

1 On the physical mechanisms driving the different deep penetration of radiation belt
2 electrons and protons

3 Journal of Geophysical Research: Space physics

5 Yang Mei^{1,2}, Xinlin Li^{1,2}, Hong Zhao³, Zheng Xiang¹, Benjamin Hogan^{1,2}, Declan O'Brien^{1,2}, and
6 Theodore Sarris⁴

7 ¹Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA

8 ²Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, USA

9 ³Department of Physics, Auburn University, Auburn, AL, USA

10 ⁴Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece

11 Key points:

- 12 1. A bi-particle model is established for simultaneously modeling both electron and proton
13 energy-dependent deep penetration to low L (<4).
- 14 2. Relativistic effect leads to stronger diffusive and convective radial transport of electrons
15 than protons of the same energy.
- 16 3. Scattering due to EMIC waves can prevent penetration of 100s of keV protons to low L
17 while likely not affecting electrons of the same energy.

18 **Abstract**

19 During active geomagnetic periods both electrons and protons in the outer radiation belt have
20 been frequently observed to penetrate to low L (<4). Previous studies have demonstrated
21 systematic differences in the deep penetration of the two species of particles, most notably that
22 the penetration of protons is observed less frequently than for electrons of the same energies. A
23 recent study by Mei et al. (2023, <https://doi.org/10.1029/2022GL101921>) showed that the time-
24 varying convection electric field contributes to the deeper penetration of low-energy electrons
25 and that a radial diffusion-convection model can be used to reproduce the storm-time penetration
26 of lower-energy electrons to lower L . In this study, we analyze and provide physical explanations
27 for the different behaviors of electrons and protons in terms of their penetration depth to low L . A
28 radial diffusion-convection model is applied for the two species with coefficients that are
29 adjusted according to the mass-dependent relativistic effects on electron and proton drift velocity,
30 and the different loss mechanisms included for each species. EMIC wave scattering losses for
31 100s of keV protons during a specific event are modeled and quantified; the results suggest that
32 EMIC waves interacting with protons of lower energies than electrons can contribute to prevent
33 the inward transport of the protons.

34

35 **1. Introduction**

36 Earth's radiation belts are two donut-shaped regions surrounding Earth where energetic charged
37 particles are trapped by the magnetic field. The outer belt, centered at $L \sim 4$ (L represents the
38 radial distance in Earth radii where the dipole magnetic field line crosses the equatorial plane),
39 normally consists of 10s of keV to several MeV electrons, while the inner belt, centered near
40 $L \sim 1.5$, is made of 10s – 100s of keV, sometimes up to MeV, electrons and multiple MeV to GeV
41 protons. In between the two belts is the slot region, normally devoid of energetic electrons.

42 During active geomagnetic periods, outer belt electrons become more dynamic and may
43 penetrate to lower L to refill the slot region. Previous studies have shown that such frequently
44 observed inward transport of outer belt electrons is closely associated with plasmasphere
45 reduction or erosion (e.g., Baker et al., 2004; Califff et al., 2017, 2022; Khoo et al., 2018, 2021;
46 Li et al., 2006; Zhao & Li, 2013). In particular, lower energy electrons tend to penetrate to lower
47 L more frequently than higher energy electrons (e.g., Reeves et al., 2016). These observations
48 suggest that an energy-dependent mechanism is responsible for the inward transport of lower
49 energy electrons more efficiently. The characteristics of the electron deep penetration
50 phenomenon also include frequent occurrence and relatively rapid time response (e.g., Turner et
51 al., 2017; Zhao et al., 2023). Therefore, the non-diffusive radial transport due to electrostatic
52 large-scale electric fields are believed to be a potential mechanism (Califf et al., 2017; Zhao et
53 al., 2017). To quantify the inward transport of electrons due to storm-time enhanced large-scale
54 electric fields, Mei et al. (2023) added an energy-dependent convection term to the classic radial
55 diffusion model and used this model to study an electron deep penetration event of June 2015.
56 Such inward transport is shown to be most effective for 10s to 100s of keV electrons, whose
57 effect gradually becomes weaker as energy increases, and eventually becomes negligible for > 1
58 MeV electrons.

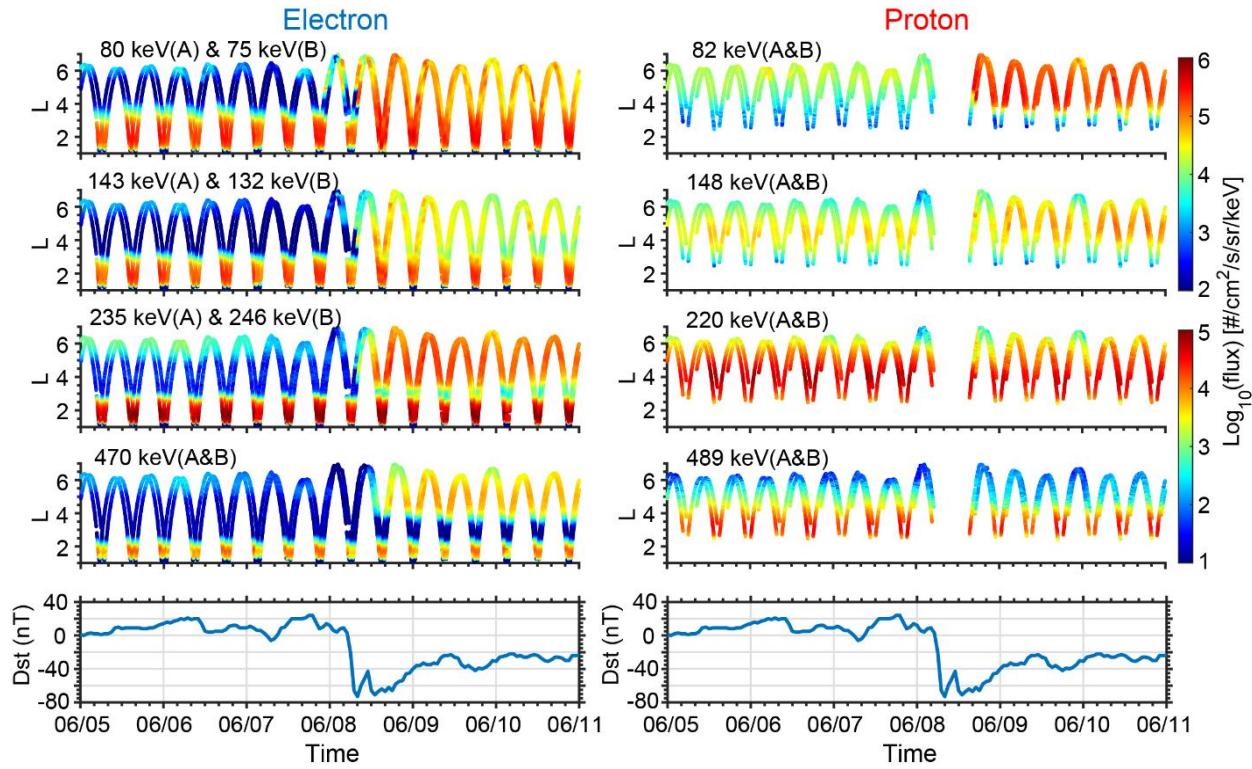
59 Zhao et al. (2023) studied the penetration of energetic electrons and protons to $L < 4$ statistically
60 and showed that there are systematic differences between the deep penetration of electrons and
61 protons. More specifically they showed that, while the general trend that lower energy particles
62 can more readily penetrate inward to lower L still holds true for protons, electrons penetrate to
63 $L < 4$ more deeply, more frequently, and more quickly than protons. While the drift direction of
64 electrons and protons are different, both species should experience the same large-scale electric
65 field as they are drifting around Earth. Motivated by the statistical results of Zhao et al. (2023),
66 we aim to further investigate whether the radial diffusion-convection model can be used to
67 describe simultaneously the behavior of both electron and proton populations, while accounting
68 for the systematic differences as listed above. In particular, this study focuses on investigating
69 the physical mechanisms responsible for the different penetration depths of electrons and
70 protons.

71 Numerous studies have suggested that injection and radial diffusion are the two major transport
72 and acceleration mechanisms of 10s to 100s of keV protons in near-Earth space (e.g., Gkioulidou
73 et al., 2014, 2015, 2016; Lyu & Tu, 2022; Sheldon & Hamilton, 1993; Zhao et al., 2015). By
74 analyzing long-term proton pressure evolution, Gkioulidou et al. (2016) concluded that injection
75 is the dominant transport and acceleration mechanism for lower energy (< 80 keV) protons, while
76 radial diffusion plays a more important role for higher energy (> 100 keV) protons. On the other
77 hand, charge exchange and Coulomb scattering are regarded as two major loss mechanisms for
78 protons. Charge exchange is normally seen as the dominant loss mechanism over a wide energy
79 range for ring current protons (Fok et al., 1991; Hamilton et al., 1988; Keika et al., 2006; Kistler
80 et al., 1989). In this study, we consider the charge exchange as one loss mechanism that is
81 continuously active for protons.

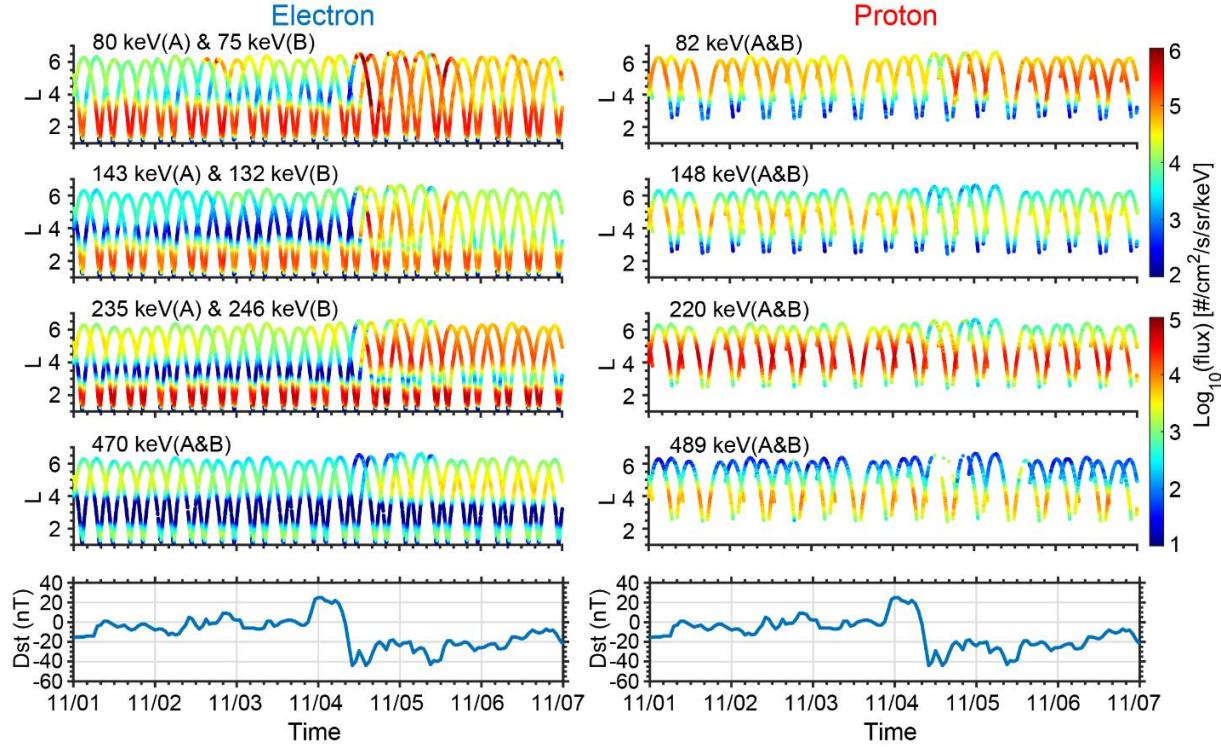
82 Electromagnetic ion cyclotron (EMIC) waves can interact with electrons and protons, causing
83 rapid pitch angle scattering (Summers et al., 2007). Multi-MeV electrons that satisfy resonance
84 conditions can also be scattered by EMIC waves leading to rapid local loss and “bite-out”
85 features (Baker et al., 2021; Engebretson et al., 2018; Ni et al., 2023; Qin et al., 2019; Shprits et
86 al., 2016, 2017; Xiang et al., 2017). Previous studies analyzed and modeled that EMIC waves

87 during geomagnetic storms can lead to precipitation of tens to hundreds of keV protons
88 (Jordanova et al., 2001, 2008; Lyu et al., 2022; Usanova et al., 2010). In this study, we compute
89 the proton lifetime due to EMIC wave scattering for a specific storm event, during which EMIC
90 wave activity has been observed, as reported by Hogan et al. (2023). Proton lifetimes are
91 estimated by a pure pitch angle diffusion simulation based on observed wave properties, and are
92 then implemented as a loss term to the radial diffusion-convection model in addition to other
93 transport and loss mechanisms.

94 The results point to the following explanations regarding the systematic difference between
95 electron and proton penetration to low L : 1. The relativistic effect is less significant for protons
96 than for electrons of the same μ (magnetic moment or the first adiabatic invariant), which leads
97 to weaker radial transport of the protons in both the diffusive and the convective transport
98 mechanisms. The weaker radial transports of protons result in the smaller penetration depth for
99 protons than for electrons. 2. EMIC waves can potentially scatter 100s of keV protons rapidly
100 and prevent their inward transport to a lower L than where the local scattering loss happens,
101 while they do not affect electrons of the same energies.


102

103 **2. Data and Observations**


104 In this study, we use electron differential flux data from the Magnetic Electron Ion Spectrometer
105 (MagEIS) instrument (Blake et al., 2013) and proton differential flux data from the Radiation
106 Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument (Mitchell et al., 2013)
107 onboard the Van Allen Probes (also known as Radiation Belt Storm Probes, or RBSP) (Mauk et
108 al., 2013). Both particle instruments provide pitch angle resolved particle fluxes.

109 Two geomagnetic storm events are selected as case studies to quantitatively investigate the
110 differences in the penetration depth of electrons and protons: the first event is a storm with
111 minimum Dst=-67 nT that occurred on June 8, 2015, whereas the second event is a storm with
112 minimum Dst=-44 nT that occurred on November 4, 2014. Figures 1 and 2 present the particle
113 flux observations for the two events, respectively, at selected energies from \sim 80 to 500 keV
114 combining RBSP A&B data as a function of time and L before, during, and after the two storms.
115 Electron fluxes are shown on the left-hand side and proton fluxes are on the right. The central
116 energy of each electron channel is given in the upper left corner of each panel. It is noted that for
117 electrons the central energy is slightly different between RBSP A and B. It is also noted that the
118 electron and proton energy channels from the MagEIS and RBSPICE instruments do not exactly
119 overlap; we thus choose to display the energy channels with the closest corresponding energy
120 ranges. The color scale showing the flux levels is the same for both the electron and proton
121 energy channels. The Dst index, provided by the WDC for Geomagnetism Kyoto, is plotted on
122 the bottom (<http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html>). For electrons, all four energy channels
123 show a similar trend, with fluxes that are largely enhanced during the storm main phase and
124 remain elevated after the storm. Electron fluxes at lower energies increased faster and extended
125 to lower L than those at higher energies. While the pre-storm electron fluxes in the outer belt for
126 Event 1 were at a lower level than Event 2, the enhanced fluxes looked similar at the end of the
127 selected period for both events. For protons, only the 82 keV channel shows a clear flux
128 enhancement at $L > \sim 3.5$ for the two events. There is no enhancement of higher energy proton
129 fluxes at $L < 4$, while fluxes at $L > 4$ slightly decreased or remained the same as the pre-storm

130 levels. Thus, as shown in Figures 1 and 2, electrons and protons of the same energies respond
131 very differently during both storms.

133 *Figure 1. Electron and proton flux measurements by RBSP A & B during a geomagnetic storm on*
134 *June 8, 2015. (left) Electron fluxes measured by the MageEIS instrument at selected energies as a*
135 *function of time and L. (right) Proton fluxes measured by the RBSPICE instrument at similar*
136 *energies in the same format. Dst index is provided by Kyoto University.*

137

138 *Figure 2. Electron and proton flux measurements by RBSP A & B in the same format as Figure 1*
 139 *during a geomagnetic storm on November 4, 2014.*

140

141 In order to better understand the mechanisms that govern particle dynamics and the different
 142 behavior to the two particle species, in the following we further investigate the two events by
 143 simulating the evolution of phase space density (PSD) of the two species. We convert both
 144 electron and proton differential fluxes $j_s(E_i, \alpha, L)$ to PSD $f_s(\mu, K, L^*)$ using flux data from RBSP
 145 A&B based on the relation $f_s(\mu, K, L^*) = \frac{j_s(E_i, \alpha, L)}{P^2}$, where f is the PSD of the trapped particles, P
 146 is the particle momentum, E_i is the particle energy, α is the pitch angle, subscript s represents the
 147 particle species (p for protons or e for electrons), L is the McIlwain L , $\mu = \frac{P_1^2}{2m_0B}$, $K =$
 148 $\int_{S_m}^{S'_m} \sqrt{B_m - B(s)} ds$, L^* is the Roederer L : $L^* = \frac{2\pi M}{|\Phi|_{R_E}}$ (Roederer, 1970), where Φ is the third
 149 adiabatic invariant and M is the Earth's dipole magnetic moment. K and L^* are calculated based
 150 on the TS04 model (Tsyganenko & Sitnov, 2005) provided by the Van Allen Probes Magnetic
 151 Ephemeris files (Spence et al., 2013); μ is calculated using the local magnetic field strength. For
 152 this study, we focus on near-equatorial particles, therefore a relatively small K value, $K =$
 153 $0.12 G^{1/2} R_E$, is selected for both electron and proton PSD. Since the PSD depends on the rest
 154 mass of particles, the electron PSD will be orders of magnitude greater than proton PSD for
 155 similar flux values of the two species.

156

157 **3. Methodology and Model Description**

158 Based on the energy-dependent radial diffusion-convection model by Mei et al. (2023), we
 159 further developed a bi-particle model for electrons and protons:

$$\frac{\partial f_s}{\partial t} = L^{*2} \frac{\partial}{\partial L^*} \left[\frac{D_{L^*L^*,s}}{L^{*2}} \frac{\partial f_s}{\partial L^*} \right] + V_{R,s}(R, t) \frac{\partial f_s}{\partial R} + S_s - \frac{f_s}{\tau_s} \quad (1)$$

160

161 where, further to the variables defined above, R is the radial distance in Earth's radii, $D_{L^*L^*}$ is the
 162 radial diffusion coefficient, $V_{R,s}$ is the convection coefficient representing the transport due to
 163 time-variant large-scale electric fields, S_s is the source rate for each species due to local heating
 164 or injection, and τ_s is the particle lifetime for each species. This 1-D diffusion-convection model
 165 is then used to quantify the radial transport of trapped particles due to enhanced large-scale
 166 electric fields by assuming: 1. a dipole magnetic field configuration, 2. a symmetric large-scale
 167 electric field which linearly changes within a 1-hr interval, 3. the presence of outward radial
 168 gradients in PSD.

