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A B S T R A C T   

If aesthetic preferences are affected by the fractal geometry of nature, scaling regularities would be expected to 
appear in all art forms, including music. While a variety of statistical tools have been proposed to analyze time 
series in sound, no consensus has yet emerged regarding the most meaningful measure of complexity in music or 
how to discern fractal patterns in compositions in the 昀椀rst place. Here, we offer a new approach based on the self- 
similarity of melodic lines recurring at various temporal scales. In contrast to the statistical analyses advanced in 
recent literature, the proposed method does not depend on averaging within time-windows and is distinctively 
local. The corresponding de昀椀nition of the fractal dimension is based on the temporal scaling hierarchy and 
depends on the tonal contours of musical motifs. The new concepts are tested on musical “renditions” of the 
Cantor Set and the Koch Curve, and then applied to a number of carefully selected masterful compositions 
spanning 昀椀ve centuries of music making.   

1. Introduction 

It has been long recognized that mathematics and music, despite 
their divergent modes of expression, are nevertheless “bound together,” 

as Helmholtz put it [1]. The earliest exploration of this bond is usually 
credited to Pythagoras, but had likely been the work of his anonymous 
followers, the Pythagoreans, who assigned numerical values to notes 
plucked on λύρα – the lyre [2]. Among many mathematicians and 
physicists who contributed to music theory were Euclid, Ptolemy, Kep-
ler, Huygens, Mersenne, Daniel Bernoulli, Fourier, and Euler. Jean- 
Phillip Rameau's 1722 Treatise on Harmony earned him the nickname 
“Isaac Newton of music.” D'Alambert was so impressed by Rameau's 
mathematical principles of music that he wrote his own summary of the 
composer's theories. A beautiful historical outline is offered in R. C 
Archibald's 1924 essay [3]; a more recent account can be found in 
reference [4]. 

Perhaps the most fundamental link between the two 昀椀elds lies in the 
construction of musical scales, a formidable challenge owing to the 
logarithmic character of human (and not only human) hearing. The 
development of equal temperament scales in use today has its own long 
and complicated history [4,5]. Instrument design and their acoustical 
properties depend, in turn, on the scales and involve physics principles 
and experimentation as much as art. Antonio Stradivari's artful in-
novations in perfecting string instruments, to take a celebrated example, 
set the standard followed meticulously to this day. The wave nature of 

sound, and sound propagation, are the domain of physics [6–9] as is the 
design of music halls, wherein art and physics meet [10–13]. 

But beyond the physics of production, propagation, and reception of 
music, mathematics touches also on the very form and structure of 
compositions, often providing a framework for pattern variations or 
suggesting the development of musical ideas. A number of common 
compositional stratagems are based on mathematical transformations of 
musical motifs, such as shifts, re昀氀ections (“vertical” in pitch or “hori-
zontal” in time), elongations (stretches) and shortenings (compressions) 
– or in musical terms: transpositions, inversions, retrogrades, augmen-
tations, and diminutions, respectively. Johann Sebastian Bach's The Art 
of Fugue (Die Kunst der Fuge, BWV 1080) is an exquisite compendium of 
such techniques. 

Bach's Contrapunctus VII, one of the 14 fugues [14] in the collection, 
deploys all of these transformations and their combinations. The prin-
cipal theme and its inversions appear in three different time scales: the 
original statement (rectus) or its inversion (invertus), scaled-down 
version (diminution), and scaled-up version (augmentation). These 
transformed motifs at different time scales are layered in four voices 
(SATB) in intricate, and always changing kaleidoscopic ways, so that in 
some passages, two of the lines of music are in the same tempo and the 
third is slower or faster, and at other times the theme unfolds on three 
different time scales simultaneously. 

Such multi-scale, complex structures in music are reminiscent of 
visual fractals but rendered as time series of notes or chords—extended 
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Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 
journal homepage: www.elsevier.com/locate/chaos 

https://doi.org/10.1016/j.chaos.2023.113315 
Received 2 February 2023; Accepted 26 February 2023   

mailto:andrzej@bc.edu
www.sciencedirect.com/science/journal/09600779
https://www.elsevier.com/locate/chaos
https://doi.org/10.1016/j.chaos.2023.113315
https://doi.org/10.1016/j.chaos.2023.113315


Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 170 (2023) 113315

2

in time rather than in space. This paper aims to revisit the notion of 
scaling regularities in music and provide a more precise and more 
discriminating de昀椀nition of the fractal pattern in sound based on this 
analogy, informed by a number of compositional techniques and the 
standard music-theoretical approaches. 

2. Review of literature 

It is remarkable that the literature on scaling regularities in music 
goes back at least to 1975, the same year that the 昀椀rst comprehensive 
treatise on fractals by Mandelbrot [15] was published. Perhaps the 
earliest contributions in this category were the papers by Voss and 
Clarke [16,17] who investigated the spectral density of audio power 
(effectively loudness) in a range of recordings, from news radio to jazz to 
classical music, and found 1/f power law regularity present in all of 
them. This work has motivated many researchers to re昀椀ne the method. 
In a variant, Hsu and Hsu [18] focused on note intervals and also found 
power-law characteristics. When applied to music, spectral-densities 
may reveal scaling of the form 1/fβ, indicating white noise (β = 0), 
pink noise (β = 1), red (or Brownian) noise (β = 2), and black noise 
(β > 2). The index β is a global measure, independent of details of the 
composition, a self-af昀椀ne index rather than the fractal dimension [19]. 
For a review and interpretation of β see references [20–22]. Power laws 
have also been discerned in computer-generated “fractal” music 
[23–25]. 

More recently, a number of studies have applied statistical physics 
tools to selected musical pieces. Perhaps the most widely and success-
fully adopted method has been the detrended 昀氀uctuation analysis (DFA) 
[21,26–28]. The method is a re昀椀nement of the vector version of the 
昀氀uctuation analysis designed to measure autocorrelation in multivariate 
time-series data. González-Espinoza et al. [21] provide a thorough re-
view of the literature on DFA and extend this method to non-linear 
correlations. The authors identi昀椀ed a number of characteristic pro昀椀les 
in the 昀氀uctuation functions for a handful of (complete) compositions, 
from Palestrina to Shostakovich, and the corresponding Hurst expo-
nents. Several interesting classi昀椀cation possibilities and insights have 
emerged from this approach. A similar method, autocorrelation of 
normalized averages (ANA), was developed by Bigerelle and Iost [29] 
and used to classify music genres. Numerous other approaches based on 
statistical analysis, information theory, and Zipf's Law, have been 
developed [30–34]. A comprehensive review can be found in reference 
[30]. 

Statistical methods provide valuable insights into the distribution of 
sequences of notes at various scales and may indeed reveal thematic 
autocorrelations across the composition, but they should be interpreted 
with caution. They are analogues of the usual box counting for patterns 
embedded in 2D, whereby “boxes” are replaced with time-windows. 
However, this analogy entails a cognitive incongruity since an image 
(and any part of it) can be perceived in its entirety, whereas one can 
listen to a piece of music only one instant at a time and it is impossible to 
hear it all at once. A composition of more than a few minutes may 
involve changes in tempo, sonority, loudness, and the very musical 
themes, and a listener's experience is not an amalgam of notes heard in 
all previous segments, of all possible durations, simultaneously. Music is 
localized in time, and held in memory with mental references to selected 
earlier episodes; it cannot be perceived, let alone comprehended, in an 
average sense. 

Furthermore, all statistical analyses are insensitive to the order of the 
notes, and thus are at a far remove from the meaning of music. A given 
composition rendered backwards, in retrograde, would exhibit the same 
power laws for example, yet would likely amount to unintelligible noise 
(except for rare pieces such as Crab Canon in the Musical Offering, BWV 
1079, by Bach). Ignoring the order of notes would be akin to analyzing a 
novel without concern for the order of the words. It is clear, therefore, 
that a more satisfactory approach is required. 

