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Abstract—
Federated Learning (FL) combined with the Industrial In-

ternet of Things (IIoT) enhances decision-making in industrial
settings by leveraging decentralized machine learning (ML) to
ensure data privacy, optimize edge computing, and facilitate
adaptive model training. However, implementing FL and IIoT
presents challenges due to distributed architectures, including
communication, data transfer, and file management across wide
area networks. This paper addresses these challenges by introduc-
ing FL and Clustered FL (CFL) models using Pegasus workflows.
Evaluated with real data from airport baggage conveyor systems,
it offers practical insights into FL’s application in IIoT envi-
ronments, contributing to advancements in intelligent industrial
decision-making.

Index Terms—Federated learning, IoT, Industrial Internet of
Things, workflows management system

I. INTRODUCTION

The fusion of IoT with system maintenance leads to pre-

dictive maintenance (PM), transforming industrial equipment

management. Through interconnected sensors, real-time data

feeds into an intelligent network, enabling proactive monitor-

ing and preemptive action against malfunctions. PM, powered

by advanced data analysis, foresees failures, optimizes mainte-

nance schedules, and boosts productivity by preventing costly

downtimes. Challenges persist, including scalability, equip-

ment diversity, and data management issues. Meanwhile, FL,

introduced by Google in 2017 [1], addresses privacy concerns

and data transfer issues by enabling decentralized ML model

training. FL has been extensively studied, with a focus on

model aggregations [1], [2] and communication protocols [3].

However, limited emphasis on deployment and management

aspects hinders its potential in IIoT environments. Bridging

this gap is essential to unlock the full potential of FL in

predictive maintenance applications.

To address FL’s complexities, we propose utilizing a Work-

flow Management System (WMS), offering programming in-

terfaces for defining workflows, managing inputs/outputs, and

ensuring scalability in studies with numerous participants.

Despite the benefits of a WMS, their integration in this domain

is largely unexplored. Our work investigates the application

of WMS in FL through the implementation of horizontal FL,

specifically using the Pegasus-WMS [4] in a real-world pre-

dictive maintenance (PM) scenario. Pegasus-WMS, an open-

source system, is capable of executing workflows across

various computing platforms. The paper contributes a model

for WMS orchestration in FL, explores model scalability with

participant clustering, and evaluates the approach in a real-

world industrial IoT application.

The paper is organized into several sections, starting with

the current state-of-the-art, focusing on existing works in

FL and workflows. It then proceeds to the description of

workflows, starting from basic single-round scenarios and

advancing to more sophisticated CFL. The subsequent sec-

tions describe experiments geared toward evaluating workflow

efficiency with real data from airport conveyor systems. The

paper concludes with a summary of the findings and potential

future work.

II. RELATED WORK

FL represents a promising approach for modern IoT appli-

cations and PM [5]. FL can help overcome the need to transfer

vast amounts of data over the wide area network to facilitate

processing at a data center, and can ensure timely evaluation

of physical infrastructure at the edge.

Many papers are exploring the integration of WMS to

streamline FL processes and reduce user overhead in resource

management and task orchestration, particularly within IoT

deployments. Kamble et al. [6] discuss the challenges of WMS

implementation in the IIoT domain, emphasizing the utility

of dynamic workflows for intelligent and repetitive tasks like

learning and model deployment. While FL-specific WMS like

NVIDIA FLARE [7] exist, they often require significant man-

ual configuration tailored to FL scenarios. Colonelli et al. [8]

utilize Common Workflow Language (CWL) and streamFlow

for FL management but lack detailed workflow descriptions

and termination options, while Kontomaris et al. [9] face

limitations in client numbers and data transfer management

clarity when exploring FL scenarios using CWL.

In this work, we explore the development and management

of FL workflows using the Pegasus WMS [4]. More specifi-

cally we implement horizontal FL using a real case study for

PM. We show that our solution using Pegasus can be adapted

to multiple types of FL approaches and can be easily scaled to
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many resources and participants, addressing the limitations of

existing solutions. To demonstrate our solution, we implement

two types of workflows (1) a multi-round FL workflow using

FedAvg for multi-round FL; and (2) an FL solution known as

CFL to assess the system’s capability in managing participants

and ensuring the smooth execution of jobs.

III. FL WORKFLOWS USING PEGASUS-WMS

A. Pegasus-WMS

Pegasus WMS [4] is a widely-used workflow management

system that enables users to design workflows at a high level

of abstraction. It transforms resource-independent abstract

workflows into executable ones during a planning phase, han-

dling data discovery and data transfer tasks. Pegasus supports

containers, manages workflow ensembles, and interfaces with

various backend storage systems and data transfer protocols,

making it suitable for implementing scalable FL workflows

across multiple edge resources with hundreds of participants.

