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If aesthetic preferences are affected by the fractal geometry of nature, scaling regularities would be expected to
appear in all art forms, including music. While a variety of statistical tools have been proposed to analyze time
series in sound, no consensus has yet emerged regarding the most meaningful measure of complexity in music or
how to discern fractal patterns in compositions in the first place. Here, we offer a new approach based on the self-

Scaling o1 s . . . .
Time series similarity of melodic lines recurring at various temporal scales. In contrast to the statistical analyses advanced in
Music recent literature, the proposed method does not depend on averaging within time-windows and is distinctively

local. The corresponding definition of the fractal dimension is based on the temporal scaling hierarchy and
depends on the tonal contours of musical motifs. The new concepts are tested on musical “renditions” of the
Cantor Set and the Koch Curve, and then applied to a number of carefully selected masterful compositions

spanning five centuries of music making.

1. Introduction

It has been long recognized that mathematics and music, despite
their divergent modes of expression, are nevertheless “bound together,”
as Helmholtz put it [1]. The earliest exploration of this bond is usually
credited to Pythagoras, but had likely been the work of his anonymous
followers, the Pythagoreans, who assigned numerical values to notes
plucked on AUpa — the lyre [2]. Among many mathematicians and
physicists who contributed to music theory were Euclid, Ptolemy, Kep-
ler, Huygens, Mersenne, Daniel Bernoulli, Fourier, and Euler. Jean-
Phillip Rameau's 1722 Treatise on Harmony earned him the nickname
“Isaac Newton of music.” D'Alambert was so impressed by Rameau's
mathematical principles of music that he wrote his own summary of the
composer's theories. A beautiful historical outline is offered in R. C
Archibald's 1924 essay [3]; a more recent account can be found in
reference [4].

Perhaps the most fundamental link between the two fields lies in the
construction of musical scales, a formidable challenge owing to the
logarithmic character of human (and not only human) hearing. The
development of equal temperament scales in use today has its own long
and complicated history [4,5]. Instrument design and their acoustical
properties depend, in turn, on the scales and involve physics principles
and experimentation as much as art. Antonio Stradivari's artful in-
novations in perfecting string instruments, to take a celebrated example,
set the standard followed meticulously to this day. The wave nature of
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sound, and sound propagation, are the domain of physics [6-9] as is the
design of music halls, wherein art and physics meet [10-13].

But beyond the physics of production, propagation, and reception of
music, mathematics touches also on the very form and structure of
compositions, often providing a framework for pattern variations or
suggesting the development of musical ideas. A number of common
compositional stratagems are based on mathematical transformations of
musical motifs, such as shifts, reflections (“vertical” in pitch or “hori-
zontal” in time), elongations (stretches) and shortenings (compressions)
- or in musical terms: transpositions, inversions, retrogrades, augmen-
tations, and diminutions, respectively. Johann Sebastian Bach's The Art
of Fugue (Die Kunst der Fuge, BWV 1080) is an exquisite compendium of
such techniques.

Bach's Contrapunctus VII, one of the 14 fugues [14] in the collection,
deploys all of these transformations and their combinations. The prin-
cipal theme and its inversions appear in three different time scales: the
original statement (rectus) or its inversion (invertus), scaled-down
version (diminution), and scaled-up version (augmentation). These
transformed motifs at different time scales are layered in four voices
(SATB) in intricate, and always changing kaleidoscopic ways, so that in
some passages, two of the lines of music are in the same tempo and the
third is slower or faster, and at other times the theme unfolds on three
different time scales simultaneously.

Such multi-scale, complex structures in music are reminiscent of
visual fractals but rendered as time series of notes or chords—extended
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in time rather than in space. This paper aims to revisit the notion of
scaling regularities in music and provide a more precise and more
discriminating definition of the fractal pattern in sound based on this
analogy, informed by a number of compositional techniques and the
standard music-theoretical approaches.

2. Review of literature

It is remarkable that the literature on scaling regularities in music
goes back at least to 1975, the same year that the first comprehensive
treatise on fractals by Mandelbrot [15] was published. Perhaps the
earliest contributions in this category were the papers by Voss and
Clarke [16,17] who investigated the spectral density of audio power
(effectively loudness) in a range of recordings, from news radio to jazz to
classical music, and found 1/f power law regularity present in all of
them. This work has motivated many researchers to refine the method.
In a variant, Hsu and Hsu [18] focused on note intervals and also found
power-law characteristics. When applied to music, spectral-densities
may reveal scaling of the form 1/f?, indicating white noise (8 = 0),
pink noise (f = 1), red (or Brownian) noise (f = 2), and black noise
(f > 2). The index f is a global measure, independent of details of the
composition, a self-affine index rather than the fractal dimension [19].
For a review and interpretation of § see references [20-22]. Power laws
have also been discerned in computer-generated “fractal” music
[23-25].

More recently, a number of studies have applied statistical physics
tools to selected musical pieces. Perhaps the most widely and success-
fully adopted method has been the detrended fluctuation analysis (DFA)
[21,26-28]. The method is a refinement of the vector version of the
fluctuation analysis designed to measure autocorrelation in multivariate
time-series data. Gonzalez-Espinoza et al. [21] provide a thorough re-
view of the literature on DFA and extend this method to non-linear
correlations. The authors identified a number of characteristic profiles
in the fluctuation functions for a handful of (complete) compositions,
from Palestrina to Shostakovich, and the corresponding Hurst expo-
nents. Several interesting classification possibilities and insights have
emerged from this approach. A similar method, autocorrelation of
normalized averages (ANA), was developed by Bigerelle and Iost [29]
and used to classify music genres. Numerous other approaches based on
statistical analysis, information theory, and Zipfs Law, have been
developed [30-34]. A comprehensive review can be found in reference
[30].

Statistical methods provide valuable insights into the distribution of
sequences of notes at various scales and may indeed reveal thematic
autocorrelations across the composition, but they should be interpreted
with caution. They are analogues of the usual box counting for patterns
embedded in 2D, whereby “boxes” are replaced with time-windows.
However, this analogy entails a cognitive incongruity since an image
(and any part of it) can be perceived in its entirety, whereas one can
listen to a piece of music only one instant at a time and it is impossible to
hear it all at once. A composition of more than a few minutes may
involve changes in tempo, sonority, loudness, and the very musical
themes, and a listener's experience is not an amalgam of notes heard in
all previous segments, of all possible durations, simultaneously. Music is
localized in time, and held in memory with mental references to selected
earlier episodes; it cannot be perceived, let alone comprehended, in an
average sense.

Furthermore, all statistical analyses are insensitive to the order of the
notes, and thus are at a far remove from the meaning of music. A given
composition rendered backwards, in retrograde, would exhibit the same
power laws for example, yet would likely amount to unintelligible noise
(except for rare pieces such as Crab Canon in the Musical Offering, BWV
1079, by Bach). Ignoring the order of notes would be akin to analyzing a
novel without concern for the order of the words. It is clear, therefore,
that a more satisfactory approach is required.

The autocorrelation, or Hurst exponent, obtained using either the
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DFA or ANA method may not be related to the true fractal dimension
unless the pattern exhibits self-similarity at progressively smaller scales.
For example, in their analysis of Bach's sonata sopr'il Soggetto Reale (from
Musical Offering, BWV 1079), Gonzalez-Espinoza et al [21]. graphically
indicated that in the first movement, for which a single power law was
discerned, a number of note patterns are repeated in each of the three
voices (harpsichord, transverse flute, and violin). However, the repeated
motifs always appear at the same tempo. What this suggests, then, is not
self-similarity in the usual sense required of fractals but the recurrence
of its motivic elements at the same scale or autocorrelation. Conse-
quently, Gonzalez-Espinoza et al. [21] do not identify their measured
Hurst exponents with the fractal dimensions.