169 The PSD radial profile derived from flux measurements before the storm is used as an initial
 170 condition for the model. The observed PSD at the highest available L^* is regarded as the outer
 171 boundary condition throughout the model. Relatively small values of PSD, $1 \times 10^{-8} (c/MeV/cm)^3$ for electrons and $1 \times 10^{-10} (c/MeV/cm)^3$ for protons are respectively set as the inner
 172 boundary condition at $L^* = 1.1$ for the two species. For the two moderate storm events that are
 173 simulated in this study local heating effects are not considered. The source term S_s is set to 0 in
 174 the model, while part of the local heating or injection effects might be implicitly implemented to
 175 the model as the observed PSD at the highest available L^* is used as the outer boundary
 176 condition.

177 In the rest of this section, we discuss in further detail the various parameters of the model,
 178 namely the radial diffusion coefficient, the time-varying electric field model, the electron loss
 179 term and the proton loss terms.

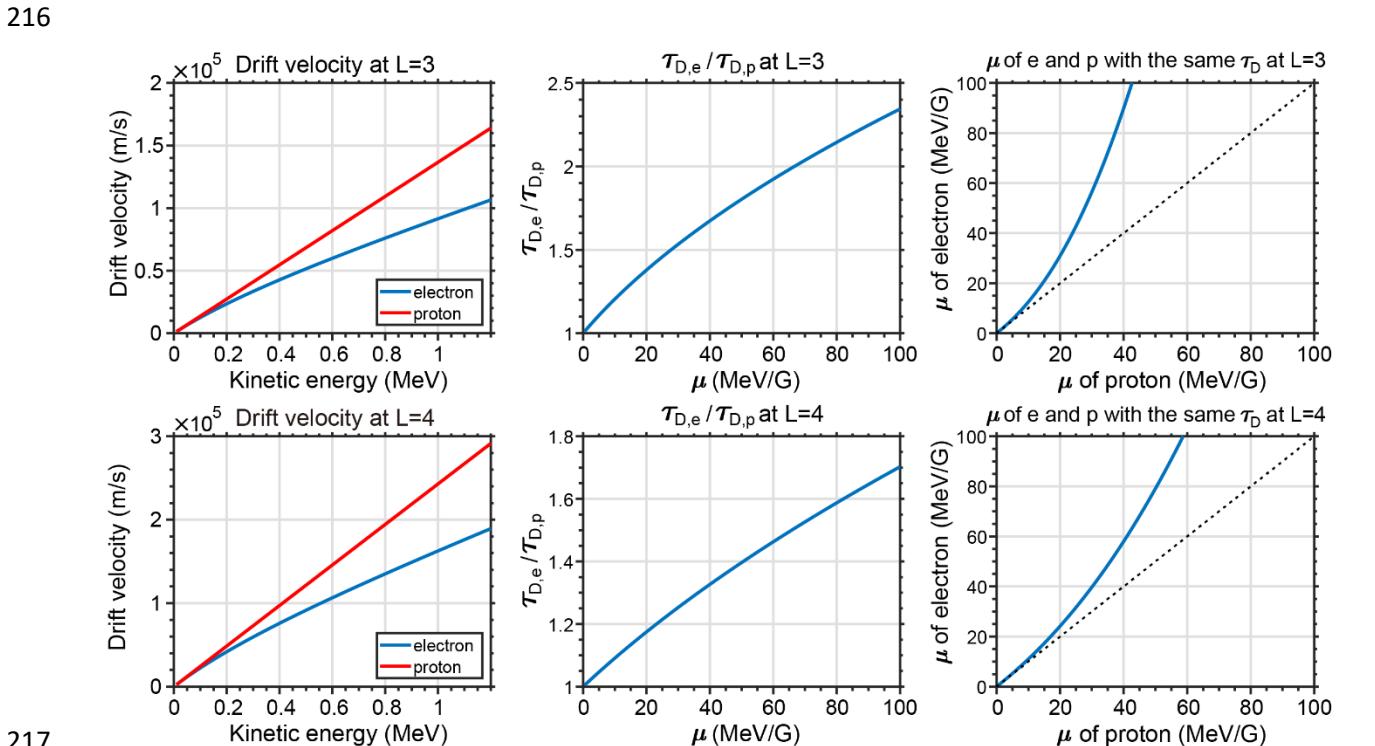
181

182 3.1 Radial diffusion

183 A μ -dependent empirical radial diffusion coefficient model $D_{LL,Liu}$ (Liu et al., 2016) has been
 184 extended to low μ (10-400 MeV/G) as a modified radial diffusion coefficient, $D_{LL,Liu-mod}$ for
 185 electrons (Mei et al., 2023). Based on $D_{LL,Liu-mod}$ for electrons, we analyze the difference
 186 between electron and proton drift periods to estimate the corresponding radial diffusion
 187 coefficients for protons, by assuming that the ULF waves are symmetrically distributed and
 188 propagating in the azimuthal coordinate during the storm. Under this assumption, electrons and
 189 protons will interact accordingly with the ULF waves of the same power spectrum, and radial
 190 diffusion coefficient will be the same for electrons and protons of the same drift frequency.

191 Due to the lower mass of electrons, they will be affected more significantly by the relativistic
 192 effect than protons of the same kinetic energy, thus drifting slower than the protons. A bounce-
 193 averaged relativistic drift period formula in dipole field is given by (Schulz & Lanzerotti, 1974):

$$\tau_D = \frac{2\pi|q|B_0R_E^2}{3m_0c^2\gamma\beta^2L} \frac{T(\alpha_e)}{D(\alpha_e)} \quad (2)$$


194

195 where m_0 is the rest mass of the trapped particle, $B_0 = 31000 nT$ is the equatorial magnetic
 196 field strength at the Earth's surface, $R_E = 6370 \text{ km}$ is the Earth's radius, q is particle charge, γ is
 197 the Lorentz factor, β is the ratio of particle velocity to the speed of light, and T and D are pitch
 198 angle-dependent functions.

199 As an illustration, Figure 3 shows the difference between electron and proton drift speeds at $L=3$
 200 and $L=4$. The left column of Figure 3 compares their drift velocities as a function of energy. The
 201 drift velocity of a 1 MeV electron is about 30% slower than a 1 MeV proton. The middle column
 202 of Figure 3 shows the ratio between the electron and proton drift period at the same μ for $L=3$
 203 and $L=4$. Converting to the μ coordinate, we can see that the background magnetic field strength
 204 plays a role and thus the drift difference of the two species becomes L -dependent. The value of
 205 $\frac{\tau_{D,e}}{\tau_{D,p}}$ increases to 1.7 for $L=4$ and to 2.35 for $L=3$ when μ increases to 100 MeV/G (corresponds to
 206 $\sim 0.36 \text{ MeV}$ at $L=4$ in dipole field). As electrons and protons are transported inward to lower L
 207 the drift period difference increases. In addition, we show the relation between the μ of electron
 208 and proton that result in the same drift period in the right column of Figure 3. Based on equation
 209 (2), electrons and protons of the same drift period should obey the following equation:

$$\frac{\mu_e^2 E_{0,e}}{2\mu_e B(L) + E_{0,e}} = \frac{\mu_p^2 E_{0,p}}{2\mu_p B(L) + E_{0,p}} \quad (3)$$

210 where $E_{0,e}$ and $E_{0,p}$ are, respectively, the rest energy of an electron and a proton, and μ_e and μ_p are
 211 the corresponding magnetic moments of an electron and a proton with the same drift period. The
 212 right column of Figure 3 shows the correspondence of μ_e and μ_p at different L . At $L=4$ an electron
 213 of $\mu=100 \text{ MeV/G}$ approximately has the same drift period as a 60 MeV/G proton, while this
 214 drift-period alignment shifts to $\mu \sim 42 \text{ MeV/G}$ protons at $L=3$.

218 *Figure 3. The drift differences between electrons and protons at L=3 (top panels) and L=4*
 219 *(bottom panels). (left) Drift velocities of electrons and protons as a function of kinetic energy.*
 220 *(middle) The ratio between electron and proton drift period as a function of μ . (right)*
 221 *Correspondence of electron and proton magnetic moment μ with the same drift period.*

222

223 For electrons, the $D_{LL,Liu-mod}$ is used as the radial diffusion coefficient (Mei et al., 2023):

$$D_{L^*L^*,e} = D_{LL,Liu-mod} = 1.115 \cdot 10^{-6} \cdot 10^{a \times K_p + b} \cdot L^{8.184} \cdot \mu^c \cdot d$$

$$a = 0.35; b = -0.414;$$

$$c = -0.57; d = 0.796$$

224

(4)

225 For protons, a corresponding radial diffusion coefficient according to our assumptions of the
 226 ULF perturbations can be expressed as:

$$D_{L^*L^*,p}(\mu) = D_{L^*L^*,e}(\mu') = 1.115 \cdot 10^{-6} \cdot 10^{a \times K_p + b} \cdot L^{8.184} \cdot \mu'^c \cdot d$$

227

(5)

228 where the μ' meets the condition $\tau_{D,e}(\mu') = \tau_{D,p}(\mu)$. The value of μ' is given by the positive
 229 root of a polynomial equation: $E_{0,e}\mu'^2 - \frac{2B(L)\mu^2E_{0,p}}{2\mu \cdot B(L) + E_{0,p}}\mu' - \frac{\mu^2E_{0,p}E_{0,e}}{2\mu \cdot B(L) + E_{0,p}} = 0$.

230

231 3.2 Time-varying electric field induced convection

232 The energy-dependent convection coefficient $V_{R,S}$ follows the same formulation as the one
 233 introduced by (Mei et al., 2023):

$$V_{R,S}(R, t) = \left| \frac{\mathbf{E}_{net,S} \times \mathbf{B}}{B^2} \right|$$

234

(6)

235 with

$$\mathbf{E}_{net,S} = \frac{\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} E_\phi(R, \phi, t) d\phi}{\pi} \cdot \frac{\tau_{D,S}}{4\tau_E}$$

236 where \mathbf{B} is the magnetic field strength, E_ϕ is the azimuthal component of the large-scale electric
 237 field, which in this case is the modified Volland-Stern model based on Mei et al. (2023), R is the
 238 radial distance, ϕ is the azimuthal angle, $\tau_{D,S}$ is the particle drift period, and τ_E is the

239 characteristic timescale of the electric field time-variation: $\tau_E(R, t) = \frac{\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} E_\phi(R, \phi, t) d\phi}{\left| \frac{\partial}{\partial t} \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} E_\phi(R, \phi, t) d\phi \right|}$.

240 Since the coefficient $V_{R,S}$ is proportional to the particle drift period $\tau_{D,S}$, the drift period
 241 difference of the same μ electron and proton shown in Figure 3 will result in different strength on
 242 the convective transport. As discussed before, the ratio of $\frac{\tau_{D,e}}{\tau_{D,p}}$ increases more significantly at
 243 lower L , which suggests that for electrons and protons of the same μ , the convection coefficient
 244 for proton will decrease faster than that of electron as they are being transported inward to lower
 245 L .

246

247 3.3 Electron loss

248 The dominant loss mechanism for 10s to 100s of keV electrons is pitch angle scattering due to
 249 interactions with plasma waves including chorus and plasmaspheric hiss. In this study, we use
 250 empirical models of electron lifetime due to the chorus and hiss wave scattering (Orlova &
 251 Shprits, 2014; Zhu et al., 2021). Using realistic chorus wave parameters, Orlova and Shprits
 252 (2014) established a parameterized electron lifetime model as a function of geomagnetic activity,
 253 electron energy, and locations. Specifically, in their model, lifetimes for 1 keV-2 MeV electrons
 254 can be calculated in four MLT sectors, including the night, dawn, prenoon, and postnoon, can be
 255 calculated with a given Kp index and radial distance R . Zhu et al. (2021) developed an empirical
 256 model for the lifetime of slot region electrons due to plasmaspheric hiss waves using a
 257 statistically averaged spectrum of RBSP observations. The energy range of the model is from
 258 0.01 to 10 MeV, and model inputs include L and the AE index.

259 We use the electron lifetime model τ_{chorus} by Orlova and Shprits (2014) outside the plasmapause
 260 to account for chorus wave scattering loss and the electron lifetime model τ_{hiss} by Zhu et al.
 261 (2021) inside the plasmapause to quantify hiss wave scattering loss. The overall electron lifetime
 262 can be written as:

$$263 \tau_{electron} = \begin{cases} \tau_{chorus}, L > L_{PP} \\ \tau_{hiss}, L < L_{PP} \end{cases} \quad (7)$$

264 where L_{PP} is the L of the plasmapause location, which is considered here as a boundary
 265 separating the two types of electron losses. L_{PP} is calculated herein based on the Carpenter and
 266 Anderson (1992) empirical model. Since the diffusion-convection model we use in this study is
 267 dependent only on the radial distance, and not on MLT, we use the minimum electron lifetime
 268 among four MLT sectors as calculated by the Orlova & Shprits (2014) model to represent the
 269 drift-averaged lifetime for electrons, considering that the drift periods of outer belt electrons at
 270 100s of keV are ~ 1 hour while their lifetimes are several hours to days. It is noted that the
 271 empirical model of Zhu et al. (2021) for electron loss timescales due to plasmaspheric hiss wave
 272 scattering is applicable in the range $1.8 < L < 3$, while the plasmapause location is sometimes
 273 higher than $L=3$, as, for example, during geomagnetically quiet times before a storm. In such
 274 cases, we interpolate the electron loss timescale in the logarithmic scale when there is a gap in
 275 the τ_{hiss} model between $L=3$ and L_{PP} during quiet time.

276 3.4 Proton loss

277 Charge exchange and EMIC wave scattering are the two main loss mechanisms considered in
 278 this study. Unlike the almost ubiquitous loss mechanism of charge exchange which protons are
 279 continuously undergoing, EMIC wave scattering loss largely depends on the spatial presence,

280 magnitude, and frequency range of EMIC waves, which differ from case to case. Thus, the
 281 computation of loss timescale is nontrivial due to limited spatial and temporal coverage of the
 282 wave measurements. For this study, we only compute the proton loss due to EMIC wave
 283 scattering for Event 1, the June 8 storm in 2015, during which He+ band EMIC wave activities
 284 have been observed and studied by Hogan et al. (2023), to elaborate the contribution of EMIC
 285 wave to the deep penetration difference.

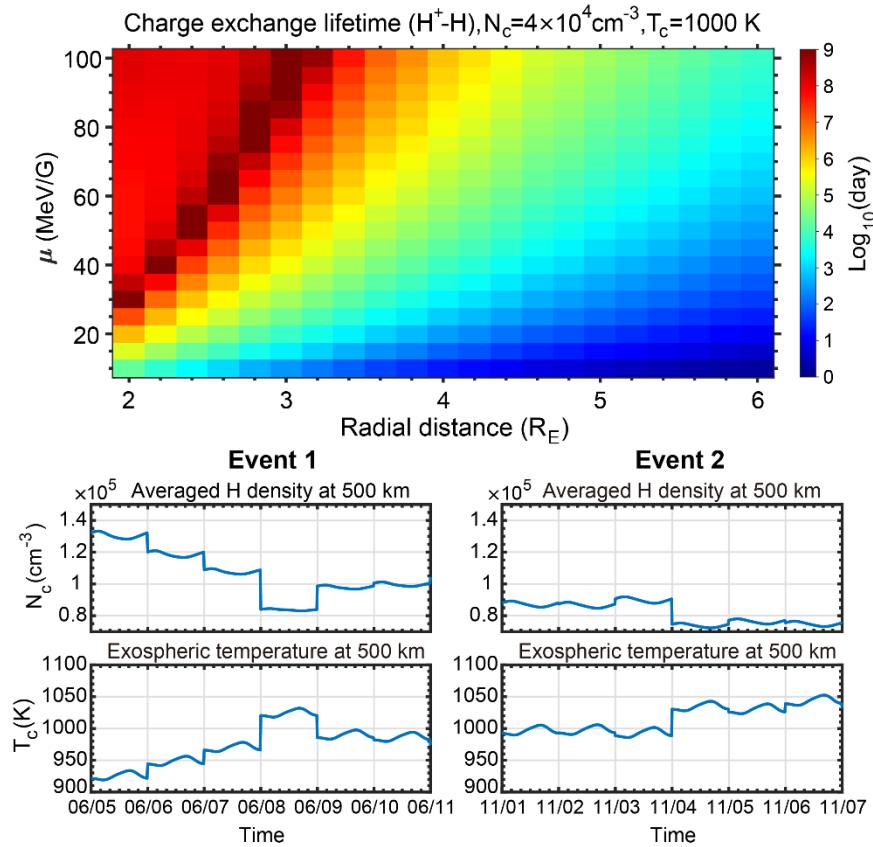
286 **Charge exchange loss:**

287 A bounce-averaged lifetime expression by Smith et al. (1976) is used to obtain the charge
 288 exchange lifetime for protons:

$$\tau_{CE} = \tau_{eq} \cos^{3.5 \pm 0.2} \lambda_m \quad (8)$$

290 with

$$\tau_{eq} = \frac{1}{\sigma n v}$$


291 where τ_{eq} is the estimated mean lifetime of protons evaluated at the equatorial plane (Smith &
 292 Bewtra, 1978), λ_m is the mirror latitude, σ is the charge exchange cross section, n is the number
 293 density of neutral atoms, and v is the velocity of the incident particle. The charge exchange cross
 294 section σ depends on energy and on the type of charge transfer process. We use the parameterized
 295 cross sections as a function of energy as provided by Lindsay and Stebbings (2005). The
 296 experimentally determined relation between hydrogen atom energy and cross-section area
 297 applies for <250 keV protons. We extrapolate the relation for higher energy. We use the
 298 exospheric density model by Chamberlain (1963) to estimate the neutral density in the inner
 299 magnetosphere:

$$n(r) = N_c e^{-(\lambda_c - \lambda(r))} \zeta(\lambda) \quad (9)$$

300 where λ represents the potential energy: $\lambda(r) = \frac{G \mu_E M}{k T_c r}$, G is the gravitational constant, μ_E is the
 301 planetary mass (Earth's mass in this case), M is the atomic mass, k is the Boltzmann constant, r is
 302 radial distance, and N_c and T_c are respectively the neutral density and temperature at the exobase
 303 which is assumed to be at 500 km, ζ is a partition function. Knowing that the charge exchange
 304 lifetime depends on the neutral atom species, we compared two main types of charge exchange
 305 in Earth's magnetosphere, H⁺-H and H⁺-O, with typical exospheric neutral hydrogen and oxygen
 306 densities. Our results show that the lifetime due to H⁺-H interaction is orders of magnitude
 307 shorter than that of H⁺-O type interaction (shown in Supporting Information Figure S1).
 308 Therefore, we use the bounce-averaged lifetime of proton charge exchange with neutral
 309 hydrogen as the dominant charge exchange loss mechanism for protons. The top of Figure 4
 310 shows the charge exchange lifetime of proton interacting with neutral hydrogen atoms as a
 311 function of radial distance and μ , assuming that $N_c = 4 \times 10^4 \text{#/cm}^3$ and $T_c = 1000 \text{K}$. We can
 312 see that typically the lifetime is shorter for the same μ protons at distances farther away from
 313 Earth.

