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ABSTRACT

Over the recent decades, a variety of indices, such as the fractal dimension, Hurst exponent, or Betti numbers, have been used to characterize
structural or topological properties of art via a singular parameter, which could then help to classify artworks. A single fractal dimension,
in particular, has been commonly interpreted as characteristic of the entire image, such as an abstract painting, whether binary, gray-scale,
or in color, and whether self-similar or not. There is now ample evidence, however, that fractal exponents obtained using the standard
box-counting are strongly dependent on the details of the method adopted, and on fitting straight lines to the entire scaling plots, which
are typically nonlinear. Here, we propose a more discriminating approach with the aim of obtaining robust scaling plots and extracting
relevant information encoded in them without any fitting routines. To this goal, we carefully average over all possible grid locations at each
scale, rendering scaling plots independent of any particular choice of grids and, crucially, of the orientation of images. We then calculate the
derivatives of the scaling plots, so that an image is described by a continuous function, its fractal contour, rather than a single scaling exponent
valid over a limited range of scales. We test this method on synthetic examples, ordered and random, then on images of algorithmically defined
fractals, and finally, examine selected abstract paintings and prints by acknowledged masters of modern art.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0207823

A fractal dimension has become one of the standard measures of
statistical properties of images, including art. It has been pro-
posed as a criterion for classifying art according to its style or
epoch, as an indicator of its aesthetic appeal, and even as a tool
for authenticating paintings. However, reliably assigning a sin-
gle such dimension to images requires linear scaling plots. Here,
using both simple “synthetic” patterns and digital reproductions
of artworks, we show that scaling plots are often distinctly non-
linear, and thus, assigning a single fractal index to them may be
problematic. Moreover, these plots contain a wealth of informa-
tion about images, which is ignored when linear fits are used.
This information can be reliably uncovered through their fractal

contours, which account for varying slopes of scaling curves. We
illustrate the value of such analyses on selected black and white
paintings and prints, and interpret the fractal contours of these
artworks. The method can be extended to gray-scale and color
images, and thus applied to any image, whether a photograph, an
artwork, or a medical scan.

I. INTRODUCTION

The quest to characterize and classify art has a long history.
Perhaps the first systematic attempt was undertaken by Giorgio
Vasari,1 whose biographies, appraisals, and comparisons of painters,
sculptors, and architects of the Renaissance continue to impact art
history. Close to five centuries later, perception of visual artworks,
whether figurative, abstract, or escaping such facile categories,
remains highly subjective and difficult to quantify.2,3 Arguably, art
depends on some elusive quality; as Degas noted, a painting requires
a little mystery.4 Even so, the advent of modern computational tech-
niques for analyzing images has encouraged an increasing number
of scientists to look for measurable attributes of artworks, which
could explain their visual appeal, help decode their significance, or
lead to an objective classification scheme.

A variety of new methods have been recently developed and
perfected for measuring scaling and statistical properties of images,
and these have been applied to art, primarily in two dimensions
such as paintings, photographs, and numerically generated images.
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A commonly used measure, particularly in analyses of abstract art,
is a single fractal dimension obtained via the standard box-counting
method, and applied to binary (black and white) images or to images
that are converted into binary. Taylor and his collaborators5–8 ana-
lyzed a selection of abstract expressionist paintings by Jackson
Pollock and discerned not one but two fractal dimensions char-
acterizing these paintings, one at smaller and one at larger scales,
effectively fitting two straight lines to the logarithmic scaling plots
obtained from a simple box-counting procedure. The shortcomings
of their method were pointed out by Jones-Smith and Mathur.9,10

Notably, the higher of the two reported fractal dimensions is always
near 2 corresponding to the scales when the grid boxes are large
enough so that all, or nearly all, contain some part of the pattern.

Since this early work, many other authors explored and further
developed similar approaches leading to a singular fractal dimen-
sion characterizing Pollock’s abstractions11,12 and paintings by other
artists.7,8,13–16 Other methods for pattern recognition and categoriz-
ing images are based on contour curvature statistics,17 topological
invariants,18 detrended fluctuation analysis, and multifractal index,19

various measures of complexity such as Hurst exponent,20 various
measures of self-similarity,21 information entropy,14,22 and hidden
Markov models,23 to name a few approaches. Numerous attempts
to use such singular parameters to date artworks or at least assign
them to a particular epoch or style have been undertaken. A promis-
ing method for classifying art, based on rank-ordering distributions
for a variety of physical characteristics of art, has been suggested by
Martinez-Mekler et al.24

The conversion of any painting, even one that is ostensibly
black and white, to a binary image is a delicate step since no nat-
ural or painted pattern is perfectly black or single-colored, and no
painted background is perfectly white. One commonly used method
is thresholding,7,8,13 wherein gray-scale pixels are assigned the value
of 0 (white) below a fixed (arbitrary) threshold value, and 1 (black)
above the threshold; this method requires a judgment and can never
distinguish foreground from the background perfectly. Advanced
tools for image analysis, based on AI techniques, such as the segment
anything model (SAM),25 and improved clustering algorithms, have
opened new possibilities for image analysis without cumbersome
and subjective thresholding procedures. For this project, a clustering
method proved the easiest to implement and most reliable (a general
review of clustering methods is provided in Ref. 26).