B. Federated Workflow Generation

The process of FL consists of several key steps: (1) par-

ticipant selection for local training, (2) distribution of global

models to them, (3) aggregation of local updates to build a

new global model, (4) participant selection for global model

evaluation, and decision-making on whether to initiate a new

round based on evaluation results. These steps are executed

across two levels (Fig. 1): the central node, responsible for

generating and submitting workflows using the Pegasus API,

and the edge nodes, where participants perform local model

training, update aggregation, and global model updates. The

central node manages task coordination to ensure seamless

execution and data transfer.execution and data transfer.

Fig. 1. FL Execution Process.

C. Multi-Round FL Workflow

1) Approach: Fig. 2 depicts a generic multi-round FL

workflow structured as a recursive process to accommodate

Pegasus’ acyclic workflow model. Each iteration represents a

single FL round, utilizing the global model from the previous

round. This collaborative approach allows for post-workflow

output analysis before initiating the next round, focusing on

performance metrics and maximum round limits. After each

round, the performance evaluation job consolidates evaluation

files to determine if a new round is needed, managing input

files such as the new global model for local training and

participant selection. If predefined thresholds are met or the

maximum round limit is reached, the job concludes the FL

training process by generating a ”noop” workflow, providing

flexibility in workflow termination based on specified condi-

tions.

Federated Learning

workflow

Round 0

NoOP workflow

Stop wf

Federated Learning

workflow

Round 1
Score 

or 
Rmax

NoOP workflow

Stop wf

False

True True

False

Federated Learning

workflow

Round Rmax

NoOP workflow

Stop wf

Score 
or 

Rmax

Fig. 2. Multi round workflow overview

2) Workflow Description: Before describing the complexi-

ties of implementing advanced workflows for FL with multiple

rounds or early stopping conditions, in Fig. 3 we present an

illustration of FL with a single round.

The workflow begins by selecting participants for two

groups: one for local training and the other for global model

evaluation. In the ”local training” stage, participants indepen-

dently train their local models using their data and the initial

global model. The weights of these local models are then

aggregated in the ”global model” stage to produce a new global

model. This global model is utilized in the ”evaluation” stage,

where preprocessing, predictions, and metric calculations are

performed for each participant. Finally, the ”Perf evaluation”

job consolidates model performances, verifies stop conditions,

and generates a comprehensive file summarizing the perfor-

mance of each evaluated client.

Fig. 3. Single-round workflow: Rectangular shapes for files, oval shapes for
edge node jobs, parameters for information shared between jobs.

3) Multiround ensemble manager implementation: As out-

lined in Section III-C2, we have described the workflow for

a single round, which forms the cornerstone of our imple-

mentation. Subsequently, we utilize the workflows generated

at the end of each round to dynamically trigger a new round.

Pegasus offers various solutions for this purpose, with one of
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them being through the Pegasus Ensemble Manager (Pegasus-

EM) service. Fig. 4 depicts the FL implementation using

Pegasus-EM, where workflows are organized into separate

ensembles, each tailored to its specific logic. In this work,

the ”FL ensemble” orchestrates the training of N rounds of

FL, automatically submitting each workflow through a file

pattern trigger. This trigger monitors the next workflow to

be submitted, adhering to the pattern local wf round *.yml
in the workflow jobs output folder. The trigger submits a

new workflow by invoking a shell script, showcasing the

automation offered by Pegasus-EM. This iterative process

continues until reaching the maximum number of rounds or

achieving satisfactory model performance. The final ensemble

workflow generates a log file with the round number and

model performance, serving as a comprehensive record of the

FL process.

File triggerWorkflow Submission Script

Second round Last roundFirst round

FL round 

workflow

FL ensemble

Fig. 4. FL using ensemble manager implementation

D. Clustered Federated Learnining

In [10], the introduction of CFL addresses challenges en-

countered in constructing a single global model in FL by

organizing devices into clusters based on data distributions. In

this section, we implement CFL using advanced components

of Pegasus, particularly focusing on the Pegasus-EM. This

work, employs a clustering approach specifically tailored for

IoT applications, which involves a two-phase process: local
clustering, grouping participants within the same edge based

on data characteristics, and global clustering, refining these

groupings at a higher level by aggregating information from

different edges to identify patterns and similarities in partic-

ipant behaviors. The approach illustrated in Fig. 5 involves

executing a series of jobs before commencing the training

process.

To accomplish this task, we establish an ensemble as

the central entity responsible for executing clustering jobs.

