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Abstract. A discussion of three-wave interaction systems with rapidly decaying data is pro-
vided. Included are the classical and two nonlocal three-wave interaction systems. These three-wave
equations are formulated from underlying compatible linear systems and are connected to a third
order linear scattering problem. The inverse scattering transform (IST) is carried out in detail for
all these three-wave interaction equations. This entails obtaining and analyzing the direct scattering
problem, discrete eigenvalues, symmetries, the inverse scattering problem via Riemann--Hilbert meth-
ods, minimal scattering data, and time dependence. In addition, soliton solutions illustrating energy
sharing mechanisms are also discussed. A crucial step in the analysis is the use of adjoint eigen-
functions which connects the third order scattering problem to key eigenfunctions that are analytic
in the upper/lower half planes. The general compatible nonlinear wave system and its classical and
nonlocal three-wave reductions are asymptotic limits of physically significant nonlinear equations,
including water/gravity waves with surface tension.
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1. Introduction. Three-wave interaction equations are fundamental nonlinear
wave systems. In 1967, Benney and Newell [19] showed that the three-wave interaction
equations arise whenever an underlying nonlinear dispersive equation has three wave
packets of the form

3\sum 

j=1

Qj(x, t)e
i(kj \cdot x - \omega (kj)t) + c.c.

(c.c. stands for complex conjugate), where the three wave amplitudes Qj(x, t) are
associated with wavenumbers kj and frequencies \omega j := \omega (kj) satisfying the following
relations:

k1 + k2 + k3 = 0 and \omega 1 + \omega 2 + \omega 3 = 0.

One finds from multiscale perturbation methods that the slowly varying envelope
functions Qj(x, t) satisfy the one space-one time three-wave equations in (1.3) below,
where Cj = \omega \prime (kj), j = 1,2,3, are the group velocities of each packet. We also remark
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4090 M. J. ABLOWITZ, X.-D. LUO, AND Z. H. MUSSLIMANI

that there is an extension to a two space-one time system, where in this system Cj\partial x
is replaced by Cj \cdot \nabla . Such three-wave equations arise widely in applications including
water waves, internal waves, plasma physics, nonlinear optics, amongst many others;
cf. [12, 21, 24, 35, 37, 40]. We also note that four-wave interaction equations become
important if three-wave conditions are not satisfied; cf. [18, 19].

In 1965, the notion of solitons, i.e., the elastic interaction of solitary waves, was
uncovered from numerical simulations of the Korteweg--deVries (KdV) equation [44].
In 1967, the KdV equation subject to rapidly decaying initial data was solved by
inverse scattering methods [26]. This led to a linearization of the KdV equation and
the important connection between discrete eigenvalues and bound states of the linear
time independent Schr\"odinger equation and soliton solutions of the KdV equation.
The solutions of the KdV equation were investigated rigorously, in full detail, by
Deift and Trubowitz [25].

In 1972, Zakharov and Shabat [47] using methods introduced by Lax [32] found
that the ubiquitous nonlinear Schr\"odinger (NLS) equation was integrable via the
inverse scattering techniques. Afterwards, Ablowitz et al. [1] showed that the KdV,
NLS, sine-Gordon, and modified KdV equations were part of a class of such integrable
systems. Ablowitz et al. [1] termed this method the inverse scattering transform
(IST).

The scattering analysis associated with the above nonlinear equations involves a
linear second order system. Soon afterwards, higher order linear scattering equations
were shown to lead to solutions of physically interesting nonlinear equations, such as
the classical three-wave and the Boussinesq equations [2]. The IST for the classical one
dimensional three-wave equations was studied by Kaup and Zakharov \& Manakov in
1976 [27, 46]. In 1979, Kaup, Reiman, and Bers reviewed the homogeneous three-wave
system in various aspects, including IST and numerical solutions [28]. Also in 1979,
Reiman discussed the integrability of the spatial nonhomogeneous-medium three-wave
interaction equations and IST methods to solve such systems [39]. The IST for the
systems in [28, 39] involve 3 \times 3 scattering problems. Important analysis involving
N \times N scattering problems and related nonlinear evolution equations was given in
[13, 14]. Subsequently, the field expanded rapidly and many nonlinear equations were
found and were amenable to IST methods. This includes PDEs in one space-one
time, two space-one time dimensions, discrete equations, singular integro-differential
equations, etc. IST methods associated with such equations have been discussed in
a number of textbooks; see, e.g., [3, 4, 5, 36]. Importantly, solutions to a number of
physically significant equations were found. These nonlinear equations were related
to a range of linear scattering problems.

In 2013, a new nonlocal reduction of the Ablowitz--Kaup--Newell--Segur (AKNS)
scattering problem was found [6], which gave rise to the following integrable nonlocal
NLS equation:

iqt(x, t) = qxx(x, t) - 2\sigma q2(x, t)q\ast ( - x, t), \sigma =\mp 1 ,(1.1)

where the asterisk is complex conjugate. The equation can alternatively be rewritten
as

iqt(x, t) = qxx(x, t) + V [q,x, t]q(x, t), where V [q,x, t] = q(x, t)q\ast ( - x, t) .(1.2)

Equation (1.1) can be viewed as having a self-induced nonlinear ``potential."" It
has the property of being a PT symmetric nonlinear equation. The linear counterpart
(with V being an external potential) was introduced by Bender and Boettcher [17],
where the potential V (x, t) has the so-called PT property: V (x, t) = V \ast ( - x, t).
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THREE-WAVE INTERACTION EQUATIONS 4091

In other words, one can view (1.1) as a linear Schr\"odinger equation with a self-
induced potential V [q,x, t] \equiv  - 2\sigma q(x, t)q\ast ( - x, t) satisfying the PT symmetry condi-
tion V [q,x, t] = V \ast [q, - x, t]. We refer to (1.1) as the PT NLS equation. Subsequently,
(1.2) was analyzed by the IST method in 2016 [7], and many new nonlocal equa-
tions were identified in 2017 [8]. Among the new equations, the nonlocal three-wave
equations in one space-one time and two space-one time dimensions were included.
Specifically, there are three versions of integrable three-wave equations in one space-
one time, including the classical three-wave system

Ql,t(x, t) +ClQl,x(x, t) = i\varepsilon lQ
\ast 
m(x, t)Q\ast 

n(x, t),(1.3)

the complex reverse space-time (RST) three-wave system

Ql,t(x, t) +ClQl,x(x, t) = i( - 1)l+1\varepsilon lQ
\ast 
m( - x, - t)Q\ast 

n( - x, - t),(1.4)

and the real reverse space-time (RST) three-wave system

Ql,t(x, t) +ClQl,x(x, t) = ( - 1)l+1\varepsilon lQm( - x, - t)Qn( - x, - t),(1.5)

where 1\leq l,m,n\leq 3, l \not =m \not = n. In 2019, it was shown how nonlocal NLS systems can
be derived from the nonlinear Klein--Gordon, KdV, and the water wave equations [9].
The issue discussed in detail here is the formulation and detailed study of the inverse
scattering transform associated with the one space-one time classical and nonlocal
three-wave equations with suitably decaying data. This includes the classical (1.3)
and two nonlocal three-wave systems: the complex and real reverse space-time three-
wave equations (1.4) and (1.5).

The outline of the paper is as follows. In section 2, we show that these three-
wave equations are connected with underlying the linear system as a third order scalar
equation. In section 3, for decaying data, suitable eigenfunctions are defined by their
boundary values as x\rightarrow \pm \infty . As x\rightarrow \pm \infty , two of the three eigenfunctions are analytic
in the upper half or lower half planes (UHP, LHP). Appropriate continuous scattering
data are defined in section 4. But in order to carry out the inverse scattering, key
information about the third eigenfunction is needed. In section 5, we employ adjoint
eigenfunctions which allow us to relate the third eigenfunction to the other two. This
method was employed first by Kaup in 1976 [27] and later extended in order to analyze
the coupled NLS systems by Prinari et al. in 2006 [38] and investigate the Manakov
system by Biondini et al. in 2015 (see [20, 31]).

Asymptotic information about the eigenfunctions that will be needed later is
covered in section 6. The time dependence of the data is found in section 7. Important
symmetries associated with the data are discussed in section 8, discrete eigenvalues
in section 9, and the trace formulae relating scattering data in section 10. The trace
formulae are needed in order to allow the inverse problem to be formulated in terms
of a minimal number of reflection coefficients and discrete data: eigenvalues and
appropriate normalization coefficients.

The inverse scattering leading to the linear integral equations for suitable eigen-
functions is developed via the Riemann--Hilbert (RH) technique in section 11; a
Gel'fand Levitan--Marchenko approach was used in [27]. These RH equations are for-
mulated in terms of a set of ``minimal"" scattering data which consists of the needed
reflection coefficients, eigenvalues (poles of ``transmission coefficients""), and ``reduced""
normalization coefficients. In order to reconstruct the potentials, the minimal set of
data is required; this is discussed in section 12. We remark that use of the adjoint
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4092 M. J. ABLOWITZ, X.-D. LUO, AND Z. H. MUSSLIMANI

eigenfunctions admits a direct connection from the scattering data to the initial data
in much the same way as for second order systems, though more detailed. A special
class of soliton solutions that have nonzero waves Q1, Q3 with Q2 \sim 0 as t \rightarrow  - \infty 
or t \rightarrow +\infty (we refer to these as 1-0-1 solitons at large negative or positive time,
respectively) and their interaction properties are discussed in section 13. The soliton
solutions illustrate the energy sharing mechanisms in these three-wave systems. The
pure soliton case where there are multiple eigenvalues (multiple poles in the trans-
mission coefficients) for the classical three-wave interaction equation was studied in
[41, 42]. We note that the IST for the degenerate and nondegenerate 3\times 3 operators
was discussed in 2009 and 2010, respectively [29, 30].

In section 14, we show how the classical and nonlocal reductions and, more gen-
erally, the sixth order wave system derived in section 2 (see (2.3)) are asymptotic
reductions of a physically based nonlinear PDE. This nonlinear PDE is motivated
by water/ocean waves [22]; it exhibits triad resonance phenomena. Indeed, we have
recently shown that the sixth order wave system is an asymptotic reduction of the
classical water/gravity wave equations with surface tension. This is a more exten-
sive calculation which will appear separately [11]. Moreover, we carry out the IST
analysis for three systems: the classical three-wave, nonlocal complex, and nonlocal
real reverse space-time three-wave equations. We also remark that the scattering
data, symmetries, RH problems, solitons, and energy sharing results for the nonlocal
systems are different from the classical three-wave system. As such, there are many
important and novel aspects to the direct and inverse scattering associated with the
nonlocal three-wave systems discussed here. We note that the inverse scattering trans-
form based on the RH approach for the classical three-wave system was studied nicely
in [23]. The methods we use here, employing adjoint functions, was not used; we do
not assume disjoint conditions on the initial data.

2. Integrable three-wave interaction equations. We begin with the matrix
formulation vx = ikDv +Nv, vt = Qv, where v is a 3 \times 1 matrix and D, N , Q are
3 \times 3 matrices with D,N such that D = diag(d1, d2, d3), Nii = 0. We will assume
d1 > d2 > d3. Cross differentiation requiring kt = 0 yields

Qx =Nt + ik[D,Q] + [N,Q],(2.1)

where [A,B] :=AB  - BA. We expand Q as follows:

Q=Q(1)k+Q(0).(2.2)

We substitute (2.2) into (2.1), yielding at k2: Q
(1)
lj = ql\delta lj , where q1, q2, and q3

are chosen as constants. At k, we have Q
(0)
ll = 0 and Q

(0)
lj = \alpha ljNlj , l \not = j, where

\alpha lj :=
1
i

ql - qj
dl - dj

= \alpha jl. At k
0, we have

Nlj,t  - \alpha ljNlj,x =
3\sum 

m=1

(\alpha lm  - \alpha mj)NlmNmj .(2.3)

Clearly, system (2.3) represents six coupled equations.

2.1. Classical three-wave system. Under the symmetry reduction N21(x, t) =
\sigma 1N

\ast 
12(x, t), N31(x, t) = \sigma 2N

\ast 
13(x, t), N32(x, t) = \sigma 3N

\ast 
23(x, t), where \ast is the complex

conjugate and assuming \alpha lj , \sigma 1, \sigma 2, and \sigma 3 are real, we have \sigma 1\sigma 3

\sigma 2
=  - 1. Without

loss of generality, we may assume that \sigma 2
j = 1 (j = 1,2,3). Equation (2.3) may be

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THREE-WAVE INTERACTION EQUATIONS 4093

transformed into the classical three-wave interaction equations by a suitable scaling
of variables [3]. For example, we find the system

Ql,t(x, t) +ClQl,x(x, t) = i\varepsilon lQ
\ast 
m(x, t)Q\ast 

n(x, t),(2.4)

1\leq l,m,n\leq 3, l \not =m \not = n, if we take

N12 = - iQ3\surd 
\beta 13\beta 23

, N31 = - iQ2\surd 
\beta 12\beta 23

, N23 = - iQ1\surd 
\beta 12\beta 13

,

N13 = - \varepsilon 1\varepsilon 3N\ast 
31(x, t), N32 = \varepsilon 2\varepsilon 3N

\ast 
23(x, t), N21 = \varepsilon 1\varepsilon 2N

\ast 
12(x, t),

(2.5)

where d1 =  - C1, d2 =  - C2, d3 =  - C3, \beta lj := dl  - dj =  - Cl + Cj , q1 =  - iC2C3,
q2 = - iC1C3, q3 = - iC1C2, \alpha 12 = - C3, \alpha 13 = - C2, \alpha 23 = - C1,\sigma 1 = \varepsilon 1\varepsilon 2, \sigma 2 = - \varepsilon 1\varepsilon 3,
\sigma 3 = \varepsilon 2\varepsilon 3, \varepsilon j = \pm 1, \varepsilon 1\varepsilon 2\varepsilon 3 =  - 1. The so-called decay instability case with positive
definite energy occurs when one chooses one of the \varepsilon j different in sign from the others;
the explosive instability case is when \varepsilon 1 = \varepsilon 2 = \varepsilon 3 =  - 1. Here, decay instability is
the result of three-wave interactions that exist globally, while the explosive instability
refers to the finite-time blow up [45]. Directly from the equations, we can derive the
conserved quantities:

\varepsilon n

\int \infty 

 - \infty 

Qm(x, t)Q\ast 
m(x, t)dx - \varepsilon m

\int \infty 

 - \infty 

Qn(x, t)Q
\ast 
n(x, t)dx= constant(2.6)

for all 1\leq m<n\leq 3.

2.2. Complex reverse space-time three-wave system. Under the symme-
try reduction N21(x, t) = \sigma 1N

\ast 
12( - x, - t), N31(x, t) = \sigma 2N

\ast 
13( - x, - t), N32(x, t) =

\sigma 3N
\ast 
23( - x, - t) with \alpha lj , \sigma 1, \sigma 2, \sigma 3 chosen as real numbers, we have \sigma 1\sigma 3

\sigma 2
= 1. Without

loss of generality, we may assume that \sigma 2
j = 1 (j = 1,2,3). Equation (2.3) can be

put into a set of nonlocal three-wave interaction equations by a suitable scaling of
variables. For example, we find the system

Ql,t(x, t) +ClQl,x(x, t) = i( - 1)l+1\varepsilon lQ
\ast 
m( - x, - t)Q\ast 

n( - x, - t)(2.7)

for 1\leq l,m,n\leq 3, l \not =m \not = n, if we take

N12 = - iQ3\surd 
\beta 13\beta 23

, N31 = - iQ2\surd 
\beta 12\beta 23

, N23 = - iQ1\surd 
\beta 12\beta 13

,

N13 = \varepsilon 1\varepsilon 3N
\ast 
31( - x, - t), N32 = \varepsilon 2\varepsilon 3N

\ast 
23( - x, - t), N21 = \varepsilon 1\varepsilon 2N

\ast 
12( - x, - t),

(2.8)

where

d1 = - C1, d2 = - C2, d3 = - C3, \beta lj := dl  - dj = - Cl +Cj ,

q1 = - iC2C3, q2 = - iC1C3, q3 = - iC1C2, \alpha 12 = - C3, \alpha 13 = - C2, \alpha 23 = - C1,

\sigma 1 = \varepsilon 1\varepsilon 2, \sigma 2 = \varepsilon 1\varepsilon 3, \sigma 3 = \varepsilon 2\varepsilon 3, \varepsilon j =\pm 1, \varepsilon 1\varepsilon 2\varepsilon 3 = 1.

(2.9)

Directly from the equations, one derives the conserved quantities: for 1\leq m<n\leq 3,

\varepsilon n

\int \infty 

 - \infty 

Qm(x, t)Q\ast 
m( - x, - t)dx+ ( - 1)n - m+1\varepsilon m

\int \infty 

 - \infty 

Qn(x, t)Q
\ast 
n( - x, - t)dx= constant.

(2.10)
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4094 M. J. ABLOWITZ, X.-D. LUO, AND Z. H. MUSSLIMANI

2.3. Real reverse space-time three-wave system. This case occurs under
the symmetry reduction N21(x, t) = \sigma 1N12( - x, - t), N31(x, t) = \sigma 2N13( - x, - t), and
N32(x, t) = \sigma 3N23( - x, - t), where \sigma 1, \sigma 2, \sigma 3 are real and \sigma 1\sigma 3

\sigma 2
= 1. Without loss of

generality, we may assume that \sigma 2
j = 1 (j = 1,2,3). Equation (2.3) can be put into

a set of nonlocal three-wave interaction equations by a suitable scaling of variables.
We find the system

Ql,t(x, t) +ClQl,x(x, t) = ( - 1)l+1\varepsilon lQm( - x, - t)Qn( - x, - t)(2.11)

for 1\leq l,m,n\leq 3, l \not =m \not = n, if we take

N12 = - Q3\surd 
\beta 13\beta 23

, N31 = - Q2\surd 
\beta 12\beta 23

, N23 = - Q1\surd 
\beta 12\beta 13

,

N13 = \varepsilon 1\varepsilon 3N31( - x, - t), N32 = \varepsilon 2\varepsilon 3N23( - x, - t), N21 = \varepsilon 1\varepsilon 2N12( - x, - t),
(2.12)

where the parameters chosen are the same as (2.9).

Remark 2.1. Equation (2.11) implies that there exist real-valued solutions.

Directly from the equations, the conserved quantities are the same as (2.10), but
the envelopes Qj here are real, j = 1,2,3. Note that Qj are real, j = 1,2,3, and
thus (2.12) implies that Nlj are also real, where l \not = j. Therefore, the real reverse
space-time three-wave equations admit additional symmetry reduction:

N13 = \varepsilon 1\varepsilon 3N
\ast 
31( - x, - t), N32 = \varepsilon 2\varepsilon 3N

\ast 
23( - x, - t), N21 = \varepsilon 1\varepsilon 2N

\ast 
12( - x, - t).(2.13)

It means that the real nonlocal system (2.11) owns the symmetry properties
which the complex reverse space-time three-wave system has. In addition, the real
case possesses its peculiar symmetries.

3. Direct scattering: Eigenfunctions. We refer to solutions of the scattering
problem

\left( 
 

v1
v2
v3

\right) 
 

x

=

\left( 
 

ikd1 N12(x) N13(x)
N21(x) ikd2 N23(x)
N31(x) N32(x) ikd3

\right) 
 
\left( 
 

v1
v2
v3

\right) 
 (3.1)

as eigenfunctions with respect to the parameter k. As mentioned above, we assume
d1 > d2 > d3. The scattering problem (3.1) can be rewritten as

vx = ikDv+Nv= (ikD+N)v,(3.2)

where D = diag(d1, d2, d3) and N(x) = (Nij(x))1\leq i,j\leq 3 with Nii(x) = 0. When the
potentials N12(x),N13(x),N23(x) \rightarrow 0 rapidly as x \rightarrow \pm \infty , then the eigenfunctions
are asymptotic to the solutions of

(v1 v2 v3)
T
x =diag(ikd1, ikd2, ikd3) (v1 v2 v3)

T

when | x| is sufficiently large, where the superscript T denotes a matrix transpose.
Therefore, it is natural to introduce the eigenfunctions defined by the following bound-
ary conditions: As x\rightarrow  - \infty , they satisfy

\phi 1(x,k)\sim (1 0 0)T eikd1x, \phi 2(x,k)\sim (0 1 0)T eikd2x, \phi 3(x,k)\sim (0 0 1)T eikd3x,(3.3)
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THREE-WAVE INTERACTION EQUATIONS 4095

whereas in the limit x\rightarrow +\infty , they obey

\psi 1(x,k)\sim (1 0 0)T eikd1x, \psi 2(x,k)\sim (0 1 0)T eikd2x, \psi 3(x,k)\sim (0 0 1)T eikd3x.(3.4)

In the following analysis, it is convenient to consider functions with constant bound-
ary conditions. Therefore, we define modified eigenfunctions as follows: Mj(x,k) =
\phi j(x,k)e

 - ikdjx and Nj(x,k) = \psi j(x,k)e
 - ikdjx, j = 1,2,3. Then the Jost functions

Mj(x,k) and Nj(x,k) are the solutions of the differential equations

\chi j,x(x,k) - ik(D - djI)\chi j(x,k) = (N\chi j)(x,k),(3.5)

where the potential N(x) = (Nij(x))1\leq i,j\leq 3 with Nii(x) = 0 and j = 1,2,3. Solutions
of the differential equations (3.5) can be represented by means of the following integral
equations:

\chi j(x,k) = \omega j +

\int +\infty 

 - \infty 

Gj(x - x\prime , k)(N\chi j)(x
\prime , k)dx\prime , where(3.6)

\omega 1 = (1 0 0)
T
, \omega 2 = (0 1 0)

T
, \omega 3 = (0 0 1)

T
.

The Green's function Gj(x,k) satisfies the differential equation

I\partial xGj(x,k) - ik(D - djI)Gj(x,k) = \delta (x)I.

Using Fourier transforms, we obtain

G\pm 
1 (x,k) =\mp \theta (\mp x) diag(1, eik(d2 - d1)x, eik(d3 - d1)x),

G\pm 
3 (x,k) =\pm \theta (\pm x) diag(eik(d1 - d3)x, eik(d2 - d3)x,1),

where \theta (x) is the Heaviside function, i.e., \theta (x) = 1 if x > 0 and \theta (x) = 0 if x < 0,
and the ``\pm "" function is analytic in the upper (lower) half k-plane, respectively. The
eigenfunctions can be represented by means of the following integral equations:

Mj(x,k) = \omega j +

\int +\infty 

 - \infty 

G\mp 
j (x - x\prime , k)(NMj)(x

\prime , k)dx\prime , j = 1,3,(3.7)

Nj(x,k) = \omega j +

\int +\infty 

 - \infty 

G\pm 
j (x - x\prime , k)(NNj)(x

\prime , k)dx\prime , j = 1,3.

We remark that the Green's function G - 
1 (G

+
3 ) is associated with the integral equation

of M1(M3). Similarly, N1(N3) corresponds to G
+
1 (G

 - 
3 ).

Definition 3.1. We say f \in L1(\BbbR ) if
\int +\infty 

 - \infty 
| f(x)| dx <\infty . In addition, a matrix

N \in L1(\BbbR ) if each entry of N belongs to L1(\BbbR ).

Then we have the following result.

Theorem 3.2. If N(x) \in L1(\BbbR ), then for each x\in \BbbR , M3(x,k) and N1(x,k) are
analytic for \Im k > 0 and continuous for \Im k\geq 0 and M1(x,k) and N3(x,k) are analytic
for \Im k < 0 and continuous for \Im k\leq 0.
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Proof. We prove the result for M3(x,k). The proofs are analogous for N1(x,k),
M1(x,k), andN3(x,k). We consider the Neumann seriesM3(x,k) =

\sum \infty 
n=0M3(n)(x,k),

where M3(0)(x,k) = \omega 3, M3(n+1)(x,k) =
\int x

 - \infty 
G+

3 (x - x\prime , k)(NM3(n))(x
\prime , k)dx\prime , is for-

mally a solution of the integral equation (3.7) for j = 3. Since all the entries of N
belong to L1(\BbbR ), using the identities

1

j!

\int x

 - \infty 

| f(\xi )| 
\Biggl[ \int \xi 

 - \infty 

| f(\xi \prime )| d\xi \prime 
\Biggr] j
d\xi =

1

(j + 1)!

\biggl[ \int x

 - \infty 

| f(\xi )| d\xi 
\biggr] j+1

,

and d1 > d2 > d3, we obtain that the Neumann series is uniformly convergent for
\Im k \geq 0, which implies that M3(x,k) is analytic for \Im k > 0 and continuous for
\Im k\geq 0.

4. Continuous scattering data. The Wronskian of a set \{ u1, u2, u3\} of solu-
tion of the scattering problem (3.1) is defined as W (u1, u2, u3) = det(u1, u2, u3), and
it satisfies the equation \partial xW (u1, u2, u3) = ikdW (u1, u2, u3), where d := d1 + d2 + d3.

With the Wronskian, we find that the two matrices \Phi (x,k) = (\phi 1, \phi 2, \phi 3) and
\Psi (x,k) = (\psi 1, \psi 2, \psi 3), each contains a set of three linearly independent solutions of
the scattering problem (3.1). Therefore, we can write \phi 1(x,k), \phi 2(x,k), and \phi 3(x,k)
as linear combinations of \psi 1(x,k), \psi 2(x,k), and \psi 3(x,k), or vice versa. Hence, the
relations

\Phi (x,k) =\Psi (x,k)AT (k),(4.1)

\Psi (x,k) = \Phi (x,k)BT (k)(4.2)

hold for any k such that all eigenfunctions exist, where A(k) := (aij) is referred to
as the 3 \times 3 scattering matrix and B(k) = (bij) = A - 1(k); aij(k) is the scattering
data. We call (4.1) the left scattering problem and (4.2) the right scattering problem.
Moreover,

3\sum 

m=1

almbmj = \delta lj ,

3\sum 

m=1

blmamj = \delta lj(4.3)

and det(A) = det(B) = 1. Then we have the following theorem.

Theorem 4.1. If N(x)\in L1(\BbbR ), then a33(k), b11(k) are analytic for \Im k > 0 and
continuous for \Im k\geq 0, and a11(k), b33(k) are analytic for \Im k < 0 and continuous for
\Im k\leq 0.

Proof. We prove the result for a11(k). The proofs are analogous for a33(k), b11(k),
and b33(k). Since \phi 1(x,k) = a11(k)\psi 1(x,k)+ a12(k)\psi 2(x,k)+ a13(k)\psi 3(x,k), we have
a relation amongst their first component, i.e.,

\phi 
(1)
1 (x,k) = a11(k)\psi 

(1)
1 (x,k) + a12(k)\psi 

(1)
2 (x,k) + a13(k)\psi 

(1)
3 (x,k).

Letting x\rightarrow +\infty , by (3.4), we obtain

a11(k) = lim
x\rightarrow +\infty 

\phi 
(1)
1 (x,k)e - ikd1x = lim

x\rightarrow +\infty 
M

(1)
1 (x,k).