The autocorrelation, or Hurst exponent, obtained using either the 

DFA or ANA method may not be related to the true fractal dimension 
unless the pattern exhibits self-similarity at progressively smaller scales. 
For example, in their analysis of Bach's sonata sopr'il Soggetto Reale (from 
Musical Offering, BWV 1079), González-Espinoza et al [21]. graphically 
indicated that in the 昀椀rst movement, for which a single power law was 
discerned, a number of note patterns are repeated in each of the three 
voices (harpsichord, transverse 昀氀ute, and violin). However, the repeated 
motifs always appear at the same tempo. What this suggests, then, is not 
self-similarity in the usual sense required of fractals but the recurrence 
of its motivic elements at the same scale or autocorrelation. Conse-
quently, González-Espinoza et al. [21] do not identify their measured 
Hurst exponents with the fractal dimensions. 

The standard box-counting algorithm, or its variants, can be used to 
analyze graphical representations of music [35,36] based on the pitch or 
loudness, creating a “musical contour.” Chapter 7 of Charles Madden's 
book Fractals in Music [37] provides many examples with fractal di-
mensions in the range 1 < D < 2.The principal advantage of this 
approach is its conceptual simplicity; the main shortcoming is that it 
renders (approximate) fractal dimensions without requiring any scaling 
structure in the music itself. This approach was critically assessed in a 
recent paper by Niklasson et al. [19] 

A similar method for time-series, based on the variational principle, 
was developed by Dubuc et al [38]. but as far as we know, it has not been 
applied to music. Another box-counting approach uses scatter plots 
based on intervals between subsequent notes [39,40]. It is not clear why 
the resulting index can be interpreted as the fractal dimension. As the 
examples examined in Chapter 6 of Charles Madden's book [37] illus-
trate, this index is not correlated with the complexity of the music. More 
fundamentally, these studies deploy a formula for the fractal dimension, 
which is applicable only when the data conforms to a power law, which 
is not the case in these analyses. 

A graphical approach of a different kind has been developed by 
James Walker and his collaborators, and used extensively in his book, 
Mathematics and Music [41] and review papers [42,43]. It relies on 
discrete Gabor Transform with 昀椀xed (or variable) time-windows to 
produce time-frequency plots called spectrograms (and also scalo-
grams), which offer nuanced graphical “portraits” of musical pieces. 
Spectrograms can be used in various effective ways but they are not 
meant to provide a single characteristic index of complexity or 
regularity. 

In the present work, which evolved through close scrutiny of a large 
number of musical scores from the Renaissance to the present time, the 
primary focus is on identifying self-similarity of particular compositions 
wherein such patterns are clearly present. Self-similarity in music is 
understood as the recurrence of particular musical motifs, or their 
symmetric transformations, at various time scales. Here, duration is 
analogous to length in visual fractals embedded in 2D, such as the Cantor 
Set and the Koch Curve (see, for example, ref. [44,45]). This analogy is 
then extended further to de昀椀ne the corresponding fractal dimension. 
The method proposed here is simpler and more direct than statistical 
analyses developed heretofore; it is dictated by the patterns of notes and 
is distinctively local. It aims to discern speci昀椀c passages or movements 
within larger musical pieces, which harbor more or less developed 
scaling regularities. 

The proposed approach has three antecedents. The 昀椀rst is the general 
anticipation that only some, highly idiosyncratic music pieces can be 
construed as fractal, whether they were conceived as formal explora-
tions, as practiced by Bach, or incidental. Such interpretation has been 
adopted early by Claude Lévi-Strauss in his remarkable book Look, 
Listen, Read [46]. “The fractal character of musical composition” Lévi- 
Strauss wrote, “results from the fact that the relation between a small 
number of contiguous notes is repeated unchanged when those frag-
ments are compared with more extensive passages from the same piece.” 

[46] 
Another crucial insight is due to Henderson-Sellers and Cooper [47] 

who proposed a de昀椀nition of musical self-similarity based on note 
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durations, analogous to the Cantor Set, specifying how the faster pas-
sages are to be related to the slower ones. To the best of our knowledge, 
this study provides the 昀椀rst precise de昀椀nition of a musical fractal based 
on the development of a melodic line. The third illuminating insight is 
due to Brothers [48], who suggested that in considering self-similarity of 
musical fragments, it is necessary to distinguish a number of possible 
regularities, such as duration and structural scaling, and also intervallic 
(pitch) scaling [49]. In the approach presented here, these preliminary 
ideas are extended to de昀椀ne the term nesting sequences. 

In the following, a systematic analysis of self-similar patterns in 
sound is undertaken, aiming to synthesize insights from the approaches 
noted above. The remainder of this paper is organized as follows. Section 
3 proposes a new de昀椀nition of fractal patterns in music. In Section 4 the 
notion of temporal scaling is generalized. Section 5 introduces the 
concept of tonal (structural) complexity. Section 6 offers an operative 
de昀椀nition of the fractal dimension, and Sections 7–9 provide examples 
spanning over 500 years of music history. The paper closes with a 
summary in Section 10 and concluding remarks in Section 11. 

3. Musical quasi-fractals 

There is currently no broadly accepted consensus on what constitutes 
a fractal pattern in music. Statistical analyses, as discussed above, pro-
vide various measures of structural complexity for a sequence of notes, 
such as the self-af昀椀ne index α or the autocorrelation (Hurst) exponent H, 
but these can be numerically computed for any time series without 
requiring self-similarity, however loosely understood. Yet self-similarity 
across multiple scales, whether exact or approximate, is the hallmark of 
all fractals, their sine qua non. Furthermore, the exponents α and H can 
be understood to characterize asymptotically increasing periods, or 
long-time memory of the piece (whether perceived by a listener or not), 
whereas fractal dimension D characterizes asymptotically decreasing 
periods, or instantaneous coincidence. 

For a strictly self-similar time series, D = 2− H, but in music that is 
highly improbable, except in very short passages. For whole multipart 
symphonic movements, whose character, motifs, instrumentation, 
scoring, and tempi, vary greatly, even approximate overall self-
–similarity is simply unachievable; indeed, it would hardly be desirable. 
Dif昀椀culties arise even with a single line of music because it is not a 
simple time series; notes have values (durations) and pitch (frequency), 
and both must be taken into account when de昀椀ning self-similarity. 
Compositions made entirely from notes of the same pitch, or from 
notes of equal value, are rare, although such passages sometimes do 
occur in longer works. 

The approach proposed here aims to avoid treating music as a simple 
time series and to discern scaling regularity akin to algorithmically 
de昀椀ned fractals, that is, reoccurrence of the same pattern at 昀椀ner and 
昀椀ner scales, with sensitivity to the melody itself. It is modeled on a close 
analogy with in昀椀nitely 昀椀ne mathematical fractals (such as the Cantor Set 
or the Koch Curve) and their quasi-fractal graphical representations, 
wherein only a 昀椀nite number of subscales can be manifest. In musical 
pieces, which are 昀椀nite in length and (in the Western tradition) have a 
limited range of note values, only a few scaling orders can be expected. 

The key insight of this analogy is that whereas in a spatial quasi- 
fractal structure (such as an image), the same pattern recurs simulta-
neously at multiple spatial scales at a given location, in music, the same 
melodic line must occur at multiple time scales at a given instant. A 
musical fractal pattern, therefore, requires that a motif be performed 
simultaneously at a few different tempos, creating an intricate interplay 
of the theme with its faster or slower versions – musical self-similarity. 

Two speci昀椀c compositional techniques for realizing such complex-
ities in music can be identi昀椀ed. The primary music genre, which depends 
on the simultaneous rendition of the same theme at various tempos, is 
the prolation canon, also called the mensuration canon (Brothers [48] calls 
it “motivic scaling”). The technique was almost certainly invented by 
Johannes Ockeghem, who might have also given it the name. Every 

movement of his remarkable Missa Prolationum, which survives in a 
manuscript completed in 1503, offers a different variant of this form. 
Ockeghem's most gifted student, Josquin des Prez, developed it further 
in his masses with an unmatched 昀椀nesse and inventiveness. 