A three-dimensional variant of box counting, called differential
box counting (DBC), first proposed more than two decades ago by
Sarkar and Chaudhuri,27 has been explored by a number of authors
to accommodate gray-scale images. This method is still very much in
development and there is a wide range of results obtained depend-
ing on the details of the algorithms deployed, weight factors used
in linear regressions, and whether limited grid-shifting has been
implemented or not. Paningrahy et al.28 provide a comprehensive
review of the DBC literature and compare results obtained using
various approaches for synthetic examples, Brownian motion trajec-
tories, aerial photographs, and also for the Brodatz dataset of texture
photographs.29,30

Color images entail additional challenges and are sometimes
converted into gray-scale images11,12,19 or broken into their single-
hue components, a procedure which is problematic10 and possible
only when the images are composed using a discrete set of pigments

or are somehow filtered in color-space.14,31 A few more advanced
methods for treating color have been proposed, notably based on
distances in the RGB space32 and on extending the DBC approach
to the five-dimensional space.33 In the final stages, however, all these
approaches resort to using linear regressions (with various weights)
to fit straight lines to the box-counting logarithmic plots, overlook-
ing deviations of the computed data points from these fits even when
these deviations appear systematic.7,11–13,15,28,32 Such singular fractal
dimensions are often interpreted as measures of complexity or self-
similarity, or both. But fitting straight lines to box-counting plots is
equivalent to assuming a priori that the images are fractal, and there
is no reason to expect this of all images or all art.

Other measures, such as the Hurst exponent30 and Betti
numbers,16,18 have also been attempted in search of singular or mul-
tiple discrete characteristic parameters, particularly for comparing
artworks according to their complexity12,14 and even to authenti-
cate particular pieces.5 But as Irfan and Stork34 convincingly showed,
there is no reason to believe that a single parameter such as a fractal
dimension (even if it can be reliably measured) can prove suffi-
cient, whether in an effort to authenticate the work or “merely”
classify its style. They write: “. . . decades of theoretical and empiri-
cal research in visual pattern recognition show that it is unlikely that
the use of a single such feature will be highly reliable for any complex
classification task [. . . ].”

Moreover, there is now ample evidence that the values of fractal
dimension (and other single-value indices) are strongly dependent
on the procedure adopted to obtain them, and different methods
applied to the same images can yield strikingly different results.10,12,35

This is especially concerning in analyses of medical images.36 Box
counting can be used for any image and, by definition, produces
monotonic scaling functions whose (local) slope is typically between
1 and 2, and deviations from linearity may be subtle depending on
the details of double-log plots. To “correct” for this nonlinearity,
the cited authors choose a subset of computed points in order to
fit straight lines—a choice, which requires subjective judgment even
if the fits are optimized using an objective fitting routine such as a
variant of linear regression. In any case, the results presented below
indicate that such fits can at best provide a very rough estimate of
scaling plots’ slopes, which usually vary with the scale.

Concerns about suitability of the standard box-counting
method for finite-range patterns, and thus, about the fractal dimen-
sions obtained this way, were raised by Bertston and Stoll35 already
in 1997 in regard to “real-world structures.” They devised a rather
ingenious method to “correct” the nonlinearity of scaling plots based
on a rational way of excluding some computed data at the lowest
and the largest scales of any image. They also realized that any index
used for characterizing patterns cannot depend on the orientation of
the image and so averaged over four rotations. In the final instance,
however, they still used linear regression to obtain a single fractal
dimension.

In this contribution, we propose to put aside the debate of when
a painting (or any other finite resolution image) can be deemed
fractal, and the search for the single “ideal” index such as fractal
dimension, and suggest to examine the pattern’s scaling behav-
ior over the entire range of scales present. We describe a simple,
robust method for generating reliable box-counting plots, which can
then be differentiated to provide a scale-dependent fractal index,
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an extended scaling portrait of the given pattern—its fractal con-
tour. The approach effectively includes averages over (all) rotations
as well, a critical requirement. It is an extension of the method
first outlined, in a non-technical way, in the catalog accompanying
an exhibition Pollock Matters, held at Boston College’s McMullen
Museum of Art in 2007.37

The simple procedure described below is limited to binary
images, such as black-and-white drawings and paintings with a
single-color pattern on an approximately uniform background;
however, it can be extended to gray-scale images (such as pho-
tographs) using an extension of the standard three-dimensional
(differential) box-counting method in place of a two-dimensional
technique, and conceivably to color images as well.

The rest of this paper is organized as follows. Section II
describes the key elements of the proposed method and the numer-
ical algorithm for obtaining fractal contours. Sections III and IV
take up synthetic examples, for regular and random distribution of
constituent elements, respectively, to test the numerical approach
and guide interpretation of fractal contours. To test the method fur-
ther, (finite) images of mathematically defined fractals, Sierpiński
Carpet and De Rivera H Pattern, are analyzed in Sec. V. Finally,
in Sec. VI, the method is applied to five carefully selected abstract
paintings by acknowledged masters of modern art, Donald Judd,
Frank Stella, Ellsworth Kelly, Piet Mondrian, and Jackson Pollock.
The paper closes with concluding remarks in Sec. VII.