We deduce from Theorem 3.2 that M1(x,k) is analytic for \Im k < 0 and continuous for
\Im k\leq 0, which yields that a11(k) is analytic for \Im k < 0 and continuous for \Im k\leq 0

Remark 4.2. In general, the entries aij(k), bij(k), i \not = j, cannot be extended off
the real axis. If N(x) is in Schwartz class, then aij(k), bij(k) are in Schwartz class as
well for all i, j; cf. [13, 14, 15].
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THREE-WAVE INTERACTION EQUATIONS 4097

5. Adjoint problem and auxiliary eigenfunctions. In order to formulate
and solve the inverse scattering problem, we need two independent sets of analytic
eigenfunctions. The main issue at this stage is eliminating the nonanalytic eigenfunc-
tions \phi 2 and \psi 2. The key idea is to consider a related eigenvalue problem, which we
will refer to as an adjoint eigenvalue problem:

vadx = - (ikD+NT )vad,(5.1)

where T is a matrix transpose. Then recall a well-known fact (see [16]) that if uad(x,k)
and wad(x,k) are two arbitrary solutions of (5.1), we have that

v(x,k) = eikdx(uad(x,k)\times wad(x,k))(5.2)

satisfies (3.2). Conversely, if u(x,k) and w(x,k) are two arbitrary solutions of (3.2),
then

vad(x,k) = e - ikdx(u(x,k)\times w(x,k))(5.3)

solves (5.1), where \times denotes the cross product, and we recall that d= d1 + d2 + d3.
Details underlying (5.2)--(5.3) are discussed in the appendix.

In order to uniquely define the adjoint eigenfunctions \phi adn (x,k) and \psi ad
n (x,k),

where n= 1,2,3, we impose the following boundary conditions:

\phi adj (x,k)\sim \gamma j\omega je
 - ikdjx as x\rightarrow  - \infty ; \psi ad

j (x,k)\sim \gamma j\omega je
 - ikdjx as x\rightarrow +\infty (5.4)

for j = 1,2,3, where \gamma j will be given for the case of the classical and two nonlocal
systems, respectively, in section 8. We define the bounded adjoint eigenfunctions as
follows: Mad

j (x,k) = \phi adj (x,k)eikdjx and Nad
j (x,k) = \psi ad

j (x,k)eikdjx, j = 1,2,3. The
analytic properties of the adjoint eigenfunctions are the opposite of the original ones.
So we have the following theorem.

Theorem 5.1. If N(x) \in L1(\BbbR ), then for each x \in \BbbR , Mad
3 (x,k) and Nad

1 (x,k)
are analytic for \Im k < 0 and continuous for \Im k \leq 0 and Mad

1 (x,k) and Nad
3 (x,k) are

analytic for \Im k > 0 and continuous for \Im k\geq 0.

Similarly, \phi ad1 (x,k), \phi ad2 (x,k), and \phi ad3 (x,k) can be written as linear combinations
of \psi ad

1 (x,k), \psi ad
2 (x,k), and \psi ad

3 (x,k), or vice versa. Thus, we have

\Phi ad(x,k) =\Psi ad(x,k) \widetilde BT (k), \Psi ad(x,k) = \Phi ad(x,k) \widetilde AT (k),(5.5)

where \Phi ad = (\phi ad1 , \phi 
ad
2 , \phi 

ad
3 ), \Psi ad = (\psi ad

1 , \psi ad
2 , \psi ad

3 ), \widetilde A = (\widetilde aij), and \widetilde B = (\widetilde bij) = \widetilde A - 1.
Applying (5.2), we introduce eigenfunctions \tau (x,k) and \tau (x,k), which are defined by

\tau (x,k) = eikdx(\phi ad1 (x,k)\times \psi ad
3 (x,k)), \tau (x,k) = eikdx(\phi ad3 (x,k)\times \psi ad

1 (x,k)).(5.6)

Taking into account boundary conditions, for cyclic indices j, l,m, we obtain

\phi j(x,k) = eikdx(\phi adl (x,k)\times \phi adm (x,k)), \psi j(x,k) = eikdx(\psi ad
l (x,k)\times \psi ad

m (x,k)),(5.7)

\phi adj (x,k) = e - ikdx(\phi l(x,k)\times \phi m(x,k)), \psi ad
j (x,k) = e - ikdx(\psi l(x,k)\times \psi m(x,k)).

(5.8)
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4098 M. J. ABLOWITZ, X.-D. LUO, AND Z. H. MUSSLIMANI

Combining (4.1), (4.2), (5.5), and (5.7)--(5.8), we deduce

\widetilde AT (k) =A(k), \widetilde BT (k) =B(k),(5.9)

i.e., \phi adj (x,k) =
\sum 

l

blj\psi 
ad
l , \psi ad

j (x,k) =
\sum 

l

alj\phi 
ad
l .(5.10)

Substituting (5.5), (5.9) into (5.6), it follows that

\tau (x,k) = b21(k)\psi 1(x,k) - b11(k)\psi 2(x,k), \tau (x,k) = b33(k)\psi 2(x,k) - b23(k)\psi 3(x,k).
(5.11)

One also has

\tau (x,k) = a23(k)\phi 3(x,k) - a33(k)\phi 2(x,k), \tau (x,k) = a11(k)\phi 2(x,k) - a21(k)\phi 1(x,k).
(5.12)

Moreover, (5.6) implies the corresponding bounded eigenfunctions, which can be de-
fined by

\chi (x,k) = e - ikd2x(b21(k)\psi 1(x,k) - b11(k)\psi 2(x,k)),(5.13)

\chi (x,k) = e - ikd2x(b33(k)\psi 2(x,k) - b23(k)\psi 3(x,k)).(5.14)

Similarly,

\chi (x,k) = e - ikd2x(a23(k)\phi 3(x,k) - a33(k)\phi 2(x,k)),(5.15)

\chi (x,k) = e - ikd2x(a11(k)\phi 2(x,k) - a21(k)\phi 1(x,k)).(5.16)

Then we have the following theorem.

Theorem 5.2. If N(x) \in L1(\BbbR ), then for each x \in \BbbR , \chi (x,k) is analytic for
\Im k > 0 and continuous for \Im k \geq 0 and \chi (x,k) is analytic for \Im k < 0 and continuous
for \Im k\leq 0.

6. Asymptotic behavior of eigenfunctions and scattering data. In order
to solve the inverse problem, one has to determine the asymptotic behavior of eigen-
functions and scattering data as k\rightarrow \infty . From the integral equations in terms of the
Green's functions found earlier, we have

M1 \sim 
\Bigl( 
1 - 

\int 
x

 - \infty 
N12(x

\prime )N21(x
\prime )dx\prime 

ik(d2 - d1)
 - 

\int 
x

 - \infty 
N13(x

\prime )N31(x
\prime )dx\prime 

ik(d3 - d1)
 - N21(x)

ik(d2 - d1)
 - N31(x)

ik(d3 - d1)

\Bigr) T

+O(k - 2),

(6.1)

N1 \sim 
\Bigl( 
1 +

\int +\infty 

x
N12(x

\prime )N21(x
\prime )dx\prime 

ik(d2 - d1)
+

\int +\infty 

x
N13(x

\prime )N31(x
\prime )dx\prime 

ik(d3 - d1)
 - N21(x)

ik(d2 - d1)
 - N31(x)

ik(d3 - d1)

\Bigr) T

+O(k - 2),

(6.2)

M3 \sim 
\Bigl( 
 - N13(x)

ik(d1 - d3)
 - N23(x)

ik(d2 - d3)
1 - 

\int 
x

 - \infty 
N13(x

\prime )N31(x
\prime )dx\prime 

ik(d1 - d3)
 - 

\int 
x

 - \infty 
N23(x

\prime )N32(x
\prime )dx\prime 

ik(d2 - d3)

\Bigr) T

+O(k - 2),

(6.3)

N3 \sim 
\Bigl( 
 - N13(x)

ik(d1 - d3)
 - N23(x)

ik(d2 - d3)
1 +

\int +\infty 

x
N13(x

\prime )N31(x
\prime )dx\prime 

ik(d1 - d3)
+

\int +\infty 

x
N23(x

\prime )N32(x
\prime )dx\prime 

ik(d2 - d3)

\Bigr) T

+O(k - 2)

(6.4)
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THREE-WAVE INTERACTION EQUATIONS 4099

as k\rightarrow \infty . Note that

a11(k) =
W (\phi 1, \psi 2, \psi 3)

W (\psi 1, \psi 2, \psi 3)
, a33(k) =

W (\psi 1, \psi 2, \phi 3)

W (\psi 1, \psi 2, \psi 3)
,

where we have a11(k)\sim 1 for \Im k < 0 and as k\rightarrow \infty , and a33(k)\sim 1 for \Im k > 0 and as
k\rightarrow \infty .

Similarly, we can deduce b11(k)\sim 1 for \Im k > 0 and as k\rightarrow \infty , and b33(k)\sim 1 for
\Im k < 0 and as k\rightarrow \infty .

Moreover, we obtain \chi (x,k)\sim  - \gamma 1\gamma 3\omega 2 for \Im k > 0 and as k\rightarrow \infty , and \chi (x,k)\sim 
\gamma 1\gamma 3\omega 2 for \Im k < 0 and as k\rightarrow \infty .

7. Time evolution. From (2.2) and the time evolution equation

vt =Qv, Q(x, t) =

\left( 
 

 - iC2C3k  - C3N12(x, t)  - C2N13(x, t)
 - C3N21(x, t)  - iC1C3k  - C1N23(x, t)
 - C2N31(x, t)  - C1N32(x, t)  - iC1C2k

\right) 
 ,(7.1)

one has

v
(1)
t = - iC2C3kv

(1)  - C3N12(x, t)v
(2)  - C2N13(x, t)v

(3),

v
(2)
t = - C3N21(x, t)v

(1)  - iC1C3kv
(2)  - C1N23(x, t)v

(3),

v
(3)
t = - C2N31(x, t)v

(1)  - C1N32(x, t)v
(2)  - iC1C2kv

(3).

Since Nlj(x, t)\rightarrow 0 as x\rightarrow \pm \infty , l \not = j, we find

v
(1)
t \sim  - iC2C3kv

(1), v
(2)
t \sim  - iC1C3kv

(2), v
(3)
t \sim  - iC1C2kv

(3)

as x\rightarrow \pm \infty .
Note that the eigenfunctions themselves, whose boundary values are space infini-

ties, are not compatible with this time evolution.
Therefore, one introduces time-dependent eigenfunctions

\Phi 1(x, t) = eiA\infty t \cdot \phi 1(x, t),\Phi 2(x, t) = eiB\infty t \cdot \phi 2(x, t),\Phi 3(x, t) = eiC\infty t \cdot \phi 3(x, t),

\Psi 1(x, t) = eiA\infty t \cdot \psi 1(x, t),\Psi 2(x, t) = eiB\infty t \cdot \psi 2(x, t),\Psi 3(x, t) = eiC\infty t \cdot \psi 3(x, t)

to be solutions of (7.1). As a result, \partial \Phi 1(x,t)
\partial t

= iA\infty \Phi 1(x, t) + eiA\infty t \partial \phi 1(x,t)
\partial t

.

We recall that \phi 1(x, t)\sim ( 1 0 0 )T eikd1x as x\rightarrow  - \infty . From

\partial \Phi 
(1)
1 (x, t)

\partial t
\sim  - iC2C3k\Phi 

(1)
1 (x, t) = iA\infty \Phi 

(1)
1 (x, t) + eiA\infty t \partial \phi 

(1)
1 (x, t)

\partial t
,

we deduce A\infty =  - C2C3k. Similarly, B\infty =  - C1C3k, C\infty =  - C1C2k, A\infty = A\infty ,
B\infty =B\infty , C\infty =C\infty . Then

\partial \phi 1
\partial t

= (Q - iA\infty I)\phi 1,
\partial \phi 2
\partial t

= (Q - iB\infty I)\phi 2,
\partial \phi 3
\partial t

= (Q - iC\infty I)\phi 3,

\partial \psi 1

\partial t
= (Q - iA\infty I)\psi 1,

\partial \psi 2

\partial t
= (Q - iB\infty I)\psi 2,

\partial \psi 3

\partial t
= (Q - iC\infty I)\psi 3.

Noting that

\phi 1(x, t) = a11(k; t)\psi 1(x, t) + a12(k; t)\psi 2(x, t) + a13(k; t)\psi 3(x, t),

one obtains
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4100 M. J. ABLOWITZ, X.-D. LUO, AND Z. H. MUSSLIMANI

a11,t\psi 1 + a11(Q - iA\infty I)\psi 1 + a12,t\psi 2 + a12(Q - iB\infty I)\psi 2

+ a13,t\psi 3 + a13(Q - iC\infty I)\psi 3 = (Q - iA\infty I)(a11\psi 1 + a12\psi 2 + a13\psi 3),

which implies that

\partial a11(k, t)

\partial t
= 0,

\partial a12(k, t)

\partial t
= i(B\infty  - A\infty )a12(k, t),

\partial a13(k, t)

\partial t
= i(C\infty  - A\infty )a13(k, t).

Similarly, we deduce

\partial a21(k, t)

\partial t
= i(A\infty  - B\infty )a21(k, t),

\partial a22(k, t)

\partial t
= 0,

\partial a23(k, t)

\partial t
= i(C\infty  - B\infty )a23(k, t),

\partial a31(k, t)

\partial t
= i(A\infty  - C\infty )a31(k, t),

\partial a32(k, t)

\partial t
= i(B\infty  - C\infty )a32(k, t),

\partial a33(k, t)

\partial t
= 0.

Using a method similar to that above, we derive

\partial b11(k, t)

\partial t
= 0,

\partial b12(k, t)

\partial t
= i(B\infty  - A\infty )b12(k, t),

\partial b13(k, t)

\partial t
= i(C\infty  - A\infty )b13(k, t),

\partial b21(k, t)

\partial t
= i(A\infty  - B\infty )b21(k, t),

\partial b22(k, t)

\partial t
= 0,

\partial b23(k, t)

\partial t
= i(C\infty  - B\infty )b23(k, t),

\partial b31(k, t)

\partial t
= i(A\infty  - C\infty )b31(k, t),

\partial b32(k, t)

\partial t
= i(B\infty  - C\infty )b32(k, t),

\partial b33(k, t)

\partial t
= 0.

Therefore, a11(k, t), a22(k, t), a33(k, t), b11(k, t), b22(k, t), b33(k, t) are time-independent.

8. Symmetries. The symmetry in the potentialN(x, t) induces symmetry among
the eigenfunctions. Note that we add time t since it is needed in subsequent sections.
Recall

vx(x,k; t) = (ikD+N(x, t))v(x,k; t), wad
x (x,k; t) = ( - ikD - NT (x, t))wad(x,k; t),

where v= (v1 v2 v3)
T and w= (w1 w2 w3)

T We introduce the analogue of reflection
coefficients below:

\rho 1(k, t) :=
a12(k, t)

a11(k, t)
, \rho 1(k, t) :=

a13(k, t)

a11(k, t)
, \rho 2(k, t) :=

a31(k, t)

a33(k, t)
, \rho 2(k, t) :=

a32(k, t)

a33(k, t)
,

\rho 3(k, t) :=
b21(k, t)

b11(k, t)
, \rho 3(k, t) :=

b23(k, t)

b33(k, t)
, \rho 4(k, t) :=

b12(k, t)

b11(k, t)
, \rho 4(k, t) :=

b13(k, t)

b11(k, t)
,

\rho 5(k, t) :=
a23(k, t)

a33(k, t)
, \rho 5(k, t) :=

a21(k, t)

a11(k, t)
, \rho 6(k, t) :=

b31(k, t)

b33(k, t)
, \rho 6(k, t) :=

b32(k, t)

b33(k, t)
.

8.1. Classical three-wave system. Under the symmetry reduction

N21(x, t) = \varepsilon 1\varepsilon 2N
\ast 
12(x, t), N31(x, t) = - \varepsilon 1\varepsilon 3N\ast 

13(x, t), N32(x, t) = \varepsilon 2\varepsilon 3N
\ast 
23(x, t),

where \varepsilon 2j = 1, j = 1,2,3, and using the Hermitian conjugate of (3.2), i.e.,

vHx (x,k; t) = vH(x,k; t)( - ik\ast D+NH(x, t)),

where NH(x, t) is the Hermitian conjugate of N(x, t), leads to

v\ast 1,x(x,k
\ast ; t) = - ikd1v\ast 1(x,k\ast ; t) + \varepsilon 1\varepsilon 2N21(x, t)v

\ast 
2(x,k

\ast ; t) - \varepsilon 1\varepsilon 3N31(x, t)v
\ast 
3(x,k

\ast ; t),

v\ast 2,x(x,k
\ast ; t) = \varepsilon 1\varepsilon 2N12(x, t)v

\ast 
1(x,k

\ast ; t) - ikd2v
\ast 
2(x,k

\ast ; t) + \varepsilon 2\varepsilon 3N32(x, t)v
\ast 
3(x,k

\ast ; t),

v\ast 3,x(x,k
\ast ; t) = - \varepsilon 1\varepsilon 3N13(x, t)v

\ast 
1(x,k

\ast ; t) + \varepsilon 2\varepsilon 3N23(x, t)v
\ast 
2(x,k

\ast ; t) - ikd3v
\ast 
3(x,k

\ast ; t).
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THREE-WAVE INTERACTION EQUATIONS 4101

Note that using \varepsilon 2n = 1, n = 1,2,3, from section 5, we obtain that wad
n (x,k; t) =

 - ( - 1)n\varepsilon nv
\ast 
n(x,k

\ast ; t) also solve for the classical three-wave system. Taking into ac-
count the boundary conditions (3.3), (3.4), and (5.4), we deduce

\phi adj (x,k; t) = ( - 1)j+1\varepsilon j\phi 
\ast 
j (x,k

\ast ; t), \psi ad
j (x,k; t) = ( - 1)j+1\varepsilon j\psi 

\ast 
j (x,k

\ast ; t), j = 1,2,3,

(8.1)

where \gamma 1 := \varepsilon 1, \gamma 2 := - \varepsilon 2, and \gamma 3 := \varepsilon 3. Thus,

b1l(k, t) =
W (\phi adl (x,k; t), \psi ad

2 (x,k; t), \psi ad
3 (x,k; t))

W (\psi ad
1 (x,k; t), \psi ad

2 (x,k; t), \psi ad
3 (x,k; t))

= - ( - 1)l
\varepsilon l
\varepsilon 1
a\ast l1(k

\ast , t).(8.2)

Similarly, one obtains

b2l(k, t) = ( - 1)l
\varepsilon l
\varepsilon 2
a\ast l2(k

\ast , t), b3l(k, t) = - ( - 1)l
\varepsilon l
\varepsilon 3
a\ast l3(k

\ast , t).(8.3)

It follows that

\rho 3(k, t) = - \varepsilon 1
\varepsilon 2
\rho \ast 1(k

\ast , t), \rho 3(k, t) = - \varepsilon 3
\varepsilon 2
\rho \ast 2(k

\ast , t).(8.4)

Recall

a31(k, t)b11(k, t) + a32(k, t)b21(k, t) + a33(k, t)b31(k, t) = 0,

which implies a31(k,t)
a33(k,t)

+ \varepsilon 1
\varepsilon 3

a\ast 

13(k
\ast ,t)

a\ast 

11(k
\ast ,t)  - 

\varepsilon 1
\varepsilon 2

a\ast 

12(k
\ast ,t)

a\ast 

11(k
\ast ,t) \cdot 

a32(k,t)
a33(k,t)

= 0, i.e.,

\rho 2(k, t) +
\varepsilon 1
\varepsilon 3
\rho \ast 1(k

\ast , t) - \varepsilon 1
\varepsilon 2
\rho \ast 1(k

\ast , t)\rho 2(k, t) = 0.

8.2. Complex reverse space-time three-wave system. Under the symme-
try reduction

N21(x, t) = \varepsilon 1\varepsilon 2N
\ast 
12( - x, - t),N31(x, t) = \varepsilon 1\varepsilon 3N

\ast 
13( - x, - t),

N32(x, t) = \varepsilon 2\varepsilon 3N
\ast 
23( - x, - t),

where \varepsilon 2j = 1, j = 1,2,3, and using the Hermitian conjugate of (3.2), i.e.,

vHx (x,k; t) = vH(x,k; t)( - ik\ast D+NH(x, t)),

we have in component form

\varepsilon 1v
\ast 
1,x( - x, - k\ast ; - t) = - ikd1\varepsilon 1v\ast 1( - x, - k\ast ; - t) - \varepsilon 21\varepsilon 2N21(x, t)v

\ast 
2( - x, - k\ast ; - t)

 - \varepsilon 21\varepsilon 3N31(x, t)v
\ast 
3( - x, - k\ast ; - t),

\varepsilon 2v
\ast 
2,x( - x, - k\ast ; - t) = - \varepsilon 1\varepsilon 22N12(x, t)v

\ast 
1( - x, - k\ast ; - t) - ikd2\varepsilon 2v

\ast 
2( - x, - k\ast ; - t)

 - \varepsilon 22\varepsilon 3N32(x, t)v
\ast 
3( - x, - k\ast ; - t),

\varepsilon 3v
\ast 
3,x( - x, - k\ast ; - t) = - \varepsilon 1\varepsilon 23N13(x, t)v

\ast 
1( - x, - k\ast ; - t) - \varepsilon 2\varepsilon 

2
3N23(x, t)v

\ast 
2( - x, - k\ast ; - t)

 - ikd3\varepsilon 3v
\ast 
3( - x, - k\ast ; - t).

Noting that \varepsilon 2n = 1, n= 1,2,3, from section 5, we obtain that wad
n (x,k; t) = \varepsilon nv

\ast 
n( - x,

 - k\ast ; - t) satisfy the complex reverse space-time three-wave system. Using the bound-
ary conditions (3.3), (3.4), and (5.4) leads to

\psi ad
j (x,k; t) = \varepsilon j\phi 

\ast 
j ( - x, - k\ast ; - t), \phi adj (x,k; t) = \varepsilon j\psi 

\ast 
j ( - x, - k\ast ; - t),(8.5)
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4102 M. J. ABLOWITZ, X.-D. LUO, AND Z. H. MUSSLIMANI

where \gamma j := \varepsilon j , j = 1,2,3. Thus,

b1l(k, t) =
W (\phi adl (x,k; t), \psi ad

2 (x,k; t), \psi ad
3 (x,k; t))

W (\psi ad
1 (x,k; t), \psi ad

2 (x,k; t), \psi ad
3 (x,k; t))

=
\varepsilon l
\varepsilon 1
b\ast l1( - k\ast , - t).

Similarly, one can deduce

bmn(k, t) =
\varepsilon n
\varepsilon m

b\ast nm( - k\ast , - t), amn(k, t) =
\varepsilon n
\varepsilon m

a\ast nm( - k\ast , - t),(8.6)

which induces

\rho 3(k, t) =
\varepsilon 1
\varepsilon 2
\rho \ast 4( - k\ast , - t), \rho 3(k, t) =

\varepsilon 3
\varepsilon 2
\rho \ast 6( - k\ast , - t),

\rho 1(k, t) =
\varepsilon 2
\varepsilon 1
\rho \ast 5( - k\ast , - t), \rho 2(k, t) =

\varepsilon 2
\varepsilon 3
\rho \ast 5( - k\ast , - t).

(8.7)

Also, \rho 2(k, t) +
\varepsilon 1
\varepsilon 3
\rho \ast 4( - k\ast , - t) + \varepsilon 1

\varepsilon 3
\rho \ast 4( - k\ast , - t)\rho \ast 5( - k\ast , - t) = 0.

8.3. Real reverse space-time three-wave system. Under the symmetry
reduction

N21(x, t) = \varepsilon 1\varepsilon 2N12( - x, - t),N31(x, t) = \varepsilon 1\varepsilon 3N13( - x, - t),
N32(x, t) = \varepsilon 2\varepsilon 3N23( - x, - t),

where \varepsilon 2j = 1, j = 1,2,3, and using

vTx (x,k; t) = vT (x,k; t)(ikD+NT (x, t))

implies

\varepsilon 1v1,x( - x,k; - t) = - ikd1\varepsilon 1v1( - x,k; - t) - \varepsilon 21\varepsilon 2N21(x, t)v2( - x,k; - t)
 - \varepsilon 21\varepsilon 3N31(x, t)v3( - x,k; - t),

\varepsilon 2v2,x( - x,k; - t) = - \varepsilon 1\varepsilon 22N12(x, t)v1( - x,k; - t) - ikd2\varepsilon 2v2( - x,k; - t)
 - \varepsilon 22\varepsilon 3N32(x, t)v3( - x,k; - t),

\varepsilon 3v3,x( - x,k; - t) = - \varepsilon 1\varepsilon 23N13(x, t)v1( - x,k; - t) - \varepsilon 2\varepsilon 
2
3N23(x, t)v2( - x,k; - t)

 - ikd3\varepsilon 3v3( - x,k; - t).

Noting that \varepsilon 2n = 1, n = 1,2,3, from section 5, we obtain that wad
n (x,k; t) = \varepsilon nvn

( - x,k; - t) are also solutions of the real reverse space-time three-wave system. Taking
into account the boundary conditions (3.3), (3.4), and (5.4), one deduces

\psi ad
j (x,k; t) = \varepsilon j\phi j( - x,k; - t), \phi adj (x,k; t) = \varepsilon j\psi j( - x,k; - t)(8.8)

with j = 1,2,3 and \gamma j := \varepsilon j , and thus

amn(k, t) =
\varepsilon n
\varepsilon m

anm(k, - t), bmn(k, t) =
\varepsilon n
\varepsilon m

bnm(k, - t),(8.9)

which follows from the fact that \rho 3(k, t) =
\varepsilon 1
\varepsilon 2
\rho 4(k, - t), \rho 3(k, t) = \varepsilon 3

\varepsilon 2
\rho 6(k. - t), \rho 1(k, t) =

\varepsilon 2
\varepsilon 1
\rho 5(k, - t), \rho 2(k, t) = \varepsilon 2

\varepsilon 3
\rho 5(k, - t). Moreover, \rho 2(k, t) +

\varepsilon 1
\varepsilon 3
\rho 4(k, - t) + \varepsilon 1

\varepsilon 3
\rho 4(k, - t)\rho 5

(k, - t) = 0. In addition, the symmetry reduction
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THREE-WAVE INTERACTION EQUATIONS 4103

N21(x, t) = \varepsilon 1\varepsilon 2N
\ast 
12( - x, - t),N31(x, t) = \varepsilon 1\varepsilon 3N

\ast 
13( - x, - t),(8.10)

N32(x, t) = \varepsilon 2\varepsilon 3N
\ast 
23( - x, - t)

implies that what we have discussed in section 8.2 also works for the real nonlocal
case. Hence, (8.5) and (8.8) yield

\phi j( - x,k; - t) = \phi \ast j ( - x, - k\ast ; - t), \psi j( - x,k; - t) = \psi \ast 
j ( - x, - k\ast ; - t), j = 1,2,3.

From (8.6) and (8.9), one has

anm(k, - t) = a\ast nm( - k\ast , - t), bnm(k, - t) = b\ast nm( - k\ast , - t).(8.11)

In particular, if k \in i\BbbR , then \phi j(x,k; t), \psi j(x,k; t), anm(k, t), and bnm(k, t) are real.

Remark 8.1. In this section, the symmetry relations among scattering data involve
time; they are consistent with what we obtained in section 7.