The second fractal technique, described formally in its simplest 
version by Henderson-Sellers and Cooper [47], consists of the sequential 
re昀椀nement of a given motif wherein each note is replaced by a faster 
rendition of the entire theme but transposed, so that it starts with that 
very note. The melody is thus constructed by layering nested sequences 
and encompasses the simultaneity of multiple scales in a 昀椀gurative 
sense, in a single line of music, which becomes faster and faster at each 
order, but retains the outline of the slower version in the leading notes of 
each scaled copy. This algorithmic technique has been deployed in 
creative ways by many composers and thus merits consideration here. 

4. Temporal scaling 

The two forms of fractal patterns discussed above suggest that any 
viable de昀椀nition of fractal dimension for a musical passage must discern 
a de昀椀ning motif, or a theme, and should re昀氀ect both temporal scaling 
regularities and the tonal complexity of the theme. In this section we 
develop the concept of temporal scaling for both forms of fractal pat-
terns in music, prolation canons and nested sequences, and the corre-
sponding temporal fractal dimension, D0. 

Nesting sequences, wherein at each new order every note of the 
previous order is replaced by a copy of the motif in shorter notes 
(smaller time scale), can be understood as analogues of the Cantor Set 
construction. As such, this particular compositional method provides the 
most direct way to de昀椀ne D0. 

The form of nesting sequences was 昀椀rst suggested, in its simplest 
version, by Henderson-Sellers and Copper [47], with an example based 
on a four-note motif made of whole notes. In the second order, the theme 
is transformed into 16 quarter notes, then into 64 16th notes, etc., 
keeping the overall duration in each order the same. This is analogous to 
a version of Cantor-like construction wherein an interval of length 1 is 
replaced by four subintervals of length ¼, and so on, so that the number 
of copies at each new order increases by the factor N = 4 with the in-
verse scale s = 1/ϵ = (1/4)−1 = 4, and thus D0 = ln(N)/ln(s) = 1. 

It is therefore seen that the particular pattern discussed in reference 
[47] is inescapably “Euclidean.” To move beyond the integer dimension, 
the duration of each new (scaled) copy of the musical motif must be 
incommensurate with the number of copies. As examples, consider 
musical analogues of the Cantor Set and the Koch Curve. 

An exact musical replica of the Cantor Set would be unwieldy 
because durations of 1/3 of a given note value are not obtainable in a 
satisfying manner. The closest equivalent, although still cumbersome, 
would be to use a scaling factor of 3/8. A musically feasible variant is a 
pattern wherein each “interval” at a given order is replaced with two 
copies of ¼ its length, so that 

D0 =
ln(2)
ln(4) = 0.5. (4.1) 

An example based on a two-note and two-rests motif chosen to mimic 
the Cantor construction is shown in Fig. 1. The possibility of nested 
sequences with D0 > 1 can be realized in a musical equivalent of the 
Koch Curve. Here again a variant is developed, wherein each note of the 
three-note motif is replaced by three notes of ½ duration. This gives 

D0 =
ln(3)
ln(2) j 1.58. (4.2) 

Fig. 2 provides an example with the three-note theme chosen to be 
visually similar to the graphical representation of the Koch Curve so that 
a triplet of notes, with the middle note raised relative to the 昀椀rst and the 
third, corresponds to a four-segment “hat” replacing straight segments at 
the previous order of the Koch construction. 
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It is thus clear that non-integer scaling is possible with nested se-
quences, with the fractal dimension 0 < D0 < ∞. Temporal scaling can 
be further generalized by allowing notes of varied durations at each 
order. For example, each whole note in the 昀椀rst order could be replaced 
by two eights and two quarter notes in the second order, and so on. In 
this case, the corresponding fractal dimension can be obtained using a 
more general approach [15] by setting 

2

(

1

8

)D0

+ 2

(

1

4

)D0

= 1, (4.3)  

or, denoting φ = 2D0 , 
φ3 − 2φ− 2 = 0. (4.4) 

The cubic Eq. (4.4) has one real root, given via the Cardano method 
as 
φ = ( − 4.5 + δ)1/3 +( − 4.5 − δ)1/3, (4.5) 

with δ =
��������������������1 − 8/27: , so that φ j 1.77 and 

D0 =
ln(φ)
ln(2) j 0.82. (4.6) 

As a complementary example with Do > 1, consider a nesting 
sequence wherein in the second order each whole note is replaced by 
two quarter notes and two half notes so that 

2

(

1

4

)D0

+ 2

(

1

2

)D0

= 1, (4.7)  

and again denoting φ = 2D0 , 
φ2 − 2φ− 2 = 0 (4.8) 

or φ = 1+
���3: , so that 

D0 =
ln(φ)
ln(2) j 1.44. (4.9) 

To extend this method of calculating D0 to the prolation canons, 
consider 昀椀rst the simplest case of two simultaneous voices proceeding at 
two different tempos, with the ratio of the speeds of the 昀椀rst voice to the 
second given by a rational number p/q. If the two voices start and end 
together, such that each completes integer repeats of the de昀椀ning motif, 
then each rendition of the theme in voice one is replaced by q/p repeats 
in voice two, with s = 1/ϵ = q/p, which implies D0 = 1. For n simul-
taneous voices, all starting and ending together, it is sensible to de昀椀ne 
D0 = n− 1, with each additional voice raising the temporal fractal 
dimension by 1. 

In some prolation canons, however, separate voices do not start or 
昀椀nish together (or else do not fully complete repeats). Consider 昀椀rst 
canons with just two lines of music, and let r1 and r2 represent the 
number of repeats of the canonic motif in the 昀椀rst and second voice, 
respectively, where the two parameters are in general rational numbers 
but not necessarily integers. In this case, the number of scaled copies in 
the second line of music per one copy in the 昀椀rst line can be taken as N =
r2/r1, so that 

Fig. 1. The Cantor-like nested sequences pattern based on a two note, two rests motif chosen for its visual similarity to a representation of the (special) Cantor Set. 
Each line of music corresponds to one order in scaling, with the overall duration (excluding rests) decreasing by ½ at each order. The carets indicate a note repeated 
(at shorter duration) from the previous order, and dashed slur brackets the entire motif at a given order. 

Fig. 2. The Koch-like nested sequences pattern based on a three-note motif chosen for its visual similarity to a representation of the Koch Curve. Each line of music 
corresponds to one order in scaling, with the overall duration increasing by 3/2 at each new order. Carets indicate a note repeated (at shorter duration) from the 
previous order, and dashed slur brackets the entire motif at a given order. 
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D0 =
ln(N)
ln(s) = ln(r2/r1)

ln(t1/t2)
, (4.10)  

where t1 and t2 are the durations of the motif in the 昀椀rst and second 
voice, respectively, and the inverse time scale in the denominator is 
written as s = q/p = t1/t2. When the two voices start and 昀椀nish simul-
taneously, then r2/r1 = t1/t2, so that D0 = 1 as before. 

Several properties of the de昀椀nition in Eq. (4.10) should be noted. 
First, indices “1” and “2” can be exchanged without changing the value 
of D0, which means that the order in which the musical lines are written 
does not matter (as should be the case). Second, if r1 = r2 while t1 7= t2 
then D0 = 0, as expected. Finally, for r1 = r2 and t1 = t2, D0 is inde昀椀nite; 
in this case the two voices are identical so that in effect there is only a 
single, doubled line of music and the notion of temporal scaling is simply 
not applicable. 