II. FRACTAL CONTOURS

As the brief review of literature above suggests, applying the
designation of “fractal” to images of a finite range in scales such
as any real painting or a finite rendition of an infinite fractal pat-
tern requires making some allowances. If one adopts the (standard)
definition proposed by Mandelbrot based on two requirements, the
presence of infinitely fine detail and self-similarity extending over
all scales, it is clear that neither can be strictly satisfied for digitized
images. Yet, Mandelbrot himself applied the term to natural forms,
including the coastline of Great Britain, allowing for the presence
of details over a limited range of scales and approximate, statistical
self-similarity.

But how “many” orders of magnitude in scales would be suf-
ficient to apply the term “fractal,” how close an approximate self-
similarity would be required, and how would that proximity be
measured? These questions have no satisfactory answers in gen-
eral and are, like artistic images themselves, a matter of judgment.
Moreover, a single index, such as a fractal dimension, is of limited
usefulness by itself to characterize a complex image, as noted earlier,
particularly when its exact value depends on the numerical method
employed. Variations in the values of the fractal dimension using
the DBC method, for example, can be as large as 20%,28 depending
on the details of the procedure employed, the number of scales con-
sidered, and which part of the double-log plot is used to fit straight
lines.

With these considerations in mind, we set aside the a priori
expectation that any sufficiently complex image (spanning at least
a few orders of magnitude in size) can be uniquely characterized by
a linear scaling relationship and focus on refining the box-counting
procedure to make it robust and grid-independent. The approach

does not require the pattern to be self-similar in any sense. Numer-
ical derivatives of the scaling plots will then provide continuous
contours with the fractal index varying between 0 and 2 for binary
images in 2D.

Given these goals, the counting algorithm and the resultant
scaling plots must satisfy the following requirements: box count
must be robust (it cannot rely on any particular placement of
box-counting grids, for example); box overcounting at the image
boundaries must be avoided; scaling plots must be independent of
image rotation (a pattern upside down, or turned on its side, should
have the same scaling characteristics); and the entire range of avail-
able scales should be used to uncover fine details of the scaling plots
and avoid numerical artifacts.

The basic algorithmic procedure for a two color (black and
white) pattern, which was implemented in a Python script, is there-
fore as follows:

Step 1. Start with a rectangular image of dimensions m × n in pix-
els, an array of values 1 (black) and 0 (white). For a range
of scales s, 3 ≤ s ≤ smax < max(m, n), the two-dimensional
(x, y) plane is covered by a grid of boxes of size s × s. In most
cases, setting smax ≈ min(m, n)/4 is sufficient. The choice of
the smallest value of s = 3 is somewhat arbitrary, intended
to minimize anomalies at the lowest scales when pixilation
of the pattern may return spurious results.

Step 2. At each scale s, consider s2 grid positions (relative to the
image) such that pixel (0, 0), at the upper left corner of
the image, is located in one of the available locations (i, j)
within the box at the upper-left corner of the grid. Set the
number of boxes in the grid at a given scale s to be the max-
imum needed for all s2 grid positions, that is ([m/s] + 1)
× ([n/s] + 1). (In the actual code, the number of grid boxes
is reduced to the minimum needed in each case.)

Step 3. For each position (i, j) of the grid at scale s, and each box
within the grid given by its location (k, l), where k is the row
number in the grid (1 ≤ k ≤ [m/s] + 1), and l is the column
number in the grid (1 ≤ l ≤ [n/s] + 1), let Nij(s, k, l) = 1 if
that grid box contains at least one pixel of value 1 (black),
and let Nij(s, k, l) = 0 in the opposite case.

Step 4. Define the weight aij(s, k, l) which for each scale s, and each
position of the grid (i, j) gives the fraction of the area of the
box located at positions (k, l) which overlaps with the image.
Then 0 ≤ aij(s, k, l) ≤ 1, aij(s, k, l) = 1 if the box is entirely
within the image boundaries and aij(s, k, l) = 0 if the box is
entirely outside of the image.

Step 5. The total box count for the image at a given scale s is then
given by the sum over all boxes of the grid averaged over the
s2 grid positions,

N(s) = 1

s2

s−1∑

i,j=0

[m/s]+1∑

k=1

[n/s]+1∑

l=1

Nij(s, k, l)aij(s, k, l). (1)

A typical, high-resolution, rectangular image has a few thou-
sand pixels per side; for the images analyzed here, the values of
m and n vary between 1000 and 6561. Furthermore, the factor
Nij(s, k, l) in Eq. (1) requires summing over s2 pixel values for each
of the ([m/s] + 1) × ([n/s] + 1) boxes in the grid, and s2 positions
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of the grid at each scale s. The computation implied in this equation
is, therefore, intensive and may take a long time. To increase the
efficiency of the algorithm, the pixel counting method developed
originally by Viola and Jones38 for analyzing large and complex
images was deployed. This approach effectively reduces the num-
ber of summations needed to obtain Nij(s, k, l) to just four for any
box, independent of its size or position (i.e., independent of s, i, j, k,
and l). The four values are taken from what is termed the “integral
image,” which is of the same size as the original image and easily
obtained from it (for details, see Ref. 38).