315 During storm times, the two primary parameters determining proton lifetime, namely neutral
 316 hydrogen density and temperature in the exosphere, may experience dynamic changes. To
 317 quantify the influence of exospheric variations, we use the NRLMSIS 2.0 model (Emmert et al.,
 318 2021) to obtain neutral hydrogen density and exospheric temperature at 500 km height for the
 319 two selected storms. Since the exospheric density model by Chamberlain (1963) follows the
 320 assumption of spherical symmetry, we averaged the hydrogen density and exospheric
 321 temperature at different local times to obtain N_c and T_c for the selected events, which are
 322 presented at the bottom of Figure 4 (see Figures S2 & S3 in Supporting Information for details).

323

324

325 *Figure 4. (top) Charge exchange lifetime for protons due to $H^+ - H$ interaction as a function of*
 326 *radial distance and magnetic moment μ assuming fixed density and exospheric temperature at*
 327 *500 km exobase. (bottom) Averaged hydrogen density and exospheric temperature over*
 328 *longitudes and latitudes at 500 km during the two selected events provided by the NRLMSIS 2.0*
 329 *model (Emmert et al., 2021).*

330

331 **EMIC wave scattering loss (only applied to Event 1):**

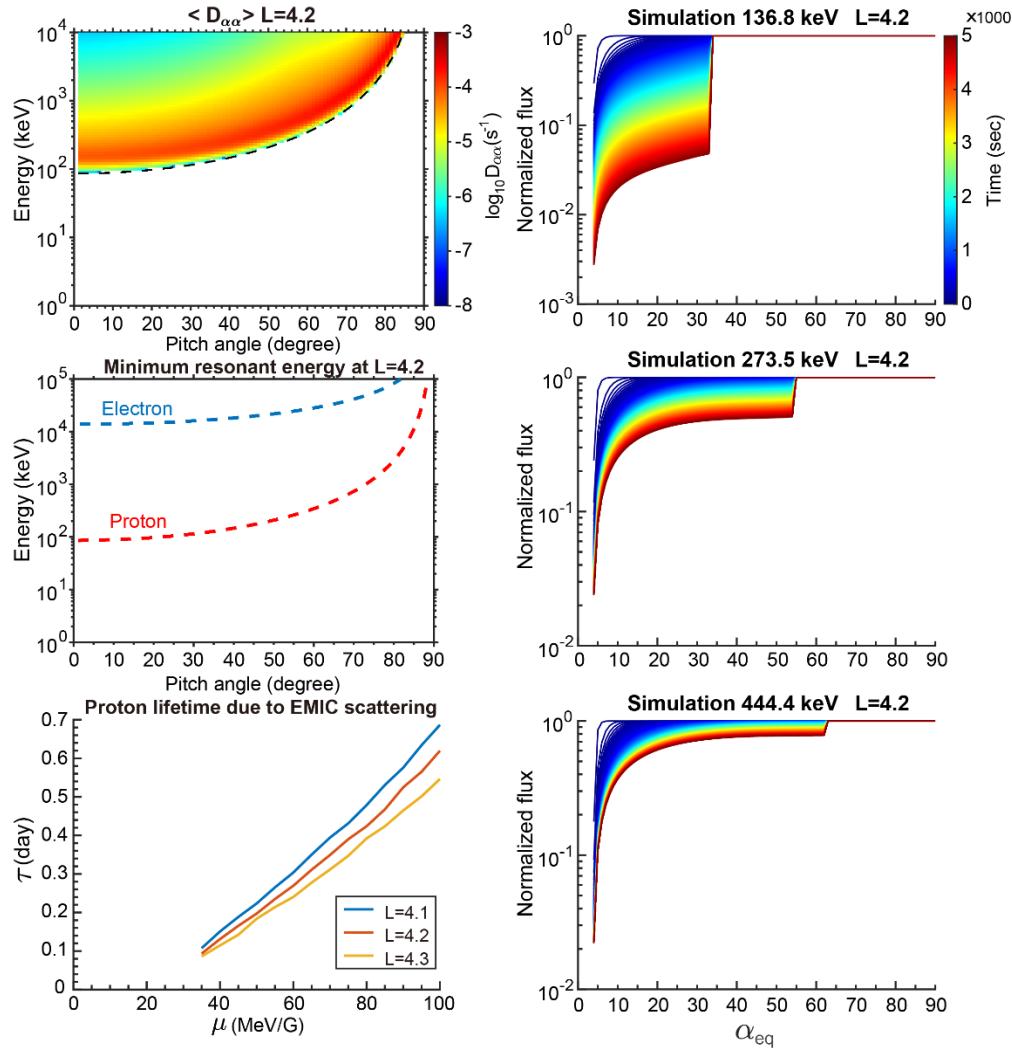
332 As shown in Figure 3 of Hogan et al. (2023), He+ band EMIC wave signatures were observed by
 333 RBSP near $L^* = 4.1$ to 4.3 around 4:45 UT on 8 June 2015. The frequency range of the observed
 334 EMIC wave signatures is $\sim 1.29f_{O+}$ to $\sim 1.77f_{O+}$, where f_{O+} represents the local oxygen
 335 gyrofrequency.

336 The proton lifetime in the presence of EMIC wave scattering can be estimated by conducting a 1-
 337 D pitch angle diffusion simulation (Meredith et al., 2006; Ni et al., 2015; Thorne et al., 2013):

$$\frac{\partial f_p}{\partial t} = \frac{1}{T(\alpha_{eq}) \sin(2\alpha_{eq})} \frac{\partial}{\partial \alpha_{eq}} \left[T(\alpha_{eq}) \sin(2\alpha_{eq}) \langle D_{\alpha\alpha} \rangle \frac{\partial f_p}{\partial \alpha_{eq}} \right] \quad (10)$$

338 where α_{eq} is the equivalent equatorial pitch angle, $\langle D_{\alpha\alpha} \rangle$ is the bounce-averaged pitch angle
 339 diffusion coefficient, $T(\alpha_{eq})$ is the bounce period approximated by: $T(\alpha_{eq}) = 1.3802 -$
 340 $0.3198 \left[\sin(\alpha_{eq}) + \sqrt{\sin(\alpha_{eq})} \right]$ (Lenchek et al., 1961).

341 The bounce-averaged pitch angle diffusion coefficient $\langle D_{\alpha\alpha} \rangle$ is computed using the full
 342 diffusion code (Ni et al., 2011; Ni et al., 2008; Shprits & Ni, 2009) at $L=4.1, 4.2$, and 4.3 , based
 343 on assumptions of cold plasma and dipole magnetic field. We use the density model by Sheeley
 344 et al. (2001): $N_0 = 1390 (3/L)^{4.83} \text{ cm}^{-3}$ for determining the electron density at the selected L .
 345 A Gaussian fit is used to provide the power spectra of the EMIC wave. The local plasma
 346 composition is assumed to be 94% H+, 5% He+, and 1% O+ as found by Kersten et al. (2014).
 347 Top left of Figure 5 shows $\langle D_{\alpha\alpha} \rangle$ for proton computed at $L=4.2$. The $\langle D_{\alpha\alpha} \rangle$ for proton at $L=4.1$
 348 and 4.3 can be found in the Supporting Information Figure S4.


349 With the calculated $\langle D_{\alpha\alpha} \rangle$, we conducted pitch angle diffusion simulations based on equation
 350 (10) for $L=4.1-4.3$. The right-column panels of Figure 5 show the three examples of the
 351 simulated time variations of proton flux at 136.8, 273.5, and 444.4 keV at $L=4.2$. The estimation
 352 of proton lifetime is taken after reaching equilibrium and will not be affected by the initial
 353 distribution. Normalized flat pitch angle distribution of proton fluxes is used as the initial
 354 condition. We assume that the EMIC waves with the observed power spectra are evenly
 355 distributed over MLT for simplicity. In reality, EMIC waves might be confined in narrower MLT
 356 ranges, but waves with stronger wave power can still result in similar scattering effect
 357 considering the spatial and temporal uncertainties of observations. The upper boundary condition
 358 is set as $\frac{\partial f_p(\alpha_{eq}=90^\circ)}{\partial \alpha_{eq}} = 0$, while the lower boundary condition is set as $f_p(\alpha_{eq} < \alpha_{LC}) = 0$, α_{LC} is
 359 the equatorial bounce loss cone given by $\sin(\alpha_{LC}) = [L^5(4L - 3)]^{-1/4}$ (Summers et al., 2007),
 360 which is around 4.95° at $L=4.2$ for Event 1. The simulation is conducted for 5000 seconds, and
 361 the proton fluxes reach equilibrium before the end of the simulation. From the right column
 362 panels of Figure 5, we can see that as the proton energy increases, the resonant region shifts to a
 363 higher pitch angle, while diffusion becomes weaker as the $\langle D_{\alpha\alpha} \rangle$ decreases.

364 By assuming $\frac{\partial f_p}{\partial t} = -\frac{f_p}{\tau_{EMIC}}$, the lifetime of $K=0.12 \text{ G}^{1/2} \text{R}_E$ protons is estimated by:

$$\tau_{EMIC} = \frac{\Delta t}{\ln \left(\frac{j_p(\alpha_K, t_n)}{j_p(\alpha_K, t_n + \Delta t)} \right)} \quad (11)$$

365 where j_p is the proton flux converted from proton PSD f_p , α_K is the corresponding pitch angle of
 366 $K=0.12 \text{ G}^{1/2} \text{R}_E$ protons, Δt is the time step of the pitch-angle diffusion simulation, and t_n denotes

369 a simulation time stamp after reaching the equilibrium state. At $L=4.2$, α_K is around 51° for
 370 Event 1. For protons outside of the resonant region with EMIC waves, τ_{EMIC} is infinite.

371
 372 *Figure 5. Estimations of proton lifetime due to EMIC wave scattering loss during Event 1 (2015*
 373 *June 8 storm) based on wave observations of Hogan et al. (2023). (Top left) The bounce-*
 374 *averaged pitch angle diffusion coefficient $\langle D_{\alpha\alpha} \rangle$ at $L=4.2$; (Middle left) Minimum resonant*
 375 *energy of the EMIC wave with electron (in blue) and proton (in red) at $L=4.2$; (Right) From top*
 376 *to bottom we show the pitch angle diffusion simulation results of protons at the selected energies*
 377 *at $L=4.2$; (Bottom left) The estimated proton lifetime at $L=4.1$, 4.2, and 4.3 as a function of*
 378 *magnetic moment for $K=0.12 G^{1/2} R_E$ protons.*

379
 380 The bottom left panel of Figure 5 shows our estimate of the μ -dependent proton lifetimes
 381 considering EMIC wave scattering effects at $L=4.1$, 4.2, and 4.3 during Event 1. Protons of μ
 382 <35 MeV/G are outside of the resonant region for the observed EMIC waves; for >35 MeV/G
 383 protons, τ_{EMIC} increases from ~ 0.1 to >0.5 day as μ increases. The difference between τ_{EMIC} at
 384 different L_s is not obvious. Additionally, the middle-left panel of Figure 5 compares the
 385 minimum resonant energies of electrons and protons with the observed EMIC waves, showing

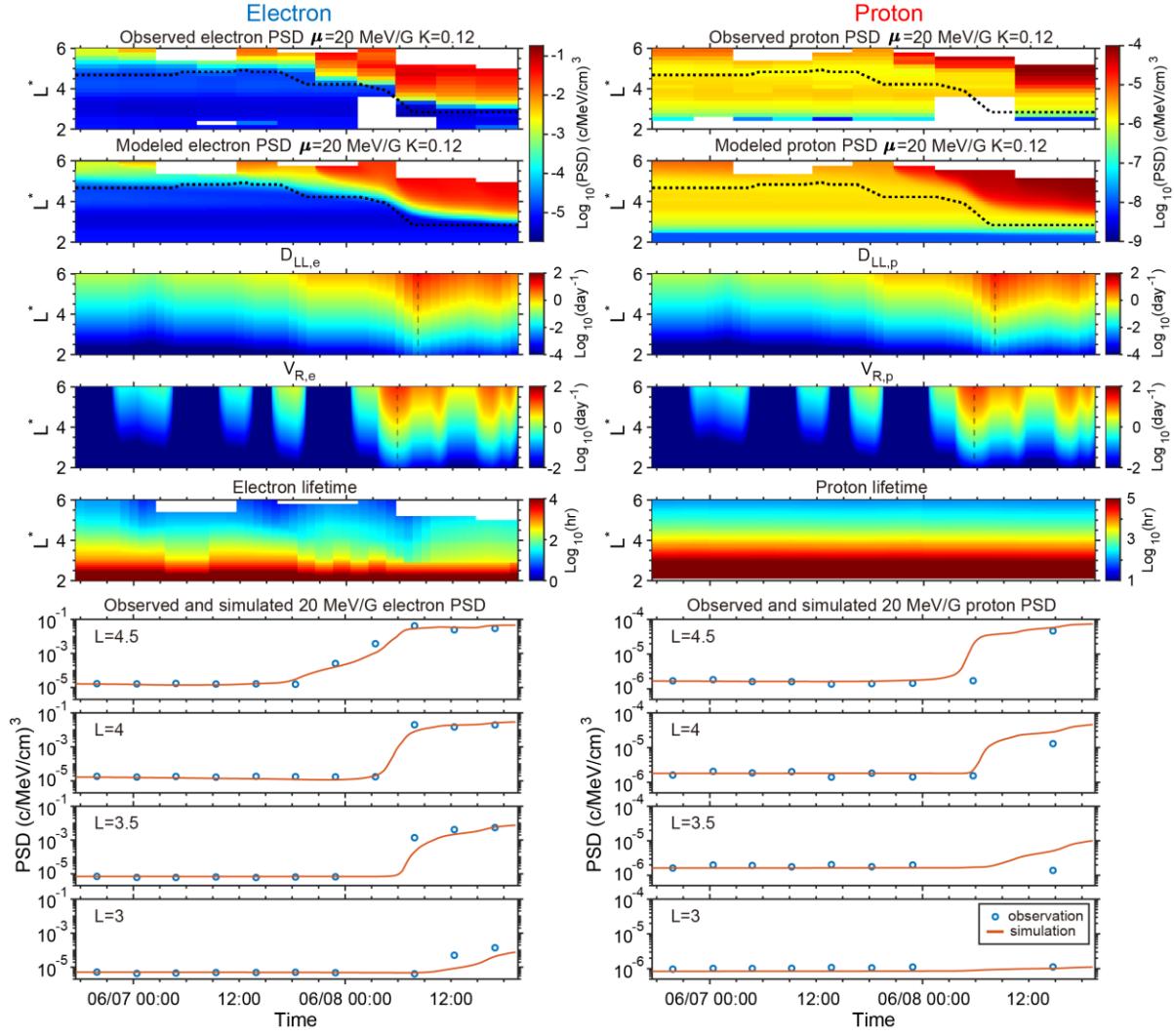
386 that the minimum resonant energy for electrons is higher than 10 MeV. Thus, there is no EMIC
387 wave scattering loss for <100 MeV/G electrons that we focus on in this study.

388

389 To summarize, the proton lifetime model we use in this study is expressed as:

$$\tau_{proton} = \begin{cases} \min(\tau_{EMIC}, \tau_{CE}), 4.1 \leq L \leq 4.3 \text{ for Event 1} \\ \tau_{CE}, \text{other} \end{cases} \quad (12)$$

390

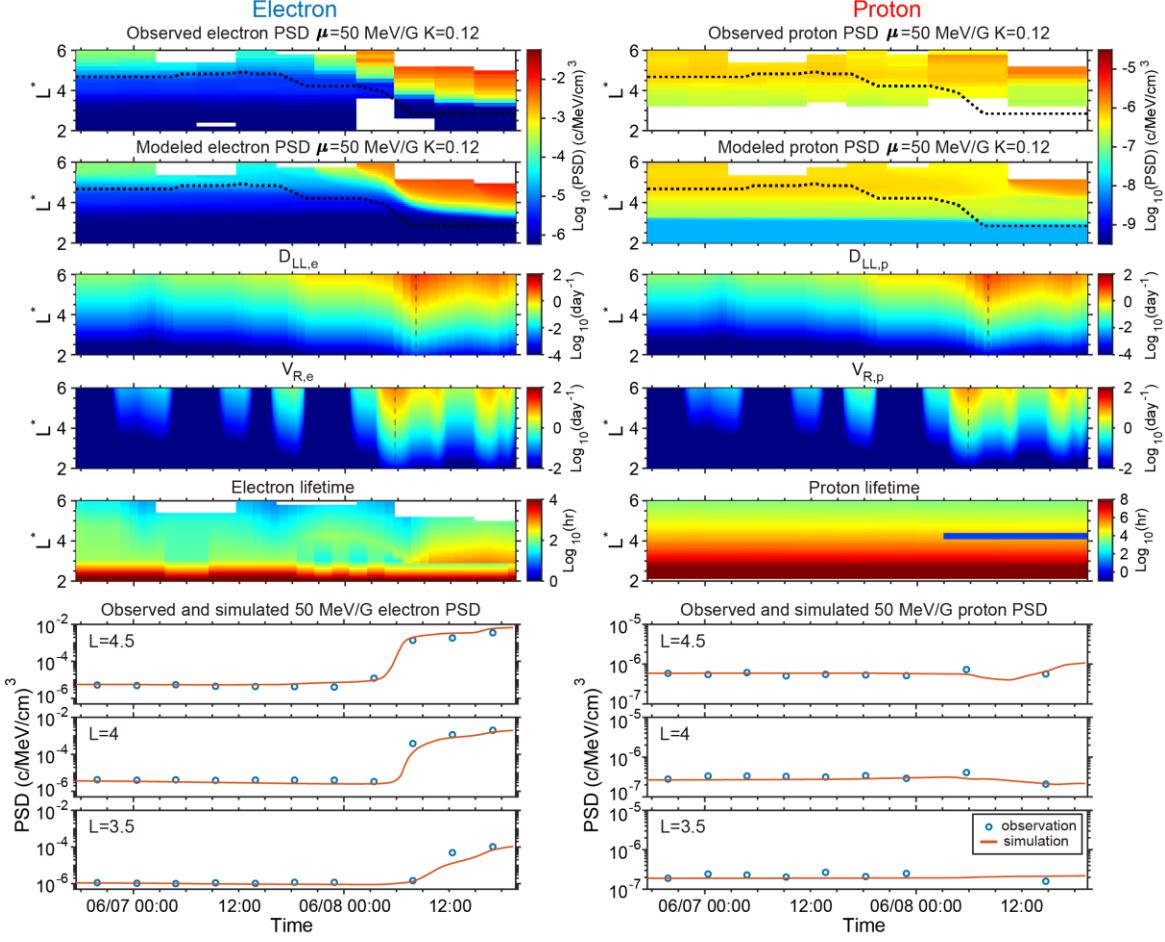

391 where the minimum between τ_{EMIC} and τ_{CE} is taken as the proton lifetime for the L range of 4.1 to
392 4.3 from 04:30 to 19:00 on June 8, 2015. In the absence of EMIC wave effects, only charge
393 exchange loss contributes to the loss of protons.