For a prolation canon of n voices, the relative scaling for each pair of 
voices must be included because the music depends on the simultaneous 
sounding of all such pairs. We therefore de昀椀ne 

D0 =
1

n

3

n

i7=j

ln
(

ri

/

rj

)

ln
(

tj

/

ti

) , (4.11) 

where the indices refer to the voice numbers. Here Nij = ri/rj is the 
number of copies in line i relative to line j, and ϵij = ti/tj is the scale of 
line i relative to line j. Again, since in (4.11) any two indices can be 
exchanged without changing the value, the order of the music lines does 
not affect D0. Eq. (4.11) reduces to (4.10) for the prolation canon with 
two voices, or n = 2, as expected. 

De昀椀nition (4.11) guarantees that when all pairs of voices are 
mutually commensurate, for example all voices start and end together 
and each repeats the motif integer number of times (a Euclidean canon, 
one might say), D0 = n− 1, in agreement with the earlier conjecture. 
Indeed, in this case all the terms under the sum in (4.11) are equal to 1, 
and thus 

D0 =
1

n

(

2

(

n

2

))

= n − 1. (4.12) 

The two examples based on the Cantor Set and the Koch Curve in 
Figs. 1 and 2 can both be interpreted as prolation canons in three voices, 
taking each line to represent a separate, simultaneous voice. Thus, the 
two methods of realizing fractal patterns in music are seen as connected. 
It can then be immediately seen that for the Cantor Set Prolation Canon 

D0 =
1

n

(

2
ln(2)
ln(4)

(

n

2

))

= (n − 1)DC, (4.13)  

where DC = ln(2)/ln(4) = 0.5 is the fractal dimension of the Cantor-like 
structure. Similarly, a Koch Curve Prolation Canon can be constructed 
based on Fig. 2, so that 

D0 =
1

n

(

2
ln(3)
ln(2)

(

n

2

))

= (n − 1)DK , (4.14)  

where DK = ln(3)/ln(2) j 1.58 is the fractal dimension of the Koch-like 
curve. Note that in neither case was the actual tonal content of the 
canonic motif considered. We address this aspect of musical fractal 
patterns in the next section. 

5. Tonal complexity 

The analogy between the duration of motifs in compositions and the 
spatial features of visual fractals serves as a useful guide for under-
standing temporal scaling in music, but it addresses only one of its as-
pects. Quintessential for the perception of the musical themes, and their 
role in compositional patterns, is their tonal character, the very melodic 
lines. Superposing a color scheme onto the Cantor Set could perhaps 
extend the analogy; in that case, the usual “black and white” Cantor Set 

would arguably correspond to musical motifs constructed from a series 
of notes of identical pitch, which would imply rather “colorless” 

compositions. 
To account for pitch variations, a measure of tonal complexity is 

required, which can distinguish musical motifs of limited tonal variation 
from the passages incorporating larger or more frequent pitch intervals. 
Thus, we aim to de昀椀ne the parameter χ representing the tonal 
complexity with the following properties: (1) χ should be “local” and 
depend on the pitch intervals between neighboring notes; (2) the larger 
the interval the larger should be its contribution to χ; (3) the larger the 
number of non-zero intervals, the larger the χ; (4) a sequence of identical 
notes (regardless of their duration) should yield χ = 0 indicating the 
lowest possible tonal complexity (although not necessarily the absence 
of any musical interest); and (5) a sequence with at least one non-zero 
interval should have χ > 0. 

In the twelve-note equal temperament scale, the relation between 
any two notes is de昀椀ned by the ratio of their frequencies and is set to 2 
for notes an octave apart. For two notes, which are j semitones apart, the 
ratio of their frequencies is given by 
fi+j

fi

=
(

21/12
)j j

(

15.9

15

)j

, (5.1)  

where the second approximate expression is, in practice, used for tuning 
instruments. For a full octave interval 
fi+12

fi

=
(

15.9

15

)12

= 2.0122 j 2, (5.2)  

as required. It follows that the intervals between notes should be 
measured in logarithms, as one would expect given that human hearing 
is logarithmic. This is also the precise reason for the de昀椀nition in (5.1). 
Accordingly, it is convenient to de昀椀ne the tonal complexity parameter 
based on consecutive frequency ratios for an N-note motif as 

χ = 1

ln(2)
3N−1

i=1

ò

ò

ò

ò

ln

(

fi+1

fi

) ò

ò

ò

ò

. (5.3) 

The factor ln(2) is inserted to ensure that for any two notes an octave 
apart, the corresponding tonal complexity is χ = 1. 

Parameter χ has all the required properties, some of which are 
illustrated in Fig. 3. A sequence of notes of equal pitch gives χ = 0, 
example (a); the order of notes does matter, for example exchanging any 
pair of notes in sequence (b) would change χ; inversion of a motif does 
not change χ, examples (d) and (e); ascending and descending intervals 
contribute in the same way and only the size of the intervals matters, 
examples (c) and (f). Finally, the retrograde version of any motif has the 
same complexity χ as the original theme. 

To characterize the scaling properties, it is useful to introduce the 
normalized tonal complexity, effectively the average interval between 
consecutive notes, as 

χ0 = χ

N − 1
. (5.4) 

De昀椀nition (5.4) ensures that simply repeating a given motif or its 
variant does not increase the overall complexity of a musical composi-
tion. Another useful property is that for a theme of N notes (N − 1 in-
tervals) within one octave, the normalized complexity is no larger than 
1. Indeed, using (5.3) and (5.4), the maximum possible χ in this case is 

χ = N − 1

ln(2) ln
(

21/12
)12 = N − 1, (5.5) 

so that χ0 = 1. More generally, the maximum normalized complexity 
of a passage of an arbitrary number of notes spanning M octaves is M. It 
should be noted that these “Euclidean” dimensions correspond to the 
extreme case when every interval is at the maximum, an unlikely 
musical feat. In Fig. 1, (a)-(f), χ0 = 0, 0.28, 0.17, 0.25, 0.25, and 0.58, 
respectively. 
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6. Fractal dimension 

The parameter D0 de昀椀ned in Section 4, provides a measure of tem-
poral scaling regularity based on a musical motif, regardless of its 
melody. The complexity index χ0 introduced in the previous section, is a 
simple index of the tonal structure of a given fragment, independent of 
any scaling regularity. Together, they can capture the salient features of 
quasi-fractal patterns in music. It is desirable to de昀椀ne the tonal 
dimension Dt so that the overall dimension D of a piece is given by the 
sum explicitly accounting for both the temporal and tonal aspects, 
D = D0 + Dt. (6.1) 

Because D must be zero in the absence of any scaling regularity, it is 
required that Dt = 0 when D0 = 0. Similarly, we expect Dt = 0 whenever 
χ0 = 0, that is for a motif of notes equal in pitch as in Fig. 1(a). Finally, 
Dt should be a monotonically increasing function of χ0. It follows that 
the tonal complexity should be understood as a factor modifying the 
scales so that ϵ' = ϵ'(ϵχ0) incorporates tonal characteristic. The simplest 
possible de昀椀nition satisfying the conditions listed above is ϵ' = ϵχ0, 
implying that the shorter the notes (higher order), the smaller the 
impact of the structural “weight” of the motif, consistent with the ex-
pected perception of a listener. Note that to guarantee that ϵ2

< 1, it is 
required that χ0 < 1. For nesting sequences, these considerations lead to 

Dt =
ln(N)
ln(s') =

ln(N)
ln(s) − ln(χ0)

, (6.2)  

where s2 = 1/ϵ
2 . It is easy to verify that all of the desirable properties 

listed above are satis昀椀ed by (6.2). In particular, for the set of six four- 
note examples shown in Fig. 1, and assuming the simplest case of tem-
poral scaling when D0 = 1 or ϵ = 1/N, as in the example considered by 
Henderson-Sellers and Cooper [47], Eq. (6.2) yields 
Dta = 0, Dtb = 0.52, Dtc = 0.44,
Dtd = 0.5, Dte = 0.5, Dtf = 0.72.