Once N(s) is obtained for each scale s, with sufficiently many
values of s chosen in the range 3 ≤ s ≤ smax, it will be possible to
produce a well-resolved scaling plot in the log–log space and, conse-
quently, the derivative curve determined uniquely and reliably. For
simplicity, the number of scales used s is set to a fixed value of 100
in each case, taking care to distribute them (approximately) uni-
formly in the log space. The fractal contours thus obtained provide
a detailed accounting of the slope of the scaling plots. A constant
slope could indicate a fractal pattern, but as is shown in Sec. V,
even images of algorithmically constructed fractals do not result in
entirely flat contours. Finally, due to averaging over all possible grid
locations at each scale, fractal contours are effectively independent
of image rotations (see Secs. III and V for details). The following
two sections provide synthetic examples and serve as a guide to
interpreting fractal contours.

III. SYNTHETIC EXAMPLES—ORDERED

In order to fine-tune and illustrate the meaning of the frac-
tal contours, it is useful to apply the approach described above to
a range of synthetic examples, of either regular geometrical patterns
or those wherein one or more elements are distributed randomly. By
varying the defining parameters of such prescribed, artificial images,
one can discern their invariant features and also gain experience in
interpreting them.

Beyond their illustrative value, synthetic examples may also
serve to isolate and amplify some aspects of modern art that have
not yet been systematically explored. Highly ordered or symmetric
geometrical patterns, for example, may prove helpful for analyz-
ing the works of such iconic artists as Donald Judd, Frank Stella,
Ellsworth Kelly, Piet Mondrian, and other minimalist or color-field
painters. Careful studies of randomly distributed elements may facil-
itate analyzing canvases of Jackson Pollock, Sam Francis, Janet Sobel,
Roberto Matta, and a number of other abstract expressionist and
surrealist painters.

While the focus here is on two-dimensional binary images,
it is helpful to begin with simple, quasi-one-dimensional synthetic
examples, namely, patterns made of parallel black lines on a white
background. They are characterized by line widths w and line sep-
arations d, with both these parameters ranging between 15 and 60
pixels. All synthetic examples considered here are square composi-
tions of the size L × L where L = 1000 pixels, and the number of
lines in the images is, therefore, determined by w and d (the first line
is placed at the left edge of the square).

Figures 1(a) and 1(b) show two “extreme” cases, with lines of
the smallest w and the largest d, and with the (nearly) largest w

FIG. 1. (a) Parallel black lines of width w = 15 separated by distance d = 60.
(b) Parallel black lines of width w = 30 separated by distance d = 15.

and the smallest d, respectively. Figures 2 and 3 provide the double-
log box-counting (scaling) plots for fixed d = 15 and fixed w = 30,
respectively. These plots also display the corresponding derivative
curves, the fractal contours.

It should be noted right away that scaling plots for the same
patterns but with the lines in horizontal are identical (within numer-
ical accuracy). Indeed, the averaging procedure deployed, at each
scale, guarantees that the characteristic plots are, at least in princi-
ple, invariant over rotations—one of the principal requirements of
a robust scaling analysis for images. However, for rotations through
angles that are not multiples of 90o, the plots could be slightly differ-
ent at small scales because at large magnification, these lines appear
as a collection of square pixels. This is discussed in greater detail in
Sec. V, where single thin lines (Euclidean fractals) are considered.

Several notable features of Figs. 2 and 3 are evident. All fractal
contours display a step-function transition, which occurs precisely
at the scale s equal to the line spacing, s = d. This is to be expected
since a box of smaller size can fit between the lines, whereas all boxes

FIG. 2. Scaling plots (blue) and fractal contours (black) for parallel lines at
separation d = 60 and varying widthsw. The vertical red line is at a scale s = 60.
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FIG. 3. Scaling plots (in blue) and fractal contours (black) for parallel lines at width
w = 30 and varying separations d.

of larger size must contain some part of the pattern; past this transi-
tion, the box count increases proportionally to the number of boxes,
which explains why the corresponding fractal index for s > d is 2.
In Fig. 2, for a fixed value of spacing between the lines d = 60, scal-
ing plots for s > d coincide for all line widths w. By contrast, for
smaller scales, s < d, the shape of the scaling plots depends on w,
and the fractal contours evolve from a curve concave down, to one
with an inflexion point (and eventually concave up). In fact, as is
clear from Fig. 3, there is a universal curve at each fixed line width w,
which is followed for all line separations d from the smallest scales
(here taken as 3 pixels) up to the transition scale, s = d. Remark-
ably, the scaling curve below the transition depends solely on w,
while the critical transition scale depends solely on the line sepa-
ration d. Figure 2 also shows that as w increases, the fractal contours
become shallower as would be expected since the pattern occupies
a larger part of the image space at larger w, and so, the fractal index
approaches the value 2 corresponding to the image of a black square.

A two-dimensional analog of Fig. 1 is the pattern consisting of
a regular array of squares, characterized by their number N and their
side length a. In Fig. 4(a), N = 900 and a = 6 pixels, and in Fig. 4(b),
N = 900 and a = 24 pixels. Figure 5 displays the scaling plots and
fractal contours, at a ranging from 6 to 24 pixels, with the centers of
squares kept fixed.