The standard box-counting algorithm, or its variants, can be used to
analyze graphical representations of music [35,36] based on the pitch or
loudness, creating a “musical contour.” Chapter 7 of Charles Madden's
book Fractals in Music [37] provides many examples with fractal di-
mensions in the range 1 < D < 2.The principal advantage of this
approach is its conceptual simplicity; the main shortcoming is that it
renders (approximate) fractal dimensions without requiring any scaling
structure in the music itself. This approach was critically assessed in a
recent paper by Niklasson et al. [19]

A similar method for time-series, based on the variational principle,
was developed by Dubuc et al [38]. but as far as we know, it has not been
applied to music. Another box-counting approach uses scatter plots
based on intervals between subsequent notes [39,40]. It is not clear why
the resulting index can be interpreted as the fractal dimension. As the
examples examined in Chapter 6 of Charles Madden's book [37] illus-
trate, this index is not correlated with the complexity of the music. More
fundamentally, these studies deploy a formula for the fractal dimension,
which is applicable only when the data conforms to a power law, which
is not the case in these analyses.

A graphical approach of a different kind has been developed by
James Walker and his collaborators, and used extensively in his book,
Mathematics and Music [41] and review papers [42,43]. It relies on
discrete Gabor Transform with fixed (or variable) time-windows to
produce time-frequency plots called spectrograms (and also scalo-
grams), which offer nuanced graphical “portraits” of musical pieces.
Spectrograms can be used in various effective ways but they are not
meant to provide a single characteristic index of complexity or
regularity.

In the present work, which evolved through close scrutiny of a large
number of musical scores from the Renaissance to the present time, the
primary focus is on identifying self-similarity of particular compositions
wherein such patterns are clearly present. Self-similarity in music is
understood as the recurrence of particular musical motifs, or their
symmetric transformations, at various time scales. Here, duration is
analogous to length in visual fractals embedded in 2D, such as the Cantor
Set and the Koch Curve (see, for example, ref. [44,45]). This analogy is
then extended further to define the corresponding fractal dimension.
The method proposed here is simpler and more direct than statistical
analyses developed heretofore; it is dictated by the patterns of notes and
is distinctively local. It aims to discern specific passages or movements
within larger musical pieces, which harbor more or less developed
scaling regularities.

The proposed approach has three antecedents. The first is the general
anticipation that only some, highly idiosyncratic music pieces can be
construed as fractal, whether they were conceived as formal explora-
tions, as practiced by Bach, or incidental. Such interpretation has been
adopted early by Claude Lévi-Strauss in his remarkable book Look,
Listen, Read [46]. “The fractal character of musical composition” Lévi-
Strauss wrote, “results from the fact that the relation between a small
number of contiguous notes is repeated unchanged when those frag-
ments are compared with more extensive passages from the same piece.”
[46]

Another crucial insight is due to Henderson-Sellers and Cooper [47]
who proposed a definition of musical self-similarity based on note
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durations, analogous to the Cantor Set, specifying how the faster pas-
sages are to be related to the slower ones. To the best of our knowledge,
this study provides the first precise definition of a musical fractal based
on the development of a melodic line. The third illuminating insight is
due to Brothers [48], who suggested that in considering self-similarity of
musical fragments, it is necessary to distinguish a number of possible
regularities, such as duration and structural scaling, and also intervallic
(pitch) scaling [49]. In the approach presented here, these preliminary
ideas are extended to define the term nesting sequences.

In the following, a systematic analysis of self-similar patterns in
sound is undertaken, aiming to synthesize insights from the approaches
noted above. The remainder of this paper is organized as follows. Section
3 proposes a new definition of fractal patterns in music. In Section 4 the
notion of temporal scaling is generalized. Section 5 introduces the
concept of tonal (structural) complexity. Section 6 offers an operative
definition of the fractal dimension, and Sections 7-9 provide examples
spanning over 500 years of music history. The paper closes with a
summary in Section 10 and concluding remarks in Section 11.

3. Musical quasi-fractals

There is currently no broadly accepted consensus on what constitutes
a fractal pattern in music. Statistical analyses, as discussed above, pro-
vide various measures of structural complexity for a sequence of notes,
such as the self-affine index « or the autocorrelation (Hurst) exponent H,
but these can be numerically computed for any time series without
requiring self-similarity, however loosely understood. Yet self-similarity
across multiple scales, whether exact or approximate, is the hallmark of
all fractals, their sine qua non. Furthermore, the exponents a and H can
be understood to characterize asymptotically increasing periods, or
long-time memory of the piece (whether perceived by a listener or not),
whereas fractal dimension D characterizes asymptotically decreasing
periods, or instantaneous coincidence.

For a strictly self-similar time series, D = 2 — H, but in music that is
highly improbable, except in very short passages. For whole multipart
symphonic movements, whose character, motifs, instrumentation,
scoring, and tempi, vary greatly, even approximate overall self-
-similarity is simply unachievable; indeed, it would hardly be desirable.
Difficulties arise even with a single line of music because it is not a
simple time series; notes have values (durations) and pitch (frequency),
and both must be taken into account when defining self-similarity.
Compositions made entirely from notes of the same pitch, or from
notes of equal value, are rare, although such passages sometimes do
occur in longer works.

The approach proposed here aims to avoid treating music as a simple
time series and to discern scaling regularity akin to algorithmically
defined fractals, that is, reoccurrence of the same pattern at finer and
finer scales, with sensitivity to the melody itself. It is modeled on a close
analogy with infinitely fine mathematical fractals (such as the Cantor Set
or the Koch Curve) and their quasi-fractal graphical representations,
wherein only a finite number of subscales can be manifest. In musical
pieces, which are finite in length and (in the Western tradition) have a
limited range of note values, only a few scaling orders can be expected.

The key insight of this analogy is that whereas in a spatial quasi-
fractal structure (such as an image), the same pattern recurs simulta-
neously at multiple spatial scales at a given location, in music, the same
melodic line must occur at multiple time scales at a given instant. A
musical fractal pattern, therefore, requires that a motif be performed
simultaneously at a few different tempos, creating an intricate interplay
of the theme with its faster or slower versions — musical self-similarity.

Two specific compositional techniques for realizing such complex-
ities in music can be identified. The primary music genre, which depends
on the simultaneous rendition of the same theme at various tempos, is
the prolation canon, also called the mensuration canon (Brothers [48] calls
it “motivic scaling”). The technique was almost certainly invented by
Johannes Ockeghem, who might have also given it the name. Every
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movement of his remarkable Missa Prolationum, which survives in a
manuscript completed in 1503, offers a different variant of this form.
Ockeghem's most gifted student, Josquin des Prez, developed it further
in his masses with an unmatched finesse and inventiveness.

The second fractal technique, described formally in its simplest
version by Henderson-Sellers and Cooper [47], consists of the sequential
refinement of a given motif wherein each note is replaced by a faster
rendition of the entire theme but transposed, so that it starts with that
very note. The melody is thus constructed by layering nested sequences
and encompasses the simultaneity of multiple scales in a figurative
sense, in a single line of music, which becomes faster and faster at each
order, but retains the outline of the slower version in the leading notes of
each scaled copy. This algorithmic technique has been deployed in
creative ways by many composers and thus merits consideration here.

4. Temporal scaling

The two forms of fractal patterns discussed above suggest that any
viable definition of fractal dimension for a musical passage must discern
a defining motif, or a theme, and should reflect both temporal scaling
regularities and the tonal complexity of the theme. In this section we
develop the concept of temporal scaling for both forms of fractal pat-
terns in music, prolation canons and nested sequences, and the corre-
sponding temporal fractal dimension, Dg.

Nesting sequences, wherein at each new order every note of the
previous order is replaced by a copy of the motif in shorter notes
(smaller time scale), can be understood as analogues of the Cantor Set
construction. As such, this particular compositional method provides the
most direct way to define Dy.

The form of nesting sequences was first suggested, in its simplest
version, by Henderson-Sellers and Copper [47], with an example based
on a four-note motif made of whole notes. In the second order, the theme
is transformed into 16 quarter notes, then into 64 16th notes, etc.,
keeping the overall duration in each order the same. This is analogous to
a version of Cantor-like construction wherein an interval of length 1 is
replaced by four subintervals of length ', and so on, so that the number
of copies at each new order increases by the factor N = 4 with the in-
verse scale s = 1/¢ = (1/4)"" = 4, and thus Dy = In(N)/In(s) = 1.

