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Abstract—

Federated Learning (FL) combined with the Industrial In-
ternet of Things (IIoT) enhances decision-making in industrial
settings by leveraging decentralized machine learning (ML) to
ensure data privacy, optimize edge computing, and facilitate
adaptive model training. However, implementing FL. and IIoT
presents challenges due to distributed architectures, including
communication, data transfer, and file management across wide
area networks. This paper addresses these challenges by introduc-
ing FL and Clustered FL (CFL) models using Pegasus workflows.
Evaluated with real data from airport baggage conveyor systems,
it offers practical insights into FL’s application in IIoT envi-
ronments, contributing to advancements in intelligent industrial
decision-making.

Index Terms—Federated learning, IoT, Industrial Internet of
Things, workflows management system

I. INTRODUCTION

The fusion of IoT with system maintenance leads to pre-
dictive maintenance (PM), transforming industrial equipment
management. Through interconnected sensors, real-time data
feeds into an intelligent network, enabling proactive monitor-
ing and preemptive action against malfunctions. PM, powered
by advanced data analysis, foresees failures, optimizes mainte-
nance schedules, and boosts productivity by preventing costly
downtimes. Challenges persist, including scalability, equip-
ment diversity, and data management issues. Meanwhile, FL,
introduced by Google in 2017 [1], addresses privacy concerns
and data transfer issues by enabling decentralized ML model
training. FL has been extensively studied, with a focus on
model aggregations [1], [2] and communication protocols [3].
However, limited emphasis on deployment and management
aspects hinders its potential in IIoT environments. Bridging
this gap is essential to unlock the full potential of FL in
predictive maintenance applications.

To address FL's complexities, we propose utilizing a Work-
flow Management System (WMS), offering programming in-
terfaces for defining workflows, managing inputs/outputs, and
ensuring scalability in studies with numerous participants.
Despite the benefits of a WMS, their integration in this domain
is largely unexplored. Our work investigates the application
of WMS in FL through the implementation of horizontal FL,
specifically using the Pegasus-WMS [4] in a real-world pre-

dictive maintenance (PM) scenario. Pegasus-WMS, an open-
source system, is capable of executing workflows across
various computing platforms. The paper contributes a model
for WMS orchestration in FL, explores model scalability with
participant clustering, and evaluates the approach in a real-
world industrial IoT application.

The paper is organized into several sections, starting with
the current state-of-the-art, focusing on existing works in
FL and workflows. It then proceeds to the description of
workflows, starting from basic single-round scenarios and
advancing to more sophisticated CFL. The subsequent sec-
tions describe experiments geared toward evaluating workflow
efficiency with real data from airport conveyor systems. The
paper concludes with a summary of the findings and potential
future work.

II. RELATED WORK

FL represents a promising approach for modern IoT appli-
cations and PM [5]. FL can help overcome the need to transfer
vast amounts of data over the wide area network to facilitate
processing at a data center, and can ensure timely evaluation
of physical infrastructure at the edge.

Many papers are exploring the integration of WMS to
streamline FL processes and reduce user overhead in resource
management and task orchestration, particularly within IoT
deployments. Kamble et al. [6] discuss the challenges of WMS
implementation in the IloT domain, emphasizing the utility
of dynamic workflows for intelligent and repetitive tasks like
learning and model deployment. While FL-specific WMS like
NVIDIA FLARE [7] exist, they often require significant man-
ual configuration tailored to FL scenarios. Colonelli et al. [8]
utilize Common Workflow Language (CWL) and streamFlow
for FL. management but lack detailed workflow descriptions
and termination options, while Kontomaris et al. [9] face
limitations in client numbers and data transfer management
clarity when exploring FL scenarios using CWL.

In this work, we explore the development and management
of FL workflows using the Pegasus WMS [4]. More specifi-
cally we implement horizontal FL using a real case study for
PM. We show that our solution using Pegasus can be adapted
to multiple types of FL approaches and can be easily scaled to
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many resources and participants, addressing the limitations of
existing solutions. To demonstrate our solution, we implement
two types of workflows (1) a multi-round FL workflow using
FedAvg for multi-round FL; and (2) an FL solution known as
CFL to assess the system’s capability in managing participants
and ensuring the smooth execution of jobs.

III. FL WORKFLOWS USING PEGASUS-WMS
A. Pegasus-WMS

Pegasus WMS [4] is a widely-used workflow management
system that enables users to design workflows at a high level
of abstraction. It transforms resource-independent abstract
workflows into executable ones during a planning phase, han-
dling data discovery and data transfer tasks. Pegasus supports
containers, manages workflow ensembles, and interfaces with
various backend storage systems and data transfer protocols,
making it suitable for implementing scalable FL workflows
across multiple edge resources with hundreds of participants.