As before, fractal contours monotonically decrease for all a
with increasing scales up to a transition at some smin(a, N), and for
larger scales, transition to 2. As the analysis of examples in Fig. 1
suggests, the values of smin(a, N) can be associated with the smallest
distance between squares for a given N and a, that is the minimum
separation between neighboring squares (within a column or a row),
which is simply given by

smin = L√
N

− a. (2)

Here, the nondimensional parameter L/
√

N is the inverse
square root of the number density of the squares in the pattern. This

FIG. 4. A grid of N = 900 squares: (a) side a = 6; and (b) a = 24 pixels.

is confirmed in Fig. 5. For scales s > smin, all boxes will contain a
part of the pattern, and so, the fractal contours must transition to
flat lines at 2. Figure 5 also indicates that the fractal contours become
shallower with the increasing side length a (at fixed N). This is to be
expected because as a increases, an ever larger number of grid boxes
at a given scale will contain a part of the pattern, and eventually, the
entire L × L square will form the pattern rendering the fractal con-
tours flat, at the constant value of 2. It is also worthwhile noting that
the transitions at smin in Fig. 5 appear less sharp than those in Figs. 2
or 3. The simple reason is that they occur at lower scales (lower smin)
where fewer data points are available on the logarithmic scale. In
“reality,” all these transitions are infinitely steep step functions.

Scales corresponding to the minima of fractal contours shown
in Fig. 5 are plotted in Fig. 6 as a function of the number of squares
N for the four values of square size a, and are seen to be in excellent
agreement with Eq. (2).

Qualitatively similar results are obtained if the array of squares
is replaced with an array of circles of radius r. In that case, frac-
tal contours have similar shapes, but with somewhat less abrupt

FIG. 5. Scaling plots (blue) and fractal contours (black) for grids of N = 900
squares of various widths a (in pixels).
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FIG. 6. Positions (scales) of the minima of fractal contours for square grids as a
function of the number of squares N of varying size a. The solid lines are plots of
Eq. (2).

transitions occurring at smin = L/
√

N − 2r. The reason for this
is that for the array of circles, there is another critical scale,

smax =
√

2L/
√

N − 2r, the largest distance between neighboring cir-
cles and boxes of this size can fit in the larger spaces between circles.
Once s > smax, all boxes of the grid will intersect with the pattern
rending the fractal contour flat.

The examples considered above are all highly ordered geo-
metrical patterns of sharply defined edges. Fractal indices for these
images vary between 0.3 and 2, and they do not asymptote to
constant values at decreasing scales. The same can be inferred for
many other finite, regular patterns, such as checkerboards, bow-tie
tailings, and other binary tessellations as can be found in Roman
mosaics, Arab friezes, or Berber rugs. Furthermore, such images are
not self-similar and lack fine detail beyond a few orders in scales, and
so, could not be considered truncated fractals. Nevertheless, their
fractal contours can readily be obtained and provide reliable charac-
teristic “signatures” of these patterns, reflecting the intricacy of their
designs.

IV. SYNTHETIC EXAMPLES—RANDOM

The literature reviewed in the introduction suggests that scaling
regularity may arise in paintings when the creative process incor-
porates some randomness, whether directly, via the actions taken
by the artist, or indirectly, mediated by autonomous physical effects
such as gravitational flows of pigments or their instabilities. As noted
earlier, Taylor5,6 and his collaborators suggested that Pollock’s paint-
ings owe their fractal characteristics—as double-fractals, with two
associated fractal dimensions—to the randomness of the artist’s arm
movements above the horizontally stretched canvases (presumed to
be Lévy flights) and unpredictable liquid instabilities at the lower
scales.

To explore the impact of randomness on scaling properties,
“noisy” variants of array-based synthetic examples are examined
below, wherein the squares or circles are distributed randomly,
allowing for the overlaps but not for crossing the image boundary.

FIG. 7. A random distribution of N = 900 squares: (a) a = 6; and (b) a = 24
pixels.

Images with random “dots” (or circles) were previously considered
by de la Calleja and Zenit.16 In Figs. 7(a) and 7(b), the number of
squares is N = 900 and their sizes are a = 6 and a = 24, respec-
tively. The corresponding scaling plots and fractal contours are
shown, for four square sizes, in Fig. 8. Qualitatively similar results
are obtained for random distributions of circles of varying radii but
are not included here.

As was the case for the arrays of squares (and circles), the frac-
tal contours of the randomly distributed elements are curves with
distinct minima, converging to a flat line at 2; however, they are
smooth, without sharp transitions or discontinuities. This is to be
expected given that random distributions lack well-defined critical
scales. As before, the contours become shallower with increasing
square size a. The positions of the minima are still size-dependent,
and generally, shift to smaller scales as the size of the pattern ele-
ments increases, as for the regular arrays, although this shift is much
less pronounced (an equivalent of Fig. 6 would require a much

FIG. 8. Scaling plots (blue) and fractal contours (black) for a random distribution
of N = 900 squares of various sizes a (in pixels).
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larger number of randomly distributed elements to obtain reliable
statistics).

V. IMAGES OF FRACTALS

The ultimate test of the enhanced box-counting approach, and
of the value of the fractal contours for characterizing images, entails
applying the method to images of real mathematical fractals. Such
images, even at a very high resolution, are quasi-fractals, that is frac-
tal patterns of finite range in scales. Furthermore, at the lowest scales
of a few pixels, effects of pixelation may become noticeable as curved
or inclined lines can no longer “appear” smooth, and are seen as
zigzags due to the square shape of pixels. This effect has a noticeable
impact on contour plots, as is shown below.