394 4. Results

395 4.1 Event 1 (2015 June 8 storm)

396 We first present the results of radial diffusion and convection modeling conducted for $\mu=10-100$
397 MeV/G, $K=0.12 G^{1/2}R_E$ electrons and protons for the 2015 June 8 storm. Figure 6 and Figure 7
398 respectively compare the observed and modeled results for 20 MeV/G and 50 MeV/G electrons
399 (left) and protons (right). The top row shows the PSD converted from RBSP A & B flux
400 observations. The second row of panels displays the modeled PSD of the bi-particle model.
401 Black dashed curves indicate the empirical plasmapause location (Carpenter & Anderson, 1992).
402 The third to fifth panels respectively present the radial diffusion coefficient D_{LL} , radial
403 convection coefficient V_R , and particle lifetime during the simulated period for electrons and
404 protons. The last four panels at the bottom of Figure 6 display comparisons between observed
405 (blue circle) and simulated (orange curve) 20 MeV/G electron and proton PSD at $L=3, 3.5, 4$, and
406 4.5. In Figure 7, comparisons for 50 MeV/G and $0.12 G^{1/2}R_E$ particle PSD at $L=3.5, 4$, and 4.5
407 are shown in the same format.

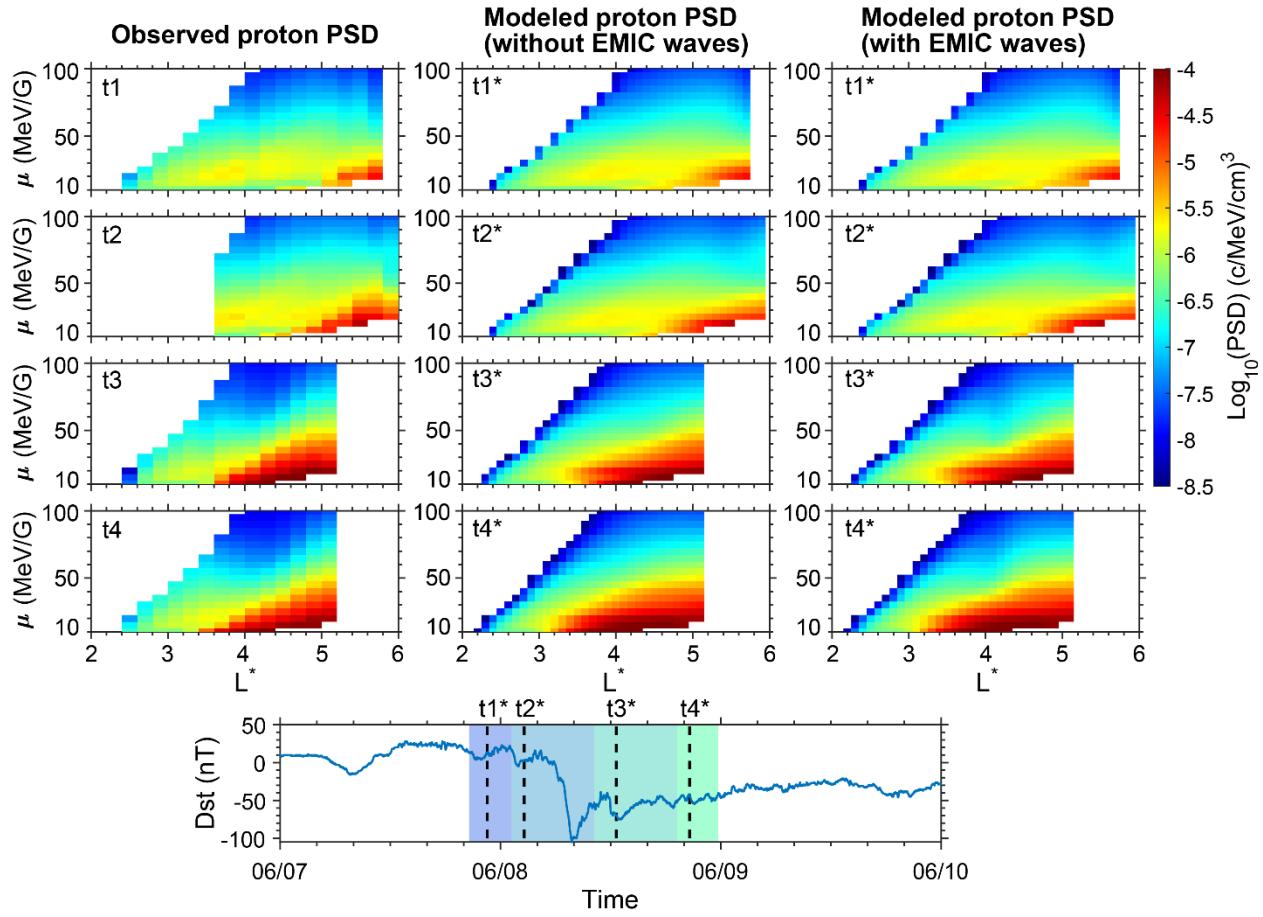
408 Overall, the bi-particle model captures the rapid inward penetration feature for both electrons and
409 protons. The radial diffusion coefficient D_{LL} and convection coefficient V_R for electrons and
410 protons significantly enhanced at the storm main phase. The timescale of the loss process is
411 largely different for the two particle species. For low μ (e.g., 20 MeV/G) protons not resonating
412 with the observed EMIC waves, charge exchange dominates their losses. Generally, electron
413 lifetimes are >1 order of magnitude shorter than those of protons without the presence of EMIC
414 waves. Considering EMIC wave scattering loss, proton lifetime can be shortened to the order of
415 hours. The line plots at the bottom of Figures 6 & 7 display detailed different deep penetration of
416 the two particle species reproduced by the model. For 20 MeV/G, a relatively low μ , both species
417 show similar deep penetration characteristics at $L=4$ & 4.5, in which PSD rapidly enhanced for
418 nearly 2 orders of magnitude. At $L=3$ & 3.5, the relativistic effects on the radial diffusion and
419 convection of electrons are more significant, resulting stronger radial transport of them. Modeled
420 electron PSD there showed consistently more enhancements than the proton PSD, which matches
421 the observation. When μ increases to 50 MeV/G, the difference between electron and proton
422 deep penetrations enlarges as both the relativistic effect and EMIC wave scattering play
423 significant roles. Across a wide L range from 3.5 to 4.5, while electron PSD largely increased for
424 more than two orders of magnitude, the proton PSD remained at the same level as pre-storm.



425

426 *Figure 6. Modeled results for 20 MeV/G electrons (left column) and protons (right column)*
427 *during Event 1. From top to bottom, we display the observed PSD, modeled PSD, radial*
428 *diffusion coefficients, convection coefficients, particle lifetime, and comparisons between*
429 *observation and model at selected L as a function of time.*

430


431

432

433 *Figure 7. Modeled results for 50 MeV/G electrons (left column) and protons (right column)*
 434 *during Event 1 in the same format as Figure 6.*

435 To quantitatively show the impact of relativistic effect on the radial transport of electrons and
 436 protons, we compare the maximum radial diffusion and convection coefficients for the two
 437 species during Event 1 in Figure S5. As indicated by the dashed lines in the third and fourth
 438 panels of Figure 6, diffusion coefficients D_{LL} reach their maximum values around 07:30 UT,
 439 while the convection coefficients V_R peak at around 05:30 UT. In Figure S5, the ratio of the
 440 convection coefficient of proton over that of electron, $V_{R,p}/V_{R,e}$, is shown by the left panel, while
 441 the ratio of the diffusion coefficient, $D_{LL,p}/D_{LL,e}$, is plotted on the right. The coefficients for 10,
 442 20, and 50 MeV/G are compared and presented as a function of L . A general trend for both
 443 $D_{LL,p}/D_{LL,e}$ and $V_{R,p}/V_{R,e}$ is that the ratios continuously decrease when moving to lower L . For 10
 444 MeV/G, at $L=5$, the ratios of diffusion and convection coefficients are close to 1, which is
 445 consistent with the observation that ~80 keV electrons and protons experience flux enhancement
 446 at a similar level. As μ increases from 10 to 50 MeV/G, V_R and D_{LL} for protons become
 447 significantly smaller than those for electrons at all L s. For $\mu=50$ MeV/G, $V_{R,p}$ drops from 80% of
 448 $V_{R,e}$ to 35% moving from $L=5$ to 2, while $D_{LL,p}$ is consistently lower, less than 40% of $D_{LL,e}$
 449 across the L range from 1.5 to 5. Note that the values of $D_{LL,e}$ and $V_{R,e}$ also experience a dramatic
 450 decrease moving to lower L . This indicates that as μ increases the radial diffusion and convection
 451 processes for protons decrease faster than those for electrons. Thus, protons cannot be radially
 452 transported to a low L as electrons.

455 *Figure 8. Comparison between the observed and modeled $\mu=10\text{--}100\text{ MeV/G}$ proton phase space*
 456 *density (PSD) during Event 1. Proton PSD is displayed as a function of L^* and μ for a specific*
 457 *period or epoch. For proton PSD observations on the left, the period marker corresponds to the*
 458 *shaded area in the bottom panel, while the epoch marker for the modeled proton PSD*
 459 *corresponds to the dashed line during the shaded period.*

461 EMIC wave scattering loss contributes to weakening the deep penetration of $\sim 40\text{--}100\text{ MeV/G}$
 462 protons while the same μ electrons are not affected. In Figure 8, we present the comparison
 463 between observed and modeled proton PSD of multiple μ values from $10\text{--}100\text{ MeV/G}$ before,
 464 during and after the June 8 storm. In each subplot, the proton PSD is displayed as a function of
 465 L^* and μ . The time of the observations and simulations proceeds from top to bottom panels. The
 466 left column shows the observed proton PSD variations, the middle and right columns present the
 467 simulated proton PSD without or with EMIC wave losses, respectively. The Dst index is shown
 468 in the bottom panel. The labels ‘t1’ to ‘t4’ denote the averaged period for proton PSD
 469 observations, which are indicated by the shaded region in the bottom panel; ‘t1*’ to ‘t4*’
 470 represent the simulation instants selected within the period of observations, which are marked by
 471 the black dashed lines. From t2 to t3, lower μ protons experience stronger inward transport than
 472 higher μ protons. The ‘no-EMIC-loss’ model performed well reproducing the μ -dependent storm-
 473 time enhancement and inward transport of proton PSD. However, as shown by the ‘t2’ and ‘t3’ of

474 the observed proton PSD, there are some ‘bite-out’ losses for >60 MeV/G protons happening at
475 $L^* \sim 4.2$ on 8 June 2015, which cannot be explained by the ‘no-EMIC-loss’ model. With the
476 EMIC wave effects included, the right column of Figure 8 reproduces such local losses. While
477 <35 MeV/G protons still undergo significant inward transport, the scattering loss due to EMIC
478 waves becomes effective for protons > 35 MeV/G. PSD of >35 MeV/G protons decreased
479 rapidly at $L^* \sim 4.2$ from t_2^* to t_3^* and a clear local ‘bite-out’ feature formed for >60 MeV/G
480 protons, which matches the observation well. As the modeling results suggest, in the absence of
481 EMIC wave scattering loss, ~ 70 MeV/G protons might still experience inward deep penetration
482 to $L^* < 4$; while EMIC scattering effect leads to rapid local loss for relatively high μ protons that
483 deter the deep penetration from extending to $L^* < 4$.

484

485 **4.2 Event 2 (2014 November 4 storm)**

486 A second event, the 2014 November 4 storm, is also selected and modeled to verify that the bi-
487 particle model can reproduce the different deep penetration of electrons and protons during other
488 periods. Unlike Event 1, He+ band EMIC wave activities were not observed by RBSP during the
489 November 4 storm. Therefore, EMIC wave scattering loss is not considered for this event and
490 charge exchange loss is treated as the only loss mechanism for protons. Figure A1 in the
491 appendix shows the model results for 20 MeV/G electrons and protons in the same format as
492 Figure 6. The model captured the electron and proton inward penetrating dynamics to $L < 4$ during
493 the storm main phase. Distinctly from Event 1, the electron and proton PSD values at the
494 beginning of the storm were at a relatively higher level, while the PSD radial profiles at the end
495 of the modeled period became similar for both events. The different deep penetration of electrons
496 and protons is clear from both observation and modeling results at $L = 3-3.5$. In this L range, the
497 electron PSD is enhanced by more than one order of magnitude, while proton PSD is not
498 affected. This shows that the modeled 20 MeV/G electrons can penetrate inward to $L < 3.5$ while
499 protons at the same μ stop inward penetration at $L > 4$. Figure A2 presents the proton model
500 results from 10 to 100 MeV/G in a similar format as Figure 8. Observed PSD is shown in the left
501 column and modeled PSD without EMIC scattering loss is on the right side. The deeper
502 penetration of lower μ protons is well reproduced by the radial diffusion-convection model.

503

504 **5. Discussion**

505 In this study, we extend the energy-dependent convection-diffusion model for electrons by Mei et
506 al. (2023) for protons using the same model but with different coefficients considering the
507 relativistic effect and different loss mechanisms on electrons and protons. The bi-particle model
508 performs well for both electrons and protons for the same events, capturing not only the μ -
509 dependence of each species, but also the difference between the two species. To quantitatively
510 compare how the relativistic effect will affect electrons and protons and lead to different inward
511 transport, we assume that the ULF perturbations interacting with electrons or protons through
512 drift resonance and leading to radial diffusion, are at the same level of intensity. Tong et al.
513 (2024) statistically studied $m > 0$ (eastward propagating) and $m < 0$ (westward propagating) ULF
514 waves based on GOES 13 and 15 measurements: their results showed that the peak values of
515 power spectral density of the two waves are similar. We also considered the relativistic effect on
516 radial convectional transport caused by time-varying large-scale electric fields. In Mei et al.
517 (2023), such electric-field-induced inward transport was quantified by assuming symmetric

518 large-scale electric fields, like the Volland-Stern model. We mainly discussed the contribution of
519 symmetric large-scale electric fields to the different deep penetration of electrons and protons.
520 More localized DC electric fields, like Subauroral Polarization Streams (SAPS) electric fields in
521 radial direction (Califf et al., 2016; Califf et al., 2022; Lejosne et al., 2018; Lin et al., 2022; Zhao
522 et al., 2017), might influence electrons and protons differently and are beyond the scope of this
523 study.

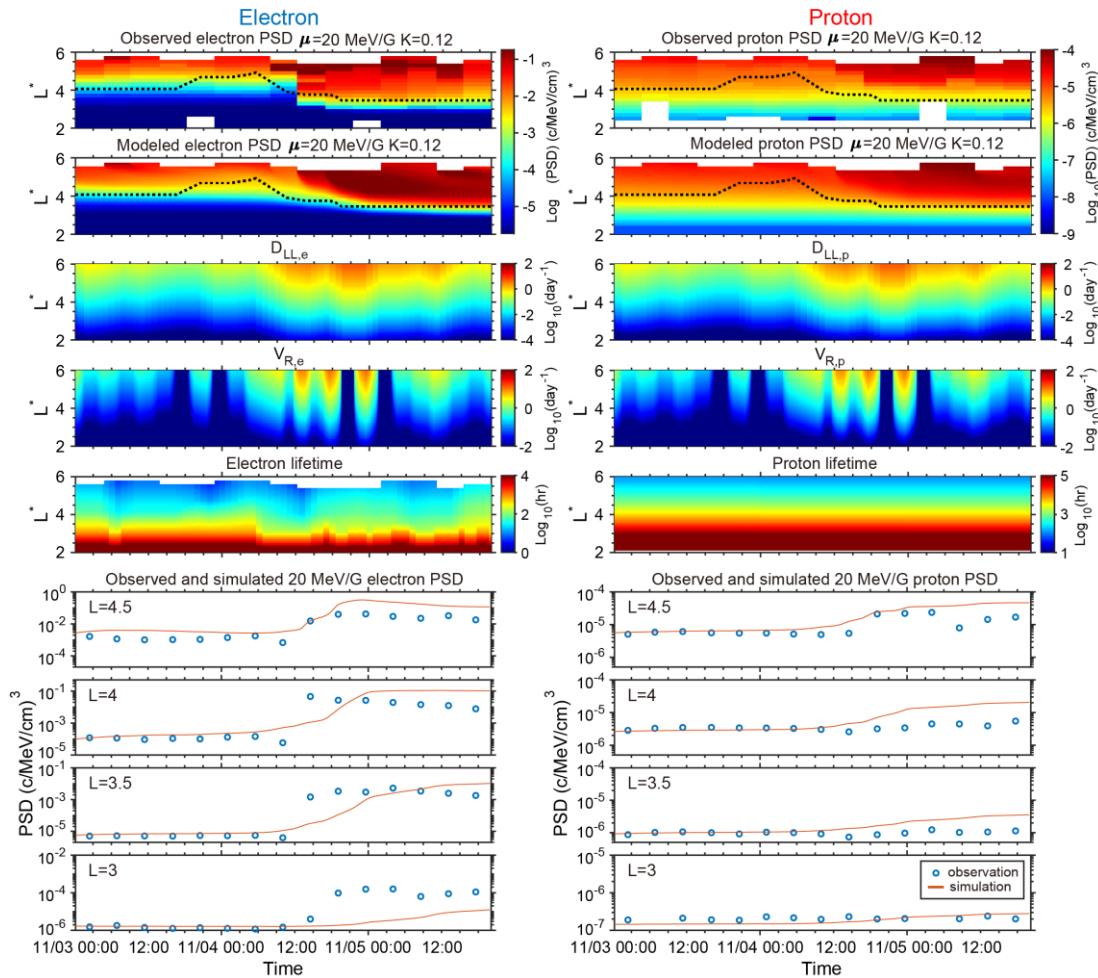
524 Charge exchange and EMIC wave scattering are the two major loss mechanisms considered in
525 the bi-particle model for protons. Charge exchange loss depends on the type of charge exchange,
526 cross section area of protons as a function of energy, and neutral density in exosphere. We
527 compared two types of charge exchange loss, $H^+ - H$ and $H^+ - O$, and showed that the former
528 dominates for radiation belt protons. We used the NRLMSIS 2.0 model to obtain the average
529 hydrogen density at the exobase. Our results suggested that the neutral density variation during
530 storm time does not significantly influence the loss timescales of proton at a fixed μ since the
531 energy-dependence of charge exchange cross section dominates. Loss due to EMIC wave
532 scattering is analyzed and quantified for a particular storm event, during which a localized ‘bite-
533 out’ feature is clearly observed. EMIC wave activity at the same L range have been observed and
534 reported by Hogan et al. (2023), thus we calculated the corresponding pitch angle diffusion
535 coefficients and estimated proton lifetime to quantify the timescale of EMIC wave induced loss.
536 Results suggest that EMIC waves play a significant role in scattering relatively higher μ (>60
537 MeV/G) protons, which prevent them from further penetrating to lower L , while lower μ (<30
538 MeV/G) protons below the minimum resonant energy are not affected. This is consistent with the
539 decreased occurrence of events where deep penetration of protons is observed as μ increases
540 revealed by Zhao et al. (2023), which showed that while ~ 70 deep penetration events of 10
541 MeV/G protons to $L < 4$ were observed over 6 years, very few deep penetration events could be
542 identified for $\mu > 20$ MeV/G. Such a drastic decrease does not exist in electron observations at
543 the same μ , which is consistent with our results that these electrons are outside the resonant
544 region with the observed EMIC waves. Therefore, EMIC wave scattering loss contributes to the
545 sudden drop of proton deep penetration occurrence at high μ .