It is therefore seen that the particular pattern discussed in reference
[47] is inescapably “Euclidean.” To move beyond the integer dimension,
the duration of each new (scaled) copy of the musical motif must be
incommensurate with the number of copies. As examples, consider
musical analogues of the Cantor Set and the Koch Curve.

An exact musical replica of the Cantor Set would be unwieldy
because durations of 1/3 of a given note value are not obtainable in a
satisfying manner. The closest equivalent, although still cumbersome,
would be to use a scaling factor of 3/8. A musically feasible variant is a
pattern wherein each “interval” at a given order is replaced with two
copies of Y its length, so that

_ In(2) _

° T n(4) (4.1)

An example based on a two-note and two-rests motif chosen to mimic
the Cantor construction is shown in Fig. 1. The possibility of nested
sequences with Dy > 1 can be realized in a musical equivalent of the
Koch Curve. Here again a variant is developed, wherein each note of the
three-note motif is replaced by three notes of 4 duration. This gives

_In(3)
* " In(2)

~ 1.58. (4.2)

Fig. 2 provides an example with the three-note theme chosen to be
visually similar to the graphical representation of the Koch Curve so that
a triplet of notes, with the middle note raised relative to the first and the
third, corresponds to a four-segment “hat” replacing straight segments at
the previous order of the Koch construction.
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Fig. 1. The Cantor-like nested sequences pattern based on a two note, two rests motif chosen for its visual similarity to a representation of the (special) Cantor Set.
Each line of music corresponds to one order in scaling, with the overall duration (excluding rests) decreasing by 4 at each order. The carets indicate a note repeated
(at shorter duration) from the previous order, and dashed slur brackets the entire motif at a given order.
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Fig. 2. The Koch-like nested sequences pattern based on a three-note motif chosen for its visual similarity to a representation of the Koch Curve. Each line of music
corresponds to one order in scaling, with the overall duration increasing by 3/2 at each new order. Carets indicate a note repeated (at shorter duration) from the

previous order, and dashed slur brackets the entire motif at a given order.

It is thus clear that non-integer scaling is possible with nested se-
quences, with the fractal dimension 0 < Dy < oo. Temporal scaling can
be further generalized by allowing notes of varied durations at each
order. For example, each whole note in the first order could be replaced
by two eights and two quarter notes in the second order, and so on. In
this case, the corresponding fractal dimension can be obtained using a
more general approach [15] by setting

> 1\
() () = @

or, denoting ¢ = 200,
@ —20—-2=0. 4.9

The cubic Eq. (4.4) has one real root, given via the Cardano method
as

and again denoting ¢ = 2%,
@' —20-2=0 (4.8)

or ¢ =1+ /3, so that

Dy = ~ 1.44. (4.9)

To extend this method of calculating D, to the prolation canons,
consider first the simplest case of two simultaneous voices proceeding at
two different tempos, with the ratio of the speeds of the first voice to the
second given by a rational number p/q. If the two voices start and end
together, such that each completes integer repeats of the defining motif,
then each rendition of the theme in voice one is replaced by q/p repeats
in voice two, with s = 1/¢ = q/p, which implies D, = 1. For n simul-
taneous voices, all starting and ending together, it is sensible to define
Dy, = n— 1, with each additional voice raising the temporal fractal

_ 1/3 1/3
p=(=45+8)"+(-45-9)", (4.5) dimension by 1.
with 5 = /T = 8/27, so that ¢ ~ 1.77 and . .In some prolation canons, however, separate voices do noF start. or
finish together (or else do not fully complete repeats). Consider first
Do — In(g) ~0.82 (4.6) canons with just two lines of music, and let r; and r, represent the
° " n(2) o ’ number of repeats of the canonic motif in the first and second voice,

As a complementary example with D, > 1, consider a nesting
sequence wherein in the second order each whole note is replaced by
two quarter notes and two half notes so that

1 Do 1 Do
z@ +z<5) -1, @.7)

respectively, where the two parameters are in general rational numbers
but not necessarily integers. In this case, the number of scaled copies in
the second line of music per one copy in the first line can be takenas N =
r2/r1, so that
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In(N) _In(ry/r)

Do =4y = I )’

(4.10)

where t; and t, are the durations of the motif in the first and second
voice, respectively, and the inverse time scale in the denominator is
written as s = q/p = t; /ta. When the two voices start and finish simul-
taneously, then ry/r1 = t;/ta, so that Dy = 1 as before.

Several properties of the definition in Eq. (4.10) should be noted.
First, indices “1” and “2” can be exchanged without changing the value
of Dy, which means that the order in which the musical lines are written
does not matter (as should be the case). Second, if r; = r, while t; # t»
then Dy =0, as expected. Finally, forr; = ry and t; = ty, Dy is indefinite;
in this case the two voices are identical so that in effect there is only a
single, doubled line of music and the notion of temporal scaling is simply
not applicable.

For a prolation canon of n voices, the relative scaling for each pair of
voices must be included because the music depends on the simultaneous
sounding of all such pairs. We therefore define
Dy :1Z—ln(r"/r~"), (4.11)

ng In(1;/1)

where the indices refer to the voice numbers. Here N = r;/r; is the
number of copies in line i relative to line j, and e; = t;/t; is the scale of
line i relative to line j. Again, since in (4.11) any two indices can be
exchanged without changing the value, the order of the music lines does
not affect Dy. Eq. (4.11) reduces to (4.10) for the prolation canon with
two voices, or n = 2, as expected.

Definition (4.11) guarantees that when all pairs of voices are
mutually commensurate, for example all voices start and end together
and each repeats the motif integer number of times (a Euclidean canon,
one might say), Dy = n— 1, in agreement with the earlier conjecture.
Indeed, in this case all the terms under the sum in (4.11) are equal to 1,
and thus

OIS

The two examples based on the Cantor Set and the Koch Curve in
Figs. 1 and 2 can both be interpreted as prolation canons in three voices,
taking each line to represent a separate, simultaneous voice. Thus, the
two methods of realizing fractal patterns in music are seen as connected.
It can then be immediately seen that for the Cantor Set Prolation Canon

el (3)) - oo

where D¢ = In(2)/In(4) = 0.5 is the fractal dimension of the Cantor-like
structure. Similarly, a Koch Curve Prolation Canon can be constructed
based on Fig. 2, so that

() oo

where Dg = In(3)/In(2) =~ 1.58 is the fractal dimension of the Koch-like
curve. Note that in neither case was the actual tonal content of the
canonic motif considered. We address this aspect of musical fractal
patterns in the next section.

(4.12)

(4.13)

(4.14)

5. Tonal complexity

The analogy between the duration of motifs in compositions and the
spatial features of visual fractals serves as a useful guide for under-
standing temporal scaling in music, but it addresses only one of its as-
pects. Quintessential for the perception of the musical themes, and their
role in compositional patterns, is their tonal character, the very melodic
lines. Superposing a color scheme onto the Cantor Set could perhaps
extend the analogy; in that case, the usual “black and white” Cantor Set
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would arguably correspond to musical motifs constructed from a series
of notes of identical pitch, which would imply rather “colorless”
compositions.

To account for pitch variations, a measure of tonal complexity is
required, which can distinguish musical motifs of limited tonal variation
from the passages incorporating larger or more frequent pitch intervals.
Thus, we aim to define the parameter y representing the tonal
complexity with the following properties: (1) y should be “local” and
depend on the pitch intervals between neighboring notes; (2) the larger
the interval the larger should be its contribution to y; (3) the larger the
number of non-zero intervals, the larger the y; (4) a sequence of identical
notes (regardless of their duration) should yield y = 0 indicating the
lowest possible tonal complexity (although not necessarily the absence
of any musical interest); and (5) a sequence with at least one non-zero
interval should have y > 0.