B. Federated Workflow Generation

The process of FL consists of several key steps: (1) par-
ticipant selection for local training, (2) distribution of global
models to them, (3) aggregation of local updates to build a
new global model, (4) participant selection for global model
evaluation, and decision-making on whether to initiate a new
round based on evaluation results. These steps are executed
across two levels (Fig. 1): the central node, responsible for
generating and submitting workflows using the Pegasus API,
and the edge nodes, where participants perform local model
training, update aggregation, and global model updates. The
central node manages task coordination to ensure seamless

execution and data transfer.
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Fig. 1. FL Execution Process.

C. Multi-Round FL Workflow

1) Approach: Fig. 2 depicts a generic multi-round FL
workflow structured as a recursive process to accommodate
Pegasus’ acyclic workflow model. Each iteration represents a
single FL round, utilizing the global model from the previous
round. This collaborative approach allows for post-workflow
output analysis before initiating the next round, focusing on
performance metrics and maximum round limits. After each
round, the performance evaluation job consolidates evaluation
files to determine if a new round is needed, managing input
files such as the new global model for local training and

participant selection. If predefined thresholds are met or the
maximum round limit is reached, the job concludes the FL
training process by generating a “noop” workflow, providing
flexibility in workflow termination based on specified condi-

tions.
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2) Workflow Description: Before describing the complexi-
ties of implementing advanced workflows for FL. with multiple
rounds or early stopping conditions, in Fig. 3 we present an
illustration of FL with a single round.

The workflow begins by selecting participants for two
groups: one for local training and the other for global model
evaluation. In the "local training” stage, participants indepen-
dently train their local models using their data and the initial
global model. The weights of these local models are then
aggregated in the “global model” stage to produce a new global
model. This global model is utilized in the “evaluation” stage,
where preprocessing, predictions, and metric calculations are
performed for each participant. Finally, the Perf_evaluation”
job consolidates model performances, verifies stop conditions,
and generates a comprehensive file summarizing the perfor-
mance of each evaluated client.
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Fig. 3. Single-round workflow: Rectangular shapes for files, oval shapes for
edge node jobs, parameters for information shared between jobs.

3) Multiround ensemble manager implementation: As out-
lined in Section III-C2, we have described the workflow for
a single round, which forms the cornerstone of our imple-
mentation. Subsequently, we utilize the workflows generated
at the end of each round to dynamically trigger a new round.
Pegasus offers various solutions for this purpose, with one of
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them being through the Pegasus Ensemble Manager (Pegasus-
EM) service. Fig. 4 depicts the FL implementation using
Pegasus-EM, where workflows are organized into separate
ensembles, each tailored to its specific logic. In this work,
the "FL ensemble” orchestrates the training of N rounds of
FL, automatically submitting each workflow through a file
pattern trigger. This trigger monitors the next workflow to
be submitted, adhering to the pattern local_wf _round_*.yml
in the workflow jobs output folder. The trigger submits a
new workflow by invoking a shell script, showcasing the
automation offered by Pegasus-EM. This iterative process
continues until reaching the maximum number of rounds or
achieving satisfactory model performance. The final ensemble
workflow generates a log file with the round number and
model performance, serving as a comprehensive record of the
FL process.

 {FLensemble | — — — — — — — — — — — — — — — — — — — — — — — 1

- First round ] . =y Second round ]

FL round
workflow

Fig. 4. FL using ensemble manager implementation
D. Clustered Federated Learnining

In [10], the introduction of CFL addresses challenges en-
countered in constructing a single global model in FL by
organizing devices into clusters based on data distributions. In
this section, we implement CFL using advanced components
of Pegasus, particularly focusing on the Pegasus-EM. This
work, employs a clustering approach specifically tailored for
IoT applications, which involves a two-phase process: local
clustering, grouping participants within the same edge based
on data characteristics, and global clustering, refining these
groupings at a higher level by aggregating information from
different edges to identify patterns and similarities in partic-
ipant behaviors. The approach illustrated in Fig. 5 involves
executing a series of jobs before commencing the training
process.