(6.3) 

To extend the de昀椀nition of Dt to prolation canons, the tonal 
complexity parameter χo must modify the temporal scales in the de-
nominators of (4.11), ϵij = ti/tj, replacing them with ϵ2ij = tiχo/tj. How-
ever, this procedure could violate the requirement that ϵ2ij < 1 for some 
of the elements in the sum, namely when ti > tj, so we proceed by setting 

Dt =
2

n

3

tj>ti

ln
(

ri

/

rj

)

ln
(

tj

/

ti

)

− ln(χ0)
. (6.4) 

De昀椀nition (6.4) has two key properties: if χ0 = 0 then Dt = 0, and if 
χ0 = 1 then Dt = D0. It is thus seen that 0 f Dt f D0 and therefore, from 
(6.1), 
D0 f D f 2D0. (6.5) 

As an example, a three-voice prolation canon based on the melody 
given in Fig. 3(e) and Cantor-like temporal scaling of Fig. 1 would have 
D0 = 1, as given by (4.13), χ0 = 1/4, and the tonal fractal dimension 

Dt =
2

3

(

2
ln(2)

2ln(2) + 2ln(2) + 2
ln(2)

4ln(2) + 2ln(2)

)

j 0.56, (6.6)  

so that the overall fractal dimension 
D = D0 + Dt j 1.56. (6.7) 

The formalism developed above can be used to 昀椀nd a single, effective 
scaling parameter for any prolation canon, an additional index for these 
complex compositions. Following (6.2), the effective scale ϵ0 and the 
corresponding effective number of copies (repeats) N0 of the canon's 
theme for the entire composition must be related via 

Dt = − ln(N0)
ln(ϵ0) + ln(χ0)

, (6.8)  

and from (4.10) also 

D0 = −ln(N0)
ln(ϵ0)

. (6.9) 

With D0 and Dt given by (4.11) and (6.4), respectively, Eqs. (6.8) and 
(6.9) can be solved for the effective parameters. This gives ln(N0) =
DtD0ln(χ0)/(Dt − D0) and 
ϵ0 = χ

Dt/(D0−Dt)
0 . (6.10) 

Eq. (6.10) requires that χ0 7= 1, consistent with the assumption that 
χ0 < 1. For the case of χ0 = 0 and thus also Dt = 0, the effective scale ϵ0 
is ill-de昀椀ned. The effective scale ϵ0 is another index of a scaling pattern 
in music, one that can be expressed via the three parameters introduced 
earlier, D0, Dt, and χ0, and which provides a succinct characterization of 
the overall scaling for a composition with multiple lines of music of 
arbitrary relative temporal scales. It is easy to verify that for a prolation 
canon of two voices, with commensurate tempos and the relative scale ϵ, 
the effective scale is in fact the relative scale, ϵ = ϵ0, and the effective 
number of copies is N0 = 1/ϵ0, as expected. 

7. Examples: prolation canons 

Prolation canons are the most direct and arguably the most perfect 
realizations of fractal patterns in music. They are the closest conceivable 
analogues of the spatial fractals, wherein the 昀椀ne structure unfolds in 
time rather than in space, and self-similarity is manifest across all the 
temporal orders present. 

Like visual fractals, which may be de昀椀ned by simple recursion 
relation and yet are “in昀椀nitely” complex, prolation canons are simple 
conceptually but develishly hard to execute and therofore rare. Ock-
eghem might have developed the idea as an embelishement of a regualar 
canon, which was already pupular in the Middle Ages. In any case, the 
form is particualry suitable for multi-part choral pieces, and became 
popular in the Rennaisance. Prolation canons returned to favor in the 
20th century and a number of contemporary composers have explored 
the form. Five examples, arranged chronologically, are presented below 
with detailed analyses. 

7.1. Johannes Ockeghem, Missa Prolationum: Kyrie eleison I (ca. 1450) 

This is a double prolation canon, wherein two separate pairs of 
voices, Soprano-Alto and Tenor-Bass, each take up a different motif. For 

Fig. 3. Six four-note example patterns and the corresponding χ.  
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each pair, the ratio of tempos is 3:2, with Soprano leading Alto, and 
Tenor leading Bass. A small complication is that the Bass line has a 
slightly different rhythm than the Tenor line, and the speed ratio of 3:2 is 
the average between these two voices. In the original mensural notation 
of the Missa Prolationum, these relative tempos are ensured by the 
mensuration (precursor of modern time signatures) [50]. 

The four parts begin simultaneously, and the canon extends only 
through what is shown in Fig. 4. The two faster voices proceed up to the 
asterisk, and the slower voices through all three measures shown, so that 
all four follow the entire theme exactly once. After this passage, the 
music continues as a regular canon. 

All movements of this mass harbor prolation canons, sometimes as in 
Kyrie I, converting to a regular canon after a few bars. This device, 
wherein a hidden complex structure leads to an accessible, transparent 
polyphony, is perhaps meant symbolically – as a transition from per-
plexity and doubt to enlightenment and clarity. 

In each pair of voices, the theme consists of six notes, performed once 
by each voice. The tonal complexity is χSA = 22/12 = 1.83 for the 
Soprano-Alto pair, and χTB = 2 for the Tenor-Bass pair so that χ0SA =
0.37 and χ0TB = 0.40 for the two pairs, respectively. Since the third bar 
in the 昀椀rst and third lines is not part of the canon, only the 昀椀rst two bars 
can be used to calculate fractal dimensions. The temporal dimension for 
both pairs of voices is thus D0 = 1. For the tonal dimensions, the sums in 
Eq. (6.4) will have just one element with almost the same value for the 
SA and TB pairs, DtSA = 0.29 and DtTB = 0.31, and so DSA = 1.29 and 
DTB = 1.31. As a check of formula (6.10), note that the two effective 
scales give the actual scales, 
ϵ0SA = (0.37)0.41 j 0.66, ϵ0TB = (0.4)0.43 j 0.66,

as expected. 

7.2. Josquin des Prez, Missa L'homme armé: Agnus Dei II (ca. 1495) 

This is a supreme example of a pure prolation canon for three voices, 
Soprano, Alto and Tenor, with ratios of speeds of 3:1:2, respectively, as 
shown in Fig. 5. The three voices begin simultaneously, each following 
the same melodic line. Soprano completes the entire melody, while the 
two slower voices go as far as the theme takes them at this time. The 
theme, as de昀椀ned in the Soprano line, extends over 25 measures and 
does not explicitly repeat any earlier material. However, the motif 
de昀椀ned by the four opening notes (and its inversions) often reoccurs 
with slight variations. In the cadence, this motif is interlocked with its 
own inversion, resolving to the 昀椀nal chord. 

Based on the four-note motif, χ = 0.25 whereas for the entire 68 note 

theme χ = 181/12 = 15.1. Because the two values of normalized 
complexity differ by nearly a factor of four, it is the one for the complete 
theme that must be used so that χ0 = 0.23. 

The numbers of repeats in the three lines (SAT) are r1 = 1, r2 = 1/3, 
and r3 = 1/2, and the relative durations of the motif, as noted above, are 
t1 = 1, t2 = 3, and t3 = 2. It follows from (4.13) that D0 = 2, and Dt =
0.64 so that D = 2.64. The effective scaling for this three-voice canon is 
ϵ0 = 0.5. 

7.3. J. S. Bach, Canon no. 14, BWV 1087 (after 1741) 

The 14 cannons in BWV 1087 were appended by Bach to his copy of 
the Goldberg Variations (BWV 988). The last of these, no. 14, is a pro-
lation canon of a remarkably complex form, for four voices with the 
relative speeds of 8:2:4:1 for Soprano, Alto, Tenor, and Bass, respec-
tively. Fig. 6 shows the 昀椀ve opening measures. 