546

547 **6. Conclusion**

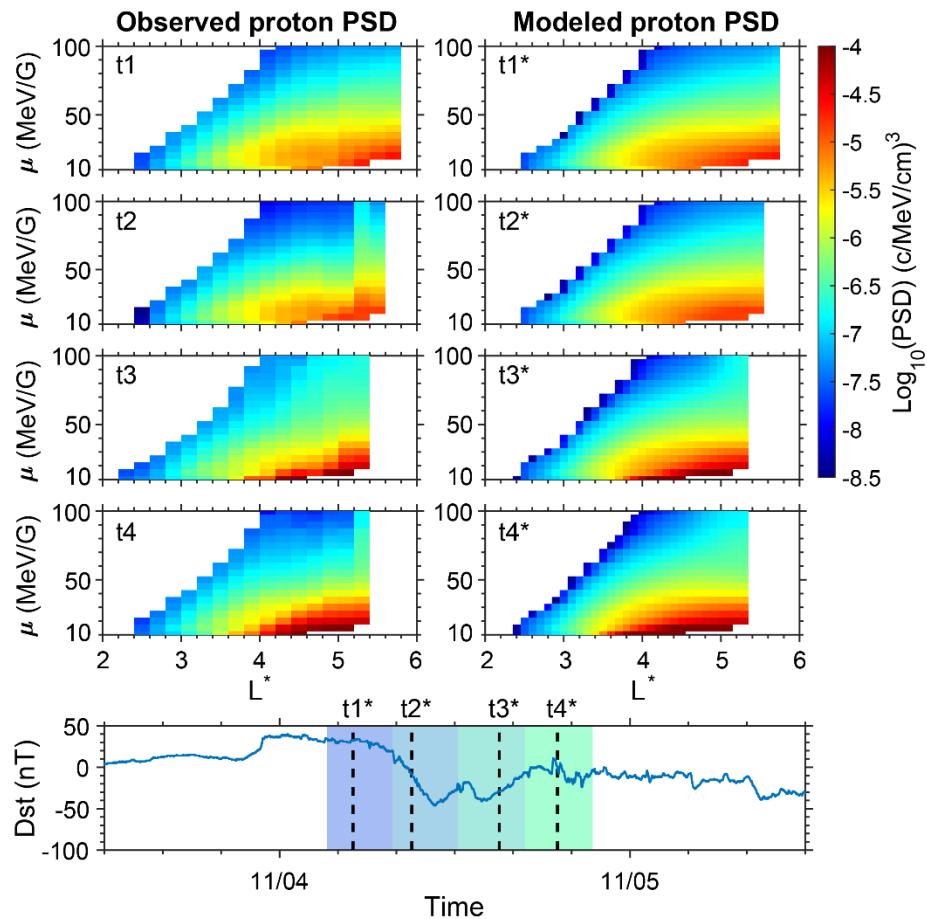
548 As suggested by previous statistical studies, electrons and protons respond differently to
549 geomagnetic storms in terms of their inward penetration depth, time scale and energy-
550 dependence. Considering that the radial transport due to enhanced large-scale electric fields is a
551 significant mechanism for trapped particles to penetrate to $L < 4$, one would expect that the
552 electrons and protons will equally respond to the electric fields and behave similarly. In this
553 study, we considered the relativistic effects on radial transport and different loss mechanisms for
554 electrons and protons in a bi-particle convection-diffusion model and showed that this model can
555 be used to reproduce both deep penetrations of electrons and protons. Based on our modeling
556 results, here we provide explanations for the different dynamic variations for electrons and
557 protons:

558 1. Due to the relativistic effect, electrons drift slower than protons at the same energy, which
559 results in stronger radial diffusion and convection that the protons experience. The drift period


560 difference becomes greater as μ increases or L decreases, thus protons at $\mu>50$ MeV/G tend to
 561 stop their inward transport at higher L than the electrons, while 10 MeV/G electrons and protons
 562 have more similar dynamics. This is consistent with the statistical results from a previous study
 563 which showed that 10 MeV/G proton deep penetration to $L<4$ is less frequently than electron but
 564 still happens, while >20 MeV/G proton deep penetration to $L<4$ is very rare (Zhao et al., 2023).

565 2. EMIC wave scattering loss is quantified and applied to the model for a specific event, during
 566 which EMIC wave activity has been observed by RBSP and reported by previous studies.
 567 Modeling results suggest that during the event, EMIC waves can rapidly scatter 100s of keV
 568 protons at $L\sim 4.2$ on timescales of ~ 0.1 -0.7 day. Such a rapid local loss process prevents the high-
 569 energy protons from being inward transported to lower L and creates a local ‘bite-out’ feature.
 570 On the other hand, 100s of keV electrons are shown to be outside of the resonant region with the
 571 observed EMIC wave, based on computed minimum resonant energies.

572


573 Appendix

574

575

576 *Figure A1. Modeling results for 20 MeV/G electron (left column) and proton (right column)*
 577 *during event 2.*

580 *Figure A2. Comparison between the observed and modeled proton phase space density (PSD) for*
 581 *$\mu = 10-100$ MeV/G during Event 2 in the same format of Figure 8. Modeled PSD $< 10^{-8.5}$*
 582 *(c/MeV/cm)³ is not shown.*

586 Acknowledgements

587 This work was supported by NASA Grant 80NSSC21K0583 and NSF Grant AGS 1834971. H.
 588 Zhao was supported by the NSF Grant AGS 2131012, 2140934, 2338125, and NASA Grant
 589 80NSSC22K0356. We acknowledge the developers of NRLMSIS 2.0 model and the Community
 590 Coordinated Modeling Center (CCMC) for providing simulation results of exobase used in this
 591 study.

593 Data Availability Statement

594 We acknowledge the Van Allen Probes mission, particularly the ECT team for providing the
 595 particle data. Processing and analysis of the MagEIS data was supported by Energetic Particle,
 596 Composition, and Thermal Plasma (RBSP-ECT) investigation funded under NASA's Prime

597 contract no. NAS5-01072. All RBSP-ECT data are publicly available at <https://rbsp-ect.newmexicoconsortium.org/science/DataDirectories.php>.
598

599

600 Reference

601 Baker, D. N., Kanekal, S. G., Hoxie, V., Li, X., Jaynes, A. N., Zhao, H., et al. (2021). The Relativistic Electron-
602 Proton Telescope (REPT) Investigation: Design, Operational Properties, and Science Highlights.
603 *Space Science Reviews*, 217(5).

604 Baker, D. N., Kanekal, S. G., Li, X., Monk, S. P., Goldstein, J., & Burch, J. L. (2004). An extreme distortion of
605 the Van Allen belt arising from the 'Hallowe'en' solar storm in 2003. *Nature*, 432(7019), 878-881.
606 <https://doi.org/10.1038/nature03116>

607 Blake, J. B., Carranza, P. A., Claudepierre, S. G., Clemons, J. H., Crain, W. R., Dotan, Y., et al. (2013). The
608 Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm
609 Probes (RBSP) Spacecraft. *Space Science Reviews*, 179(1-4), 383-421.

610 Califf, S., Li, X., Wolf, R. A., Zhao, H., Jaynes, A. N., Wilder, F. D., et al. (2016). Large - amplitude electric
611 fields in the inner magnetosphere: Van Allen Probes observations of subauroral polarization
612 streams. *Journal of Geophysical Research: Space Physics*, 121(6), 5294-5306.

613 Califf, S., Li, X., Zhao, H., Kellerman, A., Sarris, T. E., Jaynes, A., & Malaspina, D. M. (2017). The role of the
614 convection electric field in filling the slot region between the inner and outer radiation belts.
615 *Journal of Geophysical Research: Space Physics*, 122(2), 2051-2068.

616 Califf, S., Zhao, H., Gkioulidou, M., Manweiler, J. W., Mitchell, D. G., & Tian, S. (2022). Multi - Event Study
617 on the Connection Between Subauroral Polarization Streams and Deep Energetic Particle
618 Injections in the Inner Magnetosphere. *Journal of Geophysical Research: Space Physics*, 127(2).

619 Carpenter, D. L., & Anderson, R. R. (1992). An ISEE/whistler model of equatorial electron density in the
620 magnetosphere. *Journal of Geophysical Research*, 97(A2), 1097-1108.
621 <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/91JA01548>

622 Chamberlain, J. W. (1963). Planetary Coronae and Atmospheric Evaporation. *Planetary and Space
623 Science*, 11(8), 901-960. <Go to ISI>://WOS:A1963XD58900005

624 Emmert, J. T., Drob, D. P., Picone, J. M., Siskind, D. E., Jones, M., Mlynczak, M. G., et al. (2021). NRLMSIS
625 2.0: A Whole - Atmosphere Empirical Model of Temperature and Neutral Species Densities.
626 *Earth and Space Science*, 8(3).

627 Engebretson, M. J., Posch, J. L., Braun, D. J., Li, W., Ma, Q., Kellerman, A. C., et al. (2018). EMIC Wave
628 Events During the Four GEM QARBM Challenge Intervals. *Journal of Geophysical Research: Space
629 Physics*, 123(8), 6394-6423.

630 Fok, M. C., Kozyra, J. U., Nagy, A. F., & Cravens, T. E. (1991). Lifetime of ring current particles due to
631 coulomb collisions in the plasmasphere. *Journal of Geophysical Research*, 96(A5).

632 Gkioulidou, M., Ohtani, S., Mitchell, D. G., Ukhorskiy, A. Y., Reeves, G. D., Turner, D. L., et al. (2015).
633 Spatial structure and temporal evolution of energetic particle injections in the inner
634 magnetosphere during the 14 July 2013 substorm event. *Journal of Geophysical Research: Space
635 Physics*, 120(3), 1924-1938.

636 Gkioulidou, M., Ukhorskiy, A. Y., Mitchell, D. G., & Lanzerotti, L. J. (2016). Storm time dynamics of ring
637 current protons: Implications for the long - term energy budget in the inner magnetosphere.
638 *Geophysical Research Letters*, 43(10), 4736-4744.

639 Gkioulidou, M., Ukhorskiy, A. Y., Mitchell, D. G., Sotirelis, T., Mauk, B. H., & Lanzerotti, L. J. (2014). The
640 role of small - scale ion injections in the buildup of Earth's ring current pressure: Van Allen
641 Probes observations of the 17 March 2013 storm. *Journal of Geophysical Research: Space
642 Physics*, 119(9), 7327-7342.

643 Hamilton, D. C., Gloeckler, G., Ipavich, F. M., Stüdemann, W., Wilken, B., & Kremser, G. (1988). Ring
644 current development during the great geomagnetic storm of February 1986. *Journal of*
645 *Geophysical Research*, 93(A12).

646 Hogan, B., Li, X., Xiang, Z., Zhao, H., Mei, Y., O'Brien, D., et al. (2023). On the Dynamics of Ultrarelativistic
647 Electrons (>2 MeV) Near $L^* = 3.5$ During 8 June 2015. *Journal of Geophysical Research: Space*
648 *Physics*, 128(11).

649 Jordanova, V. K., Albert, J., & Miyoshi, Y. (2008). Relativistic electron precipitation by EMIC waves from
650 self - consistent global simulations. *Journal of Geophysical Research: Space Physics*, 113(A3).

651 Jordanova, V. K., Farrugia, C. J., Thorne, R. M., Khazanov, G. V., Reeves, G. D., & Thomsen, M. F. (2001).
652 Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the
653 May 14–16, 1997, storm. *Journal of Geophysical Research: Space Physics*, 106(A1), 7-22.

654 Keika, K., Nosé, M., Brandt, P. C., Ohtani, S., Mitchell, D. G., & Roelof, E. C. (2006). Contribution of charge
655 exchange loss to the storm time ring current decay: IMAGE/HENA observations. *Journal of*
656 *Geophysical Research*, 111(A11).

657 Kersten, T., Horne, R. B., Glauert, S. A., Meredith, N. P., Fraser, B. J., & Grew, R. S. (2014). Electron losses
658 from the radiation belts caused by EMIC waves. *Journal of Geophysical Research: Space Physics*,
659 119(11), 8820-8837.

660 Khoo, L. Y., Li, X., Zhao, H., Sarris, T. E., Xiang, Z., Zhang, K., et al. (2018). On the Initial Enhancement of
661 Energetic Electrons and the Innermost Plasmapause Locations: Coronal Mass Ejection - Driven
662 Storm Periods. *Journal of Geophysical Research: Space Physics*, 123(11), 9252-9264.

663 Khoo, L. Y., Li, X., Zhao, H., Thaller, S. A., & Hogan, B. (2021). Multi - Event Studies of Sudden Energetic
664 Electron Enhancements in the Inner Magnetosphere and Its Association With Plasmapause
665 Positions. *Journal of Geophysical Research: Space Physics*, 126(11).

666 Kistler, L. M., Ipavich, F. M., Hamilton, D. C., Gloeckler, G., Wilken, B., Kremser, G., & Stüdemann, W.
667 (1989). Energy spectra of the major ion species in the ring current during geomagnetic storms.
668 *Journal of Geophysical Research*, 94(A4).

669 Lejosne, S., Kunduri, B. S. R., Mozer, F. S., & Turner, D. L. (2018). Energetic Electron Injections Deep Into
670 the Inner Magnetosphere: A Result of the Subauroral Polarization Stream (SAPS) Potential Drop.
671 *Geophysical Research Letters*, 45(9), 3811-3819.

672 Lenchek, A. M., S. F. Singer, and R. C. Wentworth (1961), Geomagnetically trapped electrons from cosmic
673 ray albedo neutrons, *J. Geophys. Res.*, 66(12), 4027–4046, doi:10.1029/JZ066i012p04027.

674 Li, X., Baker, D. N., O'Brien, T. P., Xie, L., & Zong, Q. G. (2006). Correlation between the inner edge of
675 outer radiation belt electrons and the innermost plasmapause location. *Geophysical Research*
676 *Letters*, 33(14), L14107.

677 Lin, D., Wang, W., Merkin, V. G., Huang, C., Oppenheim, M., Sorathia, K., et al. (2022). Origin of Dawnside
678 Subauroral Polarization Streams During Major Geomagnetic Storms. *AGU Advances*, 3(4).

679 Lindsay, B. G., & Stebbings, R. F. (2005). Charge transfer cross sections for energetic neutral atom data
680 analysis. *Journal of Geophysical Research: Space Physics*, 110(A12).

681 Liu, W., Tu, W., Li, X., Sarris, T., Khotyaintsev, Y., Fu, H., et al. (2016). On the calculation of electric
682 diffusion coefficient of radiation belt electrons with in situ electric field measurements by
683 THEMIS. *Geophysical Research Letters*, 43(3), 1023-1030.

684 Lyu, X., Ma, Q., Tu, W., Li, W., & Capannolo, L. (2022). Modeling the Simultaneous Dropout of Energetic
685 Electrons and Protons by EMIC Wave Scattering. *Geophysical Research Letters*, 49(20).

686 Lyu, X., & Tu, W. (2022). Modeling the Dynamics of Energetic Protons in Earth's Inner Magnetosphere.
687 *Journal of Geophysical Research: Space Physics*, 127(3).

688 Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., & Ukhorskiy, A. (2013). Science
689 Objectives and Rationale for the Radiation Belt Storm Probes Mission. *Space Science Reviews*,
690 179(1-4), 3-27.

691 Mei, Y., Li, X., Zhao, H., Sarris, T., Khoo, L., Hogan, B., et al. (2023). On the Energy - Dependent Deep
692 ($L < 3.5$) Penetration of Radiation Belt Electrons. *Geophysical Research Letters*, 50(10).

693 Meredith, N. P., Horne, R. B., Glauert, S. A., Thorne, R. M., Summers, D., Albert, J. M., & Anderson, R. R.
694 (2006). Energetic outer zone electron loss timescales during low geomagnetic activity. *Journal of
695 Geophysical Research: Space Physics*, 111(A5).

696 Mitchell, D. G., Lanzerotti, L. J., Kim, C. K., Stokes, M., Ho, G., Cooper, S., et al. (2013). Radiation Belt
697 Storm Probes Ion Composition Experiment (RBSPICE). *Space Science Reviews*, 179(1-4), 263-308.

698 Ni, B., Cao, X., Zou, Z., Zhou, C., Gu, X., Bortnik, J., et al. (2015). Resonant scattering of outer zone
699 relativistic electrons by multiband EMIC waves and resultant electron loss time scales. *Journal of
700 Geophysical Research: Space Physics*, 120(9), 7357-7373.

701 Ni, B., Thorne, R. M., Meredith, N. P., Horne, R. B., & Shprits, Y. Y. (2011). Resonant scattering of plasma
702 sheet electrons leading to diffuse auroral precipitation: 2. Evaluation for whistler mode chorus
703 waves. *Journal of Geophysical Research: Space Physics*, 116(A4), n/a-n/a.

704 Ni, B., Thorne, R. M., Shprits, Y. Y., & Bortnik, J. (2008). Resonant scattering of plasma sheet electrons by
705 whistler-mode chorus: Contribution to diffuse auroral precipitation. *Geophysical Research
706 Letters*, 35(11).

707 Ni, B., Zhang, Y., & Gu, X. (2023). Identification of ring current proton precipitation driven by scattering of
708 electromagnetic ion cyclotron waves. *Fundamental Research*, 3(2), 257-264.