To accomplish this task, we establish an ensemble as
the central entity responsible for executing clustering jobs.
The process initiates with “local_clustering_edge_*,” where
each edge performs local clustering on its managed data,
generating result files. These files are then leveraged by
the global clustering job to create an overarching clustering
file for all connected objects and participating edges. A file

trigger monitors the global clustering output, activating a
shell script upon detection. The number of clusters isn’t
predefined, allowing a single cluster to include participants
from multiple edges, with edge-related information gathered
within the global cluster for Pegasus-WMS job mapping.
After acquiring clusters, we generate customized workflows
for each, exclusively running on edges containing participants
from that cluster. This process integrates data from both local
and global clustering, along with edge names obtained from
Pegasus-WMS profiles. Before workflow generation, a file
trigger dynamically creates a unique ensemble for each global
cluster, launching the initial round of FL. workflows for each
ensemble. Subsequent rounds follow a similar process, with
each ensemble operating autonomously through file triggers,
ensuring independent operation.
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Fig. 5. Clustred FL workflow
IV. EXPERIMENTS

A. Use Case: Conveyors Baggage Detection

This study explores the intricacies of airport baggage han-
dling systems, crucial for air travel efficiency amidst chal-
lenges like flight delays and baggage issues arising from their
highly automated nature. Leveraging a dataset encompass-
ing two years of lab experiments and over 12 months of
operational data from various automated handling systems,
the research focuses on optimizing conveyor utilization time.
The dataset includes key field descriptions: “Date-Time” for
timestamps, “Speed” for speed measurements, ~Intensity” for
engine intensity readings, "Baggage” indicating presence (1)
or absence (0) of baggage, “"Running” indicating conveyor
operation (1 for running, O for not running), and “Onload”
indicating if the conveyor is loaded (1) or not (0). This analysis
aims to enhance maintenance planning, resource management,
and ensure smooth system operation.

1) Studied Scenarios: In this paper, we adopt the ar-
chitecture described in previous works [11], replacing the
orchestration component with Pegasus-WMS. Utilizing a ge-
ographically distributed infrastructure on FABRIC [12] as
shown in Fig. 6, we implement two scenarios for detecting
conveyor operation states from real-world deployments using
a sequential neural network. The model comprises a Long
Short-Term Memory (LSTM) [13] layer with 200 units, a
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dropout layer with a 40% dropout rate, and a dense layer with
2 units and softmax activation for binary classification. The
Extreme Edge Architecture involves each edge managing a
single connected object, applying traditional FL. workflows to
construct global models. Conversely, the Edge Architecture
features each edge managing multiple connected objects with
data collected based on the same schema, utilizing a clustering
approach for more scalable and adaptive FL processes.
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Fig. 6. In our experimental deployment utilizing FABRIC [12], covering 17
sites in the USA and Europe, Indiana University hosted the central node, and
each site accommodated 2 edge nodes.

These two scenarios will be analyzed from two perspectives.
First, by examining the workflow at different levels, focusing
on elements affecting FL. parameters such as the number of
rounds and participants. Secondly, by evaluating the global
model performance, which includes a comparative analysis
of FL results from both ML and industrial perspectives. The
evaluation involves metrics like accuracy, measuring predicted
load periods, and overestimation and underestimation, indi-
cating model performance regarding false positives and false
negatives. A superior model exhibits high accuracy close
to 100%, with minimal overestimation and underestimation
trends approaching 0.

B. Results Analysis

1) Workflow Analysis: This paper explores the operational
aspects of FL workflows, emphasizing execution details such
as participant count, round variations, and host roles in local
training and computation evaluation. Three FL implementa-
tions are compared: One Round FL, Multi-round FL (10 to
100 rounds), and CFL with host and participant variations.
Focusing on a one-round scenario, 25 main jobs are generated
for tasks in a PM application, distributed across 11 clients
managing connected objects. The workflow includes 90 input
files, 47 output files, and 14 auxiliary jobs, resulting in a total
of 39 jobs.

In the multi-round FL approach (Section III-C3), the process
iterates the one-round FL 100 times, skipping the initialization
job since previous models are reused. Consequently, the total
number of jobs achievable for a workflow with N rounds can
be estimated using T'otal_FL_Jobs = 25+ 24 x N, where 25
represents jobs for one FL round, and 24 excludes initialization
tasks. Despite the increase in rounds, empirical observations
suggest minimal impact on workflow behavior, with file and
job quantities predictable based on one-round FL workflow.
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In the CFL scenario, clustering results in four groups:
the first with 7 participants across three hosts, followed by
two groups with one participant each on single hosts, and
a cluster with two participants and one host. The total job
count includes jobs from normal FL workflows and those
from participants’ clustering workflows (5 jobs), reflecting a
realistic scenario for the conveyor PM application.

This analysis underscores the critical influence of factors
such as the number of participants and the edges where model
training occurs on the workflow. Particularly notable is the
case of CFL with 2 and 1 participant clusters, which exhibit
identical numbers of jobs and file transfers due to participants
residing on the same edge. However, the first cluster with
7 participants incurs over 200 jobs due to additional local
training and evaluation tasks, resulting in extra output files.
The execution time of the workflow is significantly impacted
by various parameters, as evident from Table I, including
the number of hosts, participants, and rounds. Compared to
traditional ML workflows, which take over 2 days for 100
rounds, the CFL approach completes within 1 day, owing to
efficient participant distribution and clustering. This substantial
reduction in training time suggests potential for further opti-
mization in participant selection to enhance overall execution
efficiency.