9. Zeros of the scattering data and discrete eigenvalues. Zeros of scatter-
ing data (i.e., zeros of a11(k), a33(k), b11(k), b33(k)) are referred to here as eigenvalues.
Given the initial data encoded in the potential N(x) \in L1(\BbbR ), the zeros of scatter-
ing data form a bounded set in \BbbC \setminus \BbbR . Noting that a33(k) and b11(k) are analytic
in the upper half plane, we assume they have simple zeros \alpha j and \beta n, respectively,
i.e., a33(\alpha j) = 0 (j = 1, . . . , J) and b11(\beta n) = 0 (n = 1, . . . ,N); b33(k) and a11(k) are
analytic in the lower half plane, where they have simple zeros (by assumption) \alpha j and
\beta n, respectively, i.e., b33(\alpha j) = 0 (j = 1, . . . , J) and a11(\beta n) = 0 (n = 1, . . . ,N). In
general, the zeros of a11(k), a33(k), b11(k), b33(k) can be multiple, which gives rise
to higher-order soliton solutions; higher-order soliton solutions to the classical three-
wave system have been discussed in [42]. In this paper, we assume that the zeros are
proper; i.e., they are simple and do not lie on the the line \Im k= 0.

Remark 9.1. As shown in [13, 14, 15], generic potentials are such that zeros of
the associated data a11(k), a33(k), b11(k), b33(k) are proper; i.e. each zero is simple
and lies off the line \Im k= 0.

In addition, if we only focus on the zeros in the upper half plane, which come
from the zeros of a33(k) and b11(k), then four possibilities may occur:

(1) J = 0, i.e., a33(k) has no zeros.
(2) N = 0, i.e., b11(k) has no zeros.
(3) All the zeros of a33(k) and b11(k) are distinct, i.e., \alpha j \not = \beta n for all j,n.
(4) a33(k) and b11(k) have common zeros, i.e., there exists at least one j0 \in 

\{ 1, . . . , J\} such that \alpha j0 = \beta n0
for some n0 \in \{ 1, . . . ,N\} .

A similar consequence holds for the zeros in the lower half plane. Thus, it gives rise
to many different types of solitons. In section 13, typical examples of 1-0-1 solitons
will be discussed. Recall that 1-0-1 solitons at t =  - \infty are defined as the nonzero
envelopes Q1,Q3 with Q2 \sim 0 as t \rightarrow  - \infty , which can result in different types of
solitons at t=+\infty , such as 1-0-1 solitons (the waves Q1,Q3 are nonzero and Q2 \sim 0
as t\rightarrow +\infty ) and 0-1-0 solitons (Q2 is nonzero and Q1,Q3 \sim 0 as t\rightarrow +\infty ).

From (5.13)--(5.16), it follows that

\chi (x,\beta n; t) = b21(\beta n, t)N1(x,\beta n; t)e
i\beta n(d1 - d2)x,

\chi (x,\alpha j ; t) = - b23(\alpha j , t)N3(x,\alpha j ; t)e
i\alpha j(d3 - d2)x,

(9.1)

\chi (x,\beta n; t) = - a21(\beta n, t)M1(x,\beta n; t)e
i\beta n(d1 - d2)x,

\chi (x,\alpha j ; t) = a23(\alpha j , t)M3(x,\alpha j ; t)e
i\alpha j(d3 - d2)x.

(9.2)
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4104 M. J. ABLOWITZ, X.-D. LUO, AND Z. H. MUSSLIMANI

Equivalently,

\tau (x,\beta n; t) = b21(\beta n, t)\psi 1(x,\beta n; t), \tau (x,\alpha j ; t) = - b23(\alpha j , t)\psi 3(x,\alpha j ; t),(9.3)

\tau (x,\beta n; t) = - a21(\beta n, t)\phi 1(x,\beta n; t), \tau (x,\alpha j ; t) = a23(\alpha j , t)\phi 3(x,\alpha j ; t).(9.4)

Indeed, for each \beta n such that b11(\beta n) = 0, there is a nonzero proportionality constant
such that the left-and right-hand sides of the first equation in (9.1) are exponentially
decaying in opposite directions as | x| \rightarrow \infty . Similar conclusions hold for \alpha j , \beta n, and
\alpha j .

We will need the coefficients

b21(\beta n, t), b23(\alpha j , t), a21(\beta n, t), a23(\alpha j , t)(9.5)

as part of the integral equations governing the inverse scattering in section 11 and
the soliton solutions in section 13; we call these coefficients reduced normalization
constants/coefficients. In order to construct the inverse problem, it is convenient to
introduce the 3\times 3 matrices

E+(x,k, t) = (\psi 1(x,k, t), \tau (x,k, t), \phi 3(x,k, t)),

E - (x,k, t) = (\phi 1(x,k, t), \tau (x,k, t), \psi 3(x,k, t)).

With this notation, E\pm (x,k, t) collect three eigenfunctions which are analytic in the
upper/lower half k-planes, respectively. Combining (3.3), (3.4), (5.11), and (5.12), we
obtain det(E+(x,k, t)) = W (\psi 1(x,k, t), \tau (x,k), \phi 3(x,k, t)) =  - a33(k, t)b11(k, t)eikdx,
det(E - (x,k, t)) =W (\phi 1(x,k, t), \tau (x,k, t), \psi 3(x,k), t) = a11(k, t)b33(k, t)e

ikdx.
This shows that the three solutions \psi 1(x,k, t), \tau (x,k, t), and \phi 3(x,k, t) become

linearly dependent at the zeros of a33(k, t) or b11(k, t). Similarly, \phi 1(x,k, t), \tau (x,k, t),
and \psi 3(x,k, t) are linearly dependent at the zeros of a11(k, t) or b33(k, t).

Next, our analysis will be based on three different symmetry reductions, which
correspond to the classical, complex reverse space-time, and real reverse space-time
three-wave systems, respectively.

We note certain key formulae: (9.6)--(9.7), (9.8)--(9.11), (9.12)--(9.13).

9.1. Classical three-wave system. We have assumed that a33(k) and b11(k)
have simple zeros \{ \alpha j : \Im \alpha j > 0\} Jj=1 and \{ \beta n : \Im \beta n > 0\} Nn=1, respectively. By the
symmetry relation mentioned in section 8.1, it implies that b11(k, t) = a\ast 11(k

\ast , t) and
b33(k, t) = a\ast 33(k

\ast , t). Then b33(k) and a11(k) have simple zeros \alpha \ast 
j and \beta 

\ast 
n, respectively,

and therefore \alpha j = \alpha \ast 
j , \beta n = \beta \ast 

n, and J = J , N = N . From section 7, one has that
a11(k, t), a33(k, t), b11(k, t), and b33(k, t) are time-independent. It yields b11(\beta n, t) =
0\leftrightarrow a11(\beta 

\ast 
n, t) = 0, a33(\alpha j , t) = 0\leftrightarrow b33(\alpha 

\ast 
j , t) = 0. Thus, from (5.8), (8.1), and (9.4),

one can write

\tau \ast (x,\alpha j ; t) = a\ast 23(\alpha j , t)\phi 
\ast 
3(x,\alpha j ; t) = \varepsilon 3a

\ast 
23(\alpha j , t)\phi 

ad
3 (x,\alpha \ast 

j ; t)

= \varepsilon 3a
\ast 
23(\alpha j , t)e

 - i\alpha \ast 

jdx(\phi 1(x,\alpha 
\ast 
j ; t)\times \phi 2(x,\alpha 

\ast 
j ; t)).

Equation (5.12) implies

\phi 2(x,k; t) =
a23(k, t)

a33(k, t)
\phi 3(x,k; t) - 

1

a33(k, t)
\tau (x,k; t)

=
a21(k, t)

a11(k, t)
\phi 1(x,k; t) +

1

a11(k, t)
\tau (x,k; t).
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THREE-WAVE INTERACTION EQUATIONS 4105

From (8.1) and (9.3), it gives

\phi 1(x,\alpha 
\ast 
j ; t)\times \phi 2(x,\alpha 

\ast 
j ; t) =

1

a11(\alpha \ast 
j , t)

\phi 1(x,\alpha 
\ast 
j ; t)\times \tau (x,\alpha \ast 

j ; t)

=
 - b23(\alpha \ast 

j , t)

a11(\alpha \ast 
j , t)

\phi 1(x,\alpha 
\ast 
j ; t)\times \psi 3(x,\alpha 

\ast 
j ; t)

=
 - \varepsilon 1\varepsilon 3b23(\alpha \ast 

j , t)

a11(\alpha \ast 
j , t)

\bigl( 
\phi ad1 (x,\alpha j ; t)\times \psi ad

3 (x,\alpha j ; t)
\bigr) \ast 
.

Combining (5.6), we then have \tau \ast (x,\alpha j ; t) =
 - \varepsilon 1b23(\alpha 

\ast 

j ,t)a
\ast 

23(\alpha j ,t)\tau 
\ast (x,\alpha j ;t)

a11(\alpha \ast 

j ,t)
. So we find

the additional symmetries

a\ast 23(\alpha j , t) = - 
a11(\alpha 

\ast 
j , t)

\varepsilon 1b23(\alpha \ast 
j , t)

.(9.6)

Similarly, we deduce

b\ast 21(\beta n, t) = - b33(\beta 
\ast 
n, t)

\varepsilon 3a21(\beta \ast 
n, t)

.(9.7)

9.2. Complex reverse space-time three-wave system. We assume that
a33(k) and b33(k) have the simple zeros \{ \alpha j , - \alpha \ast 

j : \Im \alpha j > 0 and \Re \alpha j \not = 0\} J1
j=1 \cup \{ \widetilde \alpha l :

\Im \widetilde \alpha l > 0 and \Re \widetilde \alpha l = 0\} J2

l=1 and \{ \alpha j , - \alpha \ast 
j : \Im \alpha j < 0 and \Re \alpha j \not = 0\} J1

j=1 \cup \{ \widetilde \alpha l : \Im \widetilde \alpha l <

0 and \Re \widetilde \alpha l = 0\} J2

l=1, respectively, where 2J1 + J2 = J and 2J1 + J2 = J . Indeed,
the symmetry relations discussed in section 8.2 give a33(k, t) = a\ast 33( - k\ast , - t) and
b33(k, t) = b\ast 33( - k\ast , - t). It shows that a33(k) and b33(k) also have simple zeros  - \alpha \ast 

j

and  - \alpha \ast 
j , respectively, i.e., \{ \alpha j , - \alpha \ast 

j\} and \{ \alpha j , - \alpha \ast 
j\} are pairs of zeros.

One can have a similar assumption for b11(k) and a11(k); that is, both have the
simple zeros \{ \beta n, - \beta \ast 

n :\Im \beta n > 0 and \Re \beta n \not = 0\} N1
n=1 \cup \{ \widetilde \beta m :\Im \widetilde \beta m > 0 and \Re \widetilde \beta m = 0\} N2

m=1

and \{ \beta n, - \beta 
\ast 

n : \Im \beta n < 0 and \Re \beta n \not = 0\} N1
n=1 \cup \{ \widetilde \beta m : \Im \widetilde \beta m < 0 and \Re \widetilde \beta m = 0\} N2

m=1,
respectively, where 2N1 + N2 = N and 2N1 + N2 = N . Also, \{ \beta n, - \beta \ast 

n\} and
\{ \beta n, - \beta 

\ast 

n\} are pairs of zeros for b11(k) and a11(k), respectively. From section 7,
we have that a11(k, t), a33(k, t), b11(k, t), and b33(k, t) are time-independent. Thus,
b11(\beta n, t) = 0\leftrightarrow b11( - \beta \ast 

n, - t) = 0, a33(\alpha j , t) = 0\leftrightarrow a33( - \alpha \ast 
j , - t) = 0, a11(\beta n, t) = 0\leftrightarrow 

a11( - \beta 
\ast 

n, - t) = 0, b33(\alpha j , t) = 0 \leftrightarrow b33( - \alpha \ast 
j , - t) = 0. By (5.8), (8.5), and (9.4),

we can write \tau \ast (x,\alpha j ; t) = a\ast 23(\alpha j , t)\phi 
\ast 
3(x,\alpha j ; t) = \varepsilon 3a

\ast 
23(\alpha j , t)\psi 

ad
3 ( - x, - \alpha \ast 

j ; - t) =

\varepsilon 3a
\ast 
23(\alpha j , t)e

 - i\alpha \ast 

jdx(\psi 1( - x, - \alpha \ast 
j ; - t)\times \psi 2( - x, - \alpha \ast 

j ; - t)). Equation (5.11) shows that

\psi 2(x,k; t) =
b21(k,t)
b11(k,t)

\psi 1(x,k; t) - \tau (x,k;t)
b11(k,t)

= b23(k,t)
b33(k,t)

\psi 3(x,k; t) +
\tau (x,k;t)
b33(k,t)

. From (8.5) and

(9.4), one derives

\psi 1( - x, - \alpha \ast 
j ; - t)\times \psi 2( - x, - \alpha \ast 

j ; - t)

= - 1

b11( - \alpha \ast 
j , - t)

\psi 1( - x, - \alpha \ast 
j ; - t)\times \tau ( - x, - \alpha \ast 

j ; - t)

= - 
\varepsilon 1\varepsilon 3a23( - \alpha \ast 

j , - t)
b11( - \alpha \ast 

j , - t)
(\phi ad1 (x,\alpha j ; t)\times \psi ad

3 (x,\alpha j ; t))
\ast .

Combining (5.6), one gets \tau \ast (x,\alpha j ; t) = - \varepsilon 1a
\ast 

23(\alpha j ,t)a23( - \alpha \ast 

j , - t)

b11( - \alpha \ast 

j , - t) \tau \ast (x,\alpha j ; t), which yields

 - 
\varepsilon 1a

\ast 
23(\alpha j , t)a23( - \alpha \ast 

j  - t)

b11( - \alpha \ast 
j , - t)

= 1.(9.8)
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Similarly, we deduce the following relations:

 - \varepsilon 3b
\ast 
21(\beta n, t)b21( - \beta \ast 

n, - t)
a33( - \beta \ast 

n, - t)
= 1,  - 

\varepsilon 1b
\ast 
23(\alpha j , t)b23( - \alpha \ast 

j , - t)
a11( - \alpha \ast 

j , - t)
= 1,(9.9)

 - \varepsilon 3a
\ast 
21(\beta n, t)a21( - \beta 

\ast 

n, - t)
b33( - \beta 

\ast 

n, - t)
= 1.(9.10)

In particular,

 - \varepsilon 1a
\ast 
23(\widetilde \alpha l, t)a23(\widetilde \alpha l, - t)
b11(\widetilde \alpha l, - t)

= 1,  - \varepsilon 3b
\ast 
21(
\widetilde \beta m, t)b21(\widetilde \beta m, - t)
a33(\widetilde \beta m, - t)

= 1,

 - \varepsilon 1b
\ast 
23(\widetilde \alpha l, t)b23(\widetilde \alpha l, - t)
a11(\widetilde \alpha l, - t)

= 1,  - \varepsilon 3a
\ast 
21(
\widetilde \beta m, t)a21(

\widetilde \beta m, - t)
b33(\widetilde \beta m, - t)

= 1.

(9.11)

9.3. Real reverse space-time three-wave system. Similarly, as above we
assume that a33(k) and b33(k) have the simple zeros \{ \alpha j : \Im \alpha j > 0\} Jj=1 and \{ \alpha j :

\Im \alpha j < 0\} Jj=1, respectively. Also, b11(k) and a11(k) have the simple zeros \{ \beta n :\Im \beta n >
0\} Nn=1 and \{ \beta n : \Im \beta n < 0\} Nn=1, respectively. Thus, (5.8) and (9.4) give \tau (x,\alpha j ; t) =
a23(\alpha j , t)\phi 3(x,\alpha j ; t) = \varepsilon 3a23(\alpha j , t)\psi 

ad
3 ( - x,\alpha j ; - t) = \varepsilon 3a23(\alpha j , t)e

i\alpha jdx(\psi 1( - x,\alpha j ; - t)\times 
\psi 2( - x,\alpha j ; - t)). Also, (5.11) and (9.4) read as \psi 1( - x,\alpha j ; - t)\times \psi 2( - x,\alpha j ; - t)
= - 1

b11(\alpha j , - t)\psi 1( - x,\alpha j ; - t)\times \tau ( - x,\alpha j ; - t) = - a23(\alpha j , - t)
b11(\alpha j , - t)\psi 1( - x,\alpha j ; - t)\times \phi 3( - x,\alpha j ; - t).

From (5.6) and (8.8), we obtain

\tau (x,\alpha j ; t) = - \varepsilon 3a23(\alpha j , t)a23(\alpha j , - t)
b11(\alpha j , - t)

(ei\alpha jdx(\psi 1( - x,\alpha j ; - t)\times \phi 3( - x,\alpha j ; - t)))

= - \varepsilon 1a23(\alpha j , t)a23(\alpha j , - t)
b11(\alpha j , - t)

(ei\alpha jdx(\phi ad1 (x,\alpha j ; t)\times \psi ad
3 (x,\alpha j ; t)))

= - \varepsilon 1a23(\alpha j , t)a23(\alpha j , - t)
b11(\alpha j , - t)

\tau (x,\alpha j ; t).

Hence,

 - \varepsilon 1a23(\alpha j , t)a23(\alpha j , - t)
b11(\alpha j , - t)

= 1.(9.12)

Similarly, one has the formulae

 - \varepsilon 3b21(\beta n, t)b21(\beta n, - t)
a33(\beta n, - t)

= 1,  - \varepsilon 1b23(\alpha j , t)b23(\alpha j , - t)
a11(\alpha j , - t)

= 1,(9.13)

 - \varepsilon 3a21(\beta n, t)a21(\beta n, - t)
b33(\beta n, - t)

= 1.

Remark 9.2. Note that as in the nonlocal complex three-wave case, we have

\{ \alpha j :\Im \alpha j > 0\} Jj=1

= \{ \alpha m, - \alpha \ast 
m :\Im \alpha m > 0 and \Re \alpha m \not = 0\} J1

m=1 \cup \{ \widetilde \alpha l :\Im \widetilde \alpha l > 0 and \Re \widetilde \alpha l = 0\} J2

l=1,

\{ \alpha j :\Im \alpha j < 0\} Jj=1

= \{ \alpha m, - \alpha \ast 
m :\Im \alpha m < 0 and \Re \alpha m \not = 0\} J1

m=1 \cup \{ \widetilde \alpha l :\Im \widetilde \alpha l < 0 and \Re \widetilde \alpha l = 0\} J2

l=1,
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THREE-WAVE INTERACTION EQUATIONS 4107

\{ \beta n :\Im \beta n > 0\} Nn=1

= \{ \beta p, - \beta \ast 
p :\Im \beta p > 0 and \Re \beta p \not = 0\} N1

p=1 \cup \{ \widetilde \beta m :\Im \widetilde \beta m > 0 and \Re \widetilde \beta m = 0\} N2
m=1,

\{ \beta n :\Im \beta n < 0\} Nn=1

= \{ \beta p, - \beta 
\ast 

p :\Im \beta p < 0 and \Re \beta p \not = 0\} N1
p=1 \cup \{ \widetilde \beta m :\Im \widetilde \beta m < 0 and \Re \widetilde \beta m = 0\} N2

m=1;

the above symmetry properties hold for eigenvalues both on and off the imaginary
axis.

10. Trace formulae. In this section, we show how some of the scattering data
needed for reconstruction of the potentials can be constructed from reflection coeffi-
cients and eigenvalues; these equations are usually termed trace formulae. Since (bij)

is the inverse of (aij) and det(aij) = 1, we obtain B(k) = A - 1(k) = adj(A(k))
det(A) , which

implies b22(k) = a11(k)a33(k) - a13(k)a31(k), where adj(A) is the adjugate matrix of
A. By (4.3), one has b21(k)a11(k) + b22(k)a21(k) + b23(k)a31(k) = 0, and it yields
b21(k)a11(k) + [a11(k)a33(k) - a13(k)a31(k)]a21(k) + b23(k)a31(k) = 0.

Using the definitions of the reflection coefficients, we find

a21(k)(1 - \rho 2(k)\rho 1(k)) = - b33(k)

a11(k)
\rho 2(k)\rho 3(k) - 

b11(k)

a33(k)
\rho 3(k).

Similarly, we have

a23(k)(1 - \rho 2(k)\rho 1(k)) = - b11(k)

a33(k)
\rho 3(k)\rho 1(k) - 

b33(k)

a11(k)
\rho 3(k),

a22(k) =
b11(k)

a33(k)
+ \rho 2(k)a23(k) =

b33(k)

a11(k)
+ \rho 1(k)a21(k).

Thus, we have shown that a21(k), a23(k), a22(k) are found in terms of reflection co-
efficients and a11(k), a33(k), b11(k), b33(k). The latter four functions have been shown
to be expressed in terms of reflection coefficients and eigenvalues. By

b21(k)a11(k) + b22(k)a21(k) + b23a31(k) = 0,

a31(k)b13(k) + a32(k)b23(k) + a33b33 = 1,

b21(k) = a31(k)a23(k) - a21(k)a33(k),

we deduce

a31(k)b23(k) + b21(k)a11(k)

= b22(k)

\biggl( 
b21(k)b33(k) +

a31(k)b11(k)b23(k)

a33(k)
+
a32(k)b23(k)b21(k)

a33(k)

\biggr) 
,

which follows that
\rho 2(k)\rho 3(k)

a11(k)b11(k)
+

\rho 3(k)

a33(k)b33(k)

1 - \rho 2(k)\rho 1(k)
= \rho 3(k)+\rho 2(k)\rho 3(k)+\rho 2(k)\rho 3(k)\rho 3(k). Thus,

a21(k) = - b11(k)b33(k)[\rho 3(k) + \rho 2(k)\rho 3(k) + \rho 2(k)\rho 3(k)\rho 3(k)].
Similarly, we derive a23(k) = - b11(k)b33(k)[\rho 3(k)+\rho 1(k)\rho 3(k)+\rho 1(k)\rho 3(k)\rho 3(k)],

a22(k) = b11(k)b33(k)[1 - (\rho 2(k) + \rho 2(k)\rho 3(k))(\rho 1(k) + \rho 1(k)\rho 3(k))]. One also obtains

a11(k)b11(k) = [1 - \rho 2(k)\rho 1(k) - \rho 2(k)\rho 1(k)\rho 3(k) + \rho 3(k)\rho 1(k)]
 - 1,(10.1)

a33(k)b33(k) = [1 - \rho 2(k)\rho 1(k) - \rho 1(k)\rho 2(k)\rho 3(k) + \rho 3(k)\rho 2(k)]
 - 1.(10.2)

Remark 10.1. Equations (10.1) and (10.2) provide us a mechanism to construct
trace formulae for a11(k), b11(k), a33(k), and b33(k).
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4108 M. J. ABLOWITZ, X.-D. LUO, AND Z. H. MUSSLIMANI

10.1. General trace formulae. In section 9, we have assumed that a33(k) and

b33(k) have simple zeros \{ \alpha j : \Im \alpha j > 0\} Jj=1 and \{ \alpha j : \Im \alpha j < 0\} Jj=1, respectively.

Moreover, b11(k) and a11(k) have the simple zeros \{ \beta n :\Im \beta n > 0\} Nn=1 and \{ \beta n :\Im \beta n <

0\} Nn=1, respectively. Let J = J and N =N ; then we define

f3(k) = a33(k) \cdot 
J\prod 

j=1

k - \alpha j

k - \alpha j

, f3(k) = b33(k) \cdot 
J\prod 

j=1

k - \alpha j

k - \alpha j

.(10.3)

Thus, f3(k) (f3(k)) is analytic in the upper (lower) half k-plane. Moreover, f3(k), f3(k)\rightarrow 
1 as k\rightarrow \infty and have no zeros in their respective half planes. Hence, we have

log f3(k) =
1

2\pi i

\int \infty 

 - \infty 

log f3(\xi )

\xi  - k
d\xi ,

1

2\pi i

\int \infty 

 - \infty 

log f3(\xi )

\xi  - k
d\xi = 0, \Im k > 0;

log f3(k) = - 1

2\pi i

\int \infty 

 - \infty 

log f3(\xi )

\xi  - k
d\xi ,

1

2\pi i

\int \infty 

 - \infty 

log f3(\xi )

\xi  - k
d\xi = 0 \Im k < 0.

Adding/subtracting the above equations in each half plane, respectively, it yields

log f3(k) =
1

2\pi i

\int \infty 

 - \infty 

log f3(\xi )f3(\xi )

\xi  - k
d\xi , \Im k > 0;

log f3(k) = - 1

2\pi i

\int \infty 

 - \infty 

log f3(\xi )f3(\xi )

\xi  - k
d\xi , \Im k < 0.

By (10.2) and (10.3), we obtain

a33(k) =

J\prod 

m=1

k - \alpha m

k - \alpha m

\cdot exp (\Theta 1(k)) , \Im k > 0,(10.4)

b33(k) =

J\prod 

m=1

k - \alpha m

k - \alpha m

\cdot exp ( - \Theta 1(k)) , \Im k < 0,(10.5)

where

\Theta 1(k) =
1

2\pi i

\int \infty 

 - \infty 

log [1 - \rho 2(\xi )\rho 1(\xi ) - \rho 1(\xi )\rho 2(\xi )\rho 3(\xi ) + \rho 2(\xi )\rho 3(\xi )]

k - \xi 
d\xi .

Similarly, we have

b11(k) =

N\prod 

l=1

k - \beta l

k - \beta l

\cdot exp (\Theta 2(k)) , \Im k > 0,(10.6)

a11(k) =

N\prod 

l=1

k - \beta l

k - \beta l
\cdot exp ( - \Theta 2(k)) , \Im k < 0,(10.7)

where

\Theta 2(k) =
1

2\pi i

\int \infty 

 - \infty 

log [1 - \rho 2(\xi )\rho 1(\xi ) - \rho 1(\xi )\rho 2(\xi )\rho 3(\xi ) + \rho 1(\xi )\rho 3(\xi )]

k - \xi 
d\xi .
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THREE-WAVE INTERACTION EQUATIONS 4109

In order to solve the inverse problem, we need a\prime 33(\alpha j), b
\prime 
11(\beta n), b

\prime 
33(\alpha j), and a

\prime 
11(\beta n).

These four derivatives are shown below:

a\prime 33(\alpha j) =
a33(k)

k - \alpha j

\bigm| \bigm| \bigm| 
k=\alpha j

, b\prime 33(\alpha j) =
b33(k)

k - \alpha j

\bigm| \bigm| \bigm| 
k=\alpha j

,(10.8)

b\prime 11(\beta n) =
b11(k)

k - \beta n

\bigm| \bigm| \bigm| 
k=\beta n

, a\prime 11(\beta n) =
a11(k)

k - \beta n

\bigm| \bigm| \bigm| 
k=\beta n

.(10.9)

In general, a\prime 33(\alpha j) and b\prime 33(\alpha j) depend on the simple zeros \{ \alpha j : \Im \alpha j > 0\} Jj=1 and

\{ \alpha j : \Im \alpha j < 0\} Jj=1. Similarly, b\prime 11(\beta n) and a\prime 11(\beta n) rely on \{ \beta n : \Im \beta n > 0\} Nn=1 and

\{ \beta n :\Im \beta n < 0\} Nn=1. In general, all derivatives also depend on the reflection coefficients
\rho 1(k), \rho 2(k), \rho 3(k), \rho 1(k), \rho 2(k), \rho 3(k). Since these derivatives can be determined by
eigenvalues and reflection coefficients, therefore they are not contained in the minimal
data.