In the twelve-note equal temperament scale, the relation between
any two notes is defined by the ratio of their frequencies and is set to 2
for notes an octave apart. For two notes, which are j semitones apart, the
ratio of their frequencies is given by

fus _ ey o (159Y
f,»’(2 V=75 )

where the second approximate expression is, in practice, used for tuning
instruments. For a full octave interval

[ 15.9\"
J% _ <F) =20122~2,

(5.1)

(5.2)

as required. It follows that the intervals between notes should be
measured in logarithms, as one would expect given that human hearing
is logarithmic. This is also the precise reason for the definition in (5.1).
Accordingly, it is convenient to define the tonal complexity parameter
based on consecutive frequency ratios for an N-note motif as

1 N-1 fir1
r= e (5 |

The factor [n(2) is inserted to ensure that for any two notes an octave
apart, the corresponding tonal complexity is y = 1.

Parameter y has all the required properties, some of which are
illustrated in Fig. 3. A sequence of notes of equal pitch gives y = 0,
example (a); the order of notes does matter, for example exchanging any
pair of notes in sequence (b) would change y; inversion of a motif does
not change y, examples (d) and (e); ascending and descending intervals
contribute in the same way and only the size of the intervals matters,
examples (c) and (f). Finally, the retrograde version of any motif has the
same complexity y as the original theme.

To characterize the scaling properties, it is useful to introduce the
normalized tonal complexity, effectively the average interval between
consecutive notes, as

(5.3)

X
N =81 5.4

Definition (5.4) ensures that simply repeating a given motif or its
variant does not increase the overall complexity of a musical composi-
tion. Another useful property is that for a theme of N notes (N — 1 in-
tervals) within one octave, the normalized complexity is no larger than
1. Indeed, using (5.3) and (5.4), the maximum possible y in this case is

N-1

- ARSI Vo
7ln(2)ln(2 ) =N-1,

(5.5)

4

so that y, = 1. More generally, the maximum normalized complexity
of a passage of an arbitrary number of notes spanning M octaves is M. It
should be noted that these “Euclidean” dimensions correspond to the
extreme case when every interval is at the maximum, an unlikely
musical feat. In Fig. 1, (a)-(f), y, = 0,0.28,0.17,0.25, 0.25, and 0.58,
respectively.



J. McDonough and A. Herczynski

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 170 (2023) 113315

Il

:Ea){e

(d) (e) 63]
3 3 10 2 2 2 6
—t+=+t=—==, . ==+=-+==—,
12 12 12 12 12 12 12
4 2 9 7 7 7 21
Tt Tt et e .

Fig. 3. Six four-note example patterns and the corresponding y.

6. Fractal dimension

The parameter D, defined in Section 4, provides a measure of tem-
poral scaling regularity based on a musical motif, regardless of its
melody. The complexity index y, introduced in the previous section, is a
simple index of the tonal structure of a given fragment, independent of
any scaling regularity. Together, they can capture the salient features of
quasi-fractal patterns in music. It is desirable to define the tonal
dimension D; so that the overall dimension D of a piece is given by the
sum explicitly accounting for both the temporal and tonal aspects,

D =Dy+D,. (6.1)

Because D must be zero in the absence of any scaling regularity, it is
required that D, = 0 when D, = 0. Similarly, we expect D, = 0 whenever
o = 0, that is for a motif of notes equal in pitch as in Fig. 1(a). Finally,
D, should be a monotonically increasing function of y,. It follows that
the tonal complexity should be understood as a factor modifying the
scales so that € = €(ey,) incorporates tonal characteristic. The simplest
possible definition satisfying the conditions listed above is ¢ = ey,
implying that the shorter the notes (higher order), the smaller the
impact of the structural “weight” of the motif, consistent with the ex-
pected perception of a listener. Note that to guarantee that ¢ < 1, it is
required that y, < 1. For nesting sequences, these considerations lead to

In(N) In(N)

In(s) ~ In(s) — Inx,)’ ©2)

D, =

where s = 1/¢. It is easy to verify that all of the desirable properties
listed above are satisfied by (6.2). In particular, for the set of six four-
note examples shown in Fig. 1, and assuming the simplest case of tem-
poral scaling when Dy = 1 or ¢ = 1/N, as in the example considered by
Henderson-Sellers and Cooper [47], Eq. (6.2) yields

D=0, Dy =052, D, = 0.44,

Dy =05, D, =05, Dy = 0.72. (6.3)

To extend the definition of D, to prolation canons, the tonal
complexity parameter y, must modify the temporal scales in the de-
nominators of (4.11), e; = t;/t;, replacing them with € = tyy,/t;. How-
ever, this procedure could violate the requirement that ¢; < 1 for some
of the elements in the sum, namely when t; > t;, so we proceed by setting

_ 2 In (r,/rj)
D, = 7( /t) n(za) (6.4)

Definition (6.4) has two key properties: if y, = 0 then D, = 0, and if
o = 1then D, = D,. Itis thus seen that 0 < D, < D, and therefore, from
(6.1),

Dy < D <2D;. (6.5)

As an example, a three-voice prolation canon based on the melody
given in Fig. 3(e) and Cantor-like temporal scaling of Fig. 1 would have
Dy =1, as given by (4.13), y, = 1/4, and the tonal fractal dimension

2 in(2) In(2) N
3 (2 2n2) + 20n(2) 241)1(2) +2In(2) ) ~0.56,

D, = (6.6)

so that the overall fractal dimension

D = Dy + D, = 1.56. (6.7)

The formalism developed above can be used to find a single, effective
scaling parameter for any prolation canon, an additional index for these
complex compositions. Following (6.2), the effective scale ¢, and the
corresponding effective number of copies (repeats) N, of the canon's
theme for the entire composition must be related via

b = In(eo) + In(y,)’ 6.8)
and from (4.10) also
In(No)
o 7ln(eo)‘ (6.9)

With D, and D, given by (4.11) and (6.4), respectively, Egs. (6.8) and
(6.9) can be solved for the effective parameters. This gives In(Ny) =

D[Doln()[o)/(D[ — Do) and
e = 42/ ® D), (6.10)

Eq. (6.10) requires that y, # 1, consistent with the assumption that
o < 1. For the case of y, = 0 and thus also D, = 0, the effective scale ¢,
is ill-defined. The effective scale ¢, is another index of a scaling pattern
in music, one that can be expressed via the three parameters introduced
earlier, Dy, D;, and y,,, and which provides a succinct characterization of
the overall scaling for a composition with multiple lines of music of
arbitrary relative temporal scales. It is easy to verify that for a prolation
canon of two voices, with commensurate tempos and the relative scale ¢,
the effective scale is in fact the relative scale, ¢ = ¢y, and the effective
number of copies is Ny = 1/¢,, as expected.

7. Examples: prolation canons

Prolation canons are the most direct and arguably the most perfect
realizations of fractal patterns in music. They are the closest conceivable
analogues of the spatial fractals, wherein the fine structure unfolds in
time rather than in space, and self-similarity is manifest across all the
temporal orders present.

Like visual fractals, which may be defined by simple recursion
relation and yet are “infinitely” complex, prolation canons are simple
conceptually but develishly hard to execute and therofore rare. Ock-
eghem might have developed the idea as an embelishement of a regualar
canon, which was already pupular in the Middle Ages. In any case, the
form is particualry suitable for multi-part choral pieces, and became
popular in the Rennaisance. Prolation canons returned to favor in the
20th century and a number of contemporary composers have explored
the form. Five examples, arranged chronologically, are presented below
with detailed analyses.

7.1. Johannes Ockeghem, Missa Prolationum: Kyrie eleison I (ca. 1450)

This is a double prolation canon, wherein two separate pairs of
voices, Soprano-Alto and Tenor-Bass, each take up a different motif. For
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each pair, the ratio of tempos is 3:2, with Soprano leading Alto, and
Tenor leading Bass. A small complication is that the Bass line has a
slightly different rhythm than the Tenor line, and the speed ratio of 3:2 is
the average between these two voices. In the original mensural notation
of the Missa Prolationum, these relative tempos are ensured by the
mensuration (precursor of modern time signatures) [50].

The four parts begin simultaneously, and the canon extends only
through what is shown in Fig. 4. The two faster voices proceed up to the
asterisk, and the slower voices through all three measures shown, so that
all four follow the entire theme exactly once. After this passage, the
music continues as a regular canon.