709 Orlova, K., & Shprits, Y. (2014). Model of lifetimes of the outer radiation belt electrons in a realistic
710 magnetic field using realistic chorus wave parameters. *Journal of Geophysical Research: Space
711 Physics*, 119(2), 770-780.

712 Qin, M., Hudson, M., Li, Z., Millan, R., Shen, X., Shprits, Y., et al. (2019). Investigating Loss of Relativistic
713 Electrons Associated With EMIC Waves at Low L Values on 22 June 2015. *Journal of Geophysical
714 Research: Space Physics*, 124(6), 4022-4036.

715 Reeves, G. D., Friedel, R. H., Larsen, B. A., Skoug, R. M., Funsten, H. O., Claudepierre, S. G., et al. (2016).
716 Energy-dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot
717 regions. *Journal of Geophysical Research: Space Physics*, 121(1), 397-412.
718 <https://www.ncbi.nlm.nih.gov/pubmed/27818855>

719 Roederer, J. G. (1970). *Dynamics of geomagnetically trapped radiation*. Springer-Verlag.

720 Schulz, M., & Lanzerotti, L. J. (1974). Adiabatic Invariants and Magnetospheric Models. In M. Schulz & L.
721 J. Lanzerotti (Eds.), *Particle Diffusion in the Radiation Belts* (pp. 10-45). Berlin, Heidelberg:
722 Springer Berlin Heidelberg.

723 Sheeley, B. W., Moldwin, M. B., Rassoul, H. K., & Anderson, R. R. (2001). An empirical plasmasphere and
724 trough density model: CRRES observations. *Journal of Geophysical Research: Space Physics*,
725 106(A11), 25631-25641.

726 Sheldon, R. B., & Hamilton, D. C. (1993). Ion transport and loss in the Earth's quiet ring current: 1. Data
727 and standard model. *Journal of Geophysical Research: Space Physics*, 98(A8), 13491-13508.

728 Shprits, Y., Drozdov, A. Y., Spasojevic, M., Kellerman, A. C., Usanova, M. E., Engebretson, M. J., et al.
729 (2016). Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts. *Nat
730 Commun*, 7, 12883. <https://www.ncbi.nlm.nih.gov/pubmed/27678050>

731 Shprits, Y., Kellerman, A., Aseev, N., Drozdov, A. Y., & Michaelis, I. (2017). Multi - MeV electron loss in the
732 heart of the radiation belts. *Geophysical Research Letters*, 44(3), 1204-1209.

733 Shprits, Y., & Ni, B. (2009). Dependence of the quasi - linear scattering rates on the wave normal
734 distribution of chorus waves. *Journal of Geophysical Research: Space Physics*, 114(A11).

735 Smith, P. H., & Bewtra, N. K. (1978). Charge-Exchange Lifetimes for Ring Current Ions. *Space Science
736 Reviews*, 22(3), 301-318. [<Go to ISI>://WOS:A1978GF13200002](https://doi.org/10.1007/BF0013200002)

737 Smith, P. H., Hoffman, R. A., & Fritz, T. A. (1976). Ring current proton decay by charge exchange. *Journal
738 of Geophysical Research*, 81(16), 2701-2708.

739 Spence, H. E., Reeves, G. D., Baker, D. N., Blake, J. B., Bolton, M., Bourdarie, S., et al. (2013). Science
740 Goals and Overview of the Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition,
741 and Thermal Plasma (ECT) Suite on NASA's Van Allen Probes Mission. *Space Science Reviews*,
742 179(1-4), 311-336.

743 Summers, D., Ni, B., & Meredith, N. P. (2007). Timescales for radiation belt electron acceleration and loss
744 due to resonant wave - particle interactions: 1. Theory. *Journal of Geophysical Research: Space
745 Physics*, 112(A4).

746 Thorne, R. M., Li, W., Ni, B., Ma, Q., Bortnik, J., Baker, D. N., et al. (2013). Evolution and slow decay of an
747 unusual narrow ring of relativistic electrons near $L \sim 3.2$ following the September 2012 magnetic
748 storm. *Geophysical Research Letters*, 40(14), 3507-3511.
749 <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/grl.50627>

750 Tong, X., Liu, W., Zhang, D., Sarris, T., Li, X., Zhang, Z., & Yan, L. (2024). Statistical Study on the Azimuthal
751 Mode Number of Pc5 ULF Wave in the Inner Magnetosphere. *Journal of Geophysical Research: Space
752 Physics*, 129(2).

753 Tsyganenko, N. A., & Sitnov, M. I. (2005). Modeling the dynamics of the inner magnetosphere during
754 strong geomagnetic storms. *Journal of Geophysical Research-Space Physics*, 110(A3). <https://doi.org/10.1029/2004JA010702> <Go to
755 ISI>://WOS:000227880500007

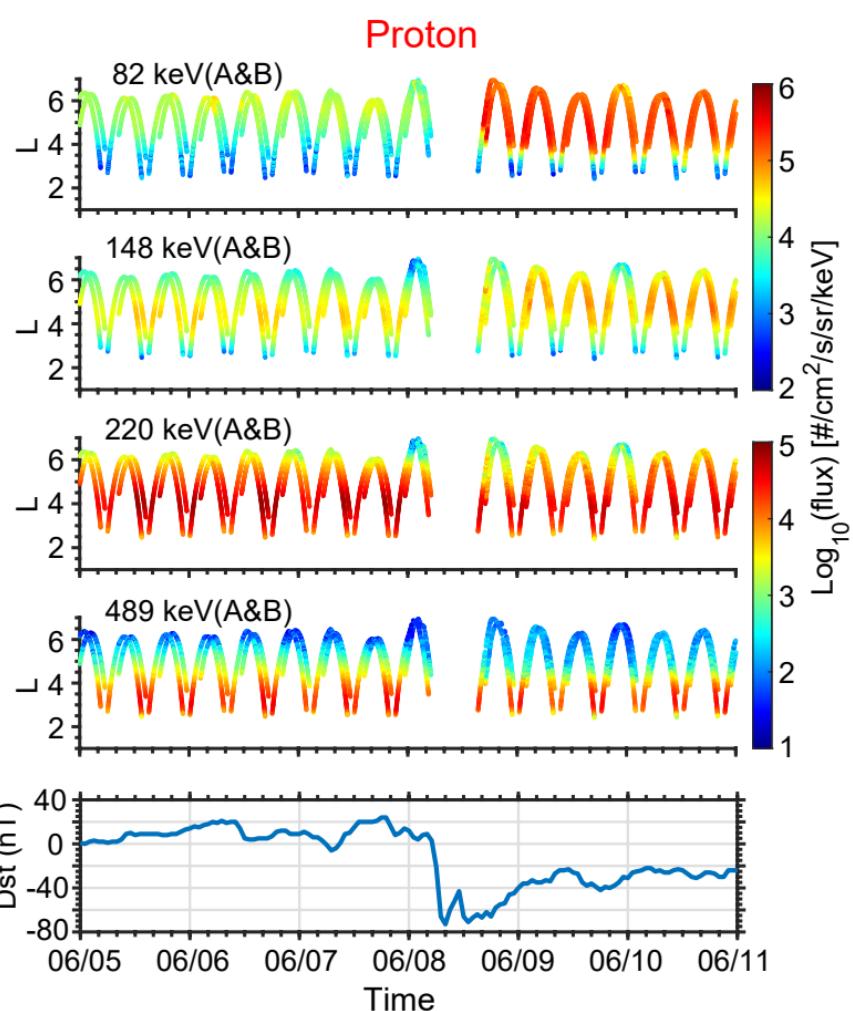
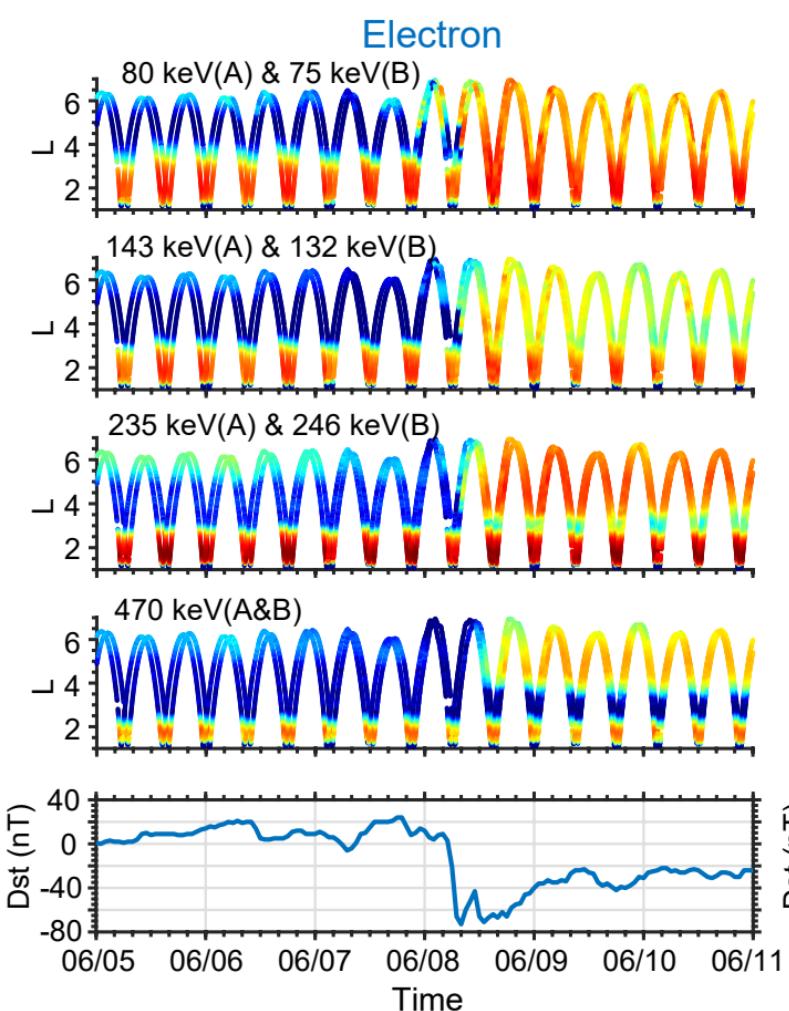
756 Turner, D. L., O'Brien, T. P., Fennell, J. F., Claudepierre, S. G., Blake, J. B., Jaynes, A. N., et al. (2017).
757 Investigating the source of near - relativistic and relativistic electrons in Earth's inner radiation
758 belt. *Journal of Geophysical Research: Space Physics*, 122(1), 695-710.

759 Usanova, M. E., Mann, I. R., Kale, Z. C., Rae, I. J., Sydora, R. D., Sandanger, M., et al. (2010). Conjugate
760 ground and multisatellite observations of compression - related EMIC Pc1 waves and associated
761 proton precipitation. *Journal of Geophysical Research: Space Physics*, 115(A7).

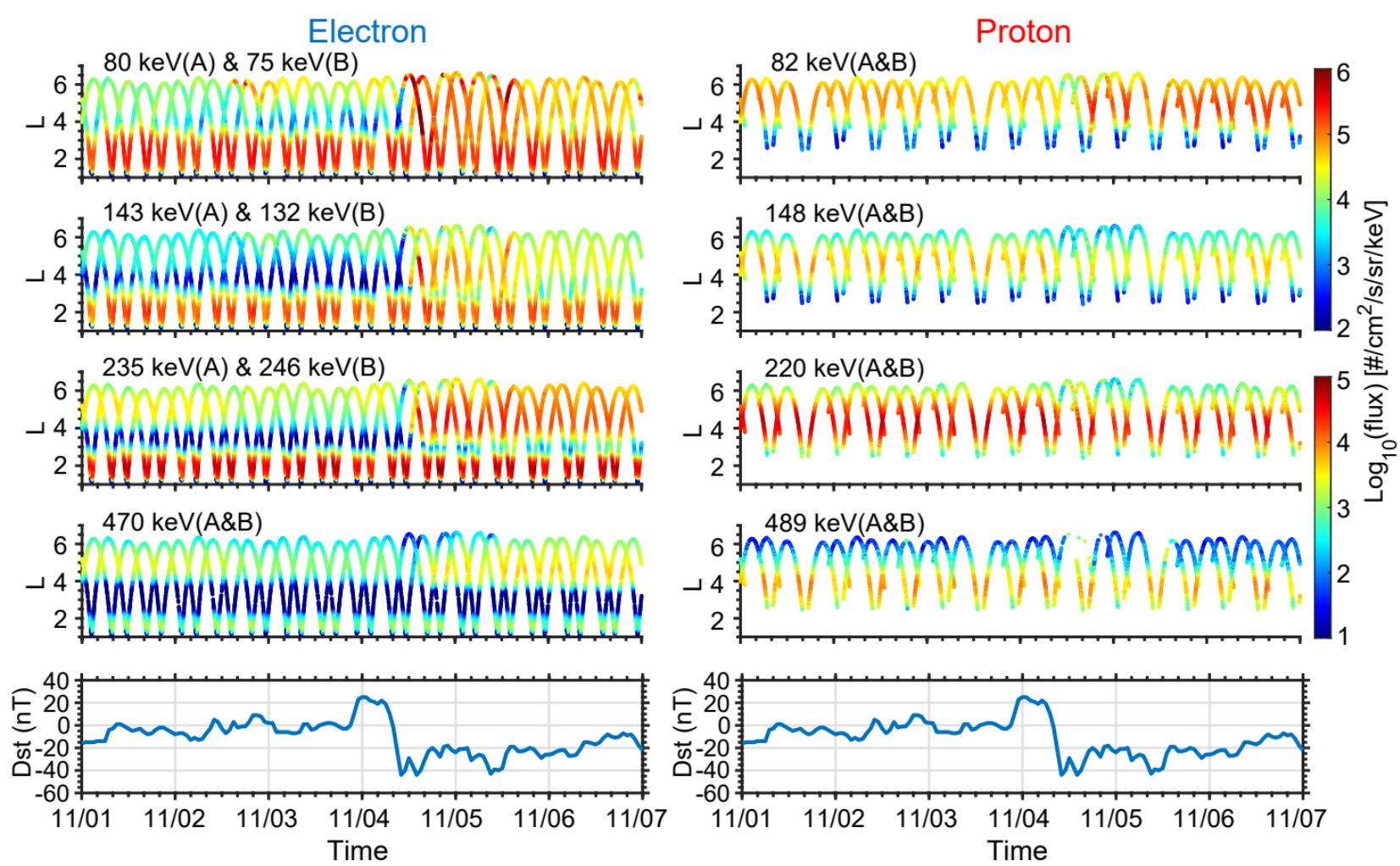
762 Xiang, Z., Tu, W., Li, X., Ni, B., Morley, S. K., & Baker, D. N. (2017). Understanding the Mechanisms of
763 Radiation Belt Dropouts Observed by Van Allen Probes. *Journal of Geophysical Research: Space
764 Physics*, 122(10), 9858-9879.

765 Zhao, H., Baker, D. N., Califf, S., Li, X., Jaynes, A. N., Leonard, T., et al. (2017). Van Allen Probes
766 Measurements of Energetic Particle Deep Penetration Into the Low L Region ($L < 4$) During the
767 Storm on 8 April 2016. *Journal of Geophysical Research: Space Physics*, 122(12).

768 Zhao, H., Califf, S. T., Goyal, R., Li, X., Gkioulidou, M., Manweiler, J. W., & Krantz, S. (2023). Statistical
769 Analysis of the Differential Deep Penetration of Energetic Electrons and Protons into the Low L
770 Region ($L < 4$). *Journal of Geophysical Research: Space Physics*, 128(4).



771 Zhao, H., & Li, X. (2013). Modeling energetic electron penetration into the slot region and inner radiation
772 belt. *Journal of Geophysical Research: Space Physics*, 118(11), 6936-6945.
773 <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013JA019240>

774 Zhao, H., Li, X., Baker, D. N., Fennell, J. F., Blake, J. B., Larsen, B. A., et al. (2015). The evolution of ring
775 current ion energy density and energy content during geomagnetic storms based on Van Allen
776 Probes measurements. *Journal of Geophysical Research: Space Physics*, 120(9), 7493-7511.


777 Zhu, Q., Cao, X., Gu, X., Ni, B., Xiang, Z., Fu, S., et al. (2021). Empirical Loss Timescales of Slot Region
778 Electrons due to Plasmaspheric Hiss Based on Van Allen Probes Observations. *Journal of
779 Geophysical Research: Space Physics*, 126(4).

780

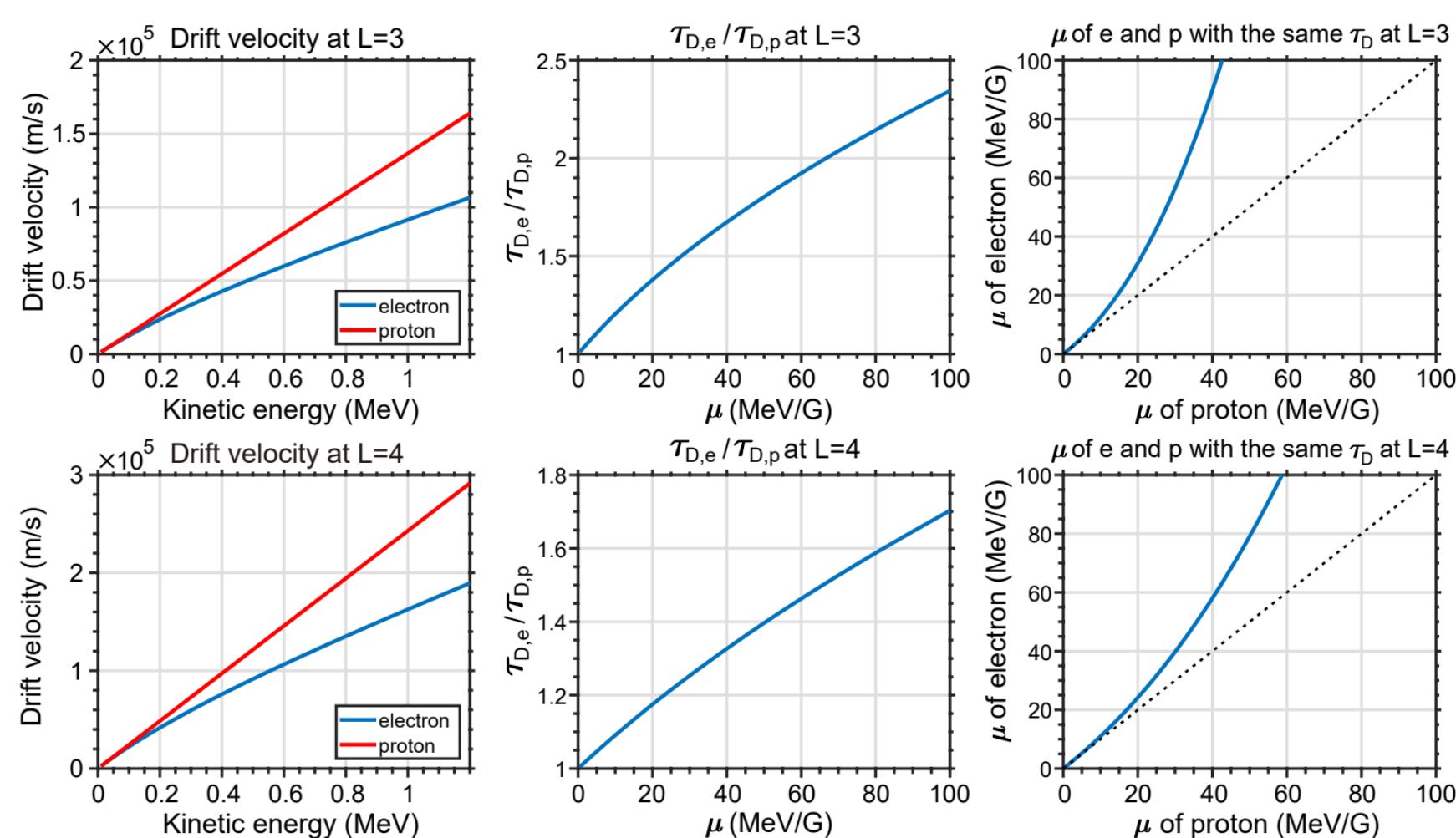

Figure 1.