In particular, if \rho 1(k) = 0, \rho 2(k) = 0, \rho 1(k) = 0, and \rho 2(k) = 0 on \BbbR , i.e., a12(k) = 0,
a13(k) = 0, a31(k) = 0, and a32(k) = 0 on the real axis (via the definitions of \rho 1, \rho 1,
\rho 1, \rho 2), then it corresponds to the case of pure solitons, and these derivatives only
depend on the zeros mentioned above.

10.2. Classical three-wave system. Under the symmetry reduction N21(x) =
\varepsilon 1\varepsilon 2N

\ast 
12(x), N31(x) =  - \varepsilon 1\varepsilon 3N\ast 

13(x), and N32(x) = \varepsilon 2\varepsilon 3N
\ast 
23(x), where \varepsilon 2j = 1, j =

1,2,3, we have assumed that a33(k) and b11(k) have simple zeros \{ \alpha j : \Im \alpha j > 0\} Jj=1

and \{ \beta n : \Im \beta n > 0\} Nn=1, respectively. By the symmetry relations b11(k) = a\ast 11(k
\ast )

and b33(k) = a\ast 33(k
\ast ), we deduce that b33(k) and a11(k) have simple zeros \alpha \ast 

j and \beta \ast 
n,

respectively, i.e., \alpha j = \alpha \ast 
j , \beta n = \beta \ast 

n and J = J , N =N .
By (8.4) and (10.4)--(10.7), one deduces that

a33(k) =

J\prod 

m=1

k - \alpha m

k - \alpha \ast 
m

\cdot exp (\Theta 3(k)) , b33(k) =
J\prod 

m=1

k - \alpha \ast 
m

k - \alpha m

\cdot exp ( - \Theta 3(k)) ,(10.10)

b11(k) =

N\prod 

l=1

k - \beta l
k - \beta \ast 

l

\cdot exp (\Theta 4(k)) , a11(k) =

N\prod 

l=1

k - \beta \ast 
l

k - \beta l
\cdot exp ( - \Theta 4(k)) ,(10.11)

where

\Theta 3(k) =
1

2\pi i

\int \infty 

 - \infty 

log
\Bigl[ 
1 - \rho 2(\xi )\rho 1(\xi ) +

\varepsilon 3
\varepsilon 2
\rho 1(\xi )\rho 2(\xi )\rho 

\ast 
2(\xi ) - \varepsilon 3

\varepsilon 2
\rho \ast 2(\xi )\rho 2(\xi )

\Bigr] 

k - \xi 
d\xi ,

\Theta 4(k) =
1

2\pi i

\int \infty 

 - \infty 

log
\Bigl[ 
1 - \rho 2(\xi )\rho 1(\xi ) +

\varepsilon 1
\varepsilon 2
\rho \ast 1(\xi )\rho 1(\xi )\rho 2(\xi ) - \varepsilon 1

\varepsilon 2
\rho \ast 1(\xi )\rho 1(\xi )

\Bigr] 

k - \xi 
d\xi .

When we reconstruct potentials, the functions a\prime 33(\alpha j), b
\prime 
11(\beta n), b

\prime 
33(\alpha 

\ast 
j ), and a

\prime 
11(\beta 

\ast 
n)

are needed. In general, these derivatives are found as follows:

a\prime 33(\alpha j) =
a33(k)

k - \alpha j

\bigm| \bigm| \bigm| 
k=\alpha j

, b\prime 33(\alpha 
\ast 
j ) =

b33(k)

k - \alpha \ast 
j

\bigm| \bigm| \bigm| 
k=\alpha \ast 

j

,(10.12)

b\prime 11(\beta n) =
b11(k)

k - \beta n

\bigm| \bigm| \bigm| 
k=\beta n

, a\prime 11(\beta 
\ast 
n) =

a11(k)

k - \beta \ast 
n

\bigm| \bigm| \bigm| 
k=\beta \ast 

n

.(10.13)
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If \rho 1(k) = 0, \rho 2(k) = 0, \rho 1(k) = 0, and \rho 2(k) = 0 (equivalently, a12(k) = 0, a13(k) = 0,
a31(k) = 0, and a32(k) = 0) on \BbbR , then it corresponds to pure solitons, and a\prime 33(\alpha j)
and b\prime 33(\alpha 

\ast 
j ) only depend on the simple zeros \{ \alpha j : \Im \alpha j > 0\} Jj=1. Also, b\prime 11(\beta n) and

a\prime 11(\beta 
\ast 
n) only depend on \{ \beta n :\Im \beta n > 0\} Nn=1. However, in the general case, a\prime 33(\alpha j) and

b\prime 33(\alpha 
\ast 
j ) rely on zeros \{ \alpha j : \Im \alpha j > 0\} Jj=1 and the reflection coefficients \rho 1(k), \rho 2(k),

\rho 1(k), \rho 2(k). Similarly, b\prime 11(\beta n) and a\prime 11(\beta 
\ast 
n) rely on \{ \beta n : \Im \beta n > 0\} Nn=1 and \rho 1(k),

\rho 2(k), \rho 1(k), \rho 2(k). We note that a\prime 33(\alpha j), b
\prime 
11(\beta n), b

\prime 
33(\alpha 

\ast 
j ), and a

\prime 
11(\beta 

\ast 
n) are not part

of the minimal data.

10.3. Complex reverse space-time three-wave system. Under the symme-
try reduction N21(x) = \varepsilon 1\varepsilon 2N

\ast 
12( - x), N31(x) = \varepsilon 1\varepsilon 3N

\ast 
13( - x), and N32(x) =

\varepsilon 2\varepsilon 3N
\ast 
23( - x), where \varepsilon 2j = 1, j = 1,2,3, we assume that a33(k) and b33(k) have sim-

ple zeros \{ \alpha j : \Im \alpha j > 0 and \Re \alpha j \not = 0\} J1
j=1 \cup \{ \widetilde \alpha l : \Im \widetilde \alpha l > 0 and \Re \widetilde \alpha l = 0\} J2

l=1 and

\{ \alpha j : \Im \alpha j < 0 and \Re \alpha j \not = 0\} J1
j=1 \cup \{ \widetilde \alpha l : \Im \widetilde \alpha l < 0 and \Re \widetilde \alpha l = 0\} J2

l=1, respectively,
where 2J1 + J2 = J . Similarly, we assume b11(k) and a11(k) have the simple ze-
ros \{ \beta n : \Im \beta n > 0 and \Re \beta n \not = 0\} N1

n=1 \cup \{ \widetilde \beta m : \Im \widetilde \beta m > 0 and \Re \widetilde \beta m = 0\} N2
m=1 and

\{ \beta n : \Im \beta n < 0 and \Re \beta n \not = 0\} N1
n=1 \cup \{ \widetilde \beta m : \Im \widetilde \beta m < 0 and \Re \widetilde \beta m = 0\} N2

m=1, respectively,
where 2N1 +N2 =N . Utilizing an analogous method for the general trace formulae,
trace formulae for the complex RST three-wave system are stated below:

a33(k) =

J1\prod 

m=1

(k - \alpha m)(k+ \alpha \ast 
m)

(k - \alpha m)(k+ \alpha \ast 
m)

J2\prod 

i=1

k - \~\alpha i

k - \~\alpha i

exp (\Theta 1(k)) ,(10.14)

b33(k) =

J1\prod 

m=1

(k - \alpha m)(k+ \alpha \ast 
m)

(k - \alpha m)(k+ \alpha \ast 
m)

J2\prod 

i=1

k - \~\alpha i

k - \~\alpha i

exp ( - \Theta 1(k)) ,(10.15)

b11(k) =

N1\prod 

p=1

(k - \beta p)(k+ \beta \ast 
p)

(k - \beta p)(k+ \beta 
\ast 

p)

N2\prod 

q=1

k - \~\beta q

k - \~\beta q

exp (\Theta 2(k)) ,(10.16)

a11(k) =

N1\prod 

p=1

(k - \beta p)(k+ \beta 
\ast 

p)

(k - \beta p)(k+ \beta \ast 
p)

N2\prod 

q=1

k - \~\beta q

k - \~\beta q
exp ( - \Theta 2(k)) .(10.17)

In order to reconstruct soliton solutions, we need a\prime 33(\alpha j), a
\prime 
33( - \alpha \ast 

j ), a
\prime 
33(\~\alpha l), b

\prime 
33(\alpha j),

b\prime 33( - \alpha \ast 
j ), b

\prime 
33(\~\alpha l), b

\prime 
11(\beta n), b

\prime 
11( - \beta \ast 

n), b
\prime 
11(

\~\beta m), a\prime 11(\beta n), a
\prime 
11( - \beta 

\ast 

n), a
\prime 
11(

\~\beta m). These
derivatives are found to be

a\prime 33(\alpha j) =
a33(k)

k - \alpha j

\bigm| \bigm| \bigm| 
k=\alpha j

, a\prime 33( - \alpha \ast 
j ) =

a33(k)

k+ \alpha \ast 
j

\bigm| \bigm| \bigm| 
k= - \alpha \ast 

j

, a\prime 33(\~\alpha l) =
a33(k)

k - \~\alpha l

\bigm| \bigm| \bigm| 
k=\~\alpha l

,(10.18)

b\prime 33(\alpha j) =
b33(k)

k - \alpha j

\bigm| \bigm| \bigm| 
k=\alpha j

, b\prime 33( - \alpha \ast 
j ) =

b33(k)

k+ \alpha \ast 
j

\bigm| \bigm| \bigm| 
k= - \alpha \ast 

j

, b\prime 33(\~\alpha l) =
b33(k)

k - \~\alpha l

\bigm| \bigm| \bigm| 
k=\~\alpha l

,(10.19)

b\prime 11(\beta n) =
b11(k)

k - \beta n

\bigm| \bigm| \bigm| 
k=\beta n

, b\prime 11( - \beta \ast 
n) =

b11(k)

k+ \beta \ast 
n

\bigm| \bigm| \bigm| 
k= - \beta \ast 

n

, b\prime 11(
\~\beta m) =

b11(k)

k - \~\beta m

\bigm| \bigm| \bigm| 
k=\~\beta m

,

(10.20)

a\prime 11(\beta n) =
a11(k)

k - \beta n

\bigm| \bigm| \bigm| 
k=\beta n

, a\prime 11( - \beta 
\ast 

n) =
a11(k)

k+ \beta 
\ast 

n

\bigm| \bigm| \bigm| 
k= - \beta 

\ast 

n

, a\prime 11(
\~\beta m) =

a11(k)

k - \~\beta m

\bigm| \bigm| \bigm| 
k=\~\beta m

.

(10.21)

Generally speaking, a\prime 33(\alpha j), a
\prime 
33( - \alpha \ast 

j ), a
\prime 
33(\~\alpha l), b

\prime 
33(\alpha j), b

\prime 
33( - \alpha \ast 

j ), b
\prime 
33(\~\alpha l) depend

on simple zeros \{ \alpha j , - \alpha \ast 
j :\Im \alpha j > 0 and \Re \alpha j \not = 0\} J1

j=1 \cup \{ \widetilde \alpha l :\Im \widetilde \alpha l > 0 and \Re \widetilde \alpha l = 0\} J2

l=1,
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THREE-WAVE INTERACTION EQUATIONS 4111

\{ \alpha j , - \alpha \ast 
j : \Im \alpha j < 0 and \Re \alpha j \not = 0\} J1

j=1 \cup \{ \widetilde \alpha l : \Im \widetilde \alpha l < 0 and \Re \widetilde \alpha l = 0\} J2

l=1 as well as the
reflection coefficients \rho 1(k), \rho 2(k), \rho 3(k), \rho 1(k), \rho 2(k), \rho 3(k).

Similarly, b\prime 11(\beta n), b
\prime 
11( - \beta \ast 

n), b
\prime 
11(

\~\beta m), a\prime 11(\beta n), a
\prime 
11( - \beta 

\ast 

n), a
\prime 
11(

\~\beta m) rely on simple
zeros \{ \beta n, - \beta \ast 

n : \Im \beta n > 0 and \Re \beta n \not = 0\} N1
n=1 \cup \{ \widetilde \beta m : \Im \widetilde \beta m > 0 and \Re \widetilde \beta m = 0\} N2

m=1 and

\{ \beta n, - \beta 
\ast 

n :\Im \beta n < 0 and \Re \beta n \not = 0\} N1
n=1 \cup \{ \widetilde \beta m :\Im \widetilde \beta m < 0 and \Re \widetilde \beta m = 0\} N2

m=1. Moreover,
the above six derivatives also depend on the reflection coefficients \rho 1(k), \rho 2(k), \rho 3(k),
\rho 1(k), \rho 2(k), \rho 3(k).

In addition, if \rho 1(k) = 0, \rho 2(k) = 0, \rho 1(k) = 0, and \rho 2(k) = 0 on the real axis, i.e.,
a12(k) = 0, a13(k) = 0, and a32(k) = 0 on \BbbR (via the definitions of \rho 1, \rho 1, \rho 1, \rho 2 and
(8.6)), then it yields the case of pure solitons, and the derivatives only depend on the
zeros.

10.4. Real reverse space-time three-wave system. Under the symmetry
reductions N21(x) = \varepsilon 1\varepsilon 2N12( - x), N31(x) = \varepsilon 1\varepsilon 3N13( - x), and N32(x) = \varepsilon 2\varepsilon 3N23( - x)
as well as N21(x) = \varepsilon 1\varepsilon 2N

\ast 
12( - x), N31(x) = \varepsilon 1\varepsilon 3N

\ast 
13( - x), and N32(x) = \varepsilon 2\varepsilon 3N

\ast 
23( - x),

where \varepsilon 2j = 1, j = 1,2,3, we assume that a33(k) and b33(k) have simple zeros \{ \alpha j :

\Im \alpha j > 0 and \Re \alpha j \not = 0\} J1
j=1\cup \{ \widetilde \alpha l :\Im \widetilde \alpha l > 0 and \Re \widetilde \alpha l = 0\} J2

l=1 and \{ \alpha j :\Im \alpha j < 0 and \Re \alpha j \not =
0\} J1

j=1 \cup \{ \widetilde \alpha l :\Im \widetilde \alpha l < 0 and \Re \widetilde \alpha l = 0\} J2

l=1, respectively. Similarly, b11(k) and a11(k) have

the simple zeros \{ \beta n : \Im \beta n > 0 and \Re \beta n \not = 0\} N1
n=1 \cup \{ \widetilde \beta m : \Im \widetilde \beta m > 0 and \Re \widetilde \beta m = 0\} N2

m=1

and \{ \beta n :\Im \beta n < 0 and \Re \beta n \not = 0\} N1
n=1\cup \{ \widetilde \beta m :\Im \widetilde \beta m < 0 and \Re \widetilde \beta m = 0\} N2

m=1, respectively.
Note that the real and complex reverse space-time three-wave systems have the

same symmetry relations among eigenvalues; thus, the statement regarding trace for-
mulae for the real nonlocal case is the same as the complex one, which is discussed in
section 10.3.

11. Riemann--Hilbert problem-left scattering problem. From (4.1), one

has M1(x,k;t)
a11(k,t)

=N1(x,k; t)+\rho 1(k, t)N2(x,k; t)e
ik(d2 - d1)x+\rho 1(k, t)N3(x,k; t)e

ik(d3 - d1)x,
M3(x,k;t)
a33(k,t)

= \rho 2(k, t)N1(x,k; t)e
ik(d1 - d3)x + \rho 2(k, t)N2(x,k; t)e

ik(d2 - d3)x + N3(x,k; t).

Combining (5.13) and (5.14), we have

M1(x,k; t)

a11(k, t)
=N1(x,k; t) + (\rho 1(k, t)\rho 3(k, t) + \rho 1(k, t))N3(x,k; t)e

ik(d3 - d1)x

+ \rho 1(k, t)
\chi (x,k; t)

b33(k, t)
eik(d2 - d1)x,

(11.1)

\chi (x,k; t)

b11(k, t)
= \rho 3(k, t)N1(x,k; t)e

ik(d1 - d2)x  - \chi (x,k; t)

b33(k, t)
 - \rho 3(k, t)N3(x,k; t)e

ik(d3 - d2)x,

(11.2)

M3(x,k; t)

a33(k, t)
= (\rho 2(k, t) + \rho 2(k, t)\rho 3(k, t))N1(x,k; t)e

ik(d1 - d3)x

 - \rho 2(k, t)
\chi (x,k; t)

b11(k, t)
eik(d2 - d3)x +N3(x,k; t).

(11.3)

Note that from Theorems 3.2, 4.1, and 5.2, M3(x,k)
a33(k)

,N1(x,k), and
\chi (x,k)
b11(k)

, as functions

of k, are meromorphic in the upper half plane, where M3(x,k)
a33(k)

and \chi (x,k)
b11(k)

have simple

poles (by assumption) \alpha j and \beta n respectively, i.e., a33(\alpha j) = 0 and b11(\beta n) = 0;

similarly, M1(x,k)
a11(k)

,N3(x,k), and \chi (x,k)
b33(k)

, as functions of k, are meromorphic in the

lower half plane, where \chi (x,k)
b33(k)

and M1(x,k)
a11(k)

have simple poles (by assumption) \alpha j and

\beta n respectively, i.e., b33(\alpha j) = 0 and a11(\beta n) = 0.
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4112 M. J. ABLOWITZ, X.-D. LUO, AND Z. H. MUSSLIMANI

We introduce m+(x,k; t) := (N1(x,k; t), - \chi (x,k;t)
b11(k)

, M3(x,k;t)
a33(k)

) and m - (x,k; t) :=

(M1(x,k;t)
a11(k)

, \chi (x,k;t)
b33(k)

,N3(x,k; t)); then (11.1)--(11.3) can be written as a jump condition:

m+(x,k; t) =m - (x,k; t)V0(x,k; t),(11.4)

where

V0(x,k; t) = (V
(1)
0 (x,k; t) V

(2)
0 (x,k; t) V

(3)
0 (x,k; t)) ,(11.5)

and

V
(1)
0 = (1  - \rho 1e

ik(d2 - d1)x  - (\rho 1\rho 3 + \rho 1)e
ik(d3 - d1)x)T ,

V
(2)
0 = ( - \rho 3eik(d1 - d2)x 1 + \rho 1\rho 3 [\rho 3 (\rho 1\rho 3 + \rho 1) + \rho 3] e

ik(d3 - d2)x)T ,

V
(3)
0 = (\rho 2e

ik(d1 - d3)x (\rho 2  - \rho 1\rho 2)e
ik(d2 - d3)x 1 + \rho 2\rho 3  - \rho 1\rho 2  - \rho 1\rho 2\rho 3)

T .

Consequently, we can formulate the following generalized matrix Riemann--Hilbert
problem in terms of scattering data and discrete eigenvalues, which determinesm(k) :=
m(x,k; t). Essentially, we look for m(k) with the following properties:

1. Analyticity . m(k) is analytic for k \in \BbbC \setminus (\BbbR \cup \{ \alpha j\} Jj=1 \cup \{ \beta n\} Nn=1 \cup \{ \alpha j\} Jj=1 \cup 
\{ \beta n\} Nn=1).

2. Jump condition. m(k) takes continuous boundary values m\pm (k) :=
lim\delta \rightarrow 0m(k \pm i\delta ) for k \in \BbbR , and the boundary values are related by (11.4).
At the poles,

Resk=\beta n
m(k) =

\Bigl( 
N1(\beta n), - b21(\beta n)N1(\beta n)e

i\beta n(d1 - d2)x

b\prime 11(\beta n)
, M3(\beta n)
a33(\beta n)

\Bigr) 
,

Resk=\alpha j
m(k) =

\biggl( 
N1(\alpha j), - \chi (x,\alpha j)

b11(\alpha j)
,

1
a23(\alpha j)

\chi (x,\alpha j)e
i\alpha j(d2 - d3)x

a\prime 

33(\alpha j)

\biggr) 
,

Resk=\beta n
m(k) =

\biggl( 
 - 

1
a21(\beta n)

\chi (x,\beta n)e
i\beta n(d2 - d1)x

a\prime 

11(\beta n)
, \chi (\beta n)

b33(\beta n)
,N3(\beta n)

\biggr) 
,

Resk=\alpha j
m(k) =

\Bigl( 
M1(\alpha j)
a11(\alpha j)

, - b23(\alpha j)N3(x,\alpha j)e
i\alpha j(d3 - d2)x

b\prime 33(\alpha j)
,N3(\alpha j)

\Bigr) 
.

3. Normalization condition. m(k)\rightarrow \BbbI as k\rightarrow \infty .

Remark 11.1. If the potential N(x, t= 0) is generic and is in Schwartz space, then
there is a unique V0(x,k; t) such that the jump condition (11.4) holds. Moreover, the
potential N(x, t) is uniquely determined by scattering data and discrete eigenvalues
and it exists in the generic sense until possibly blow up; see [13, 14, 15].

Note that the above RH problem can be transformed to a system of linear inte-
gral/algebraic equations, once we impose the symmetry reduction for specific three-
wave systems. Then the solution of each RH problem suffices to uniquely solve each
three-wave system corresponding to the associated scattering data and discrete eigen-
values.

It follows that

M3(x,\alpha j) =

\biggl[ 
a31(\alpha j) +

a32(\alpha j)b21(\alpha j)

b11(\alpha j)

\biggr] 
N1(x,\alpha j)e

i\alpha j(d1 - d3)x

 - a32(\alpha j)

b11(\alpha j)
\chi (x,\alpha j)e

i\alpha j(d2 - d3)x,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
9
/2

2
/2

4
 t

o
 1

9
8
.1

1
.3

0
.9

8
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



THREE-WAVE INTERACTION EQUATIONS 4113

\chi (x,\beta n) = b21(\beta n)N1(x,\beta n)e
i\beta n(d1 - d2)x, \chi (x,\alpha j) = - b23(\alpha j)N3(x,\alpha j)e

i\alpha j(d3 - d2)x,

M1(x,\beta n) =

\biggl[ 
a12(\beta n)b23(\beta n)

b33(\beta n)
+ a13(\beta n)

\biggr] 
N3(x,\beta n)e

i\beta n(d3 - d1)x

+
a12(\beta n)

b33(\beta n)
\chi (x,\beta n)e

i\beta n(d2 - d1)x.

By subtracting the poles, assumed simple in the upper/lower half planes, re-
spectively, at a33(\alpha j) = 0 (j = 1,2, . . . , J), b11(\beta n) = 0 (n = 1,2, . . . ,N) and
a11(\beta n) = 0 (n= 1,2, . . . ,N), b33(\alpha j) = 0 (j = 1,2, . . . , J), combining (9.1), (9.2), and
(11.1)--(11.3) and the time independence of a11(k), a33(k), b11(k), b33(k), one obtains

M1(x,k; t)

a11(k)
 - \omega 1  - 

N\sum 

n=1

M1(x,\beta n; t)

(k - \beta n)a
\prime 
11(\beta n)

=N1(x,k; t) - \omega 1 +

N\sum 

n=1

1
a21(\beta n,t)

\chi (x,\beta n; t)e
i\beta n(d2 - d1)x

(k - \beta n)a
\prime 
11(\beta n)

+ (\rho 1(k, t)\rho 3(k, t) + \rho 1(k, t))N3(x,k; t)e
ik(d3 - d1)x + \rho 1(k, t)

\chi (x,k; t)

b33(k)
eik(d2 - d1)x,

(11.6)

M3(x,k; t)

a33(k)
 - \omega 3  - 

J\sum 

j=1

M3(x,\alpha j ; t)

(k - \alpha j)a\prime 33(\alpha j)

=N3(x,k; t) - \omega 3  - 
J\sum 

j=1

1
a23(\alpha j ,t)

\chi (x,\alpha j ; t)e
i\alpha j(d2 - d3)x

(k - \alpha j)a\prime 33(\alpha j)

+ (\rho 2(k, t) + \rho 2(k, t)\rho 3(k, t))N1(x,k; t)e
ik(d1 - d3)x  - \rho 2(k, t)

\chi (x,k; t)

b11(k)
eik(d2 - d3)x,

(11.7)

\chi (x,k; t)

b11(k)
+ \gamma 1\gamma 3\omega 2  - 

N\sum 

n=1

\chi (x,\beta n; t)

(k - \beta n)b\prime 11(\beta n)
+

J\sum 

j=1

\chi (x,\alpha j ; t)

(k - \alpha j)b\prime 33(\alpha j)

= - \chi (x,k; t)
b33(k)

+ \gamma 1\gamma 3\omega 2  - 
N\sum 

n=1

\chi (x,\beta n; t)

(k - \beta n)b\prime 11(\beta n)
+

J\sum 

j=1

\chi (x,\alpha j ; t)

(k - \alpha j)b\prime 33(\alpha j)

+ \rho 3(k, t)N1(x,k; t)e
ik(d1 - d2)x  - \rho 3(k, t)N3(x,k; t)e

ik(d3 - d2)x.

(11.8)

Combining the asymptotic behavior of eigenfunctions and scattering data (sec-
tion 6), (11.6)--(11.8) can be interpreted as a RH problem for suitable combinations of
the three functions M3(x,k, t)/a33(k),N1(x,k, t), \chi (x,k, t)/b11(k) meromorphic in the
upper half k-plane and M1(x,k, t)/a11(k),N3(x,k, t), \chi (x,k, t)/b33(k) meromorphic in
the lower half k-plane.

We now introduce the projection operators

P\pm (f)(k) =
1

2\pi i

\int +\infty 

 - \infty 

f(\xi )

\xi  - (k\pm i0)
d\xi ,

which are well-defined for any function f(\xi ) that is integrable on the real axis. If
f\pm (\xi ) is analytic in the upper/lower k-plane and f\pm (\xi ) is decaying at large \xi , then
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4114 M. J. ABLOWITZ, X.-D. LUO, AND Z. H. MUSSLIMANI

P\pm (f\pm )(k) = \pm f\pm (k), P\mp (f\pm )(k) = 0. Applying P+ to (11.6), in a similar way, one
can treat (11.7) and (11.8) by a projector P - ; using (9.1) to (11.8), we obtain

N1(x,k; t) = \omega 1  - 
N\sum 

n=1

1
a21(\beta n,t)

\chi (x,\beta n; t)e
i\beta n(d2 - d1)x

(k - \beta n)a
\prime 
11(\beta n)

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 1(\xi , t)

\xi  - (k+ i0)

\chi (x, \xi ; t)

b33(\xi , t)
ei\xi (d2 - d1)xd\xi 

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 1(\xi , t)\rho 3(\xi , t) + \rho 1(\xi , t)

\xi  - (k+ i0)
N3(x, \xi ; t)e

i\xi (d3 - d1)xd\xi ,

(11.9)

N3(x,k; t) = \omega 3 +

J\sum 

j=1

1
a23(\alpha j ,t)

\chi (x,\alpha j ; t)e
i\alpha j(d2 - d3)x

(k - \alpha j)a\prime 33(\alpha j)

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 2(\xi , t)

\xi  - (k - i0)

\chi (x, \xi ; t)

b11(\xi )
ei\xi (d2 - d3)xd\xi 

+
1

2\pi i

\int +\infty 

 - \infty 

\rho 2(\xi , t) + \rho 2(\xi , t)\rho 3(\xi , t)

\xi  - (k - i0)
N1(x, \xi ; t)e

i\xi (d1 - d3)xd\xi ,

(11.10)

\chi (x,k; t)

b33(k)
= \gamma 1\gamma 3\omega 2  - 

N\sum 

n=1

b21(\beta n, t)N1(x,\beta n; t)e
i\beta n(d1 - d2)x

(k - \beta n)b\prime 11(\beta n)
(11.11)

 - 
J\sum 

j=1

b23(\alpha j , t)N3(x,\alpha j ; t)e
i\alpha j(d3 - d2)x

(k - \alpha j)b\prime 33(\alpha j)

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 3(\xi , t)

\xi  - (k - i0)
N1(x, \xi ; t)e

i\xi (d1 - d2)xd\xi 

+
1

2\pi i

\int +\infty 

 - \infty 

\rho 3(\xi , t)

\xi  - (k - i0)
N3(x, \xi ; t)e

i\xi (d3 - d2)xd\xi .

