unchanged. The distribution of RMSE and NLPD over the 50 iterations are presented as

box-and-whisker plots. Further information and code for the emulations problems can be obtained

from Simon Fraser University’s virtual library of simulation experiments3.

2https://www.chiwoopark.net/code-and-dataset
3https://www.sfu.ca/~ssurjano/emulat.html
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5.2.1 Piston simulation function

The piston simulation funtion models the cirular motion of a piston within a cylinder (Kenett and

Zacks, 2021). There are d = 7 inputs, which are piston weight, piston surface area, initial gas

volume, spring coefficient, atmospheric pressure, ambient temperature, and filling gas temperature.

The response is the time taken to complete one cycle in seconds. The experiment results are given

in Figure 3. We see that TwinGP performs the best in terms of RMSE, and for NLPD, on average,

its performance is comparable to that of PK. Compuation time is the least for TwinGP, around 2

seconds, while PK took around 80 seconds.
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Figure 3: Distribution of RMSE and NLPD over 50 iterations of modeling the piston simulation function
with laGP, SGPR, PK, and TwinGP. The corresponding average computation time per iteration is given in the
right most plot.

5.2.2 Borehole function

The borehole function models water flow through a borehole (Morris et al., 1993). There are

d = 8 inputs, which are radius of the borehole, radius of influence, transmissivity of upper aquifer,

potentiometric head of upper aquifer, transmissivity of lower aquifer, potentiometric head of lower

aquifer, length of borehole, and hydraulic conductivity of borehole. The response is the water

flow rate in m3/yr. The experiment results are given in Figure 4. We see that PK is the best

performing modeling framework in terms of both RMSE and NLPD, with TwinGP being the close

second. However, in terms of compuation time, TwinGP performance is far superior.
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Figure 4: Distribution of RMSE and NLPD over 50 iterations of modeling the borehole function with laGP,
SGPR, PK, and TwinGP. The corresponding average computation time per iteration is given in the right most
plot.

5.2.3 Dette-Pepelyshev function

The Dette-Pepelyshev function from Dette and Pepelyshev (2010) with d = 8 input variables is

heavily curved in some variables, and less so in others. Following the general settings described in

the beginning of Section 5, running PK with K = 64 encountered numerical instabilites, hence, we

increased K to 128. The experiment results are given in figure 5. In terms of RMSE, both TwinGP

and PK perform the best with comparable results. PK performance is the best when it comes to

NLPD, though at a very high computational cost.
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Figure 5: Distribution of RMSE and NLPD over 50 iterations of modeling the Dette-Pepelyshev function
with laGP, SGPR, PK, and TwinGP. The corresponding average computation time per iteration is given in the
right most plot.
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5.3 Real world data

We consider four real world datasets here: the ozone column spatial dataset, protein tertiary

structure dataset, Sarcos robotics dataset, and the flight delays dataset. The same datasets are

considered in Park and Apley (2018). For a given dataset, we first randomly split the dataset in

90-10 proportion and a GP is modeled with TwinGP, SGPR, laGP, and PK on 90% of the dataset,

and the remaining 10% is used for testing the performance of the fitted models. The experiment is

repeated for 50 iterations using different random splits. The distribution of RMSE and NLPD over

the 50 iterations are presented as box-and-whisker plots.

5.3.1 Ozone column

The ozone column dataset contains measurement of total column of ozone by the NIMBUS-7/TOMS

satellite on October 1, 1988, at different latitudes and longitudes over the globe. There are 182, 591

observations with d = 2 inputs, latitude and longitude. The response is the total column of ozone.

The experiment results are given in Figure 6. We omit SGPR in NLPD plot since it produced negative

variances. In terms of RMSE, both TwinGP and PK provide the best performance. For NLPD,

TwinGP on average performs better than PK, though PK is more consistent. Furthermore, TwinGP

computation time is only 5 seconds, and is the fastest compared to the rest, while PK is the slowest

at around 208 seconds. We used K = 1024 and B = 3 for PK, following the settings described at the

beginning of Section 5. Decreasing K to 512 reduced the computation time to about 150 seconds

with near identical RMSE and NLPD performance, even still, PK remained the slowest amongst rest

of the models. Further decreasing K or increasing B for PK was computationally more expensive

with no significant difference in RMSE and NLPD.