It is useful to start with fractals of integer dimension embedded
in a plane, that is a straight line and filled (entirely black) square,
of Euclidean dimension 1 and 2, respectively. Figures 9(a) and 9(b)
are images of dimensions 1000 × 1000 pixels with a single straight
black line of width one pixel each, one vertical and off-center (line 1)
and another inclined at an arbitrary angle of 19◦ with the horizon-
tal (line 2). The corresponding scaling plots and fractal contours are
displayed in Fig. 10. The contour for the vertical line (line 1) is a
perfectly flat line indicating a fractal dimension D = 1. Horizon-
tal lines of arbitrary position produce identical fractal profiles, as
expected. However, the inclined line 2 results in slight but distinct
deviations from the flat contour, manifest for scales s < 20 and for
scales s > 200 pixels. The first of these effects is due to the role of
pixelation for small scales, as noted above [see the inset of Fig. 9(b)
showing a magnified segment of the line]. The deviation at larger
scales indicates an earlier onset of transition to the fractal index of
2; as the size of the grid boxes increases, the probability that any box
will contain a section of the pattern is larger for an inclined line than
one which is parallel to a box side. For a filled black square, the con-
tour faithfully indicates a fractal dimension D = 2 over the scales
included in Fig. 10. It is thus seen that the enhanced scaling analysis
returns perfectly consistent results for Euclidean patterns.

To take up the more interesting case of non-integer fractal
dimensions, consider two ideal fractals, the Sierpiński Carpet and
the De Rivera Pattern (also called the H fractal). Figure 11 shows

FIG. 9. Images of straight lines: (a) off-center vertical line (line 1); and (b), diago-
nal line, inclined at an angle of 19◦ (line 2). The insets show magnified segments
of the lines.

FIG. 10. Scaling plots (blue) and fractal contours (black) for two straight lines and
a black square. Line 1 is vertical and off-center while line 2 is inclined at 19◦ angle.

images of these fractals, which are finite-range quasi-fractals, gen-
erated computationally up to the 8th construction order, with the
resolution of 6561 × 6561 pixels each (the smallest features are of
size 1 pixel). While the accuracy of the scaling plots increases signif-
icantly with each order, computational time increases by a factor of
9 at each step.

Sierpiński Carpet is obtained by dividing each (black) square
of the pattern at a given order into 9 sub-squares and removing the
central sub-square. The H fractal is obtained similarly, by removing
two sub-squares at each order to form a letter “H.” After infinitely
many iterations, the ideal structures of the Sierpiński Carpet and the
De Rivera Pattern have fractal dimensions D = log38 = 1.8928 and
D = log37 = 1.7712, respectively.

Scaling plots for the images of the two fractals and their frac-
tal contours are shown in Fig. 12. For diminishing scales, the fractal
contours approach the corresponding theoretical indices, indicated
by red dashed lines, but are inclined and display distinct oscillations
of approximate amplitudes 0.05 and 0.1 for Sierpiński Carpet and

FIG. 11. Images of “true” fractals: (a) Sierpiński Carpet; and (b) De Rivera
Pattern.
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FIG. 12. Scaling plots (blue) and fractal contours (black) for 8th-order patterns of
(a) Sierpiński Carpet; and (b) De Rivera Fractal. The three dotted red lines are at
fractal indices 1.7712, 1.8928, and 2.

De Rivera Pattern, respectively. The two contours have the same
quasi-periodicity (they are periodic on the logarithmic scale) but
the first is smooth whereas the second displays a number of sharp,
discontinuous transitions.

These features of the scaling behavior can be understood as
follows. The overall inclination of the contours, with the average
fractal index over each step decreasing with decreasing scales, is due
to the finite number of orders included in the constructions of the
images in Fig. 11. These patterns have fewer “voids” (empty spaces
or lacunae) and occupy a larger fraction of the image space than the
corresponding ideal fractals, affecting smaller scales and making the
fractal contours shallower overall. The lacunarity39 of the patterns is
also responsible for the oscillations in their contours.

Indeed, the quasiperiodic nature of the plots in Fig. 12 is due
to the rectangular shape of the lacunae and the use of “well-fitting”
square grids – the maxima correspond to box sizes of 9, 27, 81, 243,
and 729 in pixels (3n, n = 2, 3, 4, 5, 6). For the De Rivera Pattern,
the transitions are sharp, similar to the ones for parallel lines seen in
Fig. 3; this is because the lacunae in these patterns are elongated. The
repeated concave “dips” of the fractal contour for the Sierpiński Car-
pet resemble the curves seen for the random distribution of squares
shown in Fig. 8.

It should be noted that since the horizontal axis is logarith-
mic, and the contours appear periodic with the constant period,
the actual length of individual oscillations is decreasing exponen-
tially with diminishing scales. In the limit of the infinitely small
scales, these oscillations disappear and the contours converge to the
theoretical fractal dimensions.

