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Abstract. A discussion of three-wave interaction systems with rapidly decaying data is pro-
vided. Included are the classical and two nonlocal three-wave interaction systems. These three-wave
equations are formulated from underlying compatible linear systems and are connected to a third
order linear scattering problem. The inverse scattering transform (IST) is carried out in detail for
all these three-wave interaction equations. This entails obtaining and analyzing the direct scattering
problem, discrete eigenvalues, symmetries, the inverse scattering problem via Riemann-Hilbert meth-
ods, minimal scattering data, and time dependence. In addition, soliton solutions illustrating energy
sharing mechanisms are also discussed. A crucial step in the analysis is the use of adjoint eigen-
functions which connects the third order scattering problem to key eigenfunctions that are analytic
in the upper/lower half planes. The general compatible nonlinear wave system and its classical and
nonlocal three-wave reductions are asymptotic limits of physically significant nonlinear equations,
including water/gravity waves with surface tension.
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1. Introduction. Three-wave interaction equations are fundamental nonlinear
wave systems. In 1967, Benney and Newell [19] showed that the three-wave interaction
equations arise whenever an underlying nonlinear dispersive equation has three wave
packets of the form

3
3 Qi t)eith T 4 e e,
j=1

(c.c. stands for complex conjugate), where the three wave amplitudes @Q;(x,t) are
associated with wavenumbers k; and frequencies w; := w(k;) satisfying the following
relations:

k1 +ko+k3=0 and wy+ws+w3=0.

One finds from multiscale perturbation methods that the slowly varying envelope
functions Q;(x,t) satisfy the one space-one time three-wave equations in (1.3) below,
where Cj =w'(k;j), j =1,2,3, are the group velocities of each packet. We also remark
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that there is an extension to a two space-one time system, where in this system C;0,
is replaced by C;- V. Such three-wave equations arise widely in applications including
water waves, internal waves, plasma physics, nonlinear optics, amongst many others;
cf. [12, 21, 24, 35, 37, 40]. We also note that four-wave interaction equations become
important if three-wave conditions are not satisfied; cf. [18, 19].

In 1965, the notion of solitons, i.e., the elastic interaction of solitary waves, was
uncovered from numerical simulations of the Korteweg—deVries (KdV) equation [44].
In 1967, the KdV equation subject to rapidly decaying initial data was solved by
inverse scattering methods [26]. This led to a linearization of the KdV equation and
the important connection between discrete eigenvalues and bound states of the linear
time independent Schrodinger equation and soliton solutions of the KdV equation.
The solutions of the KdV equation were investigated rigorously, in full detail, by
Deift and Trubowitz [25].

In 1972, Zakharov and Shabat [47] using methods introduced by Lax [32] found
that the ubiquitous nonlinear Schrodinger (NLS) equation was integrable via the
inverse scattering techniques. Afterwards, Ablowitz et al. [1] showed that the KdV,
NLS, sine-Gordon, and modified KdV equations were part of a class of such integrable
systems. Ablowitz et al. [1] termed this method the inverse scattering transform
(IST).

The scattering analysis associated with the above nonlinear equations involves a
linear second order system. Soon afterwards, higher order linear scattering equations
were shown to lead to solutions of physically interesting nonlinear equations, such as
the classical three-wave and the Boussinesq equations [2]. The IST for the classical one
dimensional three-wave equations was studied by Kaup and Zakharov & Manakov in
1976 [27, 46]. In 1979, Kaup, Reiman, and Bers reviewed the homogeneous three-wave
system in various aspects, including IST and numerical solutions [28]. Also in 1979,
Reiman discussed the integrability of the spatial nonhomogeneous-medium three-wave
interaction equations and IST methods to solve such systems [39]. The IST for the
systems in [28, 39] involve 3 x 3 scattering problems. Important analysis involving
N x N scattering problems and related nonlinear evolution equations was given in
[13, 14]. Subsequently, the field expanded rapidly and many nonlinear equations were
found and were amenable to IST methods. This includes PDEs in one space-one
time, two space-one time dimensions, discrete equations, singular integro-differential
equations, etc. IST methods associated with such equations have been discussed in
a number of textbooks; see, e.g., [3, 4, 5, 36]. Importantly, solutions to a number of
physically significant equations were found. These nonlinear equations were related
to a range of linear scattering problems.

In 2013, a new nonlocal reduction of the Ablowitz—Kaup—Newell-Segur (AKNS)
scattering problem was found [6], which gave rise to the following integrable nonlocal
NLS equation:

(1.1) iqe(z,t) = qua(x,t) — 20q2(x,t)q*(—x,t), oc=7F1,

where the asterisk is complex conjugate. The equation can alternatively be rewritten
as

(1.2) 1qe(x,t) = oo (2, t) + Vg, x, t]q(2, t), where Vg, x,t] = q(x,t)q" (—z,t) .

Equation (1.1) can be viewed as having a self-induced nonlinear “potential.” It
has the property of being a PT symmetric nonlinear equation. The linear counterpart
(with V' being an external potential) was introduced by Bender and Boettcher [17],
where the potential V' (x,t) has the so-called PT property: V(z,t) =V*(—x,t).
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In other words, one can view (1.1) as a linear Schrodinger equation with a self-
induced potential Vg, z,t] = —20q(z,t)q*(—x,t) satisfying the PT symmetry condi-
tion Vg, x,t] = V*[q, —x,t]. We refer to (1.1) as the PT NLS equation. Subsequently,
(1.2) was analyzed by the IST method in 2016 [7], and many new nonlocal equa-
tions were identified in 2017 [8]. Among the new equations, the nonlocal three-wave
equations in one space-one time and two space-one time dimensions were included.
Specifically, there are three versions of integrable three-wave equations in one space-
one time, including the classical three-wave system

(13) Ql,t(x7 t) + ClQl,z(x, t) = iElQTn(xa t)Q:;(l'7 t)7

the complex reverse space-time (RST) three-wave system

(14) Ql,t(z7 t) + ClQZJ(Iv t) = i(_l)l+1€lQ:<7L(_x7 _t)Q:L(_I’ _t)7

and the real reverse space-time (RST) three-wave system

(1'5) Ql,t(x7 t) + ClQl,m(xv t) = (_1)l+15lQm(_x7 _t)Qn(_x7 —t),

where 1 <I,m,n <3, [ #m #n. In 2019, it was shown how nonlocal NLS systems can
be derived from the nonlinear Klein-Gordon, KdV, and the water wave equations [9].
The issue discussed in detail here is the formulation and detailed study of the inverse
scattering transform associated with the one space-one time classical and nonlocal
three-wave equations with suitably decaying data. This includes the classical (1.3)
and two nonlocal three-wave systems: the complex and real reverse space-time three-
wave equations (1.4) and (1.5).

The outline of the paper is as follows. In section 2, we show that these three-
wave equations are connected with underlying the linear system as a third order scalar
equation. In section 3, for decaying data, suitable eigenfunctions are defined by their
boundary values as x — +00. As z — £00, two of the three eigenfunctions are analytic
in the upper half or lower half planes (UHP, LHP). Appropriate continuous scattering
data are defined in section 4. But in order to carry out the inverse scattering, key
information about the third eigenfunction is needed. In section 5, we employ adjoint
eigenfunctions which allow us to relate the third eigenfunction to the other two. This
method was employed first by Kaup in 1976 [27] and later extended in order to analyze
the coupled NLS systems by Prinari et al. in 2006 [38] and investigate the Manakov
system by Biondini et al. in 2015 (see [20, 31]).