Figure 2.

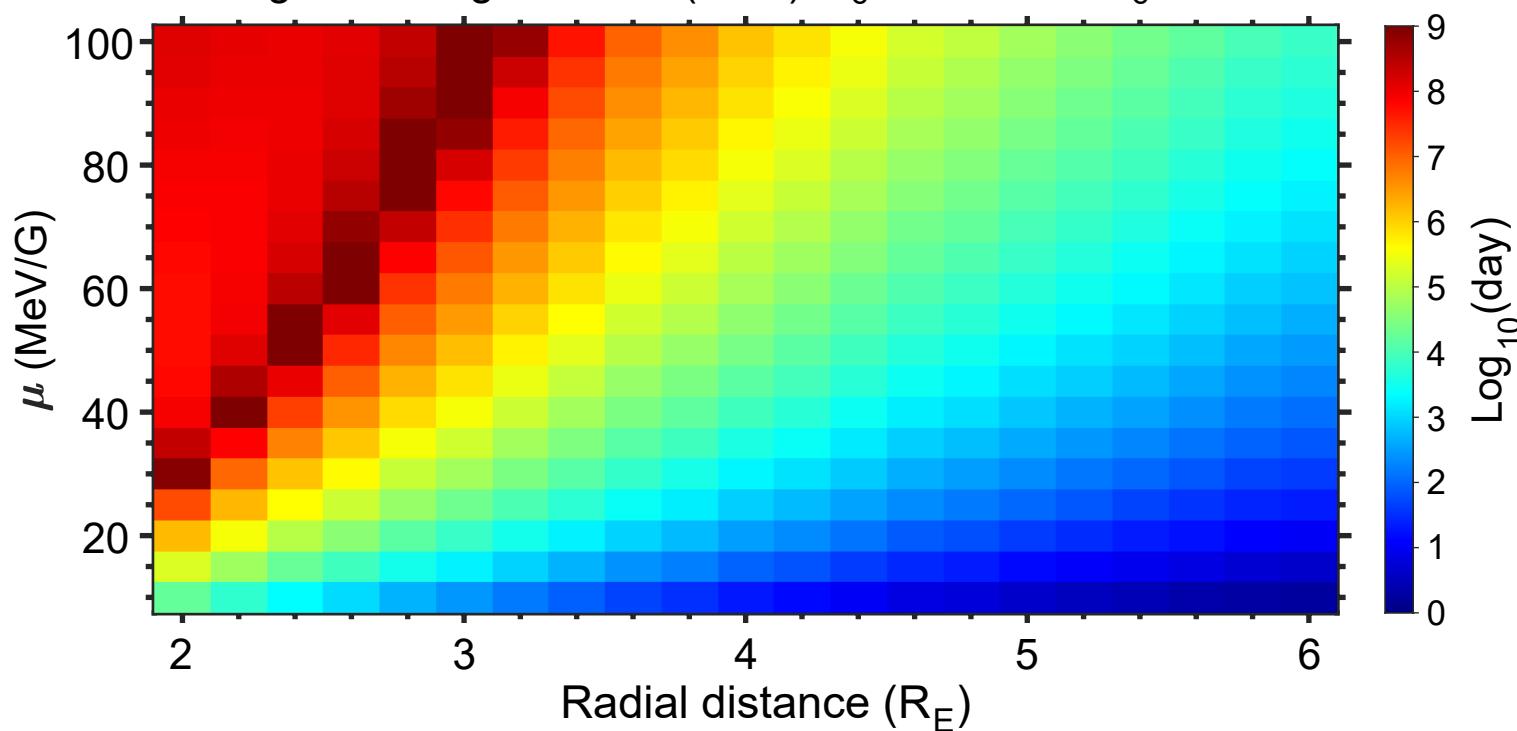


Figure 3.

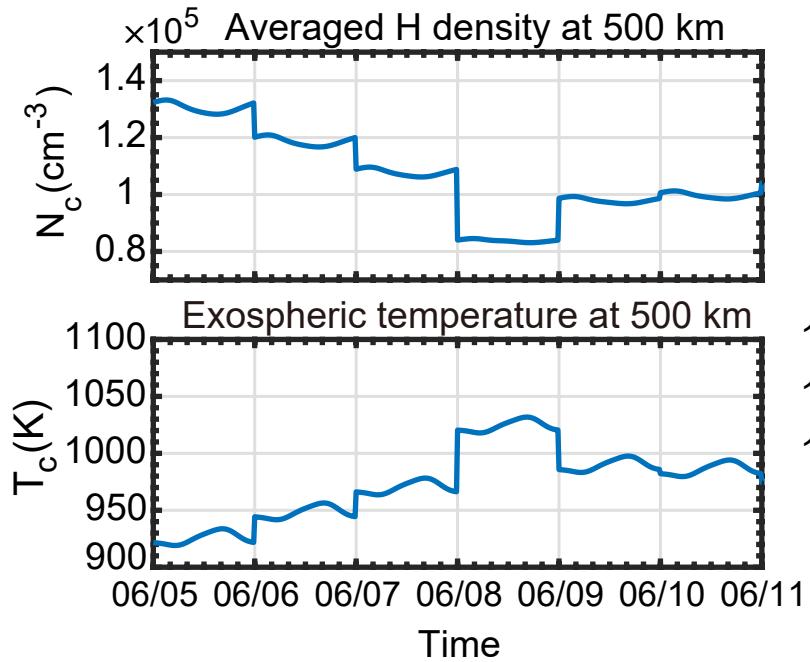
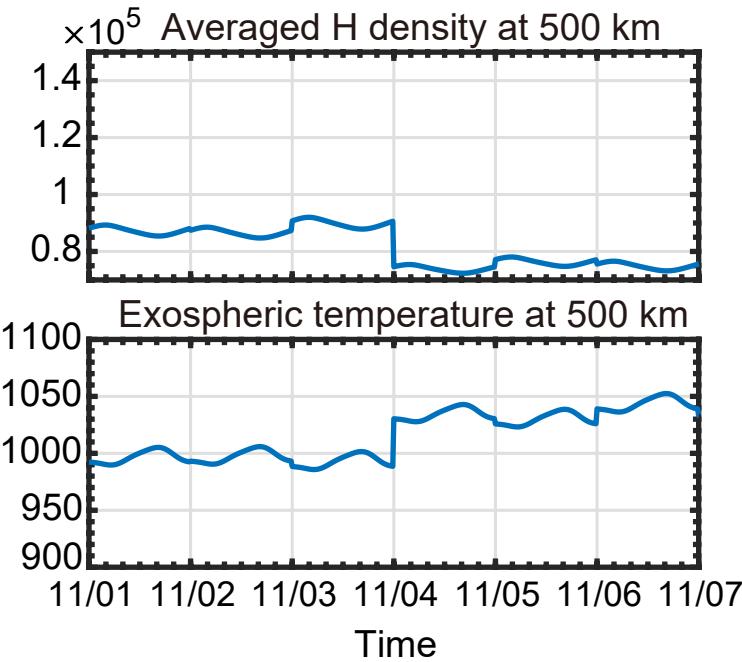
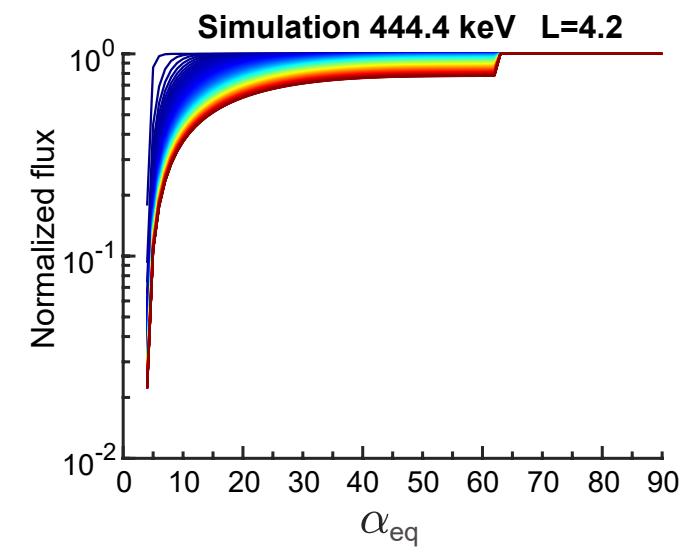
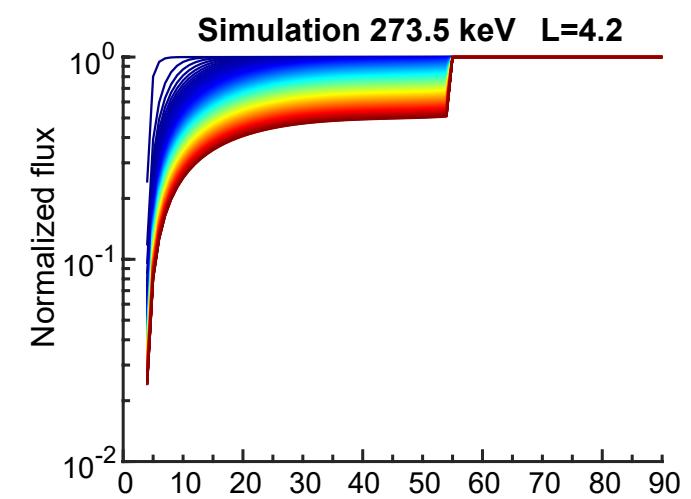
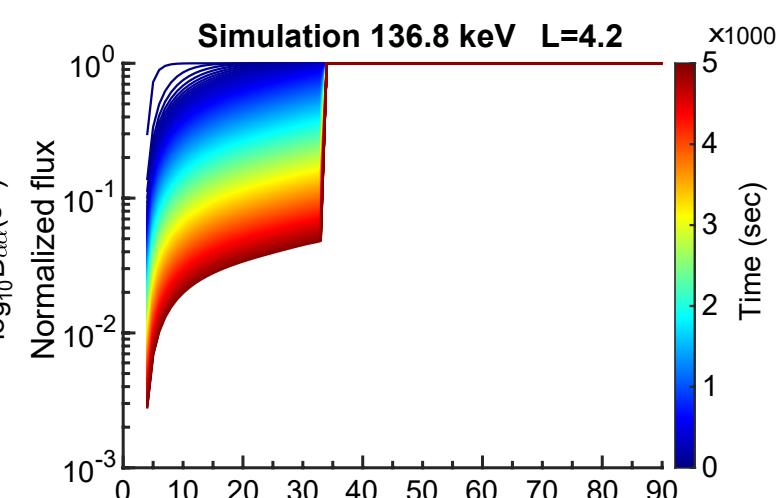
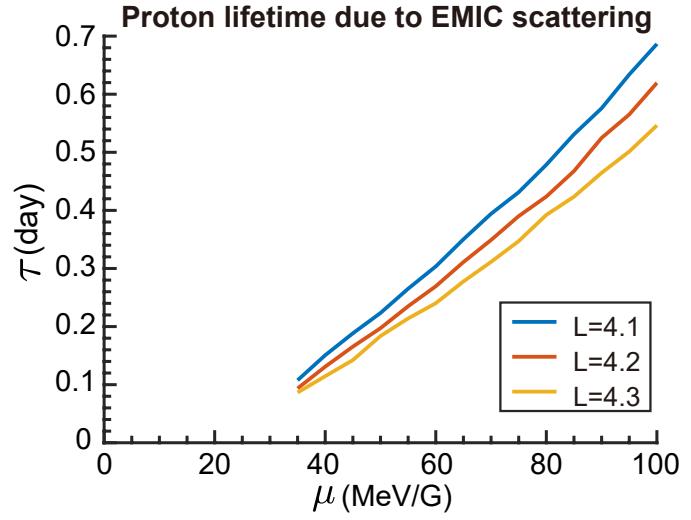
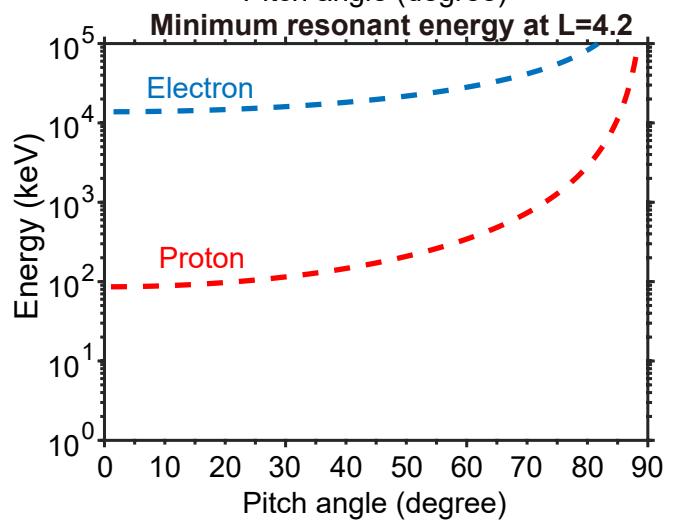
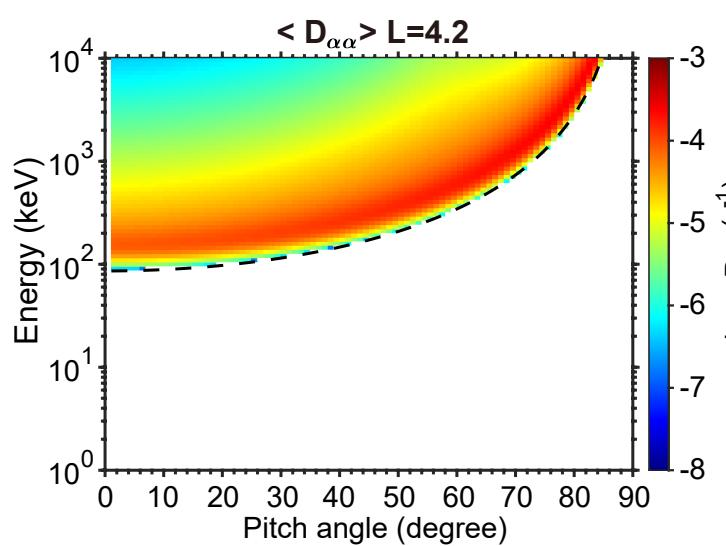


Figure4.


Charge exchange lifetime ($H^+ - H$), $N_c = 4 \times 10^4 \text{ cm}^{-3}$, $T_c = 1000 \text{ K}$







Event 1

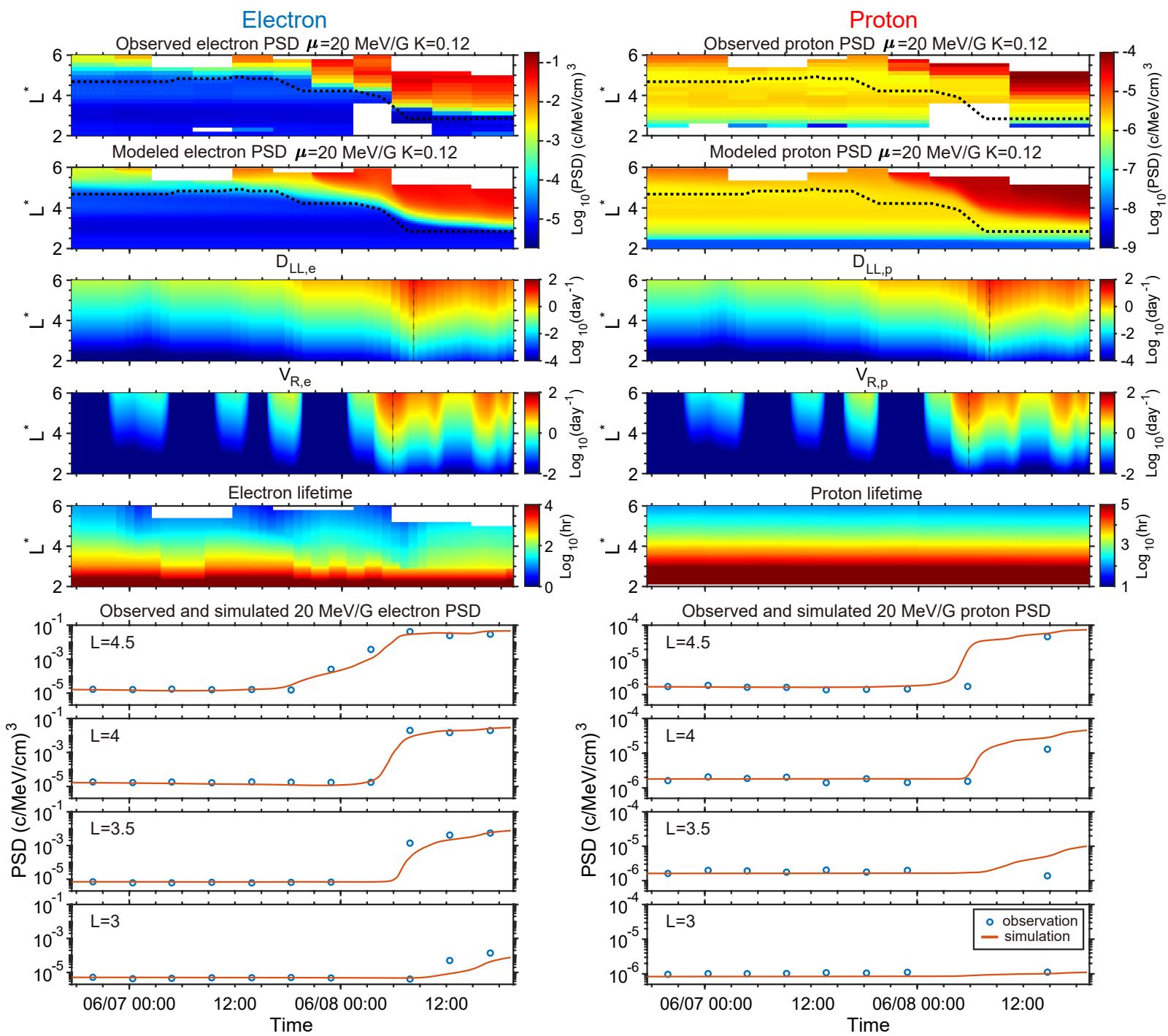
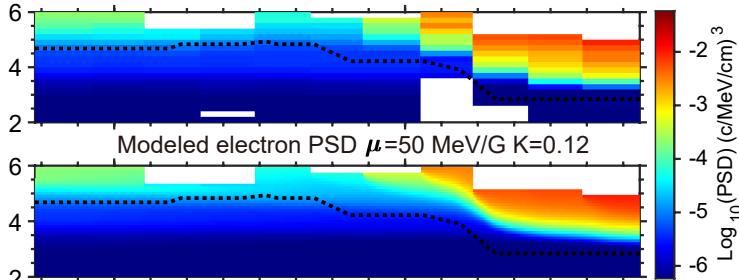
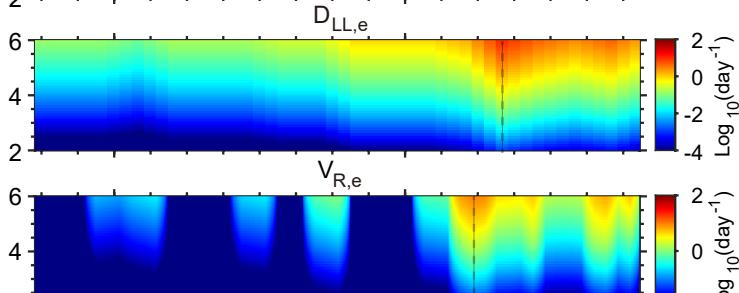

Event 2

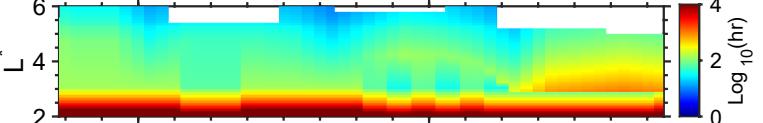
Figure 5.