VI. ABSTRACT ART

In its simplest form, the scaling analysis proposed here can
be applied to any high-resolution digital reproduction of an art-
work conceived primarily as a two-color pattern, or one that can

FIG. 13. Donald Judd, Untitled (2L), woodcut print, 1961–1969 (Museum of
Modern Art, New York), dimensions of the sheet 77.5 × 55.8 cm: (a) print;
(b) segmented image.

reasonably be converted to a binary image, hopefully without sub-
verting the original intentions of the artist. The synthetic examples
explored above can serve as a guide to interpreting prominent fea-
tures of the fractal contours, particularly for modern compositions
with geometrical features and abstract all over artworks dependent
on spontaneous distribution of marks.

Guided by these considerations, and in order to illustrate
the usefulness of the fractal contours, particularly for comparative
studies, in the following, we chose five abstract artworks executed
between 1916 and 1969, which are manifestly intended to rely on
two primary colors, although the color fields may not be entirely
uniform. Tiny variations in hue—whether intentional or due to
the imperfections of the substrate (canvas or paper) or effects of

FIG. 14. Scaling plot (blue) and fractal contour (black) for the Donald Judd
woodcut Untitled (2L) (1961–1969).
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FIG. 15. Frank Stella, Marrakech, 1964, fluorescent alkyd on canvas (Metropoli-
tan Museum of Art, New York), 195.6× 195.6 cm: (a) painting; (b) segmented
image.

FIG. 16. Scaling plots (blue) and fractal contours (black) for the Frank Stella paint-
ing Marrakech (1964) for two segmentations, with red bars treated as the pattern
or the background.

FIG. 17. Ellsworth Kelly, The Meschers, oil on canvas, 1951 (Museum of Modern
Art, New York), 149.9× 149.9 cm: (a) painting; (b) segmented image.

FIG. 18. Scaling plots (blue) and fractal contours (black) for the Ellsworth Kelly
painting The Meschers (1951) for two segmentations, with green or blue treated
as the pattern.

aging—are inescapably present and would certainly be discernable
by an attentive viewer in a museum. But for the selected paintings,
these effects appear marginal and it is safe to assume that they are
not central to the expressive intent of the artworks.

To remove small variations in hues, whether intended or not,
it is thus necessary to segment the artworks, that is to render them
binary, with black as the pattern and white as the background, when
such distinctions are possible. The so-called k-means++ cluster-
ing algorithm,40 based on selecting a seed within each contiguous
element of the pattern, was chosen as the most efficient way of
converting an ostensibly two-color pattern in RGB space to a true
binary image. The artworks are arranged according to their com-
plexity and degree of “disorder” (judged subjectively) rather than
chronologically, and their scaling plots are in the same format as for
the synthetic examples. While the axes used for box-counting curves

FIG. 19. Piet Mondrian, Composition in Line, 2-nd state, oil on canvas,
1917 (Kröller-Müller Museum, Otterlo, Holland), 108× 108 cm: (a) painting;
(b) segmented image.
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FIG. 20. Scaling plot (blue) and fractal contour (black) for the Piet Mondrian
painting Composition in Line (1916–1017).

(in blue) vary, all fractal contours (in black) are plotted on axes with
identical ranges of scales to facilitate comparisons.

The first artwork, shown in Fig. 13, is a woodcut print by Don-
ald Judd Untitled (2L). The segmented image is now truly two-color
and rendered in black and white. The fractal contour in Fig. 14 dis-
plays two distinct transitions. The first is sharp and corresponds to
the separation between the red lines; the second, rounded, is due to
the large triangular empty spaces above and below the red pattern,
which the artist chose to include in his prints.

The next painting is Frank Stella’s Marrakech, displayed with its
segmented image in Fig. 15. This painting includes red and yellow
stripes delineated by thin white borders. The segmentation shown
treats red bars as the foreground, but the corresponding negative
pattern was also analyzed. Fractal contours in Fig. 16 display tran-
sitions related to the spacings between black bars in each case, and
resemble those obtained for parallel strips in Figs. 2 and 3.

FIG. 22. Scaling plot (blue) and fractal contour (black) for the Jackson Pollock
painting Number 32 (1950).

The third example, in Fig. 17, is Ellsworth Kelly’s painting The
Meschers. This green and blue painting allows two opposite segmen-
tations, of which one with blue as the foreground is shown. Both
fractal contours in Fig. 18 are broad wells, a signature of “disorder,”
with distinct local minima, noticeable especially for the blue
pattern.

Piet Mondrian’s Composition in Line, Fig. 19, serves as the
fourth example. The fractal contour in Fig. 20 shows a broad,
smooth well, reminiscent of contours for randomly distributed
squares, in Fig. 8, but with a long “tail” at higher scales due to the
white spaces left in the painting’s corners. The artist’s signature (at
the lower-left corner) was not included in the segmented image.

The last example is Jackson Pollock’s painting No 32, shown
in Fig. 21. This very large (269 × 457.5 cm) and complex compo-
sition poses a particular challenge as it spans over four orders in
scales of its features. Nevertheless, based on a very high-resolution

FIG. 21. Jackson Pollock, No 32, oil on canvas, 1950 (Kunstsammlung Nordrhein-Westfalen, Düsseldorf, Germany), 269 × 457.5 cm: (a) painting; (b) segmented image.
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photograph of the work, the segmented image is remarkably accu-
rate and only the tiniest ligaments (visible at short distances or high
magnification) are missing.