Asymptotic information about the eigenfunctions that will be needed later is
covered in section 6. The time dependence of the data is found in section 7. Important
symmetries associated with the data are discussed in section 8, discrete eigenvalues
in section 9, and the trace formulae relating scattering data in section 10. The trace
formulae are needed in order to allow the inverse problem to be formulated in terms
of a minimal number of reflection coefficients and discrete data: eigenvalues and
appropriate normalization coefficients.

The inverse scattering leading to the linear integral equations for suitable eigen-
functions is developed via the Riemann-Hilbert (RH) technique in section 11; a
Gel'fand Levitan—-Marchenko approach was used in [27]. These RH equations are for-
mulated in terms of a set of “minimal” scattering data which consists of the needed
reflection coefficients, eigenvalues (poles of “transmission coefficients”), and “reduced”
normalization coefficients. In order to reconstruct the potentials, the minimal set of
data is required; this is discussed in section 12. We remark that use of the adjoint
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eigenfunctions admits a direct connection from the scattering data to the initial data
in much the same way as for second order systems, though more detailed. A special
class of soliton solutions that have nonzero waves @)1, Q3 with Q2 ~ 0 as t - —o0
or t — 400 (we refer to these as 1-0-1 solitons at large negative or positive time,
respectively) and their interaction properties are discussed in section 13. The soliton
solutions illustrate the energy sharing mechanisms in these three-wave systems. The
pure soliton case where there are multiple eigenvalues (multiple poles in the trans-
mission coefficients) for the classical three-wave interaction equation was studied in
[41, 42]. We note that the IST for the degenerate and nondegenerate 3 x 3 operators
was discussed in 2009 and 2010, respectively [29, 30].

In section 14, we show how the classical and nonlocal reductions and, more gen-
erally, the sixth order wave system derived in section 2 (see (2.3)) are asymptotic
reductions of a physically based nonlinear PDE. This nonlinear PDE is motivated
by water/ocean waves [22]; it exhibits triad resonance phenomena. Indeed, we have
recently shown that the sixth order wave system is an asymptotic reduction of the
classical water/gravity wave equations with surface tension. This is a more exten-
sive calculation which will appear separately [11]. Moreover, we carry out the IST
analysis for three systems: the classical three-wave, nonlocal complex, and nonlocal
real reverse space-time three-wave equations. We also remark that the scattering
data, symmetries, RH problems, solitons, and energy sharing results for the nonlocal
systems are different from the classical three-wave system. As such, there are many
important and novel aspects to the direct and inverse scattering associated with the
nonlocal three-wave systems discussed here. We note that the inverse scattering trans-
form based on the RH approach for the classical three-wave system was studied nicely
in [23]. The methods we use here, employing adjoint functions, was not used; we do
not assume disjoint conditions on the initial data.

2. Integrable three-wave interaction equations. We begin with the matrix
formulation v, = ikDv + Nv, vy = Qu, where v is a 3 X 1 matrix and D, N, @ are
3 x 3 matrices with D, N such that D = diag(d;,ds,ds), N; = 0. We will assume
dy > dy > d3. Cross differentiation requiring k; = 0 yields

(2.1) Q= Ni +ik[D,Q] + [N, Q),
where [A, B] := AB — BA. We expand @ as follows:
(2.2) Q=0QWk+Q.

We substitute (2.2) into (2.1), yielding at k?: Ql(;) = 015, where ¢, ¢2, and g3
are chosen as constants. At k, we have Ql(lo) =0 and Ql(?) = oy; Nij, | # j, where

RS Y Tl RN 0
1§ = g g=ds = - At k7, we have

3
(23) Nlj,t — alelj’m = Z (alm — Oémj>Nlmij.

m=1
Clearly, system (2.3) represents six coupled equations.

2.1. Classical three-wave system. Under the symmetry reduction Noj(z,t) =
o1 N5 (2, t), N3i(x,t) = 09 N75(x,t), Naa(z,t) = 03N353(x,t), where x is the complex
conjugate and assuming ay;, 01, 02, and o3 are real, we have % = —1. Without
loss of generality, we may assume that 0]2- =1 (j =1,2,3). Equation (2.3) may be
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transformed into the classical three-wave interaction equations by a suitable scaling
of variables [3]. For example, we find the system

(24) Ql,t(xat) + OlQl,m(Iat) = ielQ:(n(Iﬂt)Q;kL(Ivt)a
1<i,m,n <3, l #m#n, if we take
iQ3 Q2 iQ1

N3 =— Nog = —

Nip——
(2.5) 2 VPBi3P2s’ VPBi2P2s’ VPBi2bis’

N13=—€1€3N§1($,t), N32:82€3N;3($,t), N21 :€1€2Nf2(.73,t),

where di = —C1, dy = —C5, d3 = —Cj, ﬂlj =d; — dj =-C;+ Cj, q = —1CyC3,
g2 = —1C1Cs, g3 = —iC1Cs, aig = —C3, a3 = —Cs, a3 = —C1,01 =€1€2, 02 = —€1€3,
03 = €3€3, € = 1, 16263 = —1. The so-called decay instability case with positive
definite energy occurs when one chooses one of the €; different in sign from the others;
the explosive instability case is when 1 = 9 = ¢35 = —1. Here, decay instability is
the result of three-wave interactions that exist globally, while the explosive instability
refers to the finite-time blow up [45]. Directly from the equations, we can derive the
conserved quantities:

(2.6) En /OO Qm(z,t)Qr (x,t)dr — &, /OO Qn(x,t)Qr (z,t)dx = constant

forall 1<m<n<3.

2.2. Complex reverse space-time three-wave system. Under the symme-
try reduction Noj(z,t) = o1 Niy(—x,—t), Nai(x,t) = 02N;5(—x,—t), Na2(x,t) =
o3 Ny3(—x, —t) with oy, 01, 02,03 chosen as real numbers, we have ”(17—‘;3 =1. Without
loss of generality, we may assume that 0’? =1 (j =1,2,3). Equation (2.3) can be
put into a set of nonlocal three-wave interaction equations by a suitable scaling of
variables. For example, we find the system

(2.7) Qri(x,t) +C1Qp o (1) =i(—=1)"g,Qf, (—x, —t) Q) (—x, —t)
for 1<l,m,n<3, l#m#n, if we take
P S VN 1 B N A L) U

(2.8) VP13Bas’ VBi2B23’ VBi2Bis’

N13:€183N§1(—:L‘7—t), N32 25253N53(—$,—t), N21 25152Nf2(—$, —t),
where

(2.9)
di=-C1, do=-C3 d3=-C3, pij:=d —d;j=-C+Cj,
g1 =—102Cs, go = —iC1Cs, g3 =—iC1Cs, oz =—Cs, a3 =—Cy, agz=—Cl,

01 =¢€1€2, O2=¢1€3, O3=¢E28e3, €;==1, e1e2e3=1
Directly from the equations, one derives the conserved quantities: for 1 <m <n <3,
(2.10)
o0 oo
5n/ Qum(z,)QF (—z, —t)dx + (—1)""™F g, / Qn(z,t)Qr (—x, —t)dx = constant.
— 0 —oo
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2.3. Real reverse space-time three-wave system. This case occurs under
the symmetry reduction Noj(x,t) = 01 N1a(—x,—t), N3i(x,t) = oo N13(—x,—t), and
Nso(x,t) = 03Naz(—x,—t), where o1, 09, o3 are real and 2% = 1. Without loss of
generality, we may assume that 0']2- =1 (j =1,2,3). Equation (2.3) can be put into
a set of nonlocal three-wave interaction equations by a suitable scaling of variables.
We find the system

(211) Ql,t(zvt) + ClQl,.’c(xvt) = (71)l+1€lQm(7‘ra 7t)Qn(7I7 7t)

for 1 <Il,m,n <3, l#£m+#n, if we take

Niz = 7&3 N1 =——F———=, Nyy=——F—=,
(2.12) VB13523 VB1223 VB12P13

Nig=¢e1e3N31(—x,—t), Nzo=e2e3Na3(—x,—t), Noy=e169N1o(—z,—1),

Q2 Q1

where the parameters chosen are the same as (2.9).
Remark 2.1. Equation (2.11) implies that there exist real-valued solutions.