Moreover, one deduces

\chi (x,k; t)

b11(k)
= - \gamma 1\gamma 3\omega 2 +

N\sum 

n=1

b21(\beta n, t)N1(x,\beta n; t)e
i\beta n(d1 - d2)x

(k - \beta n)b\prime 11(\beta n)

+

J\sum 

j=1

b23(\alpha j , t)N3(x,\alpha j ; t)e
i\alpha j(d3 - d2)x

(k - \alpha j)b\prime 33(\alpha j)

+
1

2\pi i

\int +\infty 

 - \infty 

\rho 3(\xi , t)

\xi  - (k+ i0)
N1(x, \xi ; t)e

i\xi (d1 - d2)xd\xi 

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 3(\xi , t)

\xi  - (k+ i0)
N3(x, \xi ; t)e

i\xi (d3 - d2)xd\xi .

(11.12)

11.1. Closing the system. To close the system, we substitute k= \beta n in (11.9),
k= \alpha j in (11.10), k= \beta n in (11.11), and k= \alpha j in (11.12) to obtain

N1(x,\beta n; t) = \omega 1  - 
N\sum 

l=1

b33(\beta l,t)

a21(\beta l,t)
\cdot \chi (x,\beta l;t)

b33(\beta l)
ei\beta l(d2 - d1)x

(\beta n  - \beta l)a
\prime 
11(\beta l)

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 1(\xi , t)

\xi  - (\beta n + i0)

\chi (x, \xi ; t)

b33(\xi , t)
ei\xi (d2 - d1)xd\xi 

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 1(\xi , t)\rho 3(\xi , t) + \rho 1(\xi , t)

\xi  - (\beta n + i0)
N3(x, \xi ; t)e

i\xi (d3 - d1)xd\xi ,(11.13)
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THREE-WAVE INTERACTION EQUATIONS 4115

N3(x,\alpha j ; t) = \omega 3 +

J\sum 

m=1

b11(\alpha m,t)
a23(\alpha m,t) \cdot 

\chi (x,\alpha m;t)
b11(\alpha m) e

i\alpha m(d2 - d3)x

(\alpha j  - \alpha m)a\prime 33(\alpha m)

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 2(\xi , t)

\xi  - (\alpha j  - i0)

\chi (x, \xi ; t)

b11(\xi )
ei\xi (d2 - d3)xd\xi 

+
1

2\pi i

\int +\infty 

 - \infty 

\rho 2(\xi , t) + \rho 2(\xi , t)\rho 3(\xi , t)

\xi  - (\alpha j  - i0)
N1(x, \xi ; t)e

i\xi (d1 - d3)xd\xi ,(11.14)

\chi (x,\beta n; t)

b33(\beta n)
= \gamma 1\gamma 3\omega 2  - 

N\sum 

p=1

b21(\beta p, t)N1(x,\beta p; t)e
i\beta p(d1 - d2)x

(\beta n  - \beta p)b\prime 11(\beta p)

 - 
J\sum 

q=1

b23(\alpha q, t)N3(x,\alpha q; t)e
i\alpha q(d3 - d2)x

(\beta n  - \alpha q)b\prime 33(\alpha q)

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 3(\xi , t)

\xi  - (\beta n  - i0)
N1(x, \xi ; t)e

i\xi (d1 - d2)xd\xi 

+
1

2\pi i

\int +\infty 

 - \infty 

\rho 3(\xi , t)

\xi  - (\beta n  - i0)
N3(x, \xi ; t)e

i\xi (d3 - d2)xd\xi ,(11.15)

\chi (x,\alpha j ; t)

b11(\alpha j)
= - \gamma 1\gamma 3\omega 2 +

N\sum 

p=1

b21(\beta p, t)N1(x,\beta p; t)e
i\beta p(d1 - d2)x

(\alpha j  - \beta p)b\prime 11(\beta p)

+

J\sum 

q=1

b23(\alpha q, t)N3(x,\alpha q; t)e
i\alpha q(d3 - d2)x

(\alpha j  - \alpha q)b\prime 33(\alpha q)

+
1

2\pi i

\int +\infty 

 - \infty 

\rho 3(\xi , t)

\xi  - (\alpha j + i0)
N1(x, \xi ; t)e

i\xi (d1 - d2)xd\xi 

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 3(\xi , t)

\xi  - (\alpha j + i0)
N3(x, \xi ; t)e

i\xi (d3 - d2)xd\xi .(11.16)

Equations (11.13)--(11.16) are integro-algebraic equations which are used to solve the
inverse problem and reconstruct the potentials of the classical and two nonlocal three-
wave interaction equations. In fact, the system is of N +N + J + J vector equations
in the same number of unknowns. In order to determine the linear system for the
classical or complex reverse space-time or real reverse space-time three-wave system,
we need to impose symmetry relations on the scattering data. We will do this below
for each case.

11.2. Classical three-wave system. By setting \alpha j = \alpha \ast 
j , \beta n = \beta \ast 

n, J = J , N =

N in (11.9)--(11.12) and using (8.4), we obtain the representations of eigenfunctions
below:

N1(x,k; t) = \omega 1  - 
N\sum 

n=1

1
a21(\beta \ast 

n,t)
\chi (x,\beta \ast 

n; t)e
i\beta \ast 

n(d2 - d1)x

(k - \beta \ast 
n)a

\prime 
11(\beta 

\ast 
n)

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 1(\xi , t)

\xi  - (k+ i0)

\chi (x, \xi ; t)

b33(\xi )
ei\xi (d2 - d1)xd\xi 

 - 1

2\pi i

\int +\infty 

 - \infty 

 - \varepsilon 3
\varepsilon 2
\rho 1(\xi , t)\rho 

\ast 
2(\xi , t) + \rho 1(\xi , t)

\xi  - (k+ i0)
N3(x, \xi ; t)e

i\xi (d3 - d1)xd\xi ,

(11.17)
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N3(x,k; t) = \omega 3 +
J\sum 

j=1

1
a23(\alpha j ,t)

\chi (x,\alpha j ; t)e
i\alpha j(d2 - d3)x

(k - \alpha j)a\prime 33(\alpha j)

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 2(\xi , t)

\xi  - (k - i0)

\chi (x, \xi ; t)

b11(\xi )
ei\xi (d2 - d3)xd\xi 

+
1

2\pi i

\int +\infty 

 - \infty 

\rho 2(\xi , t) - \varepsilon 1
\varepsilon 2
\rho 2(\xi , t)\rho 

\ast 
1(\xi , t)

\xi  - (k - i0)
N1(x, \xi ; t)e

i\xi (d1 - d3)xd\xi ,

(11.18)

\chi (x,k; t)

b33(k)
= \varepsilon 1\varepsilon 3\omega 2  - 

N\sum 

n=1

b21(\beta n, t)N1(x,\beta n; t)e
i\beta n(d1 - d2)x

(k - \beta n)b\prime 11(\beta n)

 - 
J\sum 

j=1

b23(\alpha 
\ast 
j , t)N3(x,\alpha 

\ast 
j ; t)e

i\alpha \ast 

j (d3 - d2)x

(k - \alpha \ast 
j )b

\prime 
33(\alpha 

\ast 
j )

+
1

2\pi i

\int +\infty 

 - \infty 

\varepsilon 1
\varepsilon 2
\rho \ast 1(\xi , t)

\xi  - (k - i0)
N1(x, \xi ; t)e

i\xi (d1 - d2)xd\xi 

 - 1

2\pi i

\int +\infty 

 - \infty 

\varepsilon 3
\varepsilon 2
\rho \ast 2(\xi , t)

\xi  - (k - i0)
N3(x, \xi ; t)e

i\xi (d3 - d2)xd\xi ,

(11.19)

\chi (x,k; t)

b11(k)
= - \varepsilon 1\varepsilon 3\omega 2 +

N\sum 

n=1

b21(\beta n, t)N1(x,\beta n; t)e
i\beta n(d1 - d2)x

(k - \beta n)b\prime 11(\beta n)

+
J\sum 

j=1

b23(\alpha 
\ast 
j , t)N3(x,\alpha 

\ast 
j ; t)e

i\alpha \ast 

j (d3 - d2)x

(k - \alpha \ast 
j )b

\prime 
33(\alpha 

\ast 
j )

 - 1

2\pi i

\int +\infty 

 - \infty 

\varepsilon 1
\varepsilon 2
\rho \ast 1(\xi , t)

\xi  - (k+ i0)
N1(x, \xi ; t)e

i\xi (d1 - d2)xd\xi 

+
1

2\pi i

\int +\infty 

 - \infty 

\varepsilon 3
\varepsilon 2
\rho \ast 2(\xi , t)

\xi  - (k+ i0)
N3(x, \xi ; t)e

i\xi (d3 - d2)xd\xi .

(11.20)

The closed system is obtained by setting \alpha j = \alpha \ast 
j , \beta n = \beta \ast 

n and J = J , N = N in
(11.13)--(11.16). Combining (8.2), (8.4), (9.6), and (9.7), we find

N1(x,\beta n; t) = \omega 1 +

N\sum 

l=1

\varepsilon 3b
\ast 
21(\beta l, t) \cdot 

\chi (x,(\beta \ast 

l ;t)
b33((\beta \ast 

l
) e

i\beta \ast 

l (d2 - d1)x

(\beta n  - \beta \ast 
l )a

\prime 
11(\beta 

\ast 
l )

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 1(\xi , t)

\xi  - (\beta n + i0)

\chi (x, \xi ; t)

b33(\xi , t)
ei\xi (d2 - d1)xd\xi 

 - 1

2\pi i

\int +\infty 

 - \infty 

 - \varepsilon 3
\varepsilon 2
\rho 1(\xi , t)\rho 

\ast 
2(\xi , t) + \rho 1(\xi , t)

\xi  - (\beta n + i0)
N3(x, \xi ; t)e

i\xi (d3 - d1)xd\xi ,

(11.21)

N3(x,\alpha 
\ast 
j ; t) = \omega 3  - 

J\sum 

m=1

\varepsilon 1b
\ast 
23(\alpha 

\ast 
m, t) \cdot \chi (x,\alpha m;t)

b11(\alpha m) e
i\alpha m(d2 - d3)x

(\alpha \ast 
j  - \alpha m)a\prime 33(\alpha m)

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 2(\xi , t)

\xi  - (\alpha \ast 
j  - i0)

\chi (x, \xi ; t)

b11(\xi )
ei\xi (d2 - d3)xd\xi 

+
1

2\pi i

\int +\infty 

 - \infty 

\rho 2(\xi , t) - \varepsilon 1
\varepsilon 2
\rho 2(\xi , t)\rho 

\ast 
1(\xi , t)

\xi  - (\alpha \ast 
j  - i0)

N1(x, \xi ; t)e
i\xi (d1 - d3)xd\xi ,

(11.22)
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THREE-WAVE INTERACTION EQUATIONS 4117

\chi (x,\beta \ast 
n; t)

b33(\beta \ast 
n)

= \varepsilon 1\varepsilon 3\omega 2  - 
N\sum 

p=1

b21(\beta p, t)N1(x,\beta p; t)e
i\beta p(d1 - d2)x

(\beta \ast 
n  - \beta p)b\prime 11(\beta p)

 - 
J\sum 

q=1

b23(\alpha 
\ast 
q , t)N3(x,\alpha 

\ast 
q ; t)e

i\alpha \ast 

q(d3 - d2)x

(\beta \ast 
n  - \alpha \ast 

q)b
\prime 
33(\alpha 

\ast 
q)

+
1

2\pi i

\int +\infty 

 - \infty 

\varepsilon 1
\varepsilon 2
\rho \ast 1(\xi , t)

\xi  - (\beta \ast 
n  - i0)

N1(x, \xi ; t)e
i\xi (d1 - d2)xd\xi 

 - 1

2\pi i

\int +\infty 

 - \infty 

\varepsilon 3
\varepsilon 2
\rho \ast 2(\xi , t)

\xi  - (\beta \ast 
n  - i0)

N3(x, \xi ; t)e
i\xi (d3 - d2)xd\xi ,

(11.23)

\chi (x,\alpha j ; t)

b11(\alpha j)
= - \varepsilon 1\varepsilon 3\omega 2 +

N\sum 

p=1

b21(\beta p, t)N1(x,\beta p; t)e
i\beta p(d1 - d2)x

(\alpha j  - \beta p)b\prime 11(\beta p)

+
J\sum 

q=1

b23(\alpha 
\ast 
q , t)N3(x,\alpha 

\ast 
q ; t)e

i\alpha \ast 

q(d3 - d2)x

(\alpha j  - \alpha \ast 
q)b

\prime 
33(\alpha 

\ast 
q)

 - 1

2\pi i

\int +\infty 

 - \infty 

\varepsilon 1
\varepsilon 2
\rho \ast 1(\xi , t)

\xi  - (\alpha j + i0)
N1(x, \xi ; t)e

i\xi (d1 - d2)xd\xi 

+
1

2\pi i

\int +\infty 

 - \infty 

\varepsilon 3
\varepsilon 2
\rho \ast 2(\xi , t)

\xi  - (\alpha j + i0)
N3(x, \xi ; t)e

i\xi (d3 - d2)xd\xi .

(11.24)

11.3. Complex reverse space-time three-wave system. Under the symme-
try reductionN21(x) = \varepsilon 1\varepsilon 2N

\ast 
12( - x), N31(x) = \varepsilon 1\varepsilon 3N

\ast 
13( - x), andN32(x) = \varepsilon 2\varepsilon 3N

\ast 
23( - x),

where \varepsilon 2j = 1, j = 1,2,3, and from the distribution of zeros of a11(k), b11(k), a33(k),
b33(k) (see section 9.2) and (11.9)--(11.12), we find

N1(x,k; t) = \omega 1  - 
N1\sum 

n=1

1
a21(\beta n,t)

\chi (x,\beta n; t)e
i\beta n(d2 - d1)x

(k - \beta n)a
\prime 
11(\beta n)

 - 
N1\sum 

n=1

1
a21( - \beta 

\ast 

n,t)
\chi (x, - \beta \ast 

n; t)e
 - i\beta 

\ast 

n(d2 - d1)x

(k+ \beta 
\ast 

n)a
\prime 
11( - \beta 

\ast 

n)
 - 

N2\sum 

m=1

1

a21(\widetilde \beta m,t)
\chi (x, \widetilde \beta m; t)ei

\widetilde \beta m(d2 - d1)x

(k - \widetilde \beta m)a\prime 11(
\widetilde \beta m)

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 1(\xi , t)\rho 3(\xi , t) + \rho 1(\xi , t)

\xi  - (k+ i0)
N3(x, \xi ; t)e

i\xi (d3 - d1)xd\xi 

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 1(\xi , t)

\xi  - (k+ i0)

\chi (x, \xi ; t)

b33(\xi )
ei\xi (d2 - d1)xd\xi ,

(11.25)

N3(x,k; t) = \omega 3 +

J1\sum 

j=1

1
a23(\alpha j ,t)

\chi (x,\alpha j ; t)e
i\alpha j(d2 - d3)x

(k - \alpha j)a\prime 33(\alpha j)

+

J1\sum 

j=1

1
a23( - \alpha \ast 

j ,t)
\chi (x, - \alpha \ast 

j ; t)e
 - i\alpha \ast 

j (d2 - d3)x

(k+ \alpha \ast 
j )a

\prime 
33( - \alpha \ast 

j )
+

J2\sum 

l=1

1
a23(\widetilde \alpha l,t)

\chi (x, \widetilde \alpha l; t)e
i\widetilde \alpha l(d2 - d3)x

(k - \widetilde \alpha l)a\prime 33(\widetilde \alpha l)

+
1

2\pi i

\int +\infty 

 - \infty 

\rho 2(\xi , t) + \rho 2(\xi , t)\rho 3(\xi , t)

\xi  - (k - i0)
N1(x, \xi ; t)e

i\xi (d1 - d3)xd\xi 

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 2(\xi , t)

\xi  - (k - i0)

\chi (x, \xi ; t)

b11(\xi )
ei\xi (d2 - d3)xd\xi ,

(11.26)
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\chi (x,k; t)

b33(k)
= \varepsilon 1\varepsilon 3\omega 2  - 

N1\sum 

n=1

b21(\beta n, t)N1(x,\beta n; t)e
i\beta n(d1 - d2)x

(k - \beta n)b\prime 11(\beta n)

 - 
N1\sum 

n=1

b21( - \beta \ast 
n, t)N1(x, - \beta \ast 

n; t)e
 - i\beta \ast 

n(d1 - d2)x

(k+ \beta \ast 
n)b

\prime 
11( - \beta \ast 

n)
 - 

N2\sum 

m=1

b21(\widetilde \beta m, t)N1(x, \widetilde \beta m; t)ei
\widetilde \beta m(d1 - d2)x

(k - \widetilde \beta m)b\prime 11(
\widetilde \beta m)

 - 
J1\sum 

j=1

b23(\alpha j , t)N3(x,\alpha j ; t)e
i\alpha j(d3 - d2)x

(k - \alpha j)b\prime 33(\alpha j)
 - 

J1\sum 

j=1

b23( - \alpha \ast 
j , t)N3(x, - \alpha \ast 

j ; t)e
 - i\alpha \ast 

j (d3 - d2)x

(k+ \alpha \ast 
j )b

\prime 
33( - \alpha \ast 

j )

 - 
J2\sum 

l=1

b23(\widetilde \alpha l, t)N3(x, \widetilde \alpha l; t)e
i\widetilde \alpha l(d3 - d2)x

(k - \widetilde \alpha l)b\prime 33(\widetilde \alpha l)
 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 3(\xi , t)

\xi  - (k - i0)
N1(x, \xi ; t)e

i\xi (d1 - d2)xd\xi 

+
1

2\pi i

\int +\infty 

 - \infty 

\rho 3(\xi , t)

\xi  - (k - i0)
N3(x, \xi ; t)e

i\xi (d3 - d2)xd\xi ,

(11.27)

\chi (x,k; t)

b11(k)
= - \varepsilon 1\varepsilon 3\omega 2 +

N1\sum 

n=1

b21(\beta n, t)N1(x,\beta n; t)e
i\beta n(d1 - d2)x

(k - \beta n)b\prime 11(\beta n)

+

N1\sum 

n=1

b21( - \beta \ast 
n, t)N1(x, - \beta \ast 

n; t)e
 - i\beta \ast 

n(d1 - d2)x

(k+ \beta \ast 
n)b

\prime 
11( - \beta \ast 

n)
+

N2\sum 

m=1

b21(\widetilde \beta m, t)N1(x, \widetilde \beta m; t)ei
\widetilde \beta m(d1 - d2)x

(k - \widetilde \beta m)b\prime 11(
\widetilde \beta m)

+

J1\sum 

j=1

b23(\alpha j , t)N3(x,\alpha j ; t)e
i\alpha j(d3 - d2)x

(k - \alpha j)b\prime 33(\alpha j)
+

J1\sum 

j=1

b23( - \alpha \ast 
j , t)N3(x, - \alpha \ast 

j ; t)e
 - i\alpha \ast 

j (d3 - d2)x

(k+ \alpha \ast 
j )b

\prime 
33( - \alpha \ast 

j )

+

J2\sum 

l=1

b23(\widetilde \alpha l, t)N3(x, \widetilde \alpha l; t)e
i\widetilde \alpha l(d3 - d2)x

(k - \widetilde \alpha l)b\prime 33(\widetilde \alpha l)
+

1

2\pi i

\int +\infty 

 - \infty 

\rho 3(\xi , t)

\xi  - (k+ i0)
N1(x, \xi ; t)e

i\xi (d1 - d2)xd\xi 

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 3(\xi , t)

\xi  - (k+ i0)
N3(x, \xi ; t)e

i\xi (d3 - d2)xd\xi .

(11.28)

Recall 2J1 + J2 = J , 2J1 + J2 = J , 2N1 +N2 =N , and 2N1 +N2 =N . In fact,
if J is an odd integer, then J2 is also odd; that is, at least one eigenvalue \~\alpha l lies
on the imaginary axis (the actual number is J2), and the number of eigenvalue pairs
\{ \alpha j , - \alpha \ast 

j\} is J1. On the other hand, if J is an even integer, then J2 must be even.
In particular, it is possible that there is no eigenvalue on i\BbbR (J2 = 0, J1 = J/2) or no
eigenvalue pair (J1 = 0, J2 = J). One has similar conclusions for J , N , and N .

For simplification, we only consider the case of J1 = J1 =N1 =N1 = 0 here. By
setting J1 = J1 =N1 =N1 = 0 and substituting k = \~\beta n in (11.25), k = \~\alpha l in (11.26),

k= \~\beta m in (11.27), k= \~\alpha j in (11.28) and applying (9.11), one derives the closed system
for the complex RST three-wave interaction equations, i.e.,

N1(x, \~\beta n; t) = \omega 1 +
N\sum 

r=1

\varepsilon 3a
\ast 
21(
\widetilde \beta r, - t) \cdot \chi (x,\widetilde \beta r;t)

b33(\widetilde \beta r,t)
ei

\widetilde \beta r(d2 - d1)x

( \~\beta n  - \widetilde \beta m)a\prime 11(
\widetilde \beta m)

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 1(\xi , t)

\xi  - ( \~\beta n + i0)

\chi (x, \xi ; t)

b33(\xi )
ei\xi (d2 - d1)xd\xi 

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 1(\xi , t)\rho 3(\xi , t) + \rho 1(\xi , t)

\xi  - ( \~\beta n + i0)
N3(x, \xi ; t)e

i\xi (d3 - d1)xd\xi ,

(11.29)
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THREE-WAVE INTERACTION EQUATIONS 4119

N3(x, \~\alpha l; t) = \omega 3  - 
J\sum 

s=1

\varepsilon 1a
\ast 
23(\widetilde \alpha s, - t) \cdot \chi (x,\widetilde \alpha s;t)

b11(\widetilde \alpha s,t)
ei\widetilde \alpha s(d2 - d3)x

(\~\alpha l  - \widetilde \alpha s)a\prime 33(\widetilde \alpha s)

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 2(\xi , t)

\xi  - (\~\alpha l  - i0)

\chi (x, \xi ; t)

b11(\xi )
ei\xi (d2 - d3)xd\xi 

+
1

2\pi i

\int +\infty 

 - \infty 

\rho 2(\xi , t) + \rho 2(\xi , t)\rho 3(\xi , t)

\xi  - (\~\alpha l  - i0)
N1(x, \xi ; t)e

i\xi (d1 - d3)xd\xi ,

(11.30)

\chi (x, \~\beta m; t)

b33( \~\beta m)
= \varepsilon 1\varepsilon 3\omega 2  - 

N\sum 

p=1

b21(\widetilde \beta p, t)N1(x, \widetilde \beta p; t)ei\widetilde \beta p(d1 - d2)x

( \~\beta m  - \widetilde \beta p)b\prime 11(\widetilde \beta p)

 - 
J\sum 

q=1

b23(\widetilde \alpha q, t)N3(x, \widetilde \alpha q; t)e
i\widetilde \alpha q(d3 - d2)x

( \~\beta m  - \widetilde \alpha q)b\prime 33(\widetilde \alpha q)

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 3(\xi , t)

\xi  - ( \~\beta m  - i0)
N1(x, \xi ; t)e

i\xi (d1 - d2)xd\xi 

+
1

2\pi i

\int +\infty 

 - \infty 

\rho 3(\xi , t)

\xi  - ( \~\beta m  - i0)
N3(x, \xi ; t)e

i\xi (d3 - d2)xd\xi ,(11.31)

\chi (x, \~\alpha j ; t)

b11(\~\alpha j)
= - \varepsilon 1\varepsilon 3\omega 2 +

N\sum 

p=1

b21(\widetilde \beta p, t)N1(x, \widetilde \beta p; t)ei\widetilde \beta p(d1 - d2)x

(\~\alpha j  - \widetilde \beta p)b\prime 11(\widetilde \beta p)

+

J\sum 

q=1

b23(\widetilde \alpha q, t)N3(x, \widetilde \alpha q; t)e
i\widetilde \alpha q(d3 - d2)x

(\~\alpha j  - \widetilde \alpha q)b\prime 33(\widetilde \alpha q)

+
1

2\pi i

\int +\infty 

 - \infty 

\rho 3(\xi , t)

\xi  - (\~\alpha j + i0)
N1(x, \xi ; t)e

i\xi (d1 - d2)xd\xi 

 - 1

2\pi i

\int +\infty 

 - \infty 

\rho 3(\xi , t)

\xi  - (\~\alpha j + i0)
N3(x, \xi ; t)e

i\xi (d3 - d2)xd\xi .(11.32)

11.4. Real reverse space-time three-wave system. Under the symmetry re-
ductions N21(x) = \varepsilon 1\varepsilon 2N12( - x), N31(x) = \varepsilon 1\varepsilon 3N13( - x), and N32(x) = \varepsilon 2\varepsilon 3N23( - x)
as well as N21(x) = \varepsilon 1\varepsilon 2N

\ast 
12( - x), N31(x) = \varepsilon 1\varepsilon 3N

\ast 
13( - x), and N32(x) = \varepsilon 2\varepsilon 3N

\ast 
23( - x),

where \varepsilon 2j = 1, j = 1,2,3, and noting again that the symmetry relations among ei-
genvalues for the real reverse space-time three-wave system are the same as the
complex nonlocal case (see section 8.3), the general representations of eigenfunc-
tions are the same as (11.25)--(11.28), and the special case is obtained by choosing
J1 = J1 =N1 =N1 = 0.

From (8.11) and (11.29)--(11.32), one obtains the closed system for J1 = J1 =N1 =

N1 = 0, that is, the system (11.29)--(11.32) by setting a21(\widetilde \beta r, - t) and a23(\widetilde \alpha s, - t) to
be real, i.e., a\ast 21(

\widetilde \beta r, - t) = a21(\widetilde \beta r, - t) and a\ast 23(\widetilde \alpha s, - t) = a23(\widetilde \alpha s, - t).
12. Minimal data. In this section, we define the minimal data needed for the

inverse scattering reconstruction of the eigenfunctions and potentials. In the general
case, we need the following:

(i) Continuous spectra: reflection coefficients \rho 1(k), \rho 1(k), \rho 2(k), \rho 2(k), \rho 3(k), \rho 3(k).
(ii) Discrete spectra: eigenvalues \alpha j , j = 1,2, . . . , J ; \=\alpha j , j = 1,2, . . . , \=J ; \beta n, n =

1,2, . . . ,N ; \=\beta n, n= 1,2, . . . , \=N .
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4120 M. J. ABLOWITZ, X.-D. LUO, AND Z. H. MUSSLIMANI

(iii) Reduced normalization coefficients (see section 9: (9.1)--(9.2) and (9.5)):

b21(\beta n), b23(\alpha j), a21(\beta n), a23(\alpha j).