The process initiates with ”local clustering edge *,” where

each edge performs local clustering on its managed data,

generating result files. These files are then leveraged by

the global clustering job to create an overarching clustering

file for all connected objects and participating edges. A file

trigger monitors the global clustering output, activating a

shell script upon detection. The number of clusters isn’t

predefined, allowing a single cluster to include participants

from multiple edges, with edge-related information gathered

within the global cluster for Pegasus-WMS job mapping.

After acquiring clusters, we generate customized workflows

for each, exclusively running on edges containing participants

from that cluster. This process integrates data from both local

and global clustering, along with edge names obtained from

Pegasus-WMS profiles. Before workflow generation, a file

trigger dynamically creates a unique ensemble for each global

cluster, launching the initial round of FL workflows for each

ensemble. Subsequent rounds follow a similar process, with

each ensemble operating autonomously through file triggers,

ensuring independent operation.

FL-Main ensemble

FL-cluster-1 ensemble

global clustering

Local clustering edge 1 Local clustering edge 2 Local clustering edge 3

clustering_result_1.json clustering_result_2.json clustering_result_3.json

input data preparation

global_clustering.json

Training data label data

FL-cluster-2 ensemble FL-cluster-3 ensemble

Workflow Submission Script File trigger Cluster Workflow ensemble

Fig. 5. Clustred FL workflow

IV. EXPERIMENTS

A. Use Case: Conveyors Baggage Detection

This study explores the intricacies of airport baggage han-

dling systems, crucial for air travel efficiency amidst chal-

lenges like flight delays and baggage issues arising from their

highly automated nature. Leveraging a dataset encompass-

ing two years of lab experiments and over 12 months of

operational data from various automated handling systems,

the research focuses on optimizing conveyor utilization time.

The dataset includes key field descriptions: ”Date-Time” for

timestamps, ”Speed” for speed measurements, ”Intensity” for

engine intensity readings, ”Baggage” indicating presence (1)

or absence (0) of baggage, ”Running” indicating conveyor

operation (1 for running, 0 for not running), and ”Onload”

indicating if the conveyor is loaded (1) or not (0). This analysis

aims to enhance maintenance planning, resource management,

and ensure smooth system operation.

1) Studied Scenarios: In this paper, we adopt the ar-

chitecture described in previous works [11], replacing the

orchestration component with Pegasus-WMS. Utilizing a ge-

ographically distributed infrastructure on FABRIC [12] as

shown in Fig. 6, we implement two scenarios for detecting

conveyor operation states from real-world deployments using

a sequential neural network. The model comprises a Long

Short-Term Memory (LSTM) [13] layer with 200 units, a
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dropout layer with a 40% dropout rate, and a dense layer with

2 units and softmax activation for binary classification. The

Extreme Edge Architecture involves each edge managing a

single connected object, applying traditional FL workflows to

construct global models. Conversely, the Edge Architecture
features each edge managing multiple connected objects with

data collected based on the same schema, utilizing a clustering

approach for more scalable and adaptive FL processes.

Fig. 6. In our experimental deployment utilizing FABRIC [12], covering 17
sites in the USA and Europe, Indiana University hosted the central node, and
each site accommodated 2 edge nodes.

These two scenarios will be analyzed from two perspectives.

First, by examining the workflow at different levels, focusing

on elements affecting FL parameters such as the number of

rounds and participants. Secondly, by evaluating the global

model performance, which includes a comparative analysis

of FL results from both ML and industrial perspectives. The

evaluation involves metrics like accuracy, measuring predicted

load periods, and overestimation and underestimation, indi-

cating model performance regarding false positives and false

negatives. A superior model exhibits high accuracy close

to 100%, with minimal overestimation and underestimation

trends approaching 0.

B. Results Analysis

1) Workflow Analysis: This paper explores the operational

aspects of FL workflows, emphasizing execution details such

as participant count, round variations, and host roles in local

training and computation evaluation. Three FL implementa-

tions are compared: One Round FL, Multi-round FL (10 to

100 rounds), and CFL with host and participant variations.

Focusing on a one-round scenario, 25 main jobs are generated

for tasks in a PM application, distributed across 11 clients

managing connected objects. The workflow includes 90 input

files, 47 output files, and 14 auxiliary jobs, resulting in a total

of 39 jobs.

In the multi-round FL approach (Section III-C3), the process

iterates the one-round FL 100 times, skipping the initialization

job since previous models are reused. Consequently, the total

number of jobs achievable for a workflow with N rounds can

be estimated using Total FL Jobs = 25+24×N , where 25

represents jobs for one FL round, and 24 excludes initialization

tasks. Despite the increase in rounds, empirical observations

suggest minimal impact on workflow behavior, with file and

job quantities predictable based on one-round FL workflow.

In the CFL scenario, clustering results in four groups:

the first with 7 participants across three hosts, followed by

two groups with one participant each on single hosts, and

a cluster with two participants and one host. The total job

count includes jobs from normal FL workflows and those

from participants’ clustering workflows (5 jobs), reflecting a

realistic scenario for the conveyor PM application.