Directly from the equations, the conserved quantities are the same as (2.10), but
the envelopes ); here are real, 7 = 1,2,3. Note that @); are real, j = 1,2,3, and
thus (2.12) implies that Nj; are also real, where | # j. Therefore, the real reverse
space-time three-wave equations admit additional symmetry reduction:

(213) N13:€1€3N§1(7$,7t), N32:€2€3N;3(7I, 715), N21 18162]\/?2(758, 715).

It means that the real nonlocal system (2.11) owns the symmetry properties
which the complex reverse space-time three-wave system has. In addition, the real
case possesses its peculiar symmetries.

3. Direct scattering: Eigenfunctions. We refer to solutions of the scattering
problem

V1 ’Lkdl ng(fﬂ) ng(fE) U1
(31) V2 = Ngl(x) deg N23($) (%]
V3 Ngl(l‘) N32(a'3) deg VU3

€T

as eigenfunctions with respect to the parameter k. As mentioned above, we assume
dy > dg > d3. The scattering problem (3.1) can be rewritten as

(3.2) vy =ikDv + Nv = (ikD + N)v,

where D = diag(di,ds,ds) and N(z) = (IV;;(2))1<i,j<3 with Ny () = 0. When the
potentials Niya(x), Ni3(x), Nag(x) — 0 rapidly as 2 — +oo, then the eigenfunctions
are asymptotic to the solutions of

(’Ul (%) U3)f = diag(ikdl,ikd27 ’Lk‘dg) (’U1 Vo ’Ug)T
when |x| is sufficiently large, where the superscript T denotes a matrix transpose.
Therefore, it is natural to introduce the eigenfunctions defined by the following bound-

ary conditions: As x — —oo, they satisfy

(3.3) ¢1(x,k)~(100)T e go(x,k) ~ (010)T e 2" (2, k) ~ (001)T s,
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whereas in the limit x — +o0, they obey
(3:4) i(w, k)~ (L00)Te™ e, gho(a,k) ~ (010)T €™, yy(z, k) ~ (00 1) e,

In the following analysis, it is convenient to consider functions with constant bound-
ary conditions. Therefore, we define modified eigenfunctions as follows: M;(z,k) =
¢;(z,k)e”*4i% and N;(z,k) = ;(z,k)e*4® j =1,2,3. Then the Jost functions
M;(z,k) and N;(x,k) are the solutions of the differential equations

(3-5) Xja (@, k) —ik(D — d;I)x; (2, k) = (Nx;) (2, k),

where the potential N(z) = (N;;())1<i, <3 with N;;(x) =0 and j =1,2,3. Solutions
of the differential equations (3.5) can be represented by means of the following integral
equations:

+oo
(3.6) xj(z, k) =w; + Gj(x —a' k) (Nx;) (2’ k)da', where

wi =100, we=(0107, wy=(001)".
The Green’s function G(x, k) satisfies the differential equation
10,Gj(z, k) —ik(D —d;I)G,(x, k) =d(x)1.
Using Fourier transforms, we obtain
GT (x,k) = T0(Fw) diag(1, ez ¢h(ds=dr),
G?ﬂf(x, k) = +£6(%x) diag(eik(dl_d3)x, eih(d2—ds)z 1),
where 6(z) is the Heaviside function, i.e., 8(z) =1 if z > 0 and 6(z) = 0 if z < 0,

and the “+” function is analytic in the upper (lower) half k-plane, respectively. The
eigenfunctions can be represented by means of the following integral equations:

+oo

(3.7) M;(z,k)=w; + GF(x —a' k)(NM;) (', k)dz', j=1,3,
+oo

Nj(z, k) =w; + G¥(x—2 k)(NN;)(2' k)da!, j=1,3.

We remark that the Green’s function G7 (G5 ) is associated with the integral equation
of My(Ms3). Similarly, N7(N3) corresponds to G7 (G3).

DEFINITION 3.1. We say f € L*(R) if fj;: |f(z)|dx < oo. In addition, a matriz
N € LY(R) if each entry of N belongs to L*(R).
Then we have the following result.

THEOREM 3.2. If N(x) € L'(R), then for each x € R, M3(x,k) and Ny(x,k) are
analytic for Sk >0 and continuous for Ik >0 and My (z,k) and N3(z,k) are analytic
for Sk <0 and continuous for Sk < 0.
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Proof. We prove the result for M3(x,k). The proofs are analogous for Ny (z, k),
M (z, k), and N3 (2, k). We consider the Neumann series M3 (x, k) = > 07 My, (x, k),
where My (2, k) = ws, Mani1y(z. k) = [* GF(x — 2’ k)(NMs(n))(2', k)da', is for-
mally a solution of the integral equation (3.7) for j = 3. Since all the entries of N
belong to L'(R), using the identities

L[ f(f)l[ / 5 f(&’)ldf’rdf=l[ | |f<s>|dsr“,

and dy > ds > d3, we obtain that the Neumann series is uniformly convergent for
Sk > 0, which implies that Ms(z, k) is analytic for Sk > 0 and continuous for
Sk > 0. a0

4. Continuous scattering data. The Wronskian of a set {u,us,uz} of solu-
tion of the scattering problem (3.1) is defined as W (uq,us,uz) = det(uy,us,ug), and
it satisfies the equation 0, W (uq,uq,us) = ikdW (u1,us,us), where d :=dy + da + ds.

With the Wronskian, we find that the two matrices ®(x,k) = (41,2, ¢3) and
U(z, k) = (11,12,13), each contains a set of three linearly independent solutions of
the scattering problem (3.1). Therefore, we can write ¢1(x, k), ¢d2(x, k), and ¢3(x, k)
as linear combinations of ¥ (x,k), ¥a(x, k), and ¥s(x,k), or vice versa. Hence, the
relations

(4.1) ®(z, k) =V (z, k) AT (k),
(4.2) U (z, k) = ®(x, k)BT (k)

hold for any k such that all eigenfunctions exist, where A(k) := (a;;) is referred to
as the 3 x 3 scattering matrix and B(k) = (bj;) = A~'(k); a;;(k) is the scattering
data. We call (4.1) the left scattering problem and (4.2) the right scattering problem.
Moreover,

3 3
(4.3) > b =015, Y bimam; =0
m=1 m=1

and det(A) =det(B)=1. Then we have the following theorem.

THEOREM 4.1. If N(z) € L*(R), then ass(k), bi1(k) are analytic for Ik >0 and
continuous for k>0, and aq1(k), bss(k) are analytic for Sk <0 and continuous for
Sk <0.