We remark that the following values are obtained from the trace formulae in terms
of eigenvalues and the above reflection coefficients: a\prime 11(

\=\beta n), a
\prime 
33(\alpha j), b

\prime 
11(\beta n), b

\prime 
33(\=\alpha j).

These latter values are not part of the minimal data since they are expressed in terms
of known data.

Due to symmetry reductions for the potentials, it induces the symmetries among
scattering data, reflection coefficients, and eigenvalues. Therefore, the number of
minimal data can be reduced. Next, we discuss the minimal data for the case of clas-
sical, complex reverse space-time, and real reverse space-time three-wave interaction
equations, respectively.

12.1. The classical three-wave system. To solve the inverse problem, we
need the following quantities:

(i) Continuous spectra: reflection coefficients \rho 1(k), \rho 2(k), \rho 1(k), \rho 2(k) (via (8.4),
the number of reflection coefficients is reduced by two).

(ii) Discrete spectra: eigenvalues \alpha j , j = 1,2, . . . , J, and \beta n, n = 1,2, . . . ,N (via
\alpha j = \alpha \ast 

j , \beta n = \beta \ast 
n, the number of eigenvalues is reduced by a factor of two).

(iii) Reduced normalization coefficients : b21(\beta n), b23(\alpha 
\ast 
j ) (via (9.6) and (9.7), the

number of reduced normalization coefficients is also reduced by a factor of two).
In summary, we need reflection coefficients \rho 1(k), \rho 2(k), \rho 1(k), \rho 2(k), eigenvalues

\alpha j , \beta n, and reduced normalization coefficients b21(\beta n), b23(\alpha 
\ast 
j ) to recover potentials.

In particular, the reflectionless potentials only depend on eigenvalues and reduced
normalization coefficients.

12.2. Complex reverse space-time three-wave system. In order to recon-
struct the potentials, the following data are needed:

(i) Continuous spectra: reflection coefficients \rho 1(k), \rho 1(k), \rho 2(k), \rho 2(k), \rho 3(k), \rho 3(k).
(ii) Discrete spectra: eigenvalues

\{ \alpha j :\Im \alpha j > 0\} Jj=1

= \{ \alpha m, - \alpha \ast 
m :\Im \alpha m > 0 and \Re \alpha m \not = 0\} J1

m=1 \cup \{ \widetilde \alpha l :\Im \widetilde \alpha l > 0 and \Re \widetilde \alpha l = 0\} J2

l=1,

\{ \alpha j :\Im \alpha j < 0\} Jj=1

= \{ \alpha m, - \alpha \ast 
m :\Im \alpha m < 0 and \Re \alpha m \not = 0\} J1

m=1 \cup \{ \widetilde \alpha l :\Im \widetilde \alpha l < 0 and \Re \widetilde \alpha l = 0\} J2

l=1,

\{ \beta n :\Im \beta n > 0\} Nn=1

= \{ \beta p, - \beta \ast 
p :\Im \beta p > 0 and \Re \beta p \not = 0\} N1

p=1 \cup \{ \widetilde \beta m :\Im \widetilde \beta m > 0 and \Re \widetilde \beta m = 0\} N2
m=1,

\{ \beta n :\Im \beta n < 0\} Nn=1

= \{ \beta p, - \beta 
\ast 

p :\Im \beta p < 0 and \Re \beta p \not = 0\} N1
p=1 \cup \{ \widetilde \beta m :\Im \widetilde \beta m < 0 and \Re \widetilde \beta m = 0\} N2

m=1.

(iii) Reduced normalization coefficients : b21(\beta p), b23(\alpha m), a21(\beta p), a23(\alpha m) and phases
(defined below)

\theta 
(m)
1 , m= 1,2, . . . ,N2; \theta 

(l)
2 , l= 1,2, . . . , J2;

\theta 
(m)
3 , m= 1,2, . . . ,N2; \theta 

(l)
4 , l= 1,2, . . . , J2.
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THREE-WAVE INTERACTION EQUATIONS 4121

In general, we need b21(\beta p), b21( - \beta \ast 
p), b21(

\widetilde \beta m), b23(\alpha m), b23( - \alpha \ast 
m), b23(\widetilde \alpha l), a21(\beta p),

a21( - \beta 
\ast 

p), a21(
\widetilde \beta m), a23(\alpha m), a23( - \alpha \ast 

m), a23(\widetilde \alpha l).

By (9.8)--(9.11), it follows that b21( - \beta \ast 
p), b23( - \alpha \ast 

m), a21( - \beta 
\ast 

p), a23( - \alpha \ast 
m) are

related to b21(\beta p), b23(\alpha m), a21(\beta p), a23(\alpha m) and some values obtained from the
trace formulae in terms of known data.

Thus, b21( - \beta \ast 
p), b23( - \alpha \ast 

m), a21( - \beta 
\ast 

p), a23( - \alpha \ast 
m) are not part of the minimal

data. In fact, (9.11) implies that for purely imaginary eigenvalues, one has

 - \varepsilon 1| a23(\widetilde \alpha l)| 2
b11(\widetilde \alpha l)

= 1, - \varepsilon 3| b21(
\widetilde \beta m)| 2

a33(\widetilde \beta m)
= 1, - \varepsilon 1| b23(\widetilde \alpha l)| 2

a11(\widetilde \alpha l)
= 1, - \varepsilon 3| a21(

\widetilde \beta m)| 2

b33(\widetilde \beta m)
= 1.

Thus, | b21(\widetilde \beta m)| , | b23(\widetilde \alpha l)| , | a21(\widetilde \beta m)| , | a23(\widetilde \alpha l)| are able to be represented in terms

of a33(\widetilde \beta m), a11(\widetilde \alpha l), b33(\widetilde \beta m), b11(\widetilde \alpha l), respectively. These four values can be found
from the trace formulae, which consist of known data: eigenvalues and reflection

coefficients. If the reduced normalization coefficients b21(\widetilde \beta m), b23(\widetilde \alpha l), a21(\widetilde \beta m), and

a23(\widetilde \alpha l) are omitted, then the above phases \theta 
(m)
s , \theta 

(l)
j , s= 1,3, j = 2,4, are introduced.

12.3. Real reverse space-time three-wave system. To recover the poten-
tials, we need the data stated below:

(i) Continuous spectra: reflection coefficients \rho 1(k), \rho 1(k), \rho 2(k), \rho 2(k), \rho 3(k), \rho 3(k).
(ii) Discrete spectra: eigenvalues

\{ \alpha j :\Im \alpha j > 0\} Jj=1

= \{ \alpha m, - \alpha \ast 
m :\Im \alpha m > 0 and \Re \alpha m \not = 0\} J1

m=1 \cup \{ \widetilde \alpha l :\Im \widetilde \alpha l > 0 and \Re \widetilde \alpha l = 0\} J2

l=1,

\{ \alpha j :\Im \alpha j < 0\} Jj=1

= \{ \alpha m, - \alpha \ast 
m :\Im \alpha m < 0 and \Re \alpha m \not = 0\} J1

m=1 \cup \{ \widetilde \alpha l :\Im \widetilde \alpha l < 0 and \Re \widetilde \alpha l = 0\} J2

l=1,

\{ \beta n :\Im \beta n > 0\} Nn=1

= \{ \beta p, - \beta \ast 
p :\Im \beta p > 0 and \Re \beta p \not = 0\} N1

p=1 \cup \{ \widetilde \beta m :\Im \widetilde \beta m > 0 and \Re \widetilde \beta m = 0\} N2
m=1,

\{ \beta n :\Im \beta n < 0\} Nn=1

= \{ \beta p, - \beta 
\ast 

p :\Im \beta p < 0 and \Re \beta p \not = 0\} N1
p=1 \cup \{ \widetilde \beta m :\Im \widetilde \beta m < 0 and \Re \widetilde \beta m = 0\} N2

m=1.

(iii) Units: \delta 
(n)
1 , n = 1,2, . . . ,N ; \delta 

(j)
2 , j = 1,2, . . . , J ; \delta 

(n)
3 , n = 1,2, . . . ,N ; \delta 

(j)
4 , j =

1,2, . . . , J , where \delta 
(n)
1 =\pm 1, \delta 

(j)
2 =\pm 1, \delta 

(n)
3 =\pm 1, and \delta 

(j)
4 =\pm 1.

Actually, the above units are introduced due to (9.12) and (9.13). In fact, (9.12)

and (9.13) imply  - \varepsilon 1a
2
23(\alpha j)

b11(\alpha j)
= 1,  - \varepsilon 3b

2
21(\beta n)

a33(\beta n)
= 1,  - \varepsilon 1b

2
23(\alpha j)

a11(\alpha j)
= 1,  - \varepsilon 3a

2
21(\beta n)

b33(\beta n)
= 1,

which shows that the reduced normalization coefficients only rely on b11(\alpha j), a33(\beta n),
a11(\alpha j), b33(\beta n) and units. Moreover, b11(\alpha j), a33(\beta n), a11(\alpha j), and b33(\beta n) are
derived from the trace formulae in terms of known data.

In conclusion, the minimal data for reconstructing potentials contain the reflec-
tion coefficients, the eigenvalues, and the above units. In addition, the pure soliton
solutions are only relevant to the eigenvalues and the units.
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4122 M. J. ABLOWITZ, X.-D. LUO, AND Z. H. MUSSLIMANI

13. Reflectionless potentials and soliton solutions. In this section, we dis-
cuss reflectionless potentials and hence when time is included in the associated soliton
solutions. The soliton solutions for the classical and nonlocal systems provide con-
crete examples of how energy is shared between the three components. Reflectionless
potentials and pure soliton solutions correspond to zero reflection coefficients, i.e.,
\rho 1(\xi ) = 0, \rho 1(\xi ) = 0, \rho 2(\xi ) = 0, \rho 2(\xi ) = 0, \rho 3(\xi ) = 0, and \rho 3(\xi ) = 0 on \BbbR . Recall the
notation d1 = - C1, d2 = - C2, and d3 = - C3 for the classical and two nonlocal cases
(see section 2).

13.1. General case. Letting J = N = J = N = 1, by (11.9) and (11.10), one
obtains

N1(x,k; t) = \omega 1  - 
b33(\beta 1)

a21(\beta 1,t)

\chi (x,\beta 1;t)

b33(\beta 1)
ei\beta 1(d2 - d1)x

(k - \beta 1)a
\prime 
11(\beta 1)

,(13.1)

N3(x,k; t) = \omega 3 +

b11(\alpha 1)
a23(\alpha 1,t)

\chi (x,\alpha 1;t)
b11(\alpha 1)

ei\alpha 1(d2 - d3)x

(k - \alpha 1)a\prime 33(\alpha 1)
.(13.2)

By (11.13)--(11.16), one has

N1(x,\beta 1; t) = \omega 1  - 
b33(\beta 1)

a21(\beta 1,t)
\cdot \chi (x,\beta 1;t)

b33(\beta 1)
ei\beta 1(d2 - d1)x

(\beta 1  - \beta 1)a
\prime 
11(\beta 1)

,

N3(x,\alpha 1; t) = \omega 3 +

b11(\alpha 1)
a23(\alpha 1,t)

\cdot \chi (x,\alpha 1;t)
b11(\alpha 1)

ei\alpha 1(d2 - d3)x

(\alpha 1  - \alpha 1)a\prime 33(\alpha 1)
,

\chi (x,\beta 1; t)

b33(\beta 1)
= \gamma 1\gamma 3\omega 2  - 

b21(\beta 1, t)N1(x,\beta 1; t)e
i\beta 1(d1 - d2)x

(\beta 1  - \beta 1)b\prime 11(\beta 1)

 - b23(\alpha 1, t)N3(x,\alpha 1; t)e
i\alpha 1(d3 - d2)x

(\beta 1  - \alpha 1)b\prime 33(\alpha 1)
,

\chi (x,\alpha 1; t)

b11(\alpha 1)
= - \gamma 1\gamma 3\omega 2 +

b21(\beta 1, t)N1(x,\beta 1; t)e
i\beta 1(d1 - d2)x

(\alpha 1  - \beta 1)b\prime 11(\beta 1)

+
b23(\alpha 1, t)N3(x,\alpha 1; t)e

i\alpha 1(d3 - d2)x

(\alpha 1  - \alpha 1)b\prime 33(\alpha 1)
.

Combining the trace formulae, the above algebraic system reads as

\chi (2)(x,\beta 1; t)

b33(\beta 1)
=

\gamma 1\gamma 3
\~D(x, t)

\cdot 
\biggl[ 
1 - \alpha 1  - \beta 1

\alpha 1  - \beta 1

\cdot b23(\alpha 1, t)

a23(\alpha 1, t)
ei(\alpha 1 - \alpha 1)(d2 - d3)x

\biggr] 
,

\chi (3)(x,\beta 1; t)

b33(\beta 1)
=

1
\~D(x, t)

\cdot \alpha 1  - \alpha 1

\alpha 1  - \beta 1

b23(\alpha 1, t)e
i\alpha 1(d3 - d2)x,

\chi (2)(x,\alpha 1; t)

b11(\alpha 1)
= - \gamma 1\gamma 3

\~D(x, t)
\cdot 
\biggl[ 
1 +

\beta 1  - \alpha 1

\alpha 1  - \beta 1
\cdot b21(\beta 1, t)
a21(\beta 1, t)

ei(\beta 1 - \beta 1)(d1 - d2)x

\biggr] 
, where
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THREE-WAVE INTERACTION EQUATIONS 4123

\~D(x, t) :=

\biggl[ 
1 - \beta 1  - \alpha 1

\beta 1  - \alpha 1

\cdot b21(\beta 1, t)
a21(\beta 1, t)

ei(\beta 1 - \beta 1)(d1 - d2)x

\biggr] 

\cdot 
\biggl[ 
1 - \alpha 1  - \beta 1

\alpha 1  - \beta 1

\cdot b23(\alpha 1, t)

a23(\alpha 1, t)
ei(\alpha 1 - \alpha 1)(d2 - d3)x

\biggr] 

 - (\alpha 1  - \alpha 1)(\beta 1  - \beta 1)

(\alpha 1  - \beta 1)
2

\cdot b23(\alpha 1, t)

a23(\alpha 1, t)

b21(\beta 1, t)

a21(\beta 1, t)
ei(\beta 1 - \beta 1)(d1 - d2)x+i(\alpha 1 - \alpha 1)(d2 - d3)x.

By substituting \chi (2)(x,\beta 1;t)

b33(\beta 1)
, \chi (3)(x,\beta 1;t)

b33(\beta 1)
to the first equation of (13.1) and \chi (2)(x,\alpha 1;t)

b11(\alpha 1)

to the second equation of (13.1), we deduce

N
(2)
1 (x,k; t) = - (\beta 1  - \beta 1)(\beta 1  - \alpha 1)

\beta 1  - \alpha 1

ei\beta 1(d2 - d1)x

a21(\beta 1,t)

k - \beta 1

\gamma 1\gamma 3
\~D(x, t)

\cdot 
\biggl[ 
1 - \alpha 1  - \beta 1

\alpha 1  - \beta 1

\cdot b23(\alpha 1, t)

a23(\alpha 1, t)
ei(\alpha 1 - \alpha 1)(d2 - d3)x

\biggr] 
,

N
(3)
1 (x,k; t) = - (\beta 1  - \beta 1)(\beta 1  - \alpha 1)

\beta 1  - \alpha 1

ei\beta 1(d2 - d1)x

a21(\beta 1,t)

k - \beta 1

1
\~D(x, t)

\alpha 1  - \alpha 1

\alpha 1  - \beta 1

b23(\alpha 1, t)e
i\alpha 1(d3 - d2)x,

N
(2)
3 (x,k; t) = - (\alpha 1  - \alpha 1)(\alpha 1  - \beta 1)

\alpha 1  - \beta 1

ei\alpha 1(d2 - d1)x

a23(\alpha 1,t)

k - \alpha 1

\gamma 1\gamma 3
\~D(x, t)

\cdot 
\biggl[ 
1 +

\beta 1  - \alpha 1

\alpha 1  - \beta 1

b21(\beta 1, t)

a21(\beta 1, t)
ei(\beta 1 - \beta 1)(d1 - d2)x

\biggr] 
.

Note that (6.2) and (6.4) imply N21(x, t)\sim ik(d1 - d2)N (2)
1 (x,k; t), N31(x, t)\sim ik(d1 - 

d3)N
(3)
1 (x,k; t), and N23(x, t)\sim ik(d3  - d2)N

(2)
3 (x,k; t) as k\rightarrow \infty . Thus,

N21(x, t) = - i(d1  - d2)(\beta 1  - \beta 1)(\beta 1  - \alpha 1)

\beta 1  - \alpha 1

ei\beta 1(d2 - d1)x

a21(\beta 1, t)

\cdot \gamma 1\gamma 3
\~D(x, t)

\biggl[ 
1 - \alpha 1  - \beta 1

\alpha 1  - \beta 1

b23(\alpha 1, t)

a23(\alpha 1, t)
ei(\alpha 1 - \alpha 1)(d2 - d3)x

\biggr] 
,

N31(x, t) = - i(d1  - d3)(\beta 1  - \beta 1)(\beta 1  - \alpha 1)

\beta 1  - \alpha 1

ei\beta 1(d2 - d1)x

a21(\beta 1, t)

1
\~D(x, t)

\alpha 1  - \alpha 1

\alpha 1  - \beta 1

\cdot b23(\alpha 1, t)e
i\alpha 1(d3 - d2)x,

N23(x, t) = - i(d3  - d2)(\alpha 1  - \alpha 1)(\alpha 1  - \beta 1)

\alpha 1  - \beta 1

ei\alpha 1(d2 - d1)x

a23(\alpha 1, t)

\gamma 1\gamma 3
\~D(x, t)

\cdot 
\biggl[ 
1 +

\beta 1  - \alpha 1

\alpha 1  - \beta 1
\cdot b21(\beta 1, t)
a21(\beta 1, t)

ei(\beta 1 - \beta 1)(d1 - d2)x

\biggr] 
.

Once the symmetry reductions for the potentials are imposed, the specific reflec-
tionless potentials \{ Q1,Q2,Q3\} will be obtained; the details are discussed below.
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4124 M. J. ABLOWITZ, X.-D. LUO, AND Z. H. MUSSLIMANI

13.2. Classical three-wave system. Letting J =N = 1, by (8.2), (9.6)--(9.7),
and (11.17)--(11.18), we have

N1(x,k; t) = \omega 1 +
\varepsilon 3b

\ast 
21(\beta 1, t)

\chi (x,\beta \ast 

1 ;t)
b33(\beta \ast 

1 ,t)
ei\beta 

\ast 

1 (d2 - d1)x

(k - \beta \ast 
1)a

\prime 
11(\beta 

\ast 
1)

,(13.3)

N3(x,k; t) = \omega 3  - 
\varepsilon 1b

\ast 
23(\alpha 

\ast 
1, t)

\chi (x,\alpha 1;t)
b11(\alpha 1,t)

ei\alpha 1(d2 - d3)x

(k - \alpha 1)a\prime 33(\alpha 1)
.(13.4)

Now, letting \alpha 1 = \xi 1 + i\eta 1 and \beta 1 = \xi 1 + i\eta 1, where \eta 1 > 0 and \eta 1 > 0, adding time
dependence (see section 7), and using (10.12) and (11.21)--(11.24), we obtain

N1(x,\beta 1; t) = \omega 1  - \varepsilon 3c
\ast 
1

\chi (x,\beta \ast 
1 ; t)

b33(\beta \ast 
1 , t)

e(\eta 1+i\xi 1)(C1 - C2)(x - C3t),

N3(x,\alpha 
\ast 
1; t) = \omega 3 + \varepsilon 1c

\ast 
2

\chi (x,\alpha 1; t)

b11(\alpha 1, t)
e(\eta 1 - i\xi 1)(C2 - C3)(x - C1t),

\chi (x,\beta \ast 
1 ; t)

b33(\beta \ast 
1 , t)

= \varepsilon 1\varepsilon 3\omega 2 + c1N1(x,\beta 1; t)e
(\eta 1 - i\xi 1)(C1 - C2)(x - C3t)

+
2i\eta 1c2N3(x,\alpha 

\ast 
1; t)e

(\eta 1+i\xi 1)(C2 - C3)(x - C1t)

(\xi 1  - \xi 1) + i(\eta 1  - \eta 1)
,

\chi (x,\alpha 1; t)

b11(\alpha 1, t)
= - \varepsilon 1\varepsilon 3\omega 2 +

2i\eta 1c1N1(x,\beta 1; t)e
(\eta 1 - i\xi 1)(C1 - C2)(x - C3t)

(\xi 1  - \xi 1) + i(\eta 1  - \eta 1)

 - c2N3(x,\alpha 
\ast 
1; t)e

(\eta 1+i\xi 1)(C2 - C3)(x - C1t),

where c1 := b21(\beta 1,0), c2 := b23(\alpha 
\ast 
1,0),

b33(\beta 
\ast 

1 ,t)
a21(\beta \ast 

1 ,t)
= - \varepsilon 3b\ast 21(\beta 1, t)

= - \varepsilon 3c\ast 1eC3(C2 - C1)(\eta 1+i\xi 1)t, b11(\alpha 1,t)
a23(\alpha 1,t)

= - \varepsilon 1b\ast 23(\alpha \ast 
1, t) = - \varepsilon 1c\ast 2eC1(C3 - C2)(\eta 1 - i\xi 1)t. The

above equations are an algebraic system, from which one can getN1(x,\beta 1; t), N3(x,\alpha 
\ast 
1; t),

\chi (x,\beta \ast 

1 ;t)
b33(\beta \ast 

1 ,t)
, and \chi (x,\alpha 1;t)

b11(\alpha 1,t)
; in particular, we find

\chi (2)(x,\beta \ast 
1 ; t)

b33(\beta \ast 
1 , t)

=
1

D(x, t)
\varepsilon 1\varepsilon 3

\Bigl( 
1 + \varepsilon 1| c2| 2e2\eta 1(C2 - C3)(x - C1t)

\Bigr) 

 - 1

D(x, t)

2i\varepsilon 3\eta 1| c2| 2e2\eta 1(C2 - C3)(x - C1t)

(\xi 1  - \xi 1) + i(\eta 1  - \eta 1)
,

\chi (3)(x,\beta \ast 
1 ; t)

b33(\beta \ast 
1 , t)

=
1

D(x, t)
\cdot 2i\eta 1c2e

(\eta 1+i\xi 1)(C2 - C3)(x - C1t)

(\xi 1  - \xi 1) + i(\eta 1  - \eta 1)
,

\chi (2)(x,\alpha 1; t)

b11(\alpha 1, t)
= - 1

D(x, t)
\varepsilon 1\varepsilon 3

\Bigl( 
1 + \varepsilon 3| c1| 2e2\eta 1(C1 - C2)(x - C3t)

\Bigr) 

 - 1

D(x, t)

2i\varepsilon 1\eta 1| c1| 2e2\eta 1(C1 - C2)(x - C3t)

(\xi 1  - \xi 1) + i(\eta 1  - \eta 1)
,

where D(x, t) :=
\bigl( 
1 + \varepsilon 1| c2| 2e2\eta 1(C2 - C3)(x - C1t)

\bigr) 
\cdot 
\bigl( 
1 + \varepsilon 3| c1| 2e2\eta 1(C1 - C2)(x - C3t)

\bigr) 
+

4\varepsilon 1\varepsilon 3\eta 1\eta 1| c1| 
2| c2| 

2e2\eta 1(C1 - C2)(x - C3t)+2\eta 1(C2 - C3)(x - C1t)

(\xi 1 - \xi 1)
2+(\eta 1 - \eta 1)

2
. In order to reconstruct the poten-

tials, we apply the asymptotics discussed in section 6. For example, (6.2) and (6.4)
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THREE-WAVE INTERACTION EQUATIONS 4125

yield N21(x, t) \sim ik(C2  - C1)N
(2)
1 (x,k; t), N31(x, t) \sim ik(C3  - C1)N

(3)
1 (x,k; t), and

N23(x, t)\sim ik(C2 - C3)N
(2)
3 (x,k; t) as k\rightarrow \infty . Indeed, we are able to find N

(2)
1 (x,k; t),

N
(3)
1 (x,k; t), and N

(2)
3 (x,k; t) by substituting

\chi (2)(x,\beta \ast 

1 ;t)
b33(\beta \ast 

1 ,t)
,

\chi (3)(x,\beta \ast 

1 ;t)
b33(\beta \ast 

1 ,t)
to the first equa-

tion of (13.3) and \chi (2)(x,\alpha 1;t)
b11(\alpha 1,t)

to the second equation of (13.3). It turns out that

N21(x, t) =
1

D(x, t)
\cdot 2\eta 1\varepsilon 3(C2  - C1)c

\ast 
1e

(\eta 1+i\xi 1)(C1 - C2)(x - C3t)

\cdot 
\biggl[ 
\varepsilon 1\varepsilon 3

\Bigl( 
1 + \varepsilon 1| c2| 2e2\eta 1(C2 - C3)(x - C1t)

\Bigr) 
 - 2i\varepsilon 3\eta 1| c2| 2e2\eta 1(C2 - C3)(x - C1t)

(\xi 1  - \xi 1) + i(\eta 1  - \eta 1)

\biggr] 
,

N31(x, t) =
1

D(x, t)
2\eta 1\varepsilon 3(C3  - C1)c

\ast 
1e

(\eta 1+i\xi 1)(C1 - C2)(x - C3t)
2i\eta 1c2e

(\eta 1+i\xi 1)(C2 - C3)(x - C1t)

(\xi 1  - \xi 1) + i(\eta 1  - \eta 1)
,

N23(x, t) =
1

D(x, t)
\cdot 2\eta 1\varepsilon 1(C3  - C2)c

\ast 
2e

(\eta 1 - i\xi 1)(C2 - C3)(x - C1t)

\cdot 
\biggl[ 
\varepsilon 1\varepsilon 3

\Bigl( 
1 + \varepsilon 3| c1| 2e2\eta 1(C1 - C2)(x - C3t)

\Bigr) 
+

2i\varepsilon 1\eta 1| c1| 2e2\eta 1(C1 - C2)(x - C3t)

(\xi 1  - \xi 1) + i(\eta 1  - \eta 1)

\biggr] 
.