5.3.2 Protein tertiary structure

The protein tertiary structure dataset can be obtained from the UCI machine learning repository4.

The dataset has d = 9 input variables relating to the physiochemical properties of protein tertiary

structure, and the response is size of the protein residue. There are 45, 730 observations in total.

The experiment results are given in Figure 7. TwinGP is the best performing model in terms of

RMSE. For NLPD, both TwinGP and PK performance is comparable, and are better than the rest.

Though laGP is the fastest at around 13 seconds with TwinGP being the close second at about 17

4https://archive.ics.uci.edu/ml/datasets
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Figure 6: Distribution of RMSE and NLPD over 50 iterations of modeling the ozone column dataset with
laGP, SGPR, PK, and TwinGP. The corresponding average computation time per iteration is given in the right
most plot.

seconds, laGP is the worst performing model in terms of RMSE.
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Figure 7: Distribution of RMSE and NLPD over 50 iterations of modeling the protein structure dataset
with laGP, SGPR, PK, and TwinGP. The corresponding average computation time per iteration is given in the
right most plot.

5.3.3 Sarcos robotics

The Sarcos robotics dataset5 (Vijayakumar and Schaal, 2000) has d = 21 input variables representing

positions, velocities, and accelerations of a seven degrees-of-freedom Sarcos anthropomorphic robot

arm, and there are 7 responses corresponding to the 7 joint torques. Similar to Park and Apley

(2018), we only consider the first response in modeling. The dataset is provided as training and

5http://gaussianprocess.org/gpml/data
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testing sets which we combine, resulting in 48, 933 total observations, before making the 90-10

random splits. The experiment results are given in Figure 8. Here we see that TwinGP is the best

performing model in terms of all the evaluation criteria. TwinGP computation time is only about 47

seconds.
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Figure 8: Distribution of RMSE and NLPD over 50 iterations of modeling the sarcos robotics dataset with
laGP, SGPR, PK, and TwinGP. The corresponding average computation time per iteration is given in the right
most plot.

5.3.4 Flight delays

The flight delays dataset6 consists of flight arrival and departure details for all commercial flights

within the USA, from October 1987 to April 2008. In keeping with previous studies involving this

dataset, 800,000 observations are randomly selected for this study from a total of about 120 million

observations. Following Park and Apley (2018), d = 8 input variables are used in modeling, they are

the age of the aircraft, distance that needs to be covered, airtime, departure time, arrival time, day

of the week, day of the month, and month. The response is the arrival time delay. The experiment

results are given in Figure 9. SGPR ran out of memory on our machine, and a single iteration with

PK did not finish in one hour, hence, we have excluded both SGPR and PK from the plots. Here, laGP

performs better than TwinGP in terms of RMSE and NLPD, while TwinGP is twice as fast.

6https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2009
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Figure 9: Distribution of RMSE and NLPD over 50 iterations of modeling the flight delays dataset with
laGP and TwinGP. The corresponding average computation time per iteration is given in the right most plot.

6 Conclusions

In this article, we presented a unified global-local GP approximation that addresses the drawbacks

of purely global, or local approximations in the literature. With our approximation framework,

referred to as TwinGP, GP modeling on a million data points can be performed in just a few minutes

on an ordinary personal computer. The two main features of TwinGP are: (i) the set of design points

considered per testing location is a union of global points and local points, and (ii) the correlation

function is modeled as sum of two kernels, one each to capture the global and local trend. The set

of global points are identified with Twinning, and are independent of the testing location, while

the local points are selected as nearest neighbors to a given testing location in the training data.

The training complexity of our framework is O(g3) where g is the number of global points used,

and for t testing locations, the testing complexity is O(tg2l) where l is the number of local points

used. Our experiments show that the predictive performance with TwinGP is on par or better than

state-of-the-art GP modeling frameworks aimed at large datasets, moreover, at a fraction of their

computational cost.
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