All movements of this mass harbor prolation canons, sometimes as in
Kyrie I, converting to a regular canon after a few bars. This device,
wherein a hidden complex structure leads to an accessible, transparent
polyphony, is perhaps meant symbolically — as a transition from per-
plexity and doubt to enlightenment and clarity.

In each pair of voices, the theme consists of six notes, performed once
by each voice. The tonal complexity is yg4, =22/12 =1.83 for the
Soprano-Alto pair, and y;; = 2 for the Tenor-Bass pair so that y,g, =
0.37 and y,5 = 0.40 for the two pairs, respectively. Since the third bar
in the first and third lines is not part of the canon, only the first two bars
can be used to calculate fractal dimensions. The temporal dimension for
both pairs of voices is thus Dy = 1. For the tonal dimensions, the sums in
Eq. (6.4) will have just one element with almost the same value for the
SA and TB pairs, Dga = 0.29 and Dy = 0.31, and so Dsy = 1.29 and
Drg = 1.31. As a check of formula (6.10), note that the two effective
scales give the actual scales,

€oss = (0.37)°*" ~ 0.66, eor5 = (0.4)>* ~ 0.66,

as expected.

7.2. Josquin des Prez, Missa L'homme armé: Agnus Dei II (ca. 1495)

This is a supreme example of a pure prolation canon for three voices,
Soprano, Alto and Tenor, with ratios of speeds of 3:1:2, respectively, as
shown in Fig. 5. The three voices begin simultaneously, each following
the same melodic line. Soprano completes the entire melody, while the
two slower voices go as far as the theme takes them at this time. The
theme, as defined in the Soprano line, extends over 25 measures and
does not explicitly repeat any earlier material. However, the motif
defined by the four opening notes (and its inversions) often reoccurs
with slight variations. In the cadence, this motif is interlocked with its
own inversion, resolving to the final chord.

Based on the four-note motif, y = 0.25 whereas for the entire 68 note
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theme y = 181/12 = 15.1. Because the two values of normalized
complexity differ by nearly a factor of four, it is the one for the complete
theme that must be used so that y, = 0.23.

The numbers of repeats in the three lines (SAT) arer; =1,r, =1/3,
andr; =1/2, and the relative durations of the motif, as noted above, are
tp =1, to =3, and t3 = 2. It follows from (4.13) that Dy = 2, and D, =
0.64 so that D = 2.64. The effective scaling for this three-voice canon is
€y = 0.5.

7.3. J. S. Bach, Canon no. 14, BWV 1087 (after 1741)

The 14 cannons in BWV 1087 were appended by Bach to his copy of
the Goldberg Variations (BWV 988). The last of these, no. 14, is a pro-
lation canon of a remarkably complex form, for four voices with the
relative speeds of 8:2:4:1 for Soprano, Alto, Tenor, and Bass, respec-
tively. Fig. 6 shows the five opening measures.

The four voices enter one after another; their starting delays are not
proportional to their respective tempos. The main motif is given by the
first eight notes (denoted by the solid slur bracket) in the Soprano line,
which is then repeated in a transposed version with the length of the last
note slightly adjusted, and followed by seven notes rephrasing the motif
in inversion with some alterations (fragment with the dashed slur
bracket). Each of the three lower voices follows a different fragment of
the soprano melody, so that the canon can unfold cyclically while
maintaining the same relationships between the voices. Alto follows the
first four measures of the Soprano line, as shown in the figure. Tenor
repeats twice only the inverted fragment indicated by the dashed slur
bracket, while Bass that under the solid slur bracket, which is the orig-
inal theme but inverted.

In the standard version, taken as the basis for calculation here, the
Soprano line repeats the entire motif six times, but with an additional
passage of 13-notes included in the middle (and with the extra note
appended at the end of the second bar).

Given that the complex structure is based on an extension of the
theme from the Goldberg Variations, these first eight notes can serve as
the basis for calculating y = 20/12 = 1.67, and y, = 0.24. Consistent
with the outline given above, the number of repetitions for each of the
four linesissettor; =6,r, =1,r3 =2,andr,; = 1. The durations of the
motif are then takenast; =0.5, t; =2,t3 =1, and t; = 4. These values
give Dg = 2.62 and D, = 1.12 so that D = 3.74. The effective scale is
€0 = 0.32.

Canon No. 7 (BWV 1087) is a simpler prolation canon, with the two
upper voices following the Bass theme at a faster tempo. It should be
noted that Bach wrote only a single line for each of these canons and did
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Fig. 4. Ockeghem Missa Prolationum Kyrie I, the opening measures. The score is transcribed into modern notation with the asterisks inserted to indicate where each of
the two motives ends in all four voices. The two faster voices, Soprano and Tenor (first and third line), lead and Alto and Bass follow the two themes, respectively, at

the slower tempo.
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Fig. 6. J.S. Bach Canon no. 14 BWV 1087, the opening measures transcribed to modern notation with the asterisks indicating the end of the main motif. The fragment
shown in the Soprano line is followed by Tenor in inversion; the one covered by the dashed slur bracket by Alto; and the one covered by the solid slur bracket by Bass
in inversion. Rests covered by the bracket at the end of the Soprano line are replacing notes, excluded here for simplicity.

not indicate where the piece should end, so that they are “presented in
the form of puzzles to be solved” as Martin Pearlman observed [51].

7.4. Johannes Brahms, Schaffe in mir, Gott, ein rein Herz, Op. 29
(1856-60)

The first movement of this motet for five voices (SATBB) is marked
Canon per augmentationem indicating that this is a prolation canon with a
ratio of speeds 2:1 for Soprano and Bass II, as can be seen in Fig. 7. The
Soprano voice repeats the 26-note theme twice, r; = 2, allowing Bass II
one full repeat (with omission of two of four consecutive F-naturals),
r, = 1. The middle voices of the motet provide harmony supporting
counterpoint but do not participate in the canon. Here, the complexity

factor is y = 50/12 (it is not affected by the omission of two notes in the
Bass line) and therefore y, =1/6,Dy =1, D, =1.28 and D = 2.28. The
effective scale as given by (6.10) iseg = 0.5, as expected since tp /t; = 2.

7.5. Dmitri Shostakovich, Symphony No. 15 in A Major Op. 141 (1971)

This prolation canon for three voices, in the first movement of the
symphony, is the most intricate example analyzed here. Shostakovich
chooses an unusual ratio of tempos 8:6:5 for Violin I, Viola/Violin II, and
Cello/Bass, respectively, leading to a highly complex counterpoint and
self-correlation of the theme. In the transcription from the original score
given in Fig. 8, proper relative tempos are ensured by three different
time signatures [52].

_ () 4 , : R . |
" A" i I O =y I e 1
y > S— Tz > 4 = T — Y ) P —
1 /= & Il j b 1 = =i PN [ R 1 [ LR >
ANI7 - S - I I I I <  — —1
) I [ | [T 1
o) = X T 3
) » ¥ Il 1 O [9) ©
Z X Il Il O O =

- = p=
= © < =
\—’/

Fig. 7. Brahms, motet Op. 29, Schaffe in mir, Gott, ein Rein Herz, opening bars (Andante moderato) showing the Soprano and Bass II voices (Alto, Tenor, and Bass I are
omitted for clarity). The theme is stated in the Soprano line in 12 bars, of which seven are shown. The Bass II line, at half the tempo, extends only through the part
ending with the asterisk in Soprano.
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Fig. 8. Shostakovich Symphony No. 15 in A Major Op. 141, Allegretto. The entrance of each voice in measures 255/267/273, respectively, is shown. The voices enter
in order of the fastest to the slowest, first Violin I, then Viola/Violin II, and finally Cello/Bass. The three voices, each transcribed into a single line from two, are
displayed simultaneously to save space. Here, unlike in the original score, three different time signatures are used to clearly indicate different tempos.