Proof. We prove the result for a1 (k). The proofs are analogous for ass(k), b11(k),
and bgg(k) Since d)l (:IJ, k) = an(k)wl (1‘, k) + a12(k)w2 (I, k) + (113(k)w3(l’, k), we have
a relation amongst their first component, i.e.,

01 (2. k) = ann (k)i (2, k) + ara (k)" (@, k) + asa (k)5 (@, k).
Letting « — +00, by (3.4), we obtain

all(k):mgrfooqb(ll)(m,k)e’ikd”: lim MM (2, k).

r—+o0
We deduce from Theorem 3.2 that M;(x,k) is analytic for Sk < 0 and continuous for
Sk <0, which yields that a11(k) is analytic for Sk < 0 and continuous for Sk <0 0O

Remark 4.2. In general, the entries a;;(k),b;;(k), ¢ # j, cannot be extended off
the real axis. If N(z) is in Schwartz class, then a;;(k),b;;(k) are in Schwartz class as
well for all 4, j; cf. [13, 14, 15].
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5. Adjoint problem and auxiliary eigenfunctions. In order to formulate
and solve the inverse scattering problem, we need two independent sets of analytic
eigenfunctions. The main issue at this stage is eliminating the nonanalytic eigenfunc-
tions ¢o and 5. The key idea is to consider a related eigenvalue problem, which we
will refer to as an adjoint eigenvalue problem:

(5.1) v2% = —(ikD + NT)v*?,

where T is a matrix transpose. Then recall a well-known fact (see [16]) that if u®?(z, k)
and w*(z,k) are two arbitrary solutions of (5.1), we have that

(5.2) v(x, k) = e® (2, k) x w*(x, k)

satisfies (3.2). Conversely, if u(x,k) and w(z, k) are two arbitrary solutions of (3.2),
then

(5.3) vz, k) = e F (y(x, k) x w(x, k))

solves (5.1), where x denotes the cross product, and we recall that d = dy + da + d3.
Details underlying (5.2)—(5.3) are discussed in the appendix.

In order to uniquely define the adjoint eigenfunctions ¢2(x,k) and %% (z, k),
where n=1,2,3, we impose the following boundary conditions:

—lde.L

(5.4) ¢;d(x,k) ~ yjwie” *hT a1 — —oo0; w;d(:mk:) ~yjwje asx — +00

for j =1,2,3, where v; will be given for the case of the classical and two nonlocal
systems, respectively, in section 8. We define the bounded adjoint eigenfunctions as
follows: M;d(x,k) = (b?-d(x,k)eik’djm and Nfd(x, k) = w;d(x,k)eikdjz, j=1,2,3. The
analytic properties of the adjoint eigenfunctions are the opposite of the original ones.
So we have the following theorem.

THEOREM 5.1. If N(x) € L(R), then for each v € R, M§¥(x, k) and N{%(x, k)
are analytic for Sk <0 and continuous for Ik <0 and M{4(x,k) and N (z,k) are
analytic for Sk >0 and continuous for Sk > 0.

Similarly, ¢%(z, k), ¢§%(x, k), and $3%(z, k) can be written as linear combinations
of Y§(z, k), ¥$%(z,k), and ¥3%(x, k), or vice versa. Thus, we have

(5.5) (2, k) =0z, k)BT (k), Wz, k) =0z, k)AT (k),

where @ = ( %da gd’ gd)v pod = ( %degdv gd)’ A= (ai;), and B= (glj) =A%
Applying (5.2), we introduce eigenfunctions 7(z, k) and 7(x, k), which are defined by

(5.6)  7(x, k) =" (1% (a, k) x Y59 (a. k), T(w, k) =™ (g5 (x, k) x 0 (a, k).
Taking into account boundary conditions, for cyclic indices j,1,m, we obtain
(5.7) (. k) = €™ (G (w, k) < ¢, k), g (. ) = e (47 (. k) x ! (, K)),

(5.8)
054w, k) = e * @y (w, k) X b (w,K)), 7w, k) = e F (i (2, k) X oy (, K)).
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Combining (4.1), (4.2), (5.5), and (5.7)—(5.8), we deduce

(5.9) AT(k)zA(k), BT (k) = B(k),
(5.10) ie., ¢z Zblﬂ/) V34 (z, k) Zaqubl .

Substituting (5.5), (5.9) into (5.6), it follows that

(5.11)

7(x,k) = ba1 (k)1 (2, k) — b (k)Ya(z, k), T(2,k) = b3z (k)vo(x, k) — bas (k)3 (z, k).
One also has
(5.12)

7(z, k) = a3 (k)3 (w, k) — azz(k)p2(z, k), T(x,k)=a11(k)p2(z, k) — az1(k)oi(z, k).

Moreover, (5.6) implies the corresponding bounded eigenfunctions, which can be de-
fined by

(5.13) x(z, k) = e 422 by (k) (x, k) — by1 (k)a(x, k),
(5.14) X(z, k) = e~ R8T (hag (k)ahy (2, k) — bas (k)aps (2, k)).
Similarly,

(5.15) X(@, k) = e " (ags (k) s (x, k) — ass(k)d2(x, k),
(5.16) X(@, k) = e~ (ay (k) da(w, k) — az (k)¢ (2, k).

Then we have the following theorem.

THEOREM 5.2. If N(z) € L'(R), then for each x € R, x(x,k) is analytic for
Sk >0 and continuous for Sk >0 and X (z, k) is analytic for Sk <0 and continuous
for Sk <0.

6. Asymptotic behavior of eigenfunctions and scattering data. In order
to solve the inverse problem, one has to determine the asymptotic behavior of eigen-
functions and scattering data as k — co. From the integral equations in terms of the
Green’s functions found earlier, we have

(6.1)
M ~ (1 _JE N (@) Naa(a)da’ 2 Nig(a)Nai(a)ds'  Nyi(@)  Na(x) >T
1 h(dz—d1) ik(ds—d1) ik(da—d1)  ik(ds—d1)
+O(k™?),
(6.2)
N [ Nia(a')Nay (a')da’ | [+ Nug(a)Nay (&)dz’ Ny (s N (2) )T
M (1+ )t TGy —ikééfd)l) _ik(5§£d1>
+O0(k™?),
(6.3)
M N(_ Nis(z) _ _ Nas(z) 1 _ L Mis@)Nsa (@)da”  [2, Nos(a )st(r’)dfﬂ/)T
3 ik(di—d3)  ik(d2—d3) ik(d1—d3) ik(da—d3)
-2
N Nis(z) Nas (2) [ Nig(a')Na1 (a')da' | [+ Nog(a')Naa(z')da! \©
Na (*iku}f—ds) T -ds) LT R —dy) + T (d—da)
+0(k™?)
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as k — oco. Note that
_ W(1,12,13) _ W(1,2, 03)
a11<k‘) _

= W vnvs) @8 = W (0, va, )’

where we have aj1(k) ~ 1 for Sk <0 and as k — oo, and az3(k) ~1 for Ik >0 and as
k — oo.

Similarly, we can deduce by1(k) ~ 1 for Sk >0 and as k — oo, and bsz(k) ~ 1 for
Sk <0 and as k — oo.

Moreover, we obtain x(z,k) ~ —y1y3wz for Sk >0 and as k — oo, and X(z, k) ~
Y1y3wsg for Sk < 0 and as k — oco.