From (2.5), it yields that

Q1(x, t) =

\sqrt{} 
(C2  - C1)(C3  - C1)

D(x, t)
\cdot 2i\eta 1(C3  - C2)c

\ast 
2e

(\eta 1 - i\xi 1)(C2 - C3)(x - C1t)

\cdot 
\biggl[ 
\varepsilon 3

\Bigl( 
1 + \varepsilon 3| c1| 2e2\eta 1(C1 - C2)(x - C3t)

\Bigr) 
+

2i\eta 1| c1| 2e2\eta 1(C1 - C2)(x - C3t)

(\xi 1  - \xi 1) + i(\eta 1  - \eta 1)

\biggr] 
,

(13.5)

Q2(x, t) =

\sqrt{} 
(C2  - C1)(C3  - C2)

D(x, t)
\cdot 2i\eta 1\varepsilon 3(C3  - C1)c

\ast 
1e

(\eta 1+i\xi 1)(C1 - C2)(x - C3t)

\cdot 2i\eta 1c2e
(\eta 1+i\xi 1)(C2 - C3)(x - C1t)

(\xi 1  - \xi 1) + i(\eta 1  - \eta 1)
,

(13.6)

Q3(x, t) =

\sqrt{} 
(C3  - C1)(C3  - C2)

D(x, t)
\cdot 2i\eta 1\varepsilon 1\varepsilon 2(C2  - C1)c1e

(\eta 1 - i\xi 1)(C1 - C2)(x - C3t)

\cdot 
\biggl[ 
\varepsilon 1

\Bigl( 
1 + \varepsilon 1| c2| 2e2\eta 1(C2 - C3)(x - C1t)

\Bigr) 
+

2i\eta 1| c2| 2e2\eta 1(C2 - C3)(x - C1t)

(\xi 1  - \xi 1) - i(\eta 1  - \eta 1)

\biggr] 

(13.7)

solve the classical three-wave system (2.4). In addition, the solutions are nonsingular
whenever \varepsilon 1 = 1 and \varepsilon 3 = 1.

The minimal data we use for constructing 1-0-1 soliton solutions of the classical
three-wave interaction equation include the following four values: the reduced nor-
malization coefficients c1 := b21(\beta 1,0), c2 := b23(\alpha 

\ast 
1,0) and eigenvalues \alpha 1 = \xi 1 + i\eta 1,

\beta 1 = \xi 1 + i\eta 1, where \alpha 1 \not = \beta 1.
We have the following theorem.

Theorem 13.1. Given the minimal data c1, c2, \alpha 1, and \beta 1 with \alpha 1 \not = \beta 1, then the
classical three-wave system admits a unique global soliton solution given by (13.5)--
(13.7) for the case of \varepsilon 1 = \varepsilon 3 = 1, while in the remaining cases, there exists a blow-up
time t0 such that the solutions exist for t < t0.
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Fig. 1. (a) The amplitudes (magnitudes) of Q1(x, t) (red), Q2(x, t) (yellow), and Q3(x, t) (blue)
at t1 = - 10. (b) The amplitudes of Q1(x, t) (red), Q2(x, t) (yellow), and Q3(x, t) (blue) at t2 = 0. (c)
The amplitudes of Q1(x, t) (red), Q2(x, t) (yellow), and Q3(x, t) (blue) at t3 = 10. Here, \varepsilon 1 = \varepsilon 3 = 1,
\varepsilon 2 = - 1, C1 = 1, C2 = 2, C3 = 3, \xi 1 = \xi 1 = 0, \eta 1 = 1, \eta 1 = 2, c1 = 2, and c2 = 5.

Remark 13.2. For large negative time t, Q2 is exponentially small; Q1 and Q3

are nonzero along characteristics x - C1t and x - C3t. At a later (interaction) time,
Q2 grows and becomes O(1). Later, Q2 decays to become exponentially small again,
while Q1 and Q3 interact and continue traveling with their respective velocities. At
this point, Q3 is to the right of Q1. Moreover, Q1 and Q3 maintain their initial and
final amplitudes, but their centers/phases are shifted.

The following figures depict the traveling of Q1(x, t), Q2(x, t), and Q3(x, t).
Figure 1(a) illustrates that Q3 is to the left of Q1, and Q2 is small at large nega-
tive time t1; Figure 1(b) describes the three waves interacting at t2 = 0; Figure 1(c)
shows that Q3 is to the right of Q1, and Q2 decays to be small again at large positive
time t3. Note that the initial and final amplitudes of Q1 and Q3 do not change; only
the phases are shifted.

It should be remarked that this 1-0-1 soliton solution is only one type of solution
to the classical three-wave system; more general solutions can be obtained according
to the discussion below Remark 9.1. A full classification of solutions is outside the
scope of this paper.

There is an interesting case for the two eigenvalues satisfying \alpha 1 = \beta 1, which
yields splitting/joining solitons; see also [23]. Using the method described above, one
can obtain splitting/joining solitons, for example,

Q1(x, t) = - 2i\eta 1\epsilon 1(C3  - C2)
\sqrt{} 
(C2  - C1)(C3  - C1)e

 - i\xi 1(C3 - C2)(x - C1t - x1)ei\gamma 1/\Delta 1,

Q2(x, t) = 2i\eta 1\epsilon 2(C3  - C1)
\sqrt{} 
(C2  - C1)(C3  - C2)e

i\xi 1(C3 - C1)(x - C2t - x2)ei\gamma 2/\Delta 2,

Q3(x, t) = - 2i\eta 1\epsilon 3(C2  - C1)
\sqrt{} 
(C3  - C1)(C3  - C2)e

 - i\xi 1(C2 - C1)(x - C3t - x3)ei\gamma 3/\Delta 3,

with (C3  - C2)x1 + (C2  - C1)x3 + (C1  - C3)x2 = 0 and \gamma 1 + \gamma 2 + \gamma 3 = 0, where

\Delta 1 := e - \eta 1(C3 - C2)(x - C1t - x1)  - \epsilon 2\epsilon 3e
\eta 1(C3 - C2)(x - C1t - x1)

 - \epsilon 1\epsilon 2e
 - \eta 1[(C3 - C1)(x - C2t - x2)+[(C2 - C1)(x - C3t - x3)]],

\Delta 2 := e\eta 1(C3 - C1)(x - C2t - x2) + \epsilon 1\epsilon 3e
 - \eta 1(C3 - C1)(x - C2t - x2)

 - \epsilon 2\epsilon 3e
\eta 1[(C2 - C1)(x - C3t - x3) - [(C3 - C2)(x - C1t - x1)]],

\Delta 3 := e - \eta 1(C2 - C1)(x - C3t - x3)  - \epsilon 1\epsilon 2e
\eta 1(C2 - C1)(x - C3t - x3)

+ \epsilon 1\epsilon 3e
\eta 1[(C3 - C1)(x - C2t - x2)+[(C3 - C2)(x - C1t - x1)]].
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Fig. 2. (a) The amplitudes (magnitudes) of Q1(x, t) (red), Q2(x, t) (yellow), and Q3(x, t) (blue)
at t1 = - 10. (b) The amplitudes of Q1(x, t) (red), Q2(x, t) (yellow), and Q3(x, t) (blue) at t2 = 0. (c)
The amplitudes of Q1(x, t) (red), Q2(x, t) (yellow), and Q3(x, t) (blue) at t3 = 10. Here, \varepsilon 1 = \varepsilon 3 = 1,
\varepsilon 2 = - 1, C1 = 1, C2 = 2, C3 = 3, \xi 1 = 0, \eta 1 = 1, x1 = x2 = 0, and \gamma 1 = \gamma 2 = 0.

The following figures depict the traveling of Q1(x, t), Q2(x, t), and Q3(x, t) at t= - 10,
t = 0, and t = 10, respectively. Figure 2(a) shows that there are 1-0-1 solitons at
t =  - 10, and the interaction of all solitons at t = 0 are displayed in Figure 2(b).
Eventually, as t increases further, there is only a 0-1-0 soliton at t = 10, which is
described in Figure 2 (c). In summary, these figures illustrate that the 1-0-1 solitons
at large negative time (t= - 10) merge to a 0-1-0 soliton at large positive time (t= 10).

13.3. Complex reverse space-time three-wave system. We let J = J =

N = N = 1, \widetilde \alpha 1 = iv1, \widetilde \beta 1 = iv2, \widetilde \alpha 1 =  - iv1, and \widetilde \beta 1 =  - iv2, where v1 > 0, v2 > 0,
v1 > 0, and v2 > 0. For more than one eigenvalue, the detailed analysis was discussed
in section 11.3. Then (9.11) and (11.25)--(11.26) give

N1(x,k; t) = \omega 1 +
\varepsilon 3a

\ast 
21( - iv2, - t)\chi (x, - iv2;t)

b33( - iv2,t)
ev2(C1 - C2)x

(k+ iv2)a\prime 11( - iv2)
,(13.8)

N3(x,k; t) = \omega 3  - 
\varepsilon 1a

\ast 
23( - iv2, - t)\chi (x,iv1;t)b11(iv1,t)

ev1(C2 - C3)x

(k - iv1)a\prime 33(iv1)
.(13.9)

By adding time dependence and combining (10.18), (10.19), (10.20), (10.21) and
(11.29)--(11.32), we have

N1(x, iv2; t) = \omega 1  - \varepsilon 3c
\ast 
3

\chi (x, - iv2; t)
b33( - iv2, t)

ev2(C1 - C2)(x - C3t),

N3(x, - iv1; t) = \omega 3 + \varepsilon 1c
\ast 
4

\chi (x, iv1; t)

b11(iv1, t)
ev1(C2 - C3)(x - C1t),

\chi (x, - iv2; t)
b33( - iv2, t)

= \varepsilon 1\varepsilon 3\omega 2 + c1N1(x, iv2; t)e
v2(C1 - C2)(x - C3t)

+
v1 + v1
v1  - v2

c2N3(x, - iv1; t)ev1(C2 - C3)(x - C1t),

\chi (x, iv1; t)

b11(iv1, t)
= - \varepsilon 1\varepsilon 3\omega 2  - 

v2 + v2
v2  - v1

c1N1(x, iv2; t)e
v2(C1 - C2)(x - C3t)

 - c2N3(x, - iv1; t)ev1(C2 - C3)(x - C1t),

where c1 := b21(iv2,0), c2 := b23( - iv1,0), c3 := a21( - iv2,0), c4 := a23(iv1,0),
b33( - iv2,t)
a21( - iv2,t)

= - \varepsilon 3a\ast 21( - iv2, - t) = - \varepsilon 3c\ast 3e - C3(C1 - C2)v2t, b11(iv1,t)
a23(iv1,t)

= - \varepsilon 1a\ast 23( - iv2, - t) =
 - \varepsilon 1c\ast 4e - C1(C2 - C3)v1t. The above algebraic system yields
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4128 M. J. ABLOWITZ, X.-D. LUO, AND Z. H. MUSSLIMANI

\chi (2)(x, - iv2; t)
b33( - iv2, t)

=
1

D1(x, t)

\biggl\{ 
\varepsilon 1\varepsilon 3 +

v2 + v1
v2  - v1

\varepsilon 3c2c
\ast 
4e

(C2 - C3)(v1+v1)(x - C1t)

\biggr\} 
,

\chi (3)(x, - iv2; t)
b33( - iv2, t)

=
1

D1(x, t)
\cdot v1 + v1
v1  - v2

c2e
v1(C2 - C3)(x - C1t),

\chi (2)(x, iv1; t)

b11(iv1, t)
=

1

D1(x, t)

\biggl\{ 
 - \varepsilon 1\varepsilon 3 +

v2 + v1
v2  - v1

\varepsilon 1c1c
\ast 
3e

(C1 - C2)(v2+v2)(x - C3t)

\biggr\} 
,

whereD1(x, t) :=
\bigl[ 
1 + \varepsilon 3c1c

\ast 
3e

(C1 - C2)(v2+v2)(x - C3t)
\bigr] 
\cdot 
\bigl[ 
1 + \varepsilon 1c2c

\ast 
4e

(C2 - C3)(v1+v1)(x - C1t)
\bigr] 
+

v1+v1
v2 - v1

\cdot v2+v2

v2 - v1
\cdot \varepsilon 1\varepsilon 3c1c2c\ast 3c\ast 4 \cdot e(C2 - C3)(v1+v1)(x - C1t)+(C1 - C2)(v2+v2)(x - C3t)].

By substituting \chi (2)(x, - iv2;t)
b33( - iv2,t)

, \chi (3)(x, - iv2;t)
b33( - iv2,t)

to (13.8) and \chi (2)(x,iv1;t)
b11(iv1,t)

to (13.9), we
obtain

N
(2)
1 (x,k; t) = - 1

D1(x, t)

i(v2 + v2)c
\ast 
3e

v2(C1 - C2)(x - C3t)

k+ iv2\biggl\{ 
\varepsilon 1 +

v2 + v1
v2  - v1

c2c
\ast 
4e

(C2 - C3)(v1+v1)(x - C1t)

\biggr\} 
,

N
(3)
1 (x,k; t) = - 1

D1(x, t)

v1 + v1
v1  - v2

i(v2 + v2)\varepsilon 3c2c
\ast 
3e

v1(C2 - C3)(x - C1t)+v2(C1 - C2)(x - C3t)

k+ iv2
,

N
(2)
3 (x,k; t) = - 1

D1(x, t)

i(v1 + v1)c
\ast 
4e

v1(C2 - C3)(x - C1t)

k - iv1\biggl\{ 
 - \varepsilon 3 +

v2 + v1
v2  - v1

c1c
\ast 
3e

(C1 - C2)(v2+v2)(x - C3t)

\biggr\} 
.

As we mentioned in the classical case, N21(x, t)\sim ik(C2 - C1)N
(2)
1 (x,k; t), N31(x, t)\sim 

ik(C3  - C1)N
(3)
1 (x,k; t), and N23(x, t)\sim ik(C2  - C3)N

(2)
3 (x,k; t) as k\rightarrow \infty . Thus,

N21(x, t)

=
C2  - C1

D1(x, t)
\cdot (v2 + v2)c

\ast 
3e

v2(C1 - C2)(x - C3t) \cdot 
\biggl\{ 
\varepsilon 1 +

v2 + v1
v2  - v1

c2c
\ast 
4e

(C2 - C3)(v1+v1)(x - C1t)

\biggr\} 
,

N31(x, t) =
C3  - C1

D1(x, t)
\cdot v1 + v1
v1  - v2

\cdot (v2 + v2)\varepsilon 3c2c
\ast 
3e

v1(C2 - C3)(x - C1t)+v2(C1 - C2)(x - C3t),

N23(x, t)

=
C2  - C3

D1(x, t)
\cdot (v1 + v1)c

\ast 
4e

v1(C2 - C3)(x - C1t) \cdot 
\biggl\{ 
 - \varepsilon 3 +

v2 + v1
v2  - v1

c1c
\ast 
3e

(C1 - C2)(v2+v2)(x - C3t)

\biggr\} 
.

By (2.8), one has

Q1(x, t) = i
\sqrt{} 
(C2  - C1)(C3  - C1)N23(x, t) = i

\sqrt{} 
(C2  - C1)(C3  - C1) \cdot 

C2  - C3

D1(x, t)

\cdot (v1 + v1)c
\ast 
4e

v1(C2 - C3)(x - C1t) \cdot 
\biggl\{ 
 - \varepsilon 3 +

v2 + v1
v2  - v1

c1c
\ast 
3e

(C1 - C2)(v2+v2)(x - C3t)

\biggr\} 
,
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THREE-WAVE INTERACTION EQUATIONS 4129

Q2(x, t) = i
\sqrt{} 

(C2  - C1)(C3  - C2)N31(x, t) = i
\sqrt{} 
(C2  - C1)(C3  - C2)

\cdot C3  - C1

D1(x, t)
\cdot v1 + v1
v1  - v2

\cdot (v2 + v2)\varepsilon 3c2c
\ast 
3e

v1(C2 - C3)(x - C1t)+v2(C1 - C2)(x - C3t),

Q3(x, t) = i
\sqrt{} 
(C3  - C1)(C3  - C2)N12(x, t)

= i
\sqrt{} 
(C3  - C1)(C3  - C2) \cdot \varepsilon 1\varepsilon 2 \cdot N\ast 

21( - x, - t)

= i
\sqrt{} 
(C3  - C1)(C3  - C2) \cdot \varepsilon 1\varepsilon 2 \cdot 

C2  - C1

D\ast 
1( - x, - t)

\cdot (v2 + v2)c3e
v2(C2 - C1)(x - C3t)

\cdot 
\biggl\{ 
\varepsilon 1 +

v2 + v1
v2  - v1

c\ast 2c4e
(C3 - C2)(v1+v1)(x - C1t)

\biggr\} 
.

In addition, (9.11) shows that | c1| 2 =  - \varepsilon 3 v2 - v1
v1+v2

, | c2| 2 = \varepsilon 1
v2 - v1

v1+v2
, | c3| 2 =  - \varepsilon 3 v2 - v1

v1+v2
,

| c4| 2 = \varepsilon 1
v2 - v1
v1+v2

. Hence, if \varepsilon 1 = 1, then v2 > v1, v2 > v1, and \varepsilon 3 =  - 1. Similarly,
if \varepsilon 1 =  - 1, then v2 < v1, v2 < v1, and \varepsilon 3 = 1. It implies that \varepsilon 1 and \varepsilon 3 are of
opposite signs, i.e., \varepsilon 1\varepsilon 3 =  - 1. On one hand, when \varepsilon 1 = 1 and \varepsilon 3 =  - 1, we obtain

| c1| =
\sqrt{} 

v2 - v1

v1+v2
, | c2| =

\sqrt{} 
v2 - v1

v1+v2
, | c3| =

\sqrt{} 
v2 - v1

v1+v2
, | c4| =

\sqrt{} 
v2 - v1
v1+v2

. Thus, one can write

c1 =
\sqrt{} 

v2 - v1
v1+v2

ei\theta 1 , c2 =
\sqrt{} 

v2 - v1

v1+v2
ei\theta 2 , c3 =

\sqrt{} 
v2 - v1

v1+v2
ei\theta 3 , c4 =

\sqrt{} 
v2 - v1

v1+v2
ei\theta 4 , where all \theta j

are real, j = 1,2,3,4. Note that \varepsilon 1\varepsilon 2\varepsilon 3 = 1 (see section 2.2), so one has \varepsilon 2 =  - 1.
Therefore,

Q1(x, t) =
i

D1(x, t)
\cdot (C2  - C3)

\sqrt{} 
(C2  - C1)(C3  - C1)(v1 + v1)

\sqrt{} 
v2  - v1
v1 + v2

\cdot e - i\theta 4+v1(C2 - C3)(x - C1t) \cdot 
\Biggl\{ 
1 +

\sqrt{} 
(v2 + v1)(v2  - v1)

(v2  - v1)(v1 + v2)
ei(\theta 1 - \theta 3)+(C1 - C2)(v2+v2)(x - C3t)

\Biggr\} 
,

(13.10)

Q2(x, t) =
i

D1(x, t)
\cdot (v1 + v1)(v2 + v2)\sqrt{} 

(v1 + v2)(v1 + v2)

\cdot (C3  - C1)
\sqrt{} 
(C2  - C1)(C3  - C2)e

i(\theta 2 - \theta 3)+v1(C2 - C3)(x - C1t)+v2(C1 - C2)(x - C3t),

(13.11)

Q3(x, t) = - i

D\ast 
1( - x, - t)

\cdot (C2  - C1)
\sqrt{} 
(C3  - C1)(C3  - C2)(v2 + v2)

\sqrt{} 
v2  - v1
v1 + v2

\cdot ei\theta 3+v2(C2 - C1)(x - C3t) \cdot 
\Biggl\{ 
1 +

\sqrt{} 
(v2 + v1)(v2  - v1)

(v2  - v1)(v1 + v2)
ei(\theta 4 - \theta 2)+(C3 - C2)(v1+v1)(x - C1t)

\Biggr\} 

(13.12)

are solutions to the complex reverse space-time system (2.7), where

D1(x, t)

=

\Biggl[ 
1 - 
\sqrt{} 

(v2  - v1)(v2  - v1)

(v1 + v2)(v1 + v2)
ei(\theta 1 - \theta 3)+(C1 - C2)(v2+v2)(x - C3t)

\Biggr] 

\cdot 
\Biggl[ 
1 +

\sqrt{} 
(v2  - v1)(v2  - v1)

(v1 + v2)(v1 + v2)
ei(\theta 2 - \theta 4)+(C2 - C3)(v1+v1)(x - C1t)

\Biggr] 

 - v1 + v1
v1 + v2

\cdot v2 + v2
v1 + v2

\cdot ei(\theta 1+\theta 2 - \theta 3 - \theta 4)+(C2 - C3)(v1+v1)(x - C1t)+(C1 - C2)(v2+v2)(x - C3t)

and v2 > v1, v2 > v1.
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4130 M. J. ABLOWITZ, X.-D. LUO, AND Z. H. MUSSLIMANI

Remark 13.3. In general, there exist singular points for Qj , j = 1,2,3; that is,
in general, D1(x, t) is not zero-free. However, we can choose \theta 1  - \theta 3 = \pi + 2k1\pi and
\theta 2  - \theta 4 = 2k2\pi such that D1(x, t) > 0, where k1, k2 \in \BbbZ . Thus, for these special
parameters, Qj are regular for all x, t.

On the other hand, when \varepsilon 1 = - 1 and \varepsilon 3 = 1, the solution is given by

Q1(x, t) = - i

D1(x, t)
\cdot (C2  - C3)

\sqrt{} 
(C2  - C1)(C3  - C1)(v1 + v1)

\sqrt{} 
v1  - v2
v1 + v2

\cdot e - i\theta 4+v1(C2 - C3)(x - C1t) \cdot 
\Biggl\{ 
1 +

\sqrt{} 
(v2 + v1)(v1  - v2)

(v1  - v2)(v1 + v2)
ei(\theta 1 - \theta 3)+(C1 - C2)(v2+v2)(x - C3t)

\Biggr\} 
,

(13.13)

Q2(x, t) =
i

D1(x, t)
\cdot (v1 + v1)(v2 + v2)\sqrt{} 

(v1 + v2)(v1 + v2)

\cdot (C3  - C1)
\sqrt{} 
(C2  - C1)(C3  - C2)e

i(\theta 2 - \theta 3)+v1(C2 - C3)(x - C1t)+v2(C1 - C2)(x - C3t),

(13.14)

Q3(x, t) = - i

D\ast 
1( - x, - t)

\cdot (C2  - C1)
\sqrt{} 
(C3  - C1)(C3  - C2)(v2 + v2)

\sqrt{} 
v1  - v2
v1 + v2

\cdot ei\theta 3+v2(C2 - C1)(x - C3t) \cdot 
\Biggl\{ 
1 +

\sqrt{} 
(v2 + v1)(v1  - v2)

(v1  - v2)(v1 + v2)
ei(\theta 4 - \theta 2)+(C3 - C2)(v1+v1)(x - C1t)

\Biggr\} 
,

(13.15)

where

D1(x, t)

=

\Biggl[ 
1 +

\sqrt{} 
(v1  - v2)(v1  - v2)

(v1 + v2)(v1 + v2)
ei(\theta 1 - \theta 3)+(C1 - C2)(v2+v2)(x - C3t)

\Biggr] 

\cdot 
\Biggl[ 
1 - 
\sqrt{} 

(v1  - v2)(v1  - v2)

(v1 + v2)(v1 + v2)
ei(\theta 2 - \theta 4)+(C2 - C3)(v1+v1)(x - C1t)

\Biggr] 

 - v1 + v1
v1 + v2

\cdot v2 + v2
v1 + v2

\cdot ei(\theta 1+\theta 2 - \theta 3 - \theta 4)+(C2 - C3)(v1+v1)(x - C1t)+(C1 - C2)(v2+v2)(x - C3t),

c1 =
\sqrt{} 

v1 - v2
v1+v2

ei\theta 1 , c2 =
\sqrt{} 

v1 - v2

v1+v2
ei\theta 2 , c3 =

\sqrt{} 
v1 - v2

v1+v2
ei\theta 3 , c4 =

\sqrt{} 
v1 - v2

v1+v2
ei\theta 4 , v1 > v2, and

v1 > v2.

Remark 13.4. Similarly, Qj do not blow up if \theta 1 - \theta 3 = 2k1\pi and \theta 2 - \theta 4 = \pi +2k2\pi ,
where j = 1,2,3 and k1, k2 \in \BbbZ .

The data needed for recovering 1-0-1 soliton solutions via the IST include the
eigenvalues v1, v2, v1, v2 and phases \theta 1, \theta 2, \theta 3, \theta 4. In fact, (9.11) implies that
the reduced normalization coefficients cj depend on eigenvalues, where j = 1,2,3,4.
Specifically, the moduli of cj are uniquely determined by eigenvalues; however, the
phases \theta j are introduced by polar exponential.

We state these results as a theorem.

Theorem 13.5. Given the minimal data v1, v2, v1, v2 and \theta 1, \theta 2, \theta 3, \theta 4, then
the complex reverse space-time three-wave system admits a unique soliton solution
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Fig. 3. (a) The amplitudes of Q1(x, t) (red), Q2(x, t) (yellow), and Q3(x, t) (blue) at t1 = - 10.
(b) The amplitudes of Q1(x, t) (red), Q2(x, t) (yellow), and Q3(x, t) (blue) at t2 = 0. (c) The
amplitudes of Q1(x, t) (red), Q2(x, t) (yellow), and Q3(x, t) (blue) at t3 = 1. (d) The amplitudes of
Q1(x, t) (red), Q2(x, t) (yellow), and Q3(x, t) (blue) at t4 = 10. Here, \varepsilon 1 = 1, \varepsilon 2 = \varepsilon 3 = - 1, C1 = 1,
C2 = 2, C3 = 3, \theta 1 = \pi , \theta 2 = \theta 3 = \theta 4 = 0, v1 = v1 = 1, v2 = v2 = 2.
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Fig. 4. (a) The amplitudes of Q1(x, t) (red), Q2(x, t) (yellow), and Q3(x, t) (blue) at t1 = - 10.
(b) The amplitudes of Q1(x, t) (red), Q2(x, t) (yellow), and Q3(x, t) (blue) at t2 = 0. (c) The
magnitudes of Q1(x, t) (red), Q2(x, t) (yellow), and Q3(x, t) (blue) at t3 = 1. (d) The magnitudes of
Q1(x, t) (red), Q2(x, t) (yellow), and Q3(x, t) (blue) at t4 = 10. Here, \varepsilon 1 = \varepsilon 2 = - 1, \varepsilon 3 = 1, C1 = 1,
C2 = 2, C3 = 3, \theta 1 = \theta 2 = \theta 3 = 0, \theta 4 = \pi , v1 = v1 = 2, v2 = v2 = 1.

\{ Q1,Q2,Q3\} given by (13.10)--(13.12) and (13.13)--13.15) until possibly blow up. In
particular, if \theta 1  - \theta 3 = 2k1\pi and \theta 2  - \theta 4 = \pi + 2k2\pi , then \{ Q1,Q2,Q3\} is a global
solution.

The following figures illustrate the traveling of Q1, Q2, and Q3. Specifically,
Figure 3 is for the case of \varepsilon 1 = 1 and \varepsilon 3 =  - 1. From Figure 3, we see Q3 is to the
left of Q1, the amplitude (magnitude) of Q1 is smaller than Q3, and Q2 is small at
t1 = - 10. At a later time, e.g., at t2 = 0 and t3 = 1, Q2 grows and interacts with Q1

and Q3. In particular, at t2 = 0, the amplitudes of these three waves are symmetric
about x= 0. Figure 3(d) indicates that Q2 decays to be small again, and Q3 is to the
right of Q1 at t4 = 10. In this process, the initial and final amplitudes of Q1 and Q3

are kept, while the positions are shifted. A different case is given by Figure 4 below,
where \varepsilon 1 =  - 1 and \varepsilon 3 = 1. Compared with Figure 3, now the amplitude of Q1 is
bigger than Q3.