The four voices enter one after another; their starting delays are not 
proportional to their respective tempos. The main motif is given by the 
昀椀rst eight notes (denoted by the solid slur bracket) in the Soprano line, 
which is then repeated in a transposed version with the length of the last 
note slightly adjusted, and followed by seven notes rephrasing the motif 
in inversion with some alterations (fragment with the dashed slur 
bracket). Each of the three lower voices follows a different fragment of 
the soprano melody, so that the canon can unfold cyclically while 
maintaining the same relationships between the voices. Alto follows the 
昀椀rst four measures of the Soprano line, as shown in the 昀椀gure. Tenor 
repeats twice only the inverted fragment indicated by the dashed slur 
bracket, while Bass that under the solid slur bracket, which is the orig-
inal theme but inverted. 

In the standard version, taken as the basis for calculation here, the 
Soprano line repeats the entire motif six times, but with an additional 
passage of 13-notes included in the middle (and with the extra note 
appended at the end of the second bar). 

Given that the complex structure is based on an extension of the 
theme from the Goldberg Variations, these 昀椀rst eight notes can serve as 
the basis for calculating χ = 20/12 = 1.67, and χo = 0.24. Consistent 
with the outline given above, the number of repetitions for each of the 
four lines is set to r1 = 6, r2 = 1, r3 = 2, and r4 = 1. The durations of the 
motif are then taken as t1 = 0.5, t2 = 2, t3 = 1, and t4 = 4. These values 
give D0 = 2.62 and Dt = 1.12 so that D = 3.74. The effective scale is 
ϵ0 = 0.32. 

Canon No. 7 (BWV 1087) is a simpler prolation canon, with the two 
upper voices following the Bass theme at a faster tempo. It should be 
noted that Bach wrote only a single line for each of these canons and did 

Fig. 4. Ockeghem Missa Prolationum Kyrie I, the opening measures. The score is transcribed into modern notation with the asterisks inserted to indicate where each of 
the two motives ends in all four voices. The two faster voices, Soprano and Tenor (昀椀rst and third line), lead and Alto and Bass follow the two themes, respectively, at 
the slower tempo. 
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not indicate where the piece should end, so that they are “presented in 
the form of puzzles to be solved” as Martin Pearlman observed [51]. 

7.4. Johannes Brahms, Schaffe in mir, Gott, ein rein Herz, Op. 29 
(1856–60) 

The 昀椀rst movement of this motet for 昀椀ve voices (SATBB) is marked 
Canon per augmentationem indicating that this is a prolation canon with a 
ratio of speeds 2:1 for Soprano and Bass II, as can be seen in Fig. 7. The 
Soprano voice repeats the 26-note theme twice, r1 = 2, allowing Bass II 
one full repeat (with omission of two of four consecutive F-naturals), 
r2 = 1. The middle voices of the motet provide harmony supporting 
counterpoint but do not participate in the canon. Here, the complexity 

factor is χ = 50/12 (it is not affected by the omission of two notes in the 
Bass line) and therefore χ0 = 1/6, D0 = 1, Dt = 1.28 and D = 2.28. The 
effective scale as given by (6.10) is ϵ0 = 0.5, as expected since t2/t1 = 2. 

7.5. Dmitri Shostakovich, Symphony No. 15 in A Major Op. 141 (1971) 

This prolation canon for three voices, in the 昀椀rst movement of the 
symphony, is the most intricate example analyzed here. Shostakovich 
chooses an unusual ratio of tempos 8:6:5 for Violin I, Viola/Violin II, and 
Cello/Bass, respectively, leading to a highly complex counterpoint and 
self-correlation of the theme. In the transcription from the original score 
given in Fig. 8, proper relative tempos are ensured by three different 
time signatures [52]. 

Fig. 5. Josquin des Prez Missa L'homme armé super voces musicales, Agnus Dei II, the opening measures. Transcribed into modern notation using a different time 
signature for the soprano to clearly demonstrate the ratio of speeds, 3:1:2 for the 昀椀rst, second, and third lines, respectively. The asterisk indicates the four-note sub- 
motif, as rendered in the three voices, which serves as the basis for the entire theme de昀椀ned by the Soprano line. 

Fig. 6. J.S. Bach Canon no. 14 BWV 1087, the opening measures transcribed to modern notation with the asterisks indicating the end of the main motif. The fragment 
shown in the Soprano line is followed by Tenor in inversion; the one covered by the dashed slur bracket by Alto; and the one covered by the solid slur bracket by Bass 
in inversion. Rests covered by the bracket at the end of the Soprano line are replacing notes, excluded here for simplicity. 

Fig. 7. Brahms, motet Op. 29, Schaffe in mir, Gott, ein Rein Herz, opening bars (Andante moderato) showing the Soprano and Bass II voices (Alto, Tenor, and Bass I are 
omitted for clarity). The theme is stated in the Soprano line in 12 bars, of which seven are shown. The Bass II line, at half the tempo, extends only through the part 
ending with the asterisk in Soprano. 
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The theme is based on an eight-note motif (A) indicated in Fig. 8 by 
the asterisk, but extends over 47 notes in the 昀椀rst line and has the 
structure AABAC, where B and C are two additional sub-motifs made of 
15 and 8 notes, respectively. The fastest voice, Violin I, follows the 
whole melody three times, r1 = 3; Viola/Violin II and Cello/Bass enter 
at the beginning of the second and third repetition in the 昀椀rst line, 
respectively. Each voice continues to cycle at its own tempo and the 
canon ends with the slower voices cut off in the middle of the theme, so 
that r2 = 1.5 and r3 = 0.5 (strictly, r3 = 29/47). The complex temporal 
structure gives unusual durations of the theme, t1 = 6.0, t2 = 7.92, and 
t3 = 9.4. 

The opening eight-note sub-theme has χ = 20/12 = 1.67 and χ0 =
0.24; for the entire 47-notes theme χ = 143/12 = 11.9 and χ0 = 0.26.
Since these two values are almost the same, it is better to use that of the 
sub-theme as it is the basis for the entire melodic line. This gives D0 =
8.55, Dt = 1.36 and ϵ0 = 0.76. The total fractal dimension, D = 9.91, is 
unusually high re昀氀ecting the intricate construction of this canon and the 
large number of repeats. Note that the remarkable character of the piece 
is partly due to the rests preceding the entrance of the second and the 
third voices, which are not shown in Fig. 8. 

Among contemporary composers who adopted the prolation canon 
to modern idiom is Arvo Pärt. His remarkable Cantus in Memoriam 
Benjamin Britten, written in 1977, is a prolation canon for 昀椀ve voices, 
with a ratio of speeds of 16:8:4:2:1 (Violin I, Violin II, Viola, Cello, and 
Bass). The theme is based on the descending octave, developed 
sequentially with one note added at each repetition. Thus, the theme 
proceeds as A-A-G-A-G-F-A-G-F-E-A-…, creating (in principle) ever- 
elongating fractal sequence. 

8. Examples: nested sequences 

This technique, which has been called “structural scaling” in the 
nomenclature proposed by Brothers [48], does not weave together 
separate voices proceeding at different tempos, as in a prolation canon. 
Instead, as discussed before, different temporal scales appear sequen-
tially, in a single line of music, and at each order, the entire passage is 
built from copies of the original motif written in shorter notes. Each 
faster copy is transposed in such way that it begins with a note from the 
previous order. In this manner, every new order retains the memory of 
all previous orders, in a progressively 昀椀ner and self-similar structure. 
This algorithm is rather mechanical and highly prescriptive; if it were 
implemented rigorously, the resulting melody would likely seem 
deprived of spontaneity. It stands to reason, therefore, that the examples 
found in music literature depend on imaginative alterations, sub-
stitutions, and re昀椀nements, as illustrated below. 