7. Time evolution. From (2.2) and the time evolution equation

—ngCgk —03N12(.’)37t) _02N13($7t)
(71) Ut :Q'U, Q(l’,t) = —C’3N21(x,t) —7;010316 —ClNgg(m,t) y
—CgN31(l‘,t) —ClNgg(Z‘,t) —iC1Cg/€

one has

v = —iCyCskv™D — C5Nia(,t)0® — CaNyz(w, )o@,
v,§2) - ng.Nm(sc,t)v(l) — iClC?,k’U(z) — ClN23(xat)v(3)v

083 = —Cy N1 (z, )0V — Oy Ngg(z, £)0@ — iCy Cakev®.
Since Nyj(z,t) =0 as . — %00, [ # j, we find
o~ —iCyCsko ™, 0P ~ =iy Cskv @, 0P ~ —iCy Cako®)

as x — £oo.

Note that the eigenfunctions themselves, whose boundary values are space infini-
ties, are not compatible with this time evolution.

Therefore, one introduces time-dependent eigenfunctions

Dy (z,t) = et . o1(z,t), Po(x,t) = e'Beot . da(z,t), P3(x,t) = giCeot . o3(z,t),

\Ill(xa t) = eizwt ) wl(x7t)7 \Il2(xat) = eiﬁxt : ¢2($,t)a \113(33’75) = eiGOOt : ws(%t)
to be solutions of (7.1). As a result, M@T(tg”) =iAx®(z,t) + eiAwtéw@T(fi).
We recall that ¢1(z,t)~( 1 0 0 )Te*h? a5 g — —oco. From
1 1
6‘I)§ )($7t) eiAoota¢g )(‘T7t)
ot o
we deduce iloo = —(CyC3k. Similarly, Boo = —C1Csk, Co = —C1C2k, Ase = Ao,

Bo = By, Coo =C. Then

~ —iCyC3k® Y (2,4) = iAoV (2, 1) +

15) 0 0
T Q- idl)r, B2 =(QiBul)ts S =(QiCu)ds,
0 0 0
T (Qidalpin, B2 = (@ iBoc i, = (QiCu ),

Noting that
o1(z,t) = arr (ks t) 1 (x,t) + ara(k; t)ha(x, t) + ars(k;t)s(z,t),

one obtains
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a11,:01 + a11(Q — tAcc D)1 + a12,192 + a12(Q — iBoo )12
+a13,4¢3 + a13(Q — iCo )3 = (Q — iAscI)(a1191 + a1292 + a13v3),
which implies that

8(111(1{3,t) o Balg(k,t) . 8a13(kz,t) iy
5 =0, 5 =1(Boo — Aco)a12(k, 1), — 5 = i(Coo — Ao)ars(k,t).
Similarly, we deduce
8(121(/€,t) . 8a22(k,t) o 8(123(/€,t) iy
T _Z(AOO Boo)azl(k,t), T —O7 T _Z(COO Boo)azg(k7t),
8a31(k,t) . 6a3g(k},t) . 8a33(k:,t) -
T—’L(AOO —Coo)a31(k‘,t), T—Z(Bw—coo)a32(k,t), T—O
Using a method similar to that above, we derive
Obyi(k,t) — Obia(k,t) Obiz(k,t)
ot —0, ot —Z(Boo —Aoo)blg(k‘,t), T —Z(COO —Aoo)blg(k‘,t),
Doy (k,t) Oboa(k,t) — Obog(k,t)
T—Z(Aoo 7Boo)b21(k,t), T—O, T—’L(Cm 7Bm)623(k,t),
Obzy(k,t) Obsa(k,t) Obsz(k,t)
7((% = ’L(AOO — Coo)bgl(l{?,t)7 7&% = Z(BOO — Coc)bgg(k?,t), 7((% =0.

Therefore, aq11(k,t), asa(k,t), ass(k,t), bi1(k,t), baa(k,t), b33 (k,t) are time-independent.

8. Symmetries. The symmetry in the potential N(z,t) induces symmetry among
the eigenfunctions. Note that we add time ¢ since it is needed in subsequent sections.
Recall

ve(x, k;t) = (ikD + N(z,t))v(z, k;t), wi®(z, k;t) = (—ikD — N7 (z,t))w®(z, k; t),

where v = (v; vy v3)T and w = (w1 wy w3)T We introduce the analogue of reflection
coeflicients below:

_an(kt) _ _awz(k,t) _an(kt) . as2(k,1)
pr(k,t) b D oy (k,t) == (b D) pa(k,t) = wns b D) o (k,t) = a0
ps(k,t) = azs(k,t) _ an(k,1) _ b (k1) ba2(k; 1)

= (kb)) ps(k,t) == an (k1) pe(k,t) := 7[)33(1@,1&)’ Pe(k,t) == bas (k)
8.1. Classical three-wave system. Under the symmetry reduction

Noy(z,t) =e169N75(x,t), Nsi(z,t) = —e1e3N75(2,t), Naao(x,t) =e2e3N55(x, 1),

where 5? =1, j=1,2,3, and using the Hermitian conjugate of (3.2), i.e.,
vH (x, k;t) = v (2, k;t) (—ik* D + N (x,1)),

where N (z,t) is the Hermitian conjugate of N(x,t), leads to
vy (@, k"5 t) = —ikdyvy (2, k%5 t) + e169Noy (@, t)vs (2, k™5 t) — 163 N3y (2, t)vz (z, k51),
U;x(:m k*;t) =e1e9N1o(z, t)v] (z, k™5 1) — ikdovy (2, k™ t) + €963 N3o (z, t)v5 (2, k™ 1),
v3 . (2, k"5 t) = —e183N13(2, 1) vy (2, k™5 t) + e2e3Noz (w0, t)vs (2, k™5 t) — ikdzvs (x, k™;t).
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Note that using €2 = 1, n = 1,2,3, from section 5, we obtain that w®?(z,k;t) =
—(=1)"envk(x,k*;t) also solve for the classical three-wave system. Taking into ac-
count the boundary conditions (3.3), (3.4), and (5.4), we deduce

(8.1)
¢5 (2, kst) = (1) ej05 (2, k5t),  wf(a, kit) = (1) ey (e, k55t), =123,
where 71 :=¢€1, 9 := —¢€9, and 3 :=¢€3. Thus,

W (34 (0, ks t), 0§ (2, ks t), 05 (z, ks t)) €l
8.2 by (k,t) = LA o 72 o D78 D L — (1) 2 (k8.
E2 o) = G e ko) oo ) gt ket)) D e

Similarly, one obtains

1€l 1€l

(8.3) bai(k,t) = (—1) 5“72(k*7t)a bsi(k,t) = —(-1) ;3@2‘3(16*71?)
It follows that

€ * (1,% — €3 s 1%
(8.4) pa(k,t) = ——pi(k*,t), Ps(k,t) = ——ps(k*,1).

) €2

Recall

az1(k,t)bi1(k,t) + as2(k,t)ba1 (k,t) + azs(k,t)bs1 (k,t) =0,
e1 01a(k™,t)  asa(k,t)

a31(k:,t) ﬂafg(k*,t) _ &1 — 0 ie
azz(k,t) ' eszaj(k*,t)  e2af,(k*t) asz(kt) yon

€ —% * € * * —
pa(k,t) + =55 (k* 1) — = pi (k" , )y (k. t) = 0.
€3 £2

which implies

8.2. Complex reverse space-time three-wave system. Under the symme-
try reduction
Ngl(l‘,t) = 8182Nf2(—.73, —t), N31(l‘,t) = 8183Nf3(—$, —t),
N32<.’17,t) = €2€3N2*3(—CL‘, —t),
where 5? =1, j=1,2,3, and using the Hermitian conjugate of (3.2), i.e.,
vl (x,k;t) = v (2, k;t) (—ik* D + N (x,1)),
we have in component form
€101 o (—x, —k"; —t) = —ikd e v (—x, —k™; —t) — €229 Noy (x, t)v} (—x, —k*; —1)
— 223 N3y (2, t)v5 (—x, —k*; 1),
EQU;@(*Z', —k*;—t)= —5153]\712(1', vy (—xz, —k*; —t) — ikdoequy (—x, —k*; —t)
— e5e3Nao (2, t)v3 (—a, —k*; —t),
€303 . (—x, —k"; —t) = —e162N13(2, t)vf (—x, —k*; —t) — e263 Nog (0, )i (—x, —k*; —t)
—itkdgegvs (—x, —k*; —1).