The theme is based on an eight-note motif (A) indicated in Fig. 8 by
the asterisk, but extends over 47 notes in the first line and has the
structure AABAC, where B and C are two additional sub-motifs made of
15 and 8 notes, respectively. The fastest voice, Violin I, follows the
whole melody three times, r; = 3; Viola/Violin II and Cello/Bass enter
at the beginning of the second and third repetition in the first line,
respectively. Each voice continues to cycle at its own tempo and the
canon ends with the slower voices cut off in the middle of the theme, so
that rp, = 1.5 and r3 = 0.5 (strictly, r3s = 29/47). The complex temporal
structure gives unusual durations of the theme, t; = 6.0, t, = 7.92, and
t3 =9.4.

The opening eight-note sub-theme has y = 20/12 =1.67 and y, =
0.24; for the entire 47-notes theme y = 143/12 =11.9 and y, = 0.26.
Since these two values are almost the same, it is better to use that of the
sub-theme as it is the basis for the entire melodic line. This gives Dy =
8.55,D; = 1.36 and ¢y = 0.76. The total fractal dimension, D = 9.91, is
unusually high reflecting the intricate construction of this canon and the
large number of repeats. Note that the remarkable character of the piece
is partly due to the rests preceding the entrance of the second and the
third voices, which are not shown in Fig. 8.

Among contemporary composers who adopted the prolation canon
to modern idiom is Arvo Part. His remarkable Cantus in Memoriam
Benjamin Britten, written in 1977, is a prolation canon for five voices,
with a ratio of speeds of 16:8:4:2:1 (Violin I, Violin II, Viola, Cello, and
Bass). The theme is based on the descending octave, developed
sequentially with one note added at each repetition. Thus, the theme
proceeds as A-A-G-A-G-F-A-G-F-E-A-..., creating (in principle) ever-
elongating fractal sequence.

8. Examples: nested sequences

This technique, which has been called “structural scaling” in the
nomenclature proposed by Brothers [48], does not weave together
separate voices proceeding at different tempos, as in a prolation canon.
Instead, as discussed before, different temporal scales appear sequen-
tially, in a single line of music, and at each order, the entire passage is
built from copies of the original motif written in shorter notes. Each
faster copy is transposed in such way that it begins with a note from the
previous order. In this manner, every new order retains the memory of
all previous orders, in a progressively finer and self-similar structure.
This algorithm is rather mechanical and highly prescriptive; if it were
implemented rigorously, the resulting melody would likely seem
deprived of spontaneity. It stands to reason, therefore, that the examples
found in music literature depend on imaginative alterations, sub-
stitutions, and refinements, as illustrated below.

8.1. G. F. Handel, suite no. 5 in E major: The Harmonious Blacksmith,
HWYV 430 (1720)

In this “transitional” example, the first and second order are inter-
locked with one another, so that it can be viewed as having simultaneous
lines at different tempos, as in a prolation canon. Here, in measures
25-26, transcribed in Fig. 9, double nested sequences is developed in two
orders. The main motif, stated in the Bass line, is a three-note ascending
stepwise melody rendered in two overlapping voices, one in quarter and
another in eighth notes, denoted by the carets and the bars, respectively.
In the second order (simultaneous with the first), each note of the first
order is replaced by a triplet of sixteenth notes outlining the original
sequence. Similar interwoven structures at various tempos abound in the
composition, for example in a passage in Variation 5 (measures 37-38)
where each note of a four-note motif is reproduced in quartets of 32nd
notes.

In the example of Fig. 9, the three-note motif results in y = 5/12 or
o =0.21, and the two associated (simultaneous) time scales are ¢; =1/
6 and e; = 1/3. This leads to temporal dimensions D} = 0.61 and DZ =
1, tonal dimensions D} = 0.33 and D? = 0.41, and finally the (total)
fractal dimensions D! = 0.94 and D? = 1.41.

8.2. Joseph Haydn, Piano Sonata No. 53, Hob. XVI 34 (1783)

The first movement of this piano sonata has a remarkably regular
form, with frequent repeats of several short motifs. Fig. 10 displays a
fragment (measures 98-101 and 103-106) based on a four-note theme,
which is developed into a two-order nested sequences. This theme is an
ascending four-note melody that outlines the lowest notes of a sequence
of arpeggios (three higher notes in each chord are omitted here for
clarity). The first order consists of the Bass motif in doted half-notes for
the left hand, while the second order, for the right hand (slightly
altered), is inverted, appears delayed by one measure, and is rendered in
the 16th. The temporal scaling factor is therefore 1/12. Note that to add
flair, Haydn included a fifth note to each of the “repeats,” and also
introduced a pair of leading notes followed by rests.

Based on the four-note theme, y = 5/12 and y, = 0.14. Since there
are four copies in the second order at scale 1/12, it is seen that Dy =
0.56, D; = 0.29 and so D = 0.85.

8.3. Gustav Holst, The Planets: Uranus, Op. 32 (1917)

In the opening measures of Uranus by Holst, transcribed in Fig. 11,
nested sequences are developed to two almost complete orders. A four-
note main theme is rendered first in dotted-whole notes, and then
repeated from the same starting note in dotted-quarter notes, with a
longer fourth note. A second repetition casts it in dotted-eighth notes
from the second note of the original theme; these two repetitions can be
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Fig. 9. Handel Suite No. 5 in E Major, Variation 3 (measures 25-26). The Bass line provides the first order, and the Soprano line the second. Solid slur brackets and
carets highlight the first motif, while dashed slur brackets and the bars indicate the second. The two motives are intertwined. Time signature for the right hand has
been changed from the original score and the rests under the bracket at the end replace new musical material for clarity.
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Fig. 11. Holst Uranus from The Planets, Op. 32. The opening bars have been reduced to a single line and transposed up two octaves. Dotted notes replace bracketed
tuplets in the original score to indicate the duration of each note directly. The C-flat note in measure 8 has replaced (as an enharmonic equivalent) the B note in the

original to highlight the consistent melodic contour.

interpreted as a part of a second “asymmetric” order, wherein notes of
unequal durations have been employed. Holst included only half of the
second order (in the second line of music), so the nested sequences form
is incomplete.

J. S. Bach, whose inventiveness and curiosity led him to draw
extensively on mathematical symmetries, also included nested se-
quences in his musical explorations. A notable example is his Sinfonia 15
from the Three-Part Inventions (BWV 801) for piano. The theme, stated in
the first measure for the right hand, consists of three sixteen-note triplets
and is developed to two full orders in scales, with some inversions and
harmonic alterations.

Another remarkable variant reminiscent of nested sequences, in
Bach's Cello Suite No. 3, was reported by Brothers [48]. The opening
measures of Bourée I display “structural scaling,” but only as far as the
rhythmic pattern, AAB, is concerned. The actual music is altered at each
subsequent iteration. This may be a very rare example (if not unique) of
such temporal regularity.

9. Additional examples

As might be expected, there are many instances in the music litera-
ture with elements of fractal writing, in a single voice or multi-part
compositions, but wherein such developments are mathematically
incomplete. In many cases, temporal scaling is present in fragmentary
form, subsumed by unencumbered inventions or abandoned mid-way to
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make artistic statements.

While it would not be informative to assign a fractal dimension to
such passages, it may nevertheless be insightful to appreciate such
mathematical symmetries as may be present.

One such example is Sonata in A Major, K. 268 (ca. 1750) by
Domenico Scarlatti, with a passage that has characteristics of nested
sequences and simultaneously of a prolation canon, but with neither
pattern developed fully. The fragment shown in Fig. 12 is repeated four
times in the piece. The starting note of each triplet in the Soprano line
follows the melody of the Bass line denoted by carets. However, the
remaining notes in the triplets do not follow the same theme, as expected
for the nested sequences. The triplets serve as embellishments of the
motif stated in the Bass line, so that the two versions interact as in a
prolation canon.

A particularly intriguing example, from a mathematical point of
view, is Johann Pachelbel's popular Canon in D. This is a regular canon
for three voices, accompanied by an ostinato, with a long theme built
from ascending and descending stepwise melodies, which alter consis-
tently every four bars. Since these structures reappear at various tempos,
and with delays, they often sound simultaneously at two or three
different speeds, as in a prolation canon.