8.1. G. F. Handel, suite no. 5 in E major: The Harmonious Blacksmith, 
HWV 430 (1720) 

In this “transitional” example, the 昀椀rst and second order are inter-
locked with one another, so that it can be viewed as having simultaneous 
lines at different tempos, as in a prolation canon. Here, in measures 
25–26, transcribed in Fig. 9, double nested sequences is developed in two 
orders. The main motif, stated in the Bass line, is a three-note ascending 
stepwise melody rendered in two overlapping voices, one in quarter and 
another in eighth notes, denoted by the carets and the bars, respectively. 
In the second order (simultaneous with the 昀椀rst), each note of the 昀椀rst 
order is replaced by a triplet of sixteenth notes outlining the original 
sequence. Similar interwoven structures at various tempos abound in the 
composition, for example in a passage in Variation 5 (measures 37–38) 
where each note of a four-note motif is reproduced in quartets of 32nd 
notes. 

In the example of Fig. 9, the three-note motif results in χ = 5/12 or 
χ0 = 0.21, and the two associated (simultaneous) time scales are ϵ1 = 1/
6 and ϵ2 = 1/3. This leads to temporal dimensions D10 = 0.61 and D20 =
1, tonal dimensions D1t = 0.33 and D2t = 0.41, and 昀椀nally the (total) 
fractal dimensions D1 = 0.94 and D2 = 1.41. 

8.2. Joseph Haydn, Piano Sonata No. 53, Hob. XVI 34 (1783) 

The 昀椀rst movement of this piano sonata has a remarkably regular 
form, with frequent repeats of several short motifs. Fig. 10 displays a 
fragment (measures 98–101 and 103–106) based on a four-note theme, 
which is developed into a two-order nested sequences. This theme is an 
ascending four-note melody that outlines the lowest notes of a sequence 
of arpeggios (three higher notes in each chord are omitted here for 
clarity). The 昀椀rst order consists of the Bass motif in doted half-notes for 
the left hand, while the second order, for the right hand (slightly 
altered), is inverted, appears delayed by one measure, and is rendered in 
the 16th. The temporal scaling factor is therefore 1/12. Note that to add 
昀氀air, Haydn included a 昀椀fth note to each of the “repeats,” and also 
introduced a pair of leading notes followed by rests. 

Based on the four-note theme, χ = 5/12 and χ0 = 0.14. Since there 
are four copies in the second order at scale 1/12, it is seen that D0 =
0.56, Dt = 0.29 and so D = 0.85. 

8.3. Gustav Holst, The Planets: Uranus, Op. 32 (1917) 

In the opening measures of Uranus by Holst, transcribed in Fig. 11, 
nested sequences are developed to two almost complete orders. A four- 
note main theme is rendered 昀椀rst in dotted-whole notes, and then 
repeated from the same starting note in dotted-quarter notes, with a 
longer fourth note. A second repetition casts it in dotted-eighth notes 
from the second note of the original theme; these two repetitions can be 

Fig. 8. Shostakovich Symphony No. 15 in A Major Op. 141, Allegretto. The entrance of each voice in measures 255/267/273, respectively, is shown. The voices enter 
in order of the fastest to the slowest, 昀椀rst Violin I, then Viola/Violin II, and 昀椀nally Cello/Bass. The three voices, each transcribed into a single line from two, are 
displayed simultaneously to save space. Here, unlike in the original score, three different time signatures are used to clearly indicate different tempos. 
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interpreted as a part of a second “asymmetric” order, wherein notes of 
unequal durations have been employed. Holst included only half of the 
second order (in the second line of music), so the nested sequences form 
is incomplete. 

J. S. Bach, whose inventiveness and curiosity led him to draw 
extensively on mathematical symmetries, also included nested se-
quences in his musical explorations. A notable example is his Sinfonia 15 
from the Three-Part Inventions (BWV 801) for piano. The theme, stated in 
the 昀椀rst measure for the right hand, consists of three sixteen-note triplets 
and is developed to two full orders in scales, with some inversions and 
harmonic alterations. 

Another remarkable variant reminiscent of nested sequences, in 
Bach's Cello Suite No. 3, was reported by Brothers [48]. The opening 
measures of Bourée I display “structural scaling,” but only as far as the 
rhythmic pattern, AAB, is concerned. The actual music is altered at each 
subsequent iteration. This may be a very rare example (if not unique) of 
such temporal regularity. 

9. Additional examples 

As might be expected, there are many instances in the music litera-
ture with elements of fractal writing, in a single voice or multi-part 
compositions, but wherein such developments are mathematically 
incomplete. In many cases, temporal scaling is present in fragmentary 
form, subsumed by unencumbered inventions or abandoned mid-way to 

make artistic statements. 
While it would not be informative to assign a fractal dimension to 

such passages, it may nevertheless be insightful to appreciate such 
mathematical symmetries as may be present. 

One such example is Sonata in A Major, K. 268 (ca. 1750) by 
Domenico Scarlatti, with a passage that has characteristics of nested 
sequences and simultaneously of a prolation canon, but with neither 
pattern developed fully. The fragment shown in Fig. 12 is repeated four 
times in the piece. The starting note of each triplet in the Soprano line 
follows the melody of the Bass line denoted by carets. However, the 
remaining notes in the triplets do not follow the same theme, as expected 
for the nested sequences. The triplets serve as embellishments of the 
motif stated in the Bass line, so that the two versions interact as in a 
prolation canon. 

A particularly intriguing example, from a mathematical point of 
view, is Johann Pachelbel's popular Canon in D. This is a regular canon 
for three voices, accompanied by an ostinato, with a long theme built 
from ascending and descending stepwise melodies, which alter consis-
tently every four bars. Since these structures reappear at various tempos, 
and with delays, they often sound simultaneously at two or three 
different speeds, as in a prolation canon. 

Per Nørgård is a contemporary composer who transcribes mathe-
matically de昀椀ned sequences of integers, “in昀椀nity series,” into music. His 
Voyage into the Golden Screen follows this model and is constructed so 
that the interval between consecutive even- and odd-numbered notes is 

Fig. 9. Handel Suite No. 5 in E Major, Variation 3 (measures 25–26). The Bass line provides the 昀椀rst order, and the Soprano line the second. Solid slur brackets and 
carets highlight the 昀椀rst motif, while dashed slur brackets and the bars indicate the second. The two motives are intertwined. Time signature for the right hand has 
been changed from the original score and the rests under the bracket at the end replace new musical material for clarity. 

Fig. 10. Haydn, Piano Sonata No. 53 (measures 98–101 and 103–106). The four-note motif is repeated numerous times. Carets indicate repeated (leading) notes and 
dashed slur bracket the entire inverted motif in the second order. The repeats in the second line are “dressed” with pairs of notes followed by the sixteenth rest, and 
one additional note is added in each. 

Fig. 11. Holst Uranus from The Planets, Op. 32. The opening bars have been reduced to a single line and transposed up two octaves. Dotted notes replace bracketed 
tuplets in the original score to indicate the duration of each note directly. The C-昀氀at note in measure 8 has replaced (as an enharmonic equivalent) the B note in the 
original to highlight the consistent melodic contour. 

J. McDonough and A. Herczyński                                                                                                                                                                                                           



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 170 (2023) 113315

11

昀椀xed. The second movement is a prolation canon in eight voices, where 
the ratio of tempos of the slowest and fastest line is a remarkable 1:32. 
Conlon Nancarrow took the mathematical structure of the prolation 
canon to a new level. His canons for a player piano feature odd tempo 
ratios between voices, practically impossible to play, such as 
e/π j 0.865. 

10. Summary discussion 

The approach developed here aims to discern self-similar patterns in 
music recurring at various time scales. Two types of temporal scaling 
regularities have been identi昀椀ed. In the prolation (or mensuration) 
canon, a number of separate voices proceed with the same motif 
simultaneously at different speeds, whereas in the nested sequences, 
昀椀ner time scales follow sequentially, but each iteration harbors all 
earlier versions. The two scaling modes are related, and in particular, 
any nested sequences can be converted into a prolation canon. 

The de昀椀nitions of the temporal dimension D0 and the tonal dimen-
sion Dt accommodate both types of fractal patterns. The former re昀氀ects 
the rhythmic structure of a composition, whereas the latter re昀氀ects its 
melodic contour. The two attributes of music are then combined in a 
sum to obtain the overall fractal dimension. 