13.4. Real reverse space-time three-wave system. We let J = J = N =

N = 1, \widetilde \alpha 1 = i\eta 1, \widetilde \beta 1 = i\eta 1, \widetilde \alpha 1 = - i\eta 2 and \widetilde \beta 1 = - i\eta 2, where \eta 1 > 0, \eta 2 > 0, \eta 1 > 0, and
\eta 2 > 0. By a similar analysis for the complex RST three-wave system, one obtains

N21(x, t) =
(C2  - C1)(\eta 2 + \eta 1)c3e

\eta 2(C1 - C2)(x - C3t)

D2(x, t)\biggl\{ 
\varepsilon 1 +

\eta 2 + \eta 1
\eta 2  - \eta 2

\cdot c2c4e(C2 - C3)(x - C1t)(\eta 1+\eta 2)

\biggr\} 
,

N31(x, t) = - C3  - C1

D2(x, t)
\cdot (\eta 2 + \eta 1)\varepsilon 3c3e

\eta 2(C1 - C2)(x - C3t) \cdot \eta 1 + \eta 2
\eta 2  - \eta 2

\cdot c2 \cdot e\eta 2(C2 - C3)(x - C1t),
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4132 M. J. ABLOWITZ, X.-D. LUO, AND Z. H. MUSSLIMANI

N23(x, t) = - (C2  - C3)(\eta 1 + \eta 2)c4e
\eta 1(C2 - C3)(x - C1t)

D2(x, t)\biggl\{ 
\varepsilon 3 +

\eta 2 + \eta 1
\eta 1  - \eta 1

\cdot c1c3e(C1 - C2)(x - C3t)(\eta 1+\eta 2)

\biggr\} 
,

where c1 := b21( \~\beta 1,0), c2 := b23(\~\alpha 1,0), c3 := a21( \~\beta 1,0), c4 := a23(\~\alpha 1,0),
b33( \~\beta 1;t)

a21( \~\beta 1,t)
=

 - \varepsilon 3a21( \~\beta 1, - t) = - \varepsilon 3c3e\eta 2C3(C2 - C1)t, b11(\~\alpha 1,t)
a23(\~\alpha 1,t)

= - \varepsilon 1a23(\~\alpha 1, - t) = - \varepsilon 1c4e\eta 1C1(C3 - C2)t,

D2(x, t) :=
\bigl[ 
1 + \varepsilon 3c1c3e

(C1 - C2)(x - C3t)(\eta 1+\eta 2)
\bigr] 
\cdot 
\bigl[ 
1 + \varepsilon 1c2c4e

(C2 - C3)(x - C1t)(\eta 1+\eta 2)
\bigr] 

+ \eta 1+\eta 2

\eta 2 - \eta 2
\cdot \eta 2+\eta 1

\eta 1 - \eta 1
\cdot \varepsilon 1\varepsilon 3c1c2c3c4 \cdot e(C2 - C3)(x - C1t)(\eta 1+\eta 2)+(C1 - C2)(x - C3t)(\eta 1+\eta 2).

From (2.12), one has

Q1(x, t) =
(C2  - C3)

\sqrt{} 
(C2  - C1)(C3  - C1)

D2(x, t)
(\eta 1  - \eta 2)c4e

\eta 1(C2 - C3)(x - C1t)

\cdot 
\biggl\{ 
\varepsilon 3 +

\eta 2 + \eta 1
\eta 1  - \eta 1

\cdot c1c3e(C1 - C2)(x - C3t)(\eta 1+\eta 2)

\biggr\} 
,

Q2(x, t) =
(C3  - C1)

\sqrt{} 
(C2  - C1)(C3  - C2)

D2(x, t)
(\eta 2 + \eta 1)\varepsilon 3c2c3e

\eta 2(C1 - C2)(x - C3t)

\eta 1 + \eta 2
\eta 2  - \eta 2

e\eta 2(C2 - C3)(x - C1t),

Q3(x, t) = - (C2  - C1)
\sqrt{} 
(C3  - C1)(C3  - C2)

D2( - x, - t)
\varepsilon 1\varepsilon 2 \cdot (\eta 2 + \eta 1)c3

\cdot e\eta 2(C2 - C1)(x - C3t) \cdot 
\biggl\{ 
\varepsilon 1 +

\eta 2 + \eta 1
\eta 2  - \eta 2

\cdot c2c4e(C3 - C2)(x - C1t)(\eta 1+\eta 2)

\biggr\} 
.

Besides, (9.12) and (9.13) imply c21 =  - \varepsilon 3 \eta 1 - \eta 1

\eta 1+\eta 2
, c22 = \varepsilon 1

\eta 2 - \eta 2

\eta 2+\eta 1
, c23 =  - \varepsilon 3 \eta 2 - \eta 2

\eta 2+\eta 1
, c24 =

\varepsilon 1
\eta 1 - \eta 1

\eta 1+\eta 2
. Recall from section 8.3 that cj are real, j = 1,2,3,4. Thus, c2j > 0 and

\varepsilon 1\varepsilon 3 =  - 1. When \varepsilon 1 = 1 and \varepsilon 3 =  - 1, it implies \eta 1 > \eta 1 and \eta 2 > \eta 2. As a result,

c1 = \delta 1

\sqrt{} 
\eta 1 - \eta 1

\eta 1+\eta 2
, c2 = \delta 2

\sqrt{} 
\eta 2 - \eta 2

\eta 2+\eta 1
, c3 = \delta 3

\sqrt{} 
\eta 2 - \eta 2

\eta 2+\eta 1
, c4 = \delta 4

\sqrt{} 
\eta 1 - \eta 1

\eta 1+\eta 2
, where \delta j = \pm 1,

j = 1,2,3,4. Noting that \varepsilon 1\varepsilon 2\varepsilon 3 = 1 (see section 2.3), one has \varepsilon 2 = - 1. Therefore,

Q1(x, t) = - (C2  - C3)
\sqrt{} 
(C2  - C1)(C3  - C1)

D2(x, t)
\cdot (\eta 1 + \eta 2) \cdot \delta 4

\sqrt{} 
\eta 1  - \eta 1
\eta 1 + \eta 2

e\eta 1(C2 - C3)(x - C1t)

\cdot 
\Biggl\{ 
1 + \delta 1\delta 3

\sqrt{} 
(\eta 2 + \eta 1)(\eta 2  - \eta 2)

(\eta 1 + \eta 2)(\eta 1  - \eta 1)
e(C1 - C2)(x - C3t)(\eta 1+\eta 2)

\Biggr\} 
,

(13.16)

Q2(x, t) = - (C3  - C1)
\sqrt{} 

(C2  - C1)(C3  - C2)

D2(x, t)

(\eta 1 + \eta 2)(\eta 1 + \eta 2)\sqrt{} 
(\eta 1 + \eta 2)(\eta 1 + \eta 2)

\cdot \delta 2\delta 3e\eta 2(C1 - C2)(x - C3t)+\eta 2(C2 - C3)(x - C1t),

(13.17)

Q3(x, t) =
(C2  - C1)

\sqrt{} 
(C3  - C1)(C3  - C2)

D2( - x, - t)
\cdot (\eta 2 + \eta 1)\delta 3

\sqrt{} 
\eta 2  - \eta 2
\eta 2 + \eta 1

e\eta 2(C2 - C1)(x - C3t)

\cdot 
\Biggl\{ 
1 + \delta 2\delta 4

\sqrt{} 
(\eta 1 + \eta 2)(\eta 1  - \eta 1)

(\eta 1 + \eta 2)(\eta 2  - \eta 2)
e(C3 - C2)(x - C1t)(\eta 1+\eta 2)

\Biggr\} 

(13.18)
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THREE-WAVE INTERACTION EQUATIONS 4133

solve the real reverse space-time three-wave system (2.11), where D2(x, t) is shown as
follows:

D2(x, t) =

\Biggl[ 
1 - \delta 1\delta 3

\sqrt{} 
(\eta 1  - \eta 1)(\eta 2  - \eta 2)

(\eta 1 + \eta 2)(\eta 2 + \eta 1)
e(C1 - C2)(x - C3t)(\eta 1+\eta 2)

\Biggr] 

\cdot 
\Biggl[ 
1 + \delta 2\delta 4

\sqrt{} 
(\eta 2  - \eta 2)(\eta 1  - \eta 1)

(\eta 2 + \eta 1)(\eta 1 + \eta 2)
e(C2 - C3)(x - C1t)(\eta 1+\eta 2)

\Biggr] 

 - \delta 1\delta 2\delta 3\delta 4
(\eta 1 + \eta 2)(\eta 1 + \eta 2)

(\eta 1 + \eta 2)(\eta 1 + \eta 2)
\cdot e(C2 - C3)(x - C1t)(\eta 1+\eta 2)+(C1 - C2)(x - C3t)(\eta 1+\eta 2).

Remark 13.6. If \delta 1\delta 3 = - 1 and \delta 2\delta 4 = 1, then these three envelopes are regular.

Similarly, when \varepsilon 1 = - 1 and \varepsilon 3 = 1, we deduce that

Q1(x, t) =
(C2  - C3)

\sqrt{} 
(C2  - C1)(C3  - C1)

D2(x, t)
\cdot (\eta 1 + \eta 2) \cdot \delta 4

\sqrt{} 
\eta 1  - \eta 1
\eta 1 + \eta 2

e\eta 1(C2 - C3)(x - C1t)

\cdot 
\Biggl\{ 
1 + \delta 1\delta 3

\sqrt{} 
(\eta 2 + \eta 1)(\eta 2  - \eta 2)

(\eta 1 + \eta 2)(\eta 1  - \eta 1)
e(C1 - C2)(x - C3t)(\eta 1+\eta 2)

\Biggr\} 
,

(13.19)

Q2(x, t) = - (C3  - C1)
\sqrt{} 
(C2  - C1)(C3  - C2)

D2(x, t)

(\eta 1 + \eta 2)(\eta 1 + \eta 2)\sqrt{} 
(\eta 1 + \eta 2)(\eta 1 + \eta 2)

\delta 2\delta 3e
\eta 2(C1 - C2)(x - C3t)+\eta 2(C2 - C3)(x - C1t),

(13.20)

Q3(x, t) =
(C2  - C1)

\sqrt{} 
(C3  - C1)(C3  - C2)

D2( - x, - t)
\cdot (\eta 2 + \eta 1)\delta 3

\sqrt{} 
\eta 2  - \eta 2
\eta 2 + \eta 1

e\eta 2(C2 - C1)(x - C3t)

\cdot 
\Biggl\{ 
1 + \delta 2\delta 4

\sqrt{} 
(\eta 1 + \eta 2)(\eta 1  - \eta 1)

(\eta 1 + \eta 2)(\eta 2  - \eta 2)
e(C3 - C2)(x - C1t)(\eta 1+\eta 2)

\Biggr\} 

(13.21)

also solve the real nonlocal three-wave interaction system (2.11), where \eta 1 < \eta 1,
\eta 2 < \eta 2, and

D2(x, t) =

\Biggl[ 
1 + \delta 1\delta 3

\sqrt{} 
(\eta 1  - \eta 1)(\eta 2  - \eta 2)

(\eta 1 + \eta 2)(\eta 2 + \eta 1)
e(C1 - C2)(x - C3t)(\eta 1+\eta 2)

\Biggr] 

\cdot 
\Biggl[ 
1 - \delta 2\delta 4

\sqrt{} 
(\eta 2  - \eta 2)(\eta 1  - \eta 1)

(\eta 2 + \eta 1)(\eta 1 + \eta 2)
e(C2 - C3)(x - C1t)(\eta 1+\eta 2)

\Biggr] 

 - \delta 1\delta 2\delta 3\delta 4
(\eta 1 + \eta 2)(\eta 1 + \eta 2)

(\eta 1 + \eta 2)(\eta 1 + \eta 2)
\cdot e(C2 - C3)(x - C1t)(\eta 1+\eta 2)+(C1 - C2)(x - C3t)(\eta 1+\eta 2).

Remark 13.7. If \delta 1\delta 3 = 1 and \delta 2\delta 4 = - 1, then the three waves do not blow up.

Remark 13.8. The system (2.11) implies that the corresponding solution set
\{ Q1,Q2,Q3\} must be real-valued. Obviously, our solutions are consistent with the
reality of (2.11).

The inverse problem shows that the minimal data for reconstructing 1-0-1 soliton
solutions contain the following eight quantities: four eigenvalues \eta 1, \eta 2, \eta 1, \eta 2 and
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Fig. 5. (a) Q1(x, t) (red), Q2(x, t) (yellow), and Q3(x, t) (blue) at t1 = - 10. (b) Q1(x, t) (red),
Q2(x, t) (yellow), and Q3(x, t) (blue) at t2 = 0. (c) Q1(x, t) (red), Q2(x, t) (yellow), and Q3(x, t)
(blue) at t3 = 10. Here, \varepsilon 1 = 1, \varepsilon 2 = \varepsilon 3 =  - 1, C1 = 1, C2 = 2, C3 = 3, \delta 1 =  - 1, \delta 2 = \delta 3 = \delta 4 = 1,
\eta 1 = \eta 2 = 2, \eta 1 = \eta 2 = 1.
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Fig. 6. (a) Q1(x, t) (red), Q2(x, t) (yellow), and Q3(x, t) (blue) at t1 = - 10. (b) Q1(x, t) (red),
Q2(x, t) (yellow), and Q3(x, t) (blue) at t2 = 0. (c) Q1(x, t) (red), Q2(x, t) (yellow), and Q3(x, t)
(blue) at t3 = 10. Here, \varepsilon 1 = \varepsilon 2 =  - 1, \varepsilon 3 = 1, C1 = 1, C2 = 2, C3 = 3, \delta 1 = \delta 2 = \delta 3 = 1, \delta 4 =  - 1,
\eta 1 = \eta 2 = 1, \eta 1 = \eta 2 = 2.

four units \delta 1, \delta 2, \delta 3, \delta 4. The reason is similar to that in the complex reverse space-
time three-wave system. Indeed, (9.12)--(9.13) imply that the reduced normalization
coefficients cj only depend on four eigenvalues and \delta j , where \delta 

2
j = 1, j = 1,2,3,4.

We express the above as a theorem.

Theorem 13.9. Given the minimal data \eta 1, \eta 2, \eta 1, \eta 2 and \delta 1, \delta 2, \delta 3, \delta 4,
then the real reverse space-time three-wave system admits a unique soliton solution
\{ Q1,Q2,Q3\} given by (13.16)--(13.18) and (13.19)--(13.21) until possibly blow up. In
particular, if \delta 1\delta 3 = 1 and \delta 2\delta 4 = - 1, then \{ Q1,Q2,Q3\} is a global solution.

We plot the interactions of Q1, Q2, and Q3 below for the real reverse space-
time three-wave system. Figure 5 is a typical example, where \varepsilon 1 = 1 and \varepsilon 3 =  - 1.
Figures 5(a)--(c) describe the traveling of three envelopes at t1 =  - 10, t2 = 0, and
t3 = 10, respectively. At t1 = - 10, Q3 is to the left of Q1 (both are elevation waves),
the amplitude (magnitude) of Q3 is greater than Q1, and Q2 is small. Later, at t2 = 0,
these three waves are interacting. Specifically, Q2 is found to be negative (recall that
the values Qj are real); Q1 is symmetric about (0,0) (positive for x > 0) and Q3 is
still positive, where Q2 and Q3 are even functions. At t3 = 10, Q2 decays back to be
small, Q3 always remains positive, and at this point, Q1 is a depression wave and is to
the left of Q3. However, their magnitudes are unchanged. In Figure 6, we find similar
phenomena for \varepsilon 1 =  - 1 and \varepsilon 3 = 1. In conclusion, the one with bigger amplitude is
an elevation wave from initial time to final time, but a polarity shift occurs for the
other one.

14. Connection with physical models. Equations that are ``close"" to phys-
ical equations such as those presented in this paper are often related to physically
significant systems. Thus, it is natural to ask if the nonlocal reductions of the sixth

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THREE-WAVE INTERACTION EQUATIONS 4135

order wave system (2.3) can be related to equations arising from a physical model.
In [9], it was shown that the coupled second order ``q, r"" system derived in [1] arises
from an asymptotic reduction of the nonlinear Klein--Gordon, KdV, and water wave
equations. In turn, this implies that the classical NLS equation and the nonlocal
PT symmetric and the nonlocal reverse space time NLS equations are all asymptotic
reductions of these physical systems since the ``q , r"" system contains the classical and
nonlocal reductions [6, 8]. The reduction to the q, r system is, in general, complex. We
find the same here. Complex equations are common in the field of integrable systems,
e.g., Painlev\'e equations, self-dual Yang--Mills, self-dual reductions of Einstein's equa-
tions, such as those contained in Bianchi IX cosmological models (see, e.g., [4, 34]) and
water waves (see, e.g., [33]). The three-wave equations discussed in this paper are dif-
ferent from NLS-type systems in that they are quadratically nonlinear and are derived
from evolution equations with linear dispersion relations that admit three-wave/triad
resonance. As discussed in the introduction, triad resonance occurs widely in physical
applications, e.g., in water waves, plasma physics, and nonlinear optics. Motivated by
water/ocean wave phenomena, a simple model was introduced in [22] that illustrates
the underlying three-wave resonant mechanisms. We consider the following nonlinear
partial differential equation which apart from a sign is the one discussed in [22]:

\partial 2t u - \partial 2xu+ \partial 4xu+ u+ \epsilon \sigma u2 = 0, 0< \epsilon \ll 1,(14.1)

where \sigma is constant. This equation is motivated by the study of water waves with
surface tension (see [10, 22]). We remark that water waves without surface tension
do not exhibit triad resonance. Below we show that the sixth order wave system (2.3)
is an asymptotic reduction of (14.1). As mentioned in the introduction, in a separate
paper we show that the sixth order wave system (2.3) can be derived from the classical
water/gravity wave equations with surface tension [11].

The linear part of this equation (\sigma = 0) has waves of the form eikx - \omega (k)t, where
\omega (k) the dispersion relation is given by \omega (k)2 = 1+ k2 + k4.

We need to establish that this dispersion relation has triad resonance, which we
will take to be of the form

k3 = k1 + k2, \omega 3 = \omega 1 + \omega 2, where \omega j = \omega (kj),

with associated group velocities Cj = \omega \prime (kj), j = 1,2,3.
As an example, suppose we take k2 = 1, \omega 2 =

\surd 
3; then k3 = 1+k1, \omega 3 = \omega (1+k1)

solving for k1 from the triad equation \omega 3 = \omega 1+\omega 2 yields
\sqrt{} 

1 + (1 + k1)2 + (1+ k1)4 =\sqrt{} 
1 + k21 + k41+

\surd 
3. Numerically, we find a solution k1 \approx 0.497: hence k3 \approx 1.497, and

so k1 < k2 < k3; we also find \omega 1 \approx 1.143 < \omega 2 < \omega 3 \approx 2.875 and C1 \approx 0.649 < C2 =\surd 
3<C3 \approx 2.854.
Similar arguments and numerical computations show that by varying k2 there is

a broad range of such solutions for k1, k2. Therefore, we have shown that (14.1) has
triad resonance.

Next we show how to obtain equations governing three-wave resonance. We in-
troduce multiple scales X = \epsilon x,T = \epsilon t so that \partial t \rightarrow \partial t + \epsilon \partial T , \partial x \rightarrow \partial x + \epsilon \partial X . Hence,
(14.1) takes the form ((\partial t + \epsilon \partial T )

2  - (\partial x + \epsilon \partial X)2 + (\partial x + \epsilon \partial X)4 + 1)u + \epsilon \sigma u2 = 0.
Expanding u= u0 + \epsilon u1 + \cdot \cdot \cdot yields the following for the first two orders in \epsilon :

Lu0 = (\partial 2t  - \partial 2x + \partial 4x + 1)u0 = 0, Lu1 = - 2
\bigl( 
\partial t\partial T  - \partial x\partial X + 2\partial 3x\partial X

\bigr) 
u0  - \sigma u20.

(14.2)
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4136 M. J. ABLOWITZ, X.-D. LUO, AND Z. H. MUSSLIMANI

We take as our solution of the leading order equation

u0 \sim 
3\sum 

j=1

(Aj(X,T )e
i\theta j +Bj(X,T )e

 - i\theta j ),

where \theta j = kjx - \omega jt.
Since in general Bj(X,T ) \not = Aj(X,T ), the solution can be complex. When we

proceed to the next order and remove secular terms, we find

i\omega 1(\partial TA1 +C1\partial XA1) + \sigma B2A3 = 0, i\omega 1(\partial TB1 +C1\partial XB1) - \sigma A2B3 = 0,

i\omega 2(\partial TA2 +C2\partial XA2) + \sigma B1A3 = 0, i\omega 2(\partial TB2 +C2\partial XB2) - \sigma A1B3 = 0,

i\omega 3(\partial TA3 +C3\partial XA3) + \sigma A1A2 = 0, i\omega 3(\partial TB3 +C3\partial XB3) - \sigma B1B2 = 0.(14.3)

The usual three-wave equations are obtained when we assumeBj(X,T ) =A\ast 
j (X,T ), j =

1,2,3, where \ast stands for complex conjugate. But here we allow Bj(X,T ), j = 1,2,3,
to be free; so the solution is, in general, complex.

We rescale the equations by taking \~Aj = \gamma jAj , \~Bj = \gamma jBj , j = 1,2,3; introducing

another parameter \chi j , j = 1,2,3, leads to \gamma 2j =  - i(\gamma 1\gamma 2\gamma 3)\omega j\chi j

\sigma 
=  - \sigma 2\omega j\chi j

\omega 1\omega 2\omega 3\chi 1\chi 2\chi 3
, j =

1,2,3, since \gamma 1\gamma 2\gamma 3 =
\sigma 3

i\omega 1\omega 2\omega 3\chi 1\chi 2\chi 3
.

Dropping the tilde: \sim yields the following A,B system of equations

\partial TA1 +C1\partial XA1  - \chi 1B2A3 = 0, \partial TB1 +C1\partial XB1 + \chi 1A2B3 = 0,

\partial TA2 +C2\partial XA2  - \chi 2B1A3 = 0, \partial TB2 +C2\partial XB2 + \chi 2A1B3 = 0,

\partial TA3 +C3\partial XA3  - \chi 3A1A2 = 0, \partial TB3 +C3\partial XB3 + \chi 3B1B2 = 0.(14.4)

Next, consider the sixth order wave system (2.3) and identify the following compo-
nents: A1 = N32, A2 = N13, A3 = N12, B1 = N23, B2 = N31, B3 = N21. Comparing
the A,B equations (14.4) with the wave system (2.3), we identify C1 =  - \alpha 23, C2 =
 - \alpha 13, C3 =  - \alpha 21 and \chi 1 = C3  - C2, \chi 2 = C1  - C3, \chi 3 = C1  - C2. We also remark
that for the compatibility of the above system, we require \chi 3 = \chi 1 + \chi 2.

Therefore, the A,B system is equivalent to the sixth order wave system (2.3).
Moreover, since this sixth order wave system has reductions to the classical three-wave
equations and the nonlocal complex and real three-wave systems, we have established
that these nonlocal reductions are asymptotic limits of the original nonlinear PDE
(14.1).

15. Conclusion. Three-wave interaction equations are extremely important non-
linear wave systems; they arise in many physical problems. In this paper, the classical
three-wave and two nonlocal three-wave systems: complex reverse space-time and real
reverse space-time equations, are investigated in detail. It is shown how to derive these
systems from 3\times 3 linear compatible systems. The inverse scattering transform with
rapidly decaying data is employed to analyze these systems. The direct and inverse
problems are carefully analyzed. Considering the behavior at plus and minus infinity
of the six possible scattering eigenfunctions in the direct problem, four are shown to
be analytic in the upper/lower half planes. The adjoint eigenvalue problem is used
to find the remaining two analytic eigenfunctions. Bound states and symmetry rela-
tions are then found. The inverse problem is developed via Riemann--Hilbert (RH)
methods, and the scattering data is connected to the initial values for data decaying
sufficiently fast; to our knowledge, even for the classical three-wave system, this has
not been done before. Formulae to reconstruct the potentials, trace formulae, and
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minimal data are obtained for the general case and for the reductions to the clas-
sical, complex and real reverse space-time three-wave interaction systems. Explicit
reflectionless potentials/soliton solutions are also found; figures describing various
typical interactions and energy sharing are provided as illustrations. In the direct
and inverse scattering analysis, as compared with the classical three-wave interaction
system, there are numerous differences and new features associated with the nonlo-
cal three-wave interaction equations. Finally, we showed that the underlying sixth
order compatible system and its reductions to the classical and nonlocal three-wave
equations are asymptotic reductions of a nonlinear PDE that is motivated by physical
applications and exhibits triad/three-wave resonance.

16. Appendix. Suppose

v(x,k) = - \widetilde D \cdot (uad(x,k)\times wad(x,k)) \cdot eikdx

is a solution of (3.2), where \widetilde D=diag( \widetilde d1, \widetilde d2, \widetilde d3), u(x,k) = (u1(x,k), u2(x,k), u3(x,k))
T ,

and w(x,k) = (w1(x,k),w2(x,k),w3(x,k))
T . Our aim is to determine \widetilde D. By direct

computation, we have

vx = - \widetilde D[(uad \times wad)x \cdot eikdx + ikd(uad \times wad) \cdot eikdx]
= eikdx \cdot \widetilde D\{ [(ikD+NT )uad]\times wad + uad \times [(ikD+NT )wad] - ikd(uad \times wad)\} 
= eikdx \cdot (\widetilde d1[N12(w

ad
3 uad1  - uad3 w

ad
1 ) +N13(w

ad
1 uad2  - uad1 w

ad
2 )

 - ikd1(w
ad
3 uad2  - uad3 w

ad
2 )],

\widetilde d2[N23(w
ad
1 uad2  - uad1 w

ad
2 ) +N21(w

ad
2 uad3  - uad2 w

ad
3 ) - ikd2(w

ad
1 uad3  - uad1 w

ad
3 )],

\widetilde d3[N31(w
ad
2 uad3  - uad2 w

ad
3 ) +N32(w

ad
3 uad1  - uad3 w

ad
1 ) - ikd3(w

ad
2 uad1  - uad2 w

ad
1 )])T ,

(ikD+N)v= - eikdx \cdot (ikD+N) \widetilde D(uad \times wad)

= eikdx \cdot (\widetilde d2N12(w
ad
3 uad1  - uad3 w

ad
1 ) + \widetilde d3N13(w

ad
1 uad2  - uad1 w

ad
2 )

 - ikd1 \widetilde d1(wad
3 uad2  - uad3 w

ad
2 ),

\widetilde d3N23(w
ad
1 uad2  - uad1 w

ad
2 ) + \widetilde d1N21(w

ad
2 uad3  - uad2 w

ad
3 ) - ikd2 \widetilde d2(wad

1 uad3  - uad1 w
ad
3 ),

\widetilde d1N31(w
ad
2 uad3  - uad2 w

ad
3 ) + \widetilde d2N32(w

ad
3 uad1  - uad3 w

ad
1 ) - ikd3 \widetilde d3(wad

2 uad1  - uad2 w
ad
1 ))T .

vx = (ikD + N)v yields \widetilde d1 = \widetilde d2 = \widetilde d3. Without loss of generality, we choose may
\widetilde d1 = \widetilde d2 = \widetilde d3 = - 1, and thus v(x,k) = eikdx(uad(x,k)\times wad(x,k)) solves for (3.2).
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