Per Ngrgard is a contemporary composer who transcribes mathe-
matically defined sequences of integers, “infinity series,” into music. His
Voyage into the Golden Screen follows this model and is constructed so
that the interval between consecutive even- and odd-numbered notes is
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Fig. 12. Scarlatti Sonata in A Major K. 268, bars 75-78, showing a quasi-fractal structure, wherein each quarter note marked with a caret in the Bass line corresponds
to the first note of a triplet in Soprano. Time signature for the right hand has been changed for clarity.

fixed. The second movement is a prolation canon in eight voices, where
the ratio of tempos of the slowest and fastest line is a remarkable 1:32.
Conlon Nancarrow took the mathematical structure of the prolation
canon to a new level. His canons for a player piano feature odd tempo
ratios between voices, practically impossible to play, such as
e/n ~ 0.865.

10. Summary discussion

The approach developed here aims to discern self-similar patterns in
music recurring at various time scales. Two types of temporal scaling
regularities have been identified. In the prolation (or mensuration)
canon, a number of separate voices proceed with the same motif
simultaneously at different speeds, whereas in the nested sequences,
finer time scales follow sequentially, but each iteration harbors all
earlier versions. The two scaling modes are related, and in particular,
any nested sequences can be converted into a prolation canon.

The definitions of the temporal dimension Dy and the tonal dimen-
sion D; accommodate both types of fractal patterns. The former reflects
the rhythmic structure of a composition, whereas the latter reflects its
melodic contour. The two attributes of music are then combined in a
sum to obtain the overall fractal dimension.

The interplay of rhythmic and melodic aspects, reflected in the
temporal and tonal fractal dimensions, makes scaling analysis in music
richer than its counterpart for “black and white” spatial fractals. It is,
however, limited otherwise, as one can only expect a few orders of scales
to be present in any composition. The range of note values (durations) is
quite limited, and any composition encompassing more than three
scaling orders would risk sounding overly mechanical, especially in the
nesting sequences mode, or inscrutable in the prolation canon form.
Bach's Canon no. 14 (Fig. 6) is a remarkable exception.

Imperfections in musical scaling patterns result also from the nature
of harmonies inherent in various musical tonalities. Algorithmic trans-
formations, such as transpositions required for nesting sequences, may
lead to harmonic inconsistencies or unexpected dissonances. Avoiding
such harmonic irritants may require introducing small irregularities or
reformulating the motif (Sinfonia 15 by Bach, BWV 801, can serve as an
example). A composer may also wish to add an unexpected shift or an
alternant, such as an inversion of a small section or the entire theme, so
that departures from ideally conforming patterns are to be expected.

Among the prolation canons analyzed here, Shostakovich's from
Symphony 15, with its unusual tempos, has by far the most complex
temporal structure, with Dy = 8.55 and the total fractal dimension D =
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9.91. More typical structurally are prolation canons by Josquin, Bach
and Brahms, with the fractal dimensions in the range of 2-4. Josquin
clearly developed a much more technically daring approach than Ock-
eghem, whose double-canon, while harmonically very effective, is
characterized by a low dimension, D ~ 1.3. Even though these di-
mensions are only approximate indices of scaling properties, they may
nevertheless prove useful, especially when compared with listeners'
subjective impressions of structural intricacies.

The compositions discussed above were drawn from the oeuvres of
acknowledged masters in the history of music. They are not represen-
tative of that history, but show that fractal patterns have held unique
fascination spanning over half a millennium. Our selective survey sug-
gests that mensuration canons were in vogue during the Renaissance,
perhaps reaching their apogee with Josquin. They have enjoyed
renewed popularity among the contemporary composers. The nested
sequences became fashionable in the Baroque era and were arguably
perfected by Bach, but can also be found in the classical period of the
18th century.

11. Concluding remarks

Can temporal scaling regularities be recognized while listening and is
it helpful to do so? Attention to fractal patterns, even if only fragmen-
tary, may illuminate how the composition is crafted and enhance
awareness of the development of musical narration. It is perfectly
possible, of course, to enjoy the Art of the Fugue without noticing the
intricate transformations of its singular subject. Yet, following the
imitative counterpoint is rewarding and enriches the listening experi-
ence, all the more so when one can contrast and differentiate rhythmic
and tonal patterns within these variations.

Another question that may be raised is whether mathematical reg-
ularities present in music are necessarily intentional. This is certainly the
case for all prolation canons, whose intricate sound tapestry must be
conceived a priori. It is possible that some approximate nesting se-
quences arose more or less spontaneously; if so, by following what they
knew would sound natural and effortless, their composers intuitively
arrived at multiscale patterns.

Temporal scaling in a broader sense can be found not only in the
classical repertoire but also in folk and traditional music. In Indonesia,
gamelan ensembles feature a unique type of polyphony called colotomy,
wherein simultaneous lines of music, performed on metallophones and
other percussion instruments, are nested with commensurate ratios of
tempos. Although this technique involves a rhythmic interplay of
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melodies played at various speeds on different instruments, they do not
usually share any motivic elements.

Structures, which exhibit approximate self-similarity extending over
a few orders of scale, are ubiquitous in nature in the form of plants, trees,
and mountain contours, perhaps accounting for our aesthetic preference
for them in the visual arts. Quasi-fractal patterns in music may be
appealing for similar reasons, even when they appear only fleetingly.
They convey a sense of graceful development, as if each new note found
its natural, anticipated place.

We conclude with a cautionary note. Levi-Strauss, who was perhaps
the first to describe what fractal scaling in music could mean, was also
dismissive of it as a technique “from which one should not expect any-
thing more than a tolerable acoustic ambiance.” [46] Despite his
enthusiasm for fractals in art and their “refinement and complexity,”
[46] Levi-Strauss warned that “fractal algorithms do not have the ability
to engender, whether in painting or music, more than those minor
genres I have called decorative [...]. A large gap separates these often
fascinating objects from an authentic painting or a piece of music.” [46]

Yet scaling regularities in music, as understood and illustrated here,
may challenge this early assessment. When deployed sparingly,
accompanied by other musical devices, or infused with artistic license,
fractal patterns may add richness, texture, and a touch of inevitability to
the piece. Occasional subversions of mathematical symmetries can
guard the composition from sounding overly prescribed or mechanical.
The masterpieces analyzed here, as so many other examples in music
literature, attest to the sovereignty of taste over technique: even the
most refined musical formula must be “well-tempered” for the ear.

Declaration of competing interest
The authors declare that they have no competing interests.
Data availability

No data was used for the research described in the article.

Acknowledgments

During the course of this study, we benefitted from discussions with
several musicians who were extraordinarily generous with their time
and advice. We would especially like to thank Peter Phillips for sharing
his insights regarding the use of mensuration canons in the Renaissance,
and to the choir he directs, The Tallis Scholars, for their masterful re-
cordings of all masses by Josquin, on which we relied. We are grateful to
Steven Lipsitt, music director of Bach, Beethoven, & Brahms Orchestra,
for alerting us to Brahms' motet Op. 29, and to Alyssa Wang, founder and
artistic director of Boston Festival Orchestra, for her careful reading of the
manuscript and sharing many discerning ideas and observations. Thanks
are also due Francois Bergeron for his splendid lecture on symmetry in
Bach's music as well as his comments in our subsequent correspondence.
We are grateful to Ann Lucas for pointing out canonic structures in non-
Western music, and to Grae Worster, for his helpful questions and sug-
gestions. Finally, AH would like to thank Burt Howell and Boston Col-
lege’s Intersections Program, for the invitation to a writing retreat in
June 2022, where a substantial part of this paper was written.

CRediT authorsship contribution statement
AH: conceptualization, formal analysis, methodology, writing —

original draft, writing-review and editing. JMD: conceptualization,
score transcriptions, writing — review and editing.

References

[1] von Helmholtz H. In: Vortrdge und Reden. vol. 1. Braunschwieg; 1884. p. 82.

12

[2]

[3]
[4]

[5]
[6]
[71
[81

[91
[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]
[23]
[24]

[25]
[26]

[27]

[28]
[29]
[30]

[31]

[32]
[33]
[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]
[42]
[43]
[44]
[45]
[46]
[47]

[48]

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 170 (2023) 113315

Weinberg S. To explain the world: the discovery of modern science, Ch. 2. Harper
Collins Publishers; 2015.