The interplay of rhythmic and melodic aspects, re昀氀ected in the 
temporal and tonal fractal dimensions, makes scaling analysis in music 
richer than its counterpart for “black and white” spatial fractals. It is, 
however, limited otherwise, as one can only expect a few orders of scales 
to be present in any composition. The range of note values (durations) is 
quite limited, and any composition encompassing more than three 
scaling orders would risk sounding overly mechanical, especially in the 
nesting sequences mode, or inscrutable in the prolation canon form. 
Bach's Canon no. 14 (Fig. 6) is a remarkable exception. 

Imperfections in musical scaling patterns result also from the nature 
of harmonies inherent in various musical tonalities. Algorithmic trans-
formations, such as transpositions required for nesting sequences, may 
lead to harmonic inconsistencies or unexpected dissonances. Avoiding 
such harmonic irritants may require introducing small irregularities or 
reformulating the motif (Sinfonia 15 by Bach, BWV 801, can serve as an 
example). A composer may also wish to add an unexpected shift or an 
alternant, such as an inversion of a small section or the entire theme, so 
that departures from ideally conforming patterns are to be expected. 

Among the prolation canons analyzed here, Shostakovich's from 
Symphony 15, with its unusual tempos, has by far the most complex 
temporal structure, with D0 = 8.55 and the total fractal dimension D =

9.91. More typical structurally are prolation canons by Josquin, Bach 
and Brahms, with the fractal dimensions in the range of 2–4. Josquin 
clearly developed a much more technically daring approach than Ock-
eghem, whose double-canon, while harmonically very effective, is 
characterized by a low dimension, D j 1.3. Even though these di-
mensions are only approximate indices of scaling properties, they may 
nevertheless prove useful, especially when compared with listeners' 
subjective impressions of structural intricacies. 

The compositions discussed above were drawn from the oeuvres of 
acknowledged masters in the history of music. They are not represen-
tative of that history, but show that fractal patterns have held unique 
fascination spanning over half a millennium. Our selective survey sug-
gests that mensuration canons were in vogue during the Renaissance, 
perhaps reaching their apogee with Josquin. They have enjoyed 
renewed popularity among the contemporary composers. The nested 
sequences became fashionable in the Baroque era and were arguably 
perfected by Bach, but can also be found in the classical period of the 
18th century. 

11. Concluding remarks 

Can temporal scaling regularities be recognized while listening and is 
it helpful to do so? Attention to fractal patterns, even if only fragmen-
tary, may illuminate how the composition is crafted and enhance 
awareness of the development of musical narration. It is perfectly 
possible, of course, to enjoy the Art of the Fugue without noticing the 
intricate transformations of its singular subject. Yet, following the 
imitative counterpoint is rewarding and enriches the listening experi-
ence, all the more so when one can contrast and differentiate rhythmic 
and tonal patterns within these variations. 

Another question that may be raised is whether mathematical reg-
ularities present in music are necessarily intentional. This is certainly the 
case for all prolation canons, whose intricate sound tapestry must be 
conceived a priori. It is possible that some approximate nesting se-
quences arose more or less spontaneously; if so, by following what they 
knew would sound natural and effortless, their composers intuitively 
arrived at multiscale patterns. 

Temporal scaling in a broader sense can be found not only in the 
classical repertoire but also in folk and traditional music. In Indonesia, 
gamelan ensembles feature a unique type of polyphony called colotomy, 
wherein simultaneous lines of music, performed on metallophones and 
other percussion instruments, are nested with commensurate ratios of 
tempos. Although this technique involves a rhythmic interplay of 

Fig. 12. Scarlatti Sonata in A Major K. 268, bars 75–78, showing a quasi-fractal structure, wherein each quarter note marked with a caret in the Bass line corresponds 
to the 昀椀rst note of a triplet in Soprano. Time signature for the right hand has been changed for clarity. 
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melodies played at various speeds on different instruments, they do not 
usually share any motivic elements. 

Structures, which exhibit approximate self-similarity extending over 
a few orders of scale, are ubiquitous in nature in the form of plants, trees, 
and mountain contours, perhaps accounting for our aesthetic preference 
for them in the visual arts. Quasi-fractal patterns in music may be 
appealing for similar reasons, even when they appear only 昀氀eetingly. 
They convey a sense of graceful development, as if each new note found 
its natural, anticipated place. 

We conclude with a cautionary note. Levi-Strauss, who was perhaps 
the 昀椀rst to describe what fractal scaling in music could mean, was also 
dismissive of it as a technique “from which one should not expect any-
thing more than a tolerable acoustic ambiance.” [46] Despite his 
enthusiasm for fractals in art and their “re昀椀nement and complexity,” 

[46] Levi-Strauss warned that “fractal algorithms do not have the ability 
to engender, whether in painting or music, more than those minor 
genres I have called decorative […]. A large gap separates these often 
fascinating objects from an authentic painting or a piece of music.” [46] 

Yet scaling regularities in music, as understood and illustrated here, 
may challenge this early assessment. When deployed sparingly, 
accompanied by other musical devices, or infused with artistic license, 
fractal patterns may add richness, texture, and a touch of inevitability to 
the piece. Occasional subversions of mathematical symmetries can 
guard the composition from sounding overly prescribed or mechanical. 
The masterpieces analyzed here, as so many other examples in music 
literature, attest to the sovereignty of taste over technique: even the 
most re昀椀ned musical formula must be “well-tempered” for the ear. 
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[1] von Helmholtz H. In: Vorträge und Reden. vol. 1. Braunschwieg; 1884. p. 82. 

[2] Weinberg S. To explain the world: the discovery of modern science, Ch. 2. Harper 
Collins Publishers; 2015. 

[3] Archibald RC. Mathematicians and music. Am Math Mon 1924;31(1):1–25. 
[4] Fauvel J, Flood R, Wilson R, editors. Music and mathematics: from Pythagoras to 

fractals. Oxford University Press; 2003. 
[5] Walker JS, Don GW. Mathematics and music. 2nd ed. CRC Press; 2020. 
[6] Morse PM. Vibration and sound. Acoustical Society of America; 1936. 
[7] Bachus J. The acoustical foundations of music. Norton; 1969. 
[8] Rossing TD, Moore FR, Wheeler PA. The science of sound. 3rd ed. Addison Wesley; 

2002. 
[9] Rigden JS. Physics and the sound of music. 2nd ed. 1985. 

[10] Schroeder MR. Computer models of concert hall acoustics. Am J Phys 1973;41: 
461–71. 

[11] Schroeder MR. Concert halls. In: The psychology of music. Elsevier; 1999. 
p. 25–46. 

[12] Howard D, Moretti L. Sound and space in renaissance Venice: architecture, music, 
acoustics. Yale University Press; 2010. 

[13] Beranek L. How they sound: concert and opera halls. Acoustical Society of America; 
1996. 

[14] F. Bergeron , Bach and the mathematics of the fugue (private communication). 
[15] Mandelbrot BB. The fractal geometry of nature. W. H. Freeman and Co; 1982. 
[16] Voss RF, Clarke J. 1/f noise in music and speech. Nature 1975;258:317–8. 
[17] Voss RF, Clarke J. 1/f noise in music: music from 1/f noise. J Acoust Soc Am 1978; 

63(1). 258-163. 
[18] Hsu KJ, Hsu AJ. Fractal geometry of music. Proc Natl Acad Sci U S A 1990;87(3): 

938–41. 
[19] Niklasson MH, Niklasson GA. The fractal dimension of music: melodic contours and 

time series of pitch. arXiv: 2004.02612; 2020. 
[20] Gardner M. Fractal music, hypercards and more: mathematical recreations from 

Scienti昀椀c American Magazine, Chapter 1. Freeman and Company; 1991. 
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