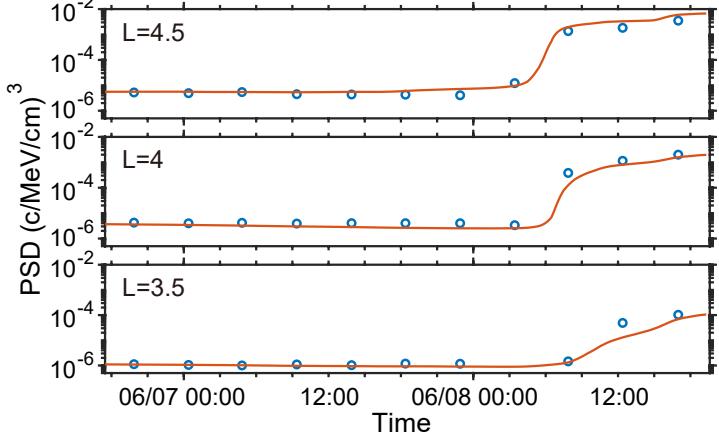

Figure6.


Figure7.

Electron

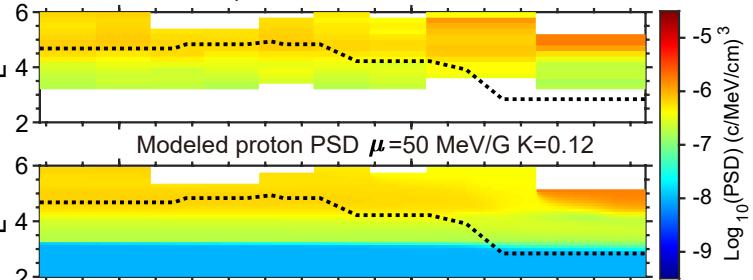
Observed electron PSD $\mu=50$ MeV/G $K=0.12$

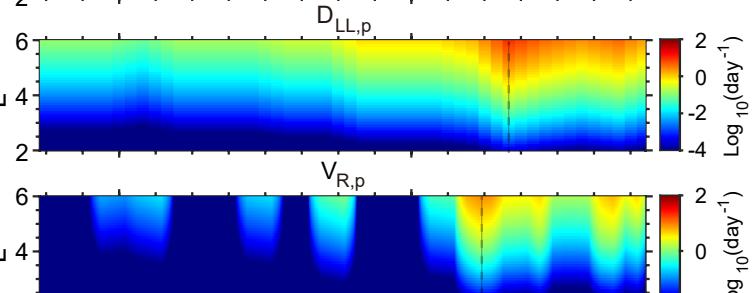

Modeled electron PSD $\mu=50$ MeV/G $K=0.12$


$D_{LL,e}$

$V_{R,e}$

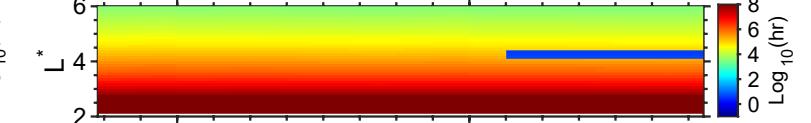
Electron lifetime

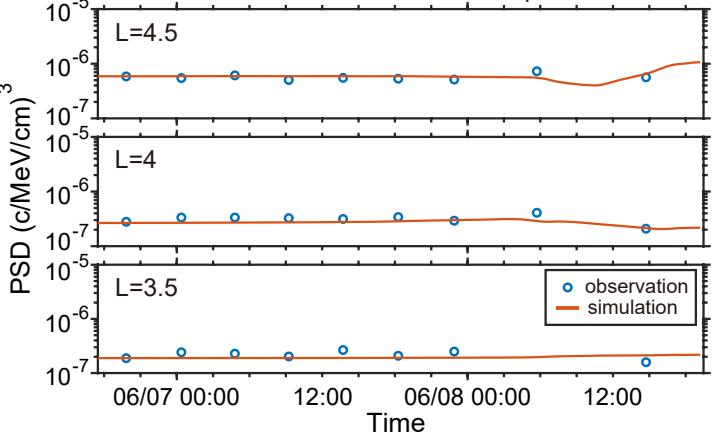

Observed and simulated 50 MeV/G electron PSD


Time

Proton

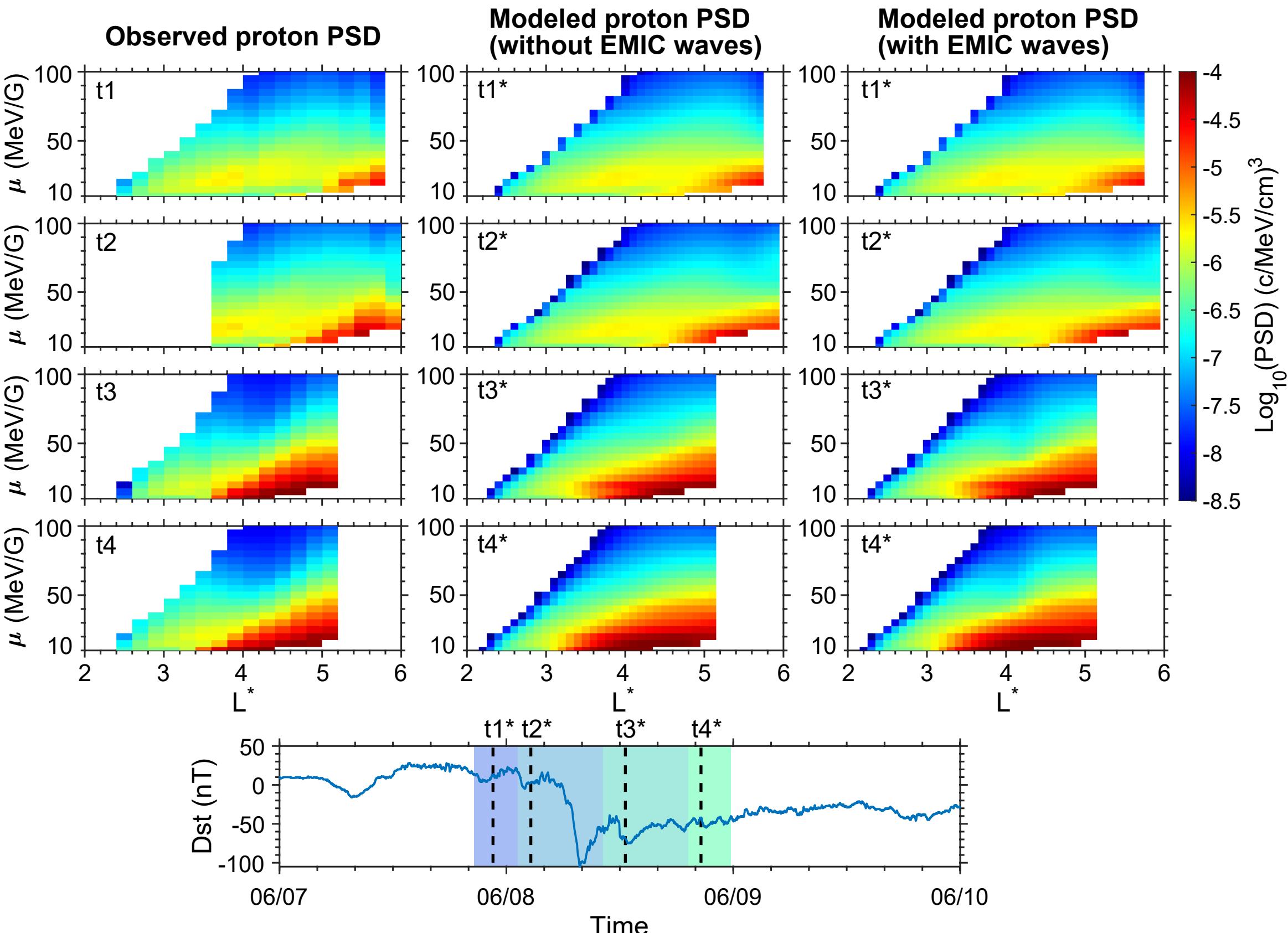
Observed proton PSD $\mu=50$ MeV/G $K=0.12$


Modeled proton PSD $\mu=50$ MeV/G $K=0.12$


$D_{LL,p}$

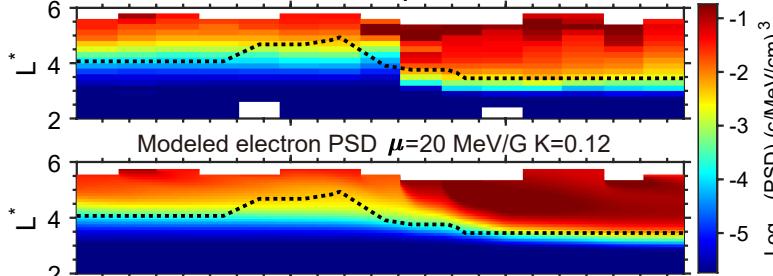
$V_{R,p}$

Proton lifetime


Observed and simulated 50 MeV/G proton PSD

○ observation
— simulation

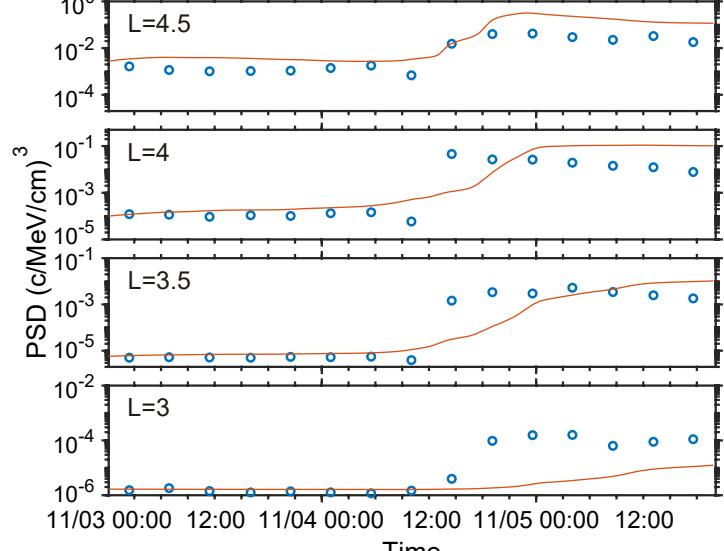
Time


Figure 8.

Appendix Figure A1.

Electron

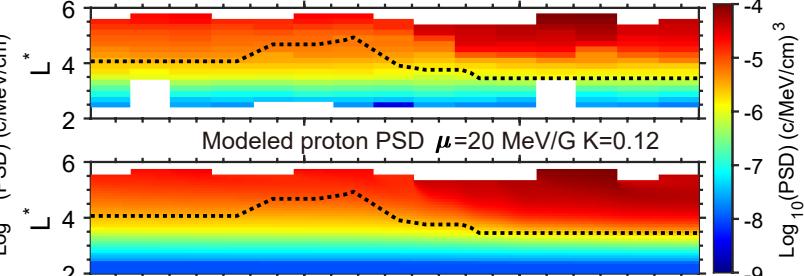
Observed electron PSD $\mu=20$ MeV/G $K=0.12$



$D_{LL,e}$

$V_{R,e}$

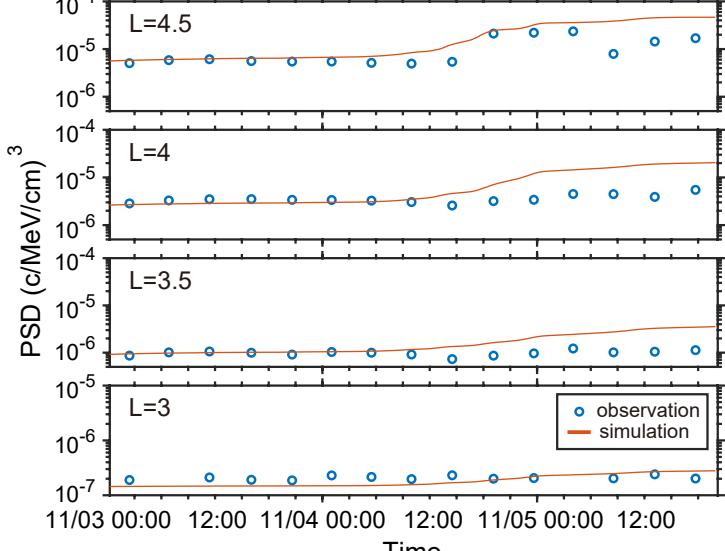
Electron lifetime


Observed and simulated 20 MeV/G electron PSD

Time

Proton

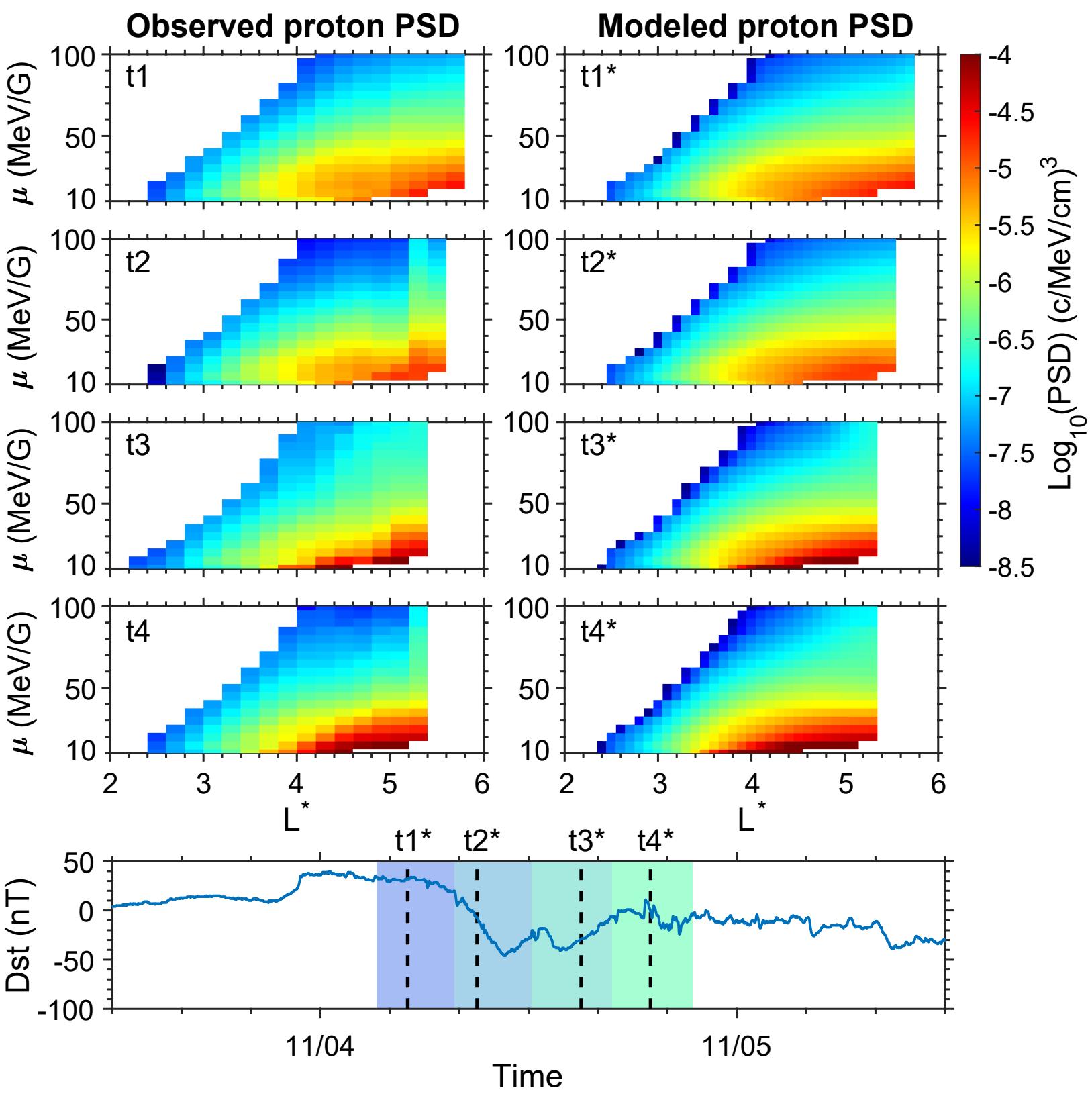
Observed proton PSD $\mu=20$ MeV/G $K=0.12$



$D_{LL,p}$

$V_{R,p}$

Proton lifetime


Observed and simulated 20 MeV/G proton PSD

Time

observation
simulation

Appendix Figure A2.