Noting that 2 =1, n=1,2, 3, from section 5, we obtain that w(z,k;t) = e,v’(—x,
—k*; —t) satisfy the complex reverse space-time three-wave system. Using the bound-
ary conditions (3.3), (3.4), and (5.4) leads to

(8.5) wl;?d(x, kit) = ;0% (—w, —k*; —t), ¢?d(a§, kit) = ej; (=, —k*; —t),

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/22/24 to 198.11.30.98 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

4102 M. J. ABLOWITZ, X.-D. LUO, AND Z. H. MUSSLIMANI

where v; :=¢;, 7=1,2,3. Thus,

W( ?d(m’k;t)’wgd(x7k§t)v gd($7k§t)) 2
W (¢(z, ki t), 0§ (z, ki t), w54 (z, kit)) €1

by (k,t) =

Similarly, one can deduce

En

(8.6) b (i, 1) = j—"b’;m(—k*, 1), amn(k,t) = ak, (—k*, —t),
which induces
€1 4 * - €3 _« *
p3(k,t) = JP4(_k‘ ,—t),p3(k,t) = jﬂﬁ(_k‘ ;=)
Eo €2

(8.7) £3_, €3 .

pl(kvt) = 7/)5(*]‘7*’ *t)aEQ(kvt) = 7/)5(*]‘7*’ *t)'
€1 €3

Also, pa(k,t) + £p3(—k*, —t) + L pi(—k*, —t)p5 (—k*, —1) =0.

8.3. Real reverse space-time three-wave system. Under the symmetry
reduction

Noi(x,t) =e162N12(—x, —t), N3y (,t) = €163 N13(—x, —1),
N3o(z,t) = e9e3Nag(—x, —t),

where €3 =1, j =1,2,3, and using
vl (z,k;t) =vT (z,k;t) (ikD 4+ N7 (x,1))
implies

€11 o (—x, k; —t) = —ikdie1v1 (—x, k; —t) — €269 Noy (2, t) v (—, k; —t)
— 5%53N31(a:, tyvs(—x, k; —t),

€qUg 5 (—2, k; —t) = —Elsgng(x,t)vl(—x, k; —t) — ikdoeava(—x, k; —t)
- €§€3N32 (z,t)vs(—z, k; —t),

€33 4(—x, k;—t) = —515§N13(x,t)v1(—x, k;—t) — 525§N23(x,t)v2(—33, k;—t)
- ikdgEg’l}g(—LL‘7 k; —t).

Noting that €2 = 1, n = 1,2,3, from section 5, we obtain that w?®(z, k;t) = e,v,
(—x, k; —t) are also solutions of the real reverse space-time three-wave system. Taking
into account the boundary conditions (3.3), (3.4), and (5.4), one deduces

(8.8) ¢;d(x, kit)=¢;¢;(—x, k;—t), d)}’d(m, kit) =¢ejv,(—z, k;—t)
with j =1,2,3 and v, :=¢;, and thus
En

(8.9) Gy (k) =~ (k. =), by (k) = j—”bnm(k, —1),

which follows from the fact that p3(k,t) = = pa(k, =), ps(
2p5(k, =), pa(k,t) = Zps5(k,—t). Moreover, pa(k,t) +
(k,—t) =0. In addition, the symmetry reduction

t) = 2pg(k.—t), pr(k,t) =
Lo4(k,—t) + ZLpa(k, —t)ps

m‘mﬂw 3
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(8.10) N21 (m,t) = €1€2N1*2(—LL‘, —t), N31 (.%‘,t) = €1€3N1*3(—.’L’, —t),
Nso(x,t) =e9e3Ns(—x, —t)

implies that what we have discussed in section 8.2 also works for the real nonlocal
case. Hence, (8.5) and (8.8) yield

¢ (=, k; —t) = ¢ (=2, k™ =), (=, ks —t) = j (—x, k™5 =), j=1,2,3.
From (8.6) and (8.9), one has
(8.11) anm (b, —t) =a),, (=k*,—t), bpm(k,—t) =0}, (K", —1t).
In particular, if k € 4R, then ¢;(x,k;t), ¥;(z, k;t), anm(k,t), and by, (k,t) are real.

Remark 8.1. In this section, the symmetry relations among scattering data involve
time; they are consistent with what we obtained in section 7.

9. Zeros of the scattering data and discrete eigenvalues. Zeros of scatter-
ing data (i.e., zeros of a11(k), ass(k), b11(k), bsz(k)) are referred to here as eigenvalues.
Given the initial data encoded in the potential N(z) € L'(R), the zeros of scatter-
ing data form a bounded set in C\R. Noting that as3(k) and by1(k) are analytic
in the upper half plane, we assume they have simple zeros «; and 3,, respectively,
ie., ass3(a;) =0 (j=1,...,J) and b11(B,) =0 (n=1,...,N); bs3(k) and a1 (k) are
analytlc in the lower half plane where they have snnple zeros (by assumption) @; and
B, respectively, i.e., bsz(@;) =0 (j=1,...,J) and a11(8,) =0 (n=1,...,N). In
general, the zeros of a11(k), ass(k), bu(k), bs3(k) can be multiple, Which gives rise
to higher-order soliton solutions; higher-order soliton solutions to the classical three-
wave system have been discussed in [42]. In this paper, we assume that the zeros are
proper; i.e., they are simple and do not lie on the the line Sk =0.

Remark 9.1. As shown in [13, 14, 15], generic potentials are such that zeros of
the associated data ai1(k), ass(k), bi1(k), bss(k) are proper; i.e. each zero is simple
and lies off the line Sk =0.

In addition, if we only focus on the zeros in the upper half plane, which come
from the zeros of a33(k) and by1(k), then four possibilities may occur:

(1) J =0, i.e., aszs(k) has no zeros.

(2) N=0, i.e., bi1(k) has no zeros.

(3) All the zeros of ass(k) and by (k) are distinct, i.e., o # 5, for all j,n

(4) as3(k) and by1(k) have common zeros, i.e., there exists at least one j, €

{1,...,J} such that a;, = 3,, for some ng € {1,...,N}.

A similar consequence holds for the zeros in the lower half plane. Thus, it gives rise
to many different types of solitons. In section 13, typical examples of 1-0-1 solitons
will be discussed. Recall that 1-0-1 solitons at ¢ = —oo are defined as the nonzero
envelopes @Q1,Q3 with Q2 ~ 0 as t — —oo, which can result in different types of
solitons at t = 400, such as 1-0-1 solitons (the waves Q1, Q3 are nonzero and Q2 ~ 0
as t — 400) and 0-1-0 solitons (Q2 is nonzero and Q1,Q3 ~ 0 as t — +00).