The fractal contour, given in Fig. 22, by contrast, is very sim-
ple. It has a near plateau at the lowest scales with a very shallow
minimum at the scale of about 0.5 cm, and a smooth transition to
the fractal index of 2. Such double-plateau contours can be perhaps
considered typical of Pollock’s mature and celebrated works, but a
more extensive study would be required to make this conclusion
firm. Similarly, assigning a “fractal dimension” corresponding to the
lower plateau of the contour, at about 1.7, may be problematic as it
would characterize only the features of size below 0.7 cm.

The five artworks analyzed here differ greatly stylistically and
in their impact on the viewer. Their fractal contours are also dis-
tinct, with a single or multiple minima, all located at different scales,
varying curvatures at lower scales, and each with its particular tail
at higher scales. They thus provide a precise, discriminating tool, at
least for the pieces we analyzed, but a systematic study of a larger
number of artworks will be needed before broader conclusions can
be reached.

VII. CONCLUDING REMARKS

The principal motivation for this study has been to suggest a
new paradigm for analyzing scaling plots in double-log space, with-
out assuming that they are invariably linear, or linear on intervals,
and allowing for scale-dependent features. Fractal contours, which
are derivative curves of the scaling functions, and which require
grid-independent analysis, offer a detailed accounting of how the
slope varies over the entire range of scales used. Such contours pro-
vide a wealth of information about the statistical properties of the
images in general, and for art, an adaptable device for encapsulating
the interplay of marks at progressively greater magnification. They
also allow for an objective judgment of whether an assignment of a
singular fractal index is warranted. Only a flat or nearly flat segment
of the fractal contour could support attributing such a dimension
to a pattern, and only for the range of scales corresponding to that
segment.

The approach developed here, in the simple version presented,
can only be applied to binary images or binary renditions of art-
works. However, it can be extended and implemented for any
scheme based on box-counting, whether for gray-scale images via
a variant of the differential box-counting method in 3D or for
color images, perhaps directly in higher dimensional spaces, through
color-filtering or via reduction from RGB to gray-scale. In that case,
it would be fascinating to see what fractal contours can reveal about
multicolor art.

To interpret salient features of the fractal contours, such as
the positions and depth of extrema or local curvature, it is help-
ful to consider synthetic images, both ordered and random. As the
examples considered in Secs. III–VI illustrate, more complex and
“dense” images generally have simpler contours. Highly regular geo-
metrical patterns lead to sharp transitions (discontinuities of the
second derivatives) corresponding to the position of the pattern’s
edges, whereas a random or quasi-random distribution of geometri-
cal elements tends to produce smooth, rounded contours. Although
the focus here is on carefully selected modern paintings and prints,

a more discerning scaling analysis may also find applications in
medical diagnosis. Conceivably, it may prove suitable for analyzing
ultrasound or MRI scans, providing an objective way to compare
gray-scale images more sensitive than one based on a single index.36

Any such application, however, would require further development
and validation in collaboration with clinical experts.

Fractal contours obtained for the five abstract artworks in
Sec. VI demonstrate the precision of the proposed analysis and its
responsiveness to the geometrical and topological features of images.
These contours are highly distinct – just as the paintings and prints
they derive from. They differ significantly providing a signature of
a kind. The enhanced scaling analysis may thus be regarded as an
addition to the available methods for measuring the properties of
images, one that still awaits a fuller exploration. Together with other
statistical and physical approaches, it may prove useful for the inter-
pretation and classification of artworks, providing new insights. All
the same, its utility for art historical analyses is yet to be demon-
strated, and it addresses only one particular aspect of artworks, their
scaling regularities.

Ultimately, when it comes to aesthetic experience, it may
be altogether sufficient to appreciate art without contemplating
its mathematical properties. As Frank Stella, ever the minimalist,
pithily remarked, what you see is what you see.41

ACKNOWLEDGMENTS

We would like to acknowledge our earlier collaboration with
David Martin, then a professor of Computer Science at Boston Col-
lege, and thank him for his fruitful insights and for writing the first
numerical codes (in Matlab) for fractal contours. We owe a debt of
gratitude to art historian Claude Cernuschi for many illuminating
insights during the work on the precursor article. We would also like
to thank Donglai Wang for suggestions of the modern segmenting
techniques.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts of interest.

Author Contributions

John McDonough: Methodology (equal); Software (lead); Valida-
tion (lead); Writing – review & editing (equal). Andrzej Herczyński:
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37C. Cernuschi, A. Herczyński, and D. Martin, “Abstract expressionism and
fractal geometry,” in Pollock/Matters, edited by E. Landau and C. Cernuschi
(McMullen Museum of Art, Boston College, 2007), pp. 91–104.
38P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comp. Vis.
57(2), 137–154 (2004).
39P. Glendinning and L. A. Smith, “Lacunarity and period-doubling,” Dyn. Syst.
28(1), 111–121 (2013).
40D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seed-
ing,” in Proceedings of the 18th Symposium on Discrete Algorithms (SIAM, 2007),
pp. 1027–1035.
41F. Stella, quoted in “Questions to Stella and Judd,” interview with B. Glaser,
ARTnews Magazine, 1966.

Chaos 34, 063126 (2024); doi: 10.1063/5.0207823 34, 063126-12

© Author(s) 2024