TABLE 1
JOB-LEVEL WORKFLOW ANALYSIS
. Clients / Aux | Input | Output Execution

Workflows | Clients | Clusters Cluster Rounds | Jobs Jobs | Files | Files Edges Time (s)
One Round

Federated 11 1 11 1 25 | 14 | 90 47 11 1750
Learning

Traditional 10 | 241 | 86 | 900 | 470 11 17855
Multi-Round 1 1 1 25 1601 |206|2250| 1175 | 11 45327
Federated 50 |1201[406 4500 2350 | 11 91883
Learning 100 2401|806 9000 | 4700 | 11 184681
Multi-Round 7 100 | 805 | 608 |3300| 1500 3

Clustered 1 100 | 405 | 608 | 1300 | 700 1

Federated 1 4 2 100 | 405 | 608 | 1300| 700 1 78381
Learning 1 100 | 405 | 608 | 1300| 700 1

Table II summarizes the average resource consumption
per job from various workflows. Local model training tasks
demand higher CPU and memory resources due to data
loading and computations, while global model aggregation
and evaluation tasks require significant memory for file and
model loading. Job execution times typically range from tens
to hundreds of seconds but rarely exceed 3 minutes per
job, influenced by factors like model size, data volume, and
participant count. Increased number of participants lead to
higher resource demands and execution time, especially for
tasks like global model aggregation, requiring simultaneous
data or model loading from all participants.

TABLE 1T
RESOURCE-LEVEL WORKFLOW ANALYSIS
Jobs Avg. CPU (%)|Peak Mem (MB) Runlt\ﬁ:‘e ® Runltf:;; ®

Local Model Training 149 599 57 174
Global Model Aggregation 97 528 44 178
Global Model Evaluation 96 553 46 150
Performance Analysis 97 100 36 159
Local Clustering 95 157 113 113
Global Clustering 97 156 150 150
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2) Model Performances: After outlining workflow profil-
ing, the evaluation of model performance showcases the ad-
vantages of incorporating FL. Fig. 7 illustrates the fluctuations
in global model performance across various FL ensembles over
100 training rounds.

In CFL, using four participants per cluster shows clusters
behaving similarly. While Figure 7 indicates consistent be-
havior in each cluster’s global model, accuracy remains below
68%. Figure 8 shows load period predictions aren’t uniformly
accurate across clusters (60%). Notably, load periods are
often underestimated (over 80%) and sometimes overestimated
(20%). This misclassification could impact subsequent analy-
ses, particularly in conveyor operating times. Improvements
could come from adjusting initial global model weights and
refining clustering parameters like distribution type and size
to enhance model performance.

Traditional FL outperforms CFL, achieving over 78% ac-
curacy with minimal over or underestimations, particularly
in the initial 29 rounds. However, accuracy sharply declines
afterward, reaching 0%, accompanied by an increased under-
estimation rate, resulting in solely incorrect predictions. This
underscores the effectiveness of traditional FL in developing
accurate global models in under 100 rounds, leveraging diverse
conveyor data. Leveraging the early stop option in workflows,
by utilizing the “Performance Analysis” job to monitor model
performance as detailed in Section III-C3, allows for the
termination of training once optimal performance is attained,
effectively minimizing training time.

Clustred FL : Cluster 1 Clustred FL : Cluster 2

60
40
Clustred FL : Cluster 3 Clustred FL : Cluster 4
R 60
9 50
o
g 40
< Traditional FL
75 — cl — ¢5 — 9
50 c2 — c6 cl0
25 — 3 — c7 — cl1
0 50 100 c4 c8
Rounds

Fig. 7. Accuracy of each global model per round for different participants
cluster V. CONCLUSION AND FUTURE WORK

This paper addresses challenges in FL architectures within
IIoT, proposing a novel approach using Pegasus-WMS for FL.
process development and management. Leveraging Pegasus
offers benefits like automated data transfer, task scheduling,
and reliable model training execution. We found that clus-
tering participants can reduce model-building time by up to
50%, albeit with a compromise on model accuracy, which
never exceeds 68%. We stress the importance of dynamically
terminating learning processes to prevent overfitting. Despite
showcasing the potential of workflow management systems
in FL, we note shortcomings in metric management and
model/data versioning for broader FL applications. Further
improvements, such as user-level abstractions for modeling
training epochs, are necessary.
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