Archibald RC. Mathematicians and music. Am Math Mon 1924;31(1):1-25.
Fauvel J, Flood R, Wilson R, editors. Music and mathematics: from Pythagoras to
fractals. Oxford University Press; 2003.

Walker JS, Don GW. Mathematics and music. 2nd ed. CRC Press; 2020.

Morse PM. Vibration and sound. Acoustical Society of America; 1936.

Bachus J. The acoustical foundations of music. Norton; 1969.

Rossing TD, Moore FR, Wheeler PA. The science of sound. 3rd ed. Addison Wesley;
2002.

Rigden JS. Physics and the sound of music. 2nd ed. 1985.

Schroeder MR. Computer models of concert hall acoustics. Am J Phys 1973;41:
461-71.

Schroeder MR. Concert halls. In: The psychology of music. Elsevier; 1999.

p. 25-46.

Howard D, Moretti L. Sound and space in renaissance Venice: architecture, music,
acoustics. Yale University Press; 2010.

Beranek L. How they sound: concert and opera halls. Acoustical Society of America;
1996.

F. Bergeron , Bach and the mathematics of the fugue (private communication).
Mandelbrot BB. The fractal geometry of nature. W. H. Freeman and Co; 1982.
Voss RF, Clarke J. 1/f noise in music and speech. Nature 1975;258:317-8.

Voss RF, Clarke J. 1/f noise in music: music from 1/f noise. J Acoust Soc Am 1978;
63(1). 258-163.

Hsu KJ, Hsu AJ. Fractal geometry of music. Proc Natl Acad Sci U S A 1990;87(3):
938-41.

Niklasson MH, Niklasson GA. The fractal dimension of music: melodic contours and
time series of pitch. arXiv: 2004.02612; 2020.

Gardner M. Fractal music, hypercards and more: mathematical recreations from
Scientific American Magazine, Chapter 1. Freeman and Company; 1991.
Gonzalez-Espinoza A, Larralde H, Martinez-Mekler G, Miiller Markus. Multiple
scaling behavior and nonlinear traits in music scores. R Soc Open Sci 2017;4:
171282.

Levitin DJ, Chorda P, Menon V. Musical rhythm spectra from Bach to Joplin obey a
1/f power law. PNAS 2012;109(10):3716-20.

Campbell P. Nature 1986;324:523-8.

Schroeder MR. Is there such a thing as fractal music. Nature 1987;325:765-6.
Campbell P. Nature 1987;325:766.

Sanyal S, Banerjee A, Patranabis A, Banerjee K, Sengupta R, Ghosh D. A study of
improvisation in a musical performance using multifractal detrended cross
correlation analysis. Physica A 2016;462:67-83.

Telesca L, Lovallo M. Revealing competitive behaviours in music by means of the
multifractal detrended fluctuation analysis: application to Bach sinfonias. Proc R
Soc A 2011;467:3022-32.

Roeske TC, Kelty-Stephen D, Wallot S. Multifractal analysis reveals music-like
dynamics structure in songbird rhythms. Sci Rep 2018;8:4570.

Bigerelle M, Iost A. Fractal dimension and classification of music. Chaos Solitons
Fractals 2000;11:2179-92.

Useche J, Hurtado R. Melodies as maximally disordered systems under
macroscopic constraints with musical meaning. Entropy 2019;21:532.

Aydemir A, Giindiiz G. Fractal dimensions and entropies of Meragi songs. In:
Matrasulov D, Stanley HE, editors. Nonlinear phenomena in complex systems: from
nano to macro scale. Springer; 2014.

Nicholson S, Kim E. Structures in sound: analysis of classical music using the
information length. Entropy 2016;18:258.

Adams D, Grigolini P. Music, new aesthetic, and complexity. In: Zhou J, editor.
Complex sciences. Complex 2009, Part II; 2009. p. 2212-21.

Pace A, Mahmoodi K, West BJ. Complexity measures in music. Chaos Solitons
Fractals 2018;108:82-6.

Zlatintsi A, Maragos P. Multiscale fractal analysis of musical instrument signals
with application to recognition. IEEE Trans Audio Speech Lang Process 2013;21(4):
737-48.

Zhi-Yuan Su, Tzuyin Wu. Multifractal analyses of music sequences. Physica D 2006;
221-2:188-94.

Madden C. Fractals in music. 2nd. ed. High Art Press; 2007.

Dubuc B, Quiniou JF, Roques-Carmes C, Tricot C, Zucker SW. Evaluating the fractal
dimension of profiles. Phys Rev A 1989;39(3):1500-12.

Giindiiz G, Giindiiz U. The mathematical analysis of some songs. Physica A 2005;
357:565-92.

Georgaki A, Christos T. Fractal based curves in musical creativity: a critical
annotation. In: Chaos theory: modeling, simulation and applications. World
Scientific; 2011. p. 167-74.

Walker JS, Don GW. Mathematics and music: composition, perception, and
performance. 1st ed. CRC Press; 2013.

Don GW, Muir KK, Volk GB, Walker JS. In: Music: broken symmetry, geometry, and
complexity, notices of the AMS. 57; 2010. p. 30-49. No 1.

Alm JF, Walker JS. Time-frequency analysis of musical instruments. SIAM Rev
2002;44(3):457-76.

Strogatz SH. Nonlinear dynamics and chaos. Perseus Books; 1994.

Barnsley MF. Fractals everywhere. Morgan Kaufmann; 2000.

Lévi-Strauss C. Look, listen, read, Basic Books. 1997. (translation of “Regarder,
Ecouter, Lire,” Librairie Plon, 1997). p. 84-86.

Henderson-Sellers B, Cooper D. Has classical music a fractal nature?: a reanalysis.
Comput Hum 1994;27(4):277-84.

Brothers HJ. Structural scaling in Bach’s Cello Suite No. 3. Fractals 2007;15(1):
89-95.


http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051541204841
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051435209604
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051435209604
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051443593335
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051445249535
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051445249535
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051445310645
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303192026333606
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051455351234
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051458143335
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051458143335
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051541332191
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051505109295
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051505109295
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051506592225
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051506592225
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051507064575
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051507064575
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303192027314441
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303192027314441
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051507453985
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544115649
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051545019443
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051545019443
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544118980
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544118980
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051541494501
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051541494501
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051542037641
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051542037641
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051531148681
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051531148681
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051531148681
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051531158681
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051531158681
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544121569
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051531287091
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544185070
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544197720
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544197720
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544197720
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544306911
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544306911
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544306911
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051531290731
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051531290731
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544393571
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544393571
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544402121
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544402121
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051542345641
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051542345641
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051542345641
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544409371
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544409371
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051543015891
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051543015891
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051531378091
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051531378091
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051539272971
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051539272971
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051539272971
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051539288621
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051539288621
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051539392671
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544445952
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544445952
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544517282
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051544517282
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051539443261
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051539443261
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051539443261
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf5000
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf5000
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051540069611
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051540069611
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303192020445027
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303192020445027
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051540120861
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051540154621
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051540448851
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051540448851
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051543457789
http://refhub.elsevier.com/S0960-0779(23)00216-3/rf202303051543457789

J. McDonough and A. Herczynski Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 170 (2023) 113315

[49] Brothers HJ. Intervallic scaling in the Bach cello suites. Fractals 2008;17(4): [51] Pearlman M. Program notes for the Boston Baroque Orchestra performance of
537-45. “Goldberg” Canons, BWV 1087. Isabella Gardner Museum; January 16, 1990.

[50] Metcalfe Scott. Program notes for the Blue Heron ensemble performance of [52] In the original score, with the single time-signature, the two slower voices begin at
Ockeghem’s Missa Prolationum. Cambridge, MA: First Congregational Church; the second and third repetition of the theme in the first voice. Viola/Violin II enter
March 9, 2019. 12 measures after Violin I, and Cello/Bass six measures later. This is possible

because the signature changes from 2/4 to 4/4 when the second voice enters.
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