This analysis underscores the critical influence of factors

such as the number of participants and the edges where model

training occurs on the workflow. Particularly notable is the

case of CFL with 2 and 1 participant clusters, which exhibit

identical numbers of jobs and file transfers due to participants

residing on the same edge. However, the first cluster with

7 participants incurs over 200 jobs due to additional local

training and evaluation tasks, resulting in extra output files.

The execution time of the workflow is significantly impacted

by various parameters, as evident from Table I, including

the number of hosts, participants, and rounds. Compared to

traditional ML workflows, which take over 2 days for 100

rounds, the CFL approach completes within 1 day, owing to

efficient participant distribution and clustering. This substantial

reduction in training time suggests potential for further opti-

mization in participant selection to enhance overall execution

efficiency.
TABLE I

JOB-LEVEL WORKFLOW ANALYSIS

Workflows Clients Clusters
Clients /

Rounds Jobs
Aux Input Output

Edges
Execution

Cluster Jobs Files Files Time (s)

One Round
11 1 11 1 25 14 90 47 11 1750Federated

Learning

Traditional

11 1 11

10 241 86 900 470 11 17855
Multi-Round 25 601 206 2250 1175 11 45327

Federated 50 1201 406 4500 2350 11 91883
Learning 100 2401 806 9000 4700 11 184681

Multi-Round

11 4

7 100 805 608 3300 1500 3

78381
Clustered 1 100 405 608 1300 700 1
Federated 2 100 405 608 1300 700 1
Learning 1 100 405 608 1300 700 1

Table II summarizes the average resource consumption

per job from various workflows. Local model training tasks

demand higher CPU and memory resources due to data

loading and computations, while global model aggregation

and evaluation tasks require significant memory for file and

model loading. Job execution times typically range from tens

to hundreds of seconds but rarely exceed 3 minutes per

job, influenced by factors like model size, data volume, and

participant count. Increased number of participants lead to

higher resource demands and execution time, especially for

tasks like global model aggregation, requiring simultaneous

data or model loading from all participants.

TABLE II
RESOURCE-LEVEL WORKFLOW ANALYSIS

Jobs Avg. CPU (%) Peak Mem (MB)
Min Max

Runtime (s) Runtime (s)

Local Model Training 149 599 57 174
Global Model Aggregation 97 528 44 178
Global Model Evaluation 96 553 46 150

Performance Analysis 97 100 36 159
Local Clustering 95 157 113 113
Global Clustering 97 156 150 150
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2) Model Performances: After outlining workflow profil-

ing, the evaluation of model performance showcases the ad-

vantages of incorporating FL. Fig. 7 illustrates the fluctuations

in global model performance across various FL ensembles over

100 training rounds.
In CFL, using four participants per cluster shows clusters

behaving similarly. While Figure 7 indicates consistent be-

havior in each cluster’s global model, accuracy remains below

68%. Figure 8 shows load period predictions aren’t uniformly

accurate across clusters (60%). Notably, load periods are

often underestimated (over 80%) and sometimes overestimated

(20%). This misclassification could impact subsequent analy-

ses, particularly in conveyor operating times. Improvements

could come from adjusting initial global model weights and

refining clustering parameters like distribution type and size

to enhance model performance.
Traditional FL outperforms CFL, achieving over 78% ac-

curacy with minimal over or underestimations, particularly

in the initial 29 rounds. However, accuracy sharply declines

afterward, reaching 0%, accompanied by an increased under-

estimation rate, resulting in solely incorrect predictions. This

underscores the effectiveness of traditional FL in developing

accurate global models in under 100 rounds, leveraging diverse

conveyor data. Leveraging the early stop option in workflows,

by utilizing the ”Performance Analysis” job to monitor model

performance as detailed in Section III-C3, allows for the

termination of training once optimal performance is attained,

effectively minimizing training time.
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Fig. 7. Accuracy of each global model per round for different participants
cluster

V. CONCLUSION AND FUTURE WORK

This paper addresses challenges in FL architectures within

IIoT, proposing a novel approach using Pegasus-WMS for FL

process development and management. Leveraging Pegasus

offers benefits like automated data transfer, task scheduling,

and reliable model training execution. We found that clus-

tering participants can reduce model-building time by up to

50%, albeit with a compromise on model accuracy, which

never exceeds 68%. We stress the importance of dynamically

terminating learning processes to prevent overfitting. Despite

showcasing the potential of workflow management systems

in FL, we note shortcomings in metric management and

model/data versioning for broader FL applications. Further

improvements, such as user-level abstractions for modeling

training epochs, are necessary.
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