From (5.13)—(5.16), it follows that

X, Bu; t) = b1 (B, ) N1 (@, B t)ein (1 =),
X(2,@5;t) = —bas (@, t) N3 (w, @ t) e’ (a2,

X(2,B,,:t) = —as1 (B,,,t) My (z, B, ; t)eiPn(d1— dz):r
ia;(dz— da2)x

(9.1)

(9.2)
X(x,a;;t) = ags(ay, t)Ms(z, a5 t)e
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Equivalently,

(93) T(x7ﬁn7t) = bQI(ﬁnvt)wl ($7Bn7t)7 ?(xaaja t) = _b23(ajat)w3(xaaja t)a
(9'4) ?(m,Bn;t) = _a21(ﬁn7t)¢l (x,Bn;t), T(.%‘, aj;t) = a23(aj’t)¢3(xa a5 t)'

Indeed, for each 8, such that by1(8,) =0, there is a nonzero proportionality constant
such that the left-and right-hand sides of the first equation in (9.1) are exponentially
decaying in opposite directions as |x| — co. Similar conclusions hold for o, B,,, and
a,.

We will need the coefficients

(95) b21 (ﬁnat)? b23(aj7t)7 a21(5n’t)’ a23(aj7t)

as part of the integral equations governing the inverse scattering in section 11 and
the soliton solutions in section 13; we call these coefficients reduced normalization
constants/coefficients. In order to construct the inverse problem, it is convenient to
introduce the 3 x 3 matrices

E+(I7k’t) = (wl(zvkvt)aT(kavt)v¢3(xa kvt))a
E_(z,k,t) = (¢p1(z, k,t), T (x, k, t), ¥3(x, k, t)).

With this notation, Ey(z,k,t) collect three eigenfunctions which are analytic in the
upper/lower half k-planes, respectively. Combining (3.3), (3.4), (5.11), and (5.12), we
obtain det(E, (x,k,t)) = W (1 (2, k,t), 7(x, k), ¢p3(x, k,t)) = —azz(k,t)by1(k,t)e*d®,
det(E_ (2, k1)) = W (¢ (2, by 1), 7(2, K, £), oy (2, 8), £) = avs (k, £)bg (k, e k.

This shows that the three solutions 1 (z,k,t), 7(x,k,t), and ¢3(z,k,t) become
linearly dependent at the zeros of ass(k,t) or by1(k,t). Similarly, ¢ (x,k,t), T(z, k, 1),
and 3 (x, k,t) are linearly dependent at the zeros of a11(k,t) or bsz(k,t).

Next, our analysis will be based on three different symmetry reductions, which
correspond to the classical, complex reverse space-time, and real reverse space-time
three-wave systems, respectively.

We note certain key formulae: (9.6)—(9.7), (9.8)—(9.11), (9.12)—(9.13).

9.1. Classical three-wave system. We have assumed that as3(k) and by1 (k)
have simple zeros {c; : Sa; > 0}/_; and {8, : SB, > 0}, respectively. By the
symmetry relation mentioned in section 8.1, it implies that by (k,t) = aj; (k*,¢) and
b33 (k,t) = a3z (k*,t). Then by3(k) and a1 (k) have simple zeros o} and 3, respectively,
and therefore a; = a7, B, =8, and J=J, N =N. From section 7, one has that
ay1(k,t), ass(k,t), b11(k,t), and bsz(k,t) are time-independent. It yields by1(By,t) =
0 a1(B,t) =0, asz(aj,t) =0 bgz(aj,t) = 0. Thus, from (5.8), (8.1), and (9.4),

one can write

T, 05 t) = abg (g, 1) 5 (, 05 t) = esazg(ay, )95 (x, a5 )

= 63&;3(Oéj7 t)eiia;daj((ﬁl (:L'a OZ;; t) X ¢2(£L’, O‘;; t))

Equation (5.12) implies

k) 1
da(x, ki) = Zzigk 2 b3z, k;t) — ez t)T(x,k;t)
- agl(kﬂf) . 1 _ .
- (5D o1 (x, k;t) + au(k,t)T(Z’k’t)'
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From (8.1) and (9.3), it gives

1 = *
¢1(x,aj,t) X <Z>2(x,aj,t) = m¢l($704],t) y T(x,aj;t)
—ba3(aj, 1)
-_—— t ﬂ?.t
an(af, 1) o1(z,a);t) X hg(x, af;t)
—e1e3ba3(f,t) .
= @t x vs(e,agt)
]7

—e1baz(aj t)azs(a;,t) T (z,055t)
an (@5, . So we find

Combining (5.6), we then have 7*(z, a;;t) =

the additional symmetries

au(a;, t)

9.6 atalo t) = —— 27
( ) 23( J ) €1b23(04;,t)

Similarly, we deduce

b33( Zat)
esazi(By,t)

9.2. Complex reverse space-time three-wave system. We assume that
as3(k) and bss(k) have the simple zeros {cy, —aj : Sa; >0 and %aj + 0}3]1 L U{a:
Sy > 0 and Ry = O}i]i1 and {@;,—aj : Sa; < 0 and Ra; # O} L ui{a Sy <
0 and Ry, = 0};]:21, respectively, where 2J; + Jo = J and 2J; + J» = J. Indeed,
the symmetry relations discussed in section 8.2 give asz(k,t) = ais(—k*,—t) and
bsz(k,t) = b35(—k*,—t). It shows that as3(k) and bs3(k) also have simple zeros —a;
and —aj, respectively, i.e., {a, —aj} and {@;, —a@j} are pairs of zeros.

One can have a similar assumption for by (k) and a11(k); that is, both have the
simple zeros {8, =5}, : B, > 0 and R, # 0} LU {ﬂm :SBm >0 and §R5m = O}
and {B,,—B, : SB, < 0 and RB, # 0} e U{B,, : $f,, < 0 and RB,, = 0}m 15
respectively, where 2N; + Ny = N and 2N; + Ny = N. Also, {3,,—f8%} and
{B,,,—B.} are pairs of zeros for bi;(k) and a1 (k), respectively. From section 7,
we have that ai1(k,t), ass(k,t), bi1(k,t), and bss(k,t) are time-independent. Thus,
bu(ﬁn,t) =0& bll(—ﬂ;kw —t) = O, agg(aj,t) =0& agg(—a;, —t) = 0, au(Bn,t) =0&
a11(—B,,—t) = 0, bg3(@;,t) = 0 & bys(—a},~t) = 0. By (5.8), (8.5), and (9.4),
we can write 7"(x,q;;t) = agg(aj, t) o5 (x, aj;t) = esajs(a;, )Y§t(—z, —aj;—t) =
e3abs(aj, 1) e (1) (—x, — ) X Pa(—x, —a;—t)). Equation (5.11) shows that
(@, kst) = R (2, k ) rlwhit) _ bas( %3(3: kit) + 22k From (8.5) and

(9.7) b1 (Bn,t) = —

bll(k} t bll(k t) 633 k t) b33(k},t)

(9.4), one derives

1/}1(—1‘, ) X ’(/)2( x, —a t)

1 *
— mwl( —t) X 7(—x,—aj; —t)
e1€3a23(—aj, —t) X
= bll(_a*‘z ]_t) ( 1d(x7aj7 )X¢3 (Z‘ Qg5 )) :
J7

Combining (5.6), one gets 7*(z, a5 t) = — £1035(0 1)azs (—og, 1) 7*(z, ;3 t), which yields

bu(—a;‘,—t)

_e1agz(y,thags(—aj — 1)

=1.
bll(foz;f, 725)

(9.8)
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Similarly, we deduce the following relations:

303 n>tb - *7_t b3 7’7tb _7*7_t
9.9) €365, (B, t)ba1 (=55 ):17 & 53(@; )j‘j( Qj ):1’
azs (=B, —t) ay(—aj, —t)

(9.10) _53@1(37;,715)@21(—52,—t) 1

b33(7Bn7 7t)

In particular,

_53b§1(§m7t)621(/§ma —t)

_ 61053(&1, t)azg(&l, —t)

(9.11) bi1(au, —t) , a33(5m7 —1) ’
' _ Elbgg(glvgbli(glv _t) _ _€3a;1(gmvi)a21(gm7 _t) =1.
all(&la _t) , b33(§m7 _t)

9.3. Real reverse space-time three-wave system. Similarly, as above we
assume that ass(k) and bss(k) have the simple zeros {a; : Say > 0}/, and {aj :
S < 0}3]:1, respectively. Also, b11(k) and a11(k) have the simple zeros {5, : S5, >
0}V, and {B,, : 3B, < 0}_,, respectively. Thus, (5.8) and (9.4) give 7(x,a;3t) =
asz(a;, )3 (w, i t) = e3ans(ay, )3 (—a, ay; —t) = e3az3(ay, 1)e’ ¥ (31 (—x, aj; —t) X
Yo(—x,a;;—t)). Also, (5.11) and (9.4) read as ¢ (—x, a;; —t) X Yo(—x,05; —t)

az3(aj,—t
= —mﬂ)l(—%%; —)xT(—x, 05, —t) = —%1&1(—9@ aj;—t)X¢z(—x, a5, —t).
From (5.6) and (8.8), we obtain

_ esass(ay,t)ass(ay, —1)

T(.’E,CYth)Z bu(aj’_t) (eiajdw(¢1(—x,aj;—t) X (253(_1',013‘;—15)))
51@23(0[',t)a23(a-’_t) to;dx( a a
- bi(aj,—t)] (e 7 (¢1d(:c,aj;t) X 1/;3d(x,aj;t)))
_ _61a23(aj,t)a23(aj,—t)T(x i),
b11 (e, —t) Rk
Hence,
(9.12) _erags(ay, tags(ay, —1) _

b11 (Oéj 3 —t)
Similarly, one has the formulae

_ €3021(Bp, 1)b21 (B, —t) _ €1ba3 (@, t)bas (@, —t)

(9:13) a33(fn, —t) =1 a1 (@, —t) =
_ e3a21 (B, t)az1 (B, —t) _
bss (B, —t)

Remark 9.2. Note that as in the nonlocal complex three-wave case, we have

{a;:Sa; >0}/,

={am,—a} : Say, >0 and Ra,, # 0};2:1 U{a;:Sa; >0 and Ra; = O}fil,

{aj : %aj < 0}?:1

={am, —ay, : Y@, <0 and Ra,, # 0}77;:1 U{a;: S <0 and Ra; = O}ljjl,
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{Bn: By >0},
={Bp,—B; :SBp >0 and B, # O} LU {Bm :SBm >0 and RB,, =0},

{Bn : %Bn < O}nﬁzl . . . .
={B,, —B: : 3B, <0 and RB, #0})2, U {B,,:SB,, <0 and RB3,, =012

the above symmetry properties hold for eigenvalues both on and off the imaginary
axis.

10. Trace formulae. In this section, we show how some of the scattering data
needed for reconstruction of the potentials can be constructed from reflection coeffi-
cients and eigenvalues; these equations are usually termed trace formulae. Since (b;;)
is the inverse of (a;;) and det(a;;) = 1, we obtain B(k) = A~(k) = %‘W, which
implies baa (k) = a11(k)ass(k) — a13(k)as1 (k), where adj(A) is the adjugate matrix of
A. By (43), one has bgl(k)au(k) + b22(k)@21(k) + bzg(k)agl(k) = 0, and it yields
ba1(k)ai1 (k) + [a11(k)ass (k) — aiz(k)asi (k)]as: (k) + baz(k)as: (k) = 0.

Using the definitions of the reflection coeflicients, we find

_ _ bsa(k) _ bi1 (k)
a2 (k) (1 — p2(k)py (k) = 70/?31)(]{5) p2(k)p3(k) — a5 (k) p3(k).
Similarly, we have
oaal)(1 k)7 () = = 2L a0 1)~ 22 ),
~bu(k) _ bsz(k)
azn(k) = 253 (h) + P2 (k)azs(k) = () + p1(k)az1 (k)

Thus, we have shown that asy (k), ass(k), ase(k) are found in terms of reflection co-
efficients and a11(k), ass(k), b11(k), bsz(k). The latter four functions have been shown
to be expressed in terms of reflection coefficients and eigenvalues. By

ba1 (ka1 (k) + bz (k)azi (k) + bazasi (k) =0,
az1(k)b13(k) + azz(k)bas(k) + azsbsz = 1,
bo1(k) = az1(k)ags (k) — az1(k)asz(k),
we deduce
a1 (k)bas (k) + bat (K)ary (k)

_ a31(k')b11(k‘)b23(k‘) agg(k)bgg(k‘)bgl(k‘)
=bn(k) (bm(k)b%(k) - asz (k) " azs (k) ) 7

which follows that “ﬁEiigfflf;;)f)“?’S("“;&’g‘“ = p3(k)+p2(k)ps (k) +75(k)p3 (k) p3 (k). Thus,
a2 (k) = —b11 (k)bss (k) [p3 (k) + pa (k)55 (k) + 7o (k)7 (k) ps (k).

Similarly, we derive ass(k) = —b11(k)bss(k)[ps(k) + 2, (k)ps (k) + p1(k)ps (k) ps (k)]
az2(k) = b11(k)bsz (k)[1 — (p2(k) + pa(k)p3(k))(py (k) + p1(k)ps(k))]. One also obtains
(10.1) an (k)bi1 (k) = [L = p2(k)py (k) — pa (k)P (K)p3 (k) + pa(k)pr ()],

(10.2) agz(k)bsa (k) = [1 = pa(k)py (k) — p1(k)p2(k)ps (k) + B3 (k)P (k)] .

Remark 10.1. Equations (10.1) and (10.2) provide us a mechanism to construct
trace formulae for aq1(k), b11(k), ass(k), and bss(k).
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10.1. General trace formulae. In section 9, we have assumed that as3(k) and
bss(k) have simple zeros {a; : Sa; > 0}7_; and {a@; : S, < O}] 1, respectively.
Moreover, b1 (k) and ay; (k) have the simple zeros {3, : S8, >0}\_, and {B,,: SB,, <
0}n 1, respectively. Let J=J and N = N; then we define

<

(10.3) Fo(k) = ags (k) - T F2%

) =1b:
]’C—Olj7 fS 33

j=1 j=1

Thus, f3(k) (f3(k)) is analytic in the upper (lower) half k-plane. Moreover, f3(k), f5(k) —

1 as k — oo and have no zeros in their respective half planes. Hence, we have

L[ losh®), 1 [ 108Ts( o gpep.
osit) =5 [ SEpe g [ Telpae=0 k20

Ingg(k)

1 [ log f4(€) L/Oo Mdgzo Sk < 0.

e—p % 2mt J_oo E—k

2 R .
Adding/subtracting the above equations in each half plane, respectively, it yields

log f3(k) = %/00 bgfz(f)lf?’(g)df, Sk > 0;
logﬂ,(k)z—%/ de, Sk <0.

By (10.2) and (10.3), we obtain

(10.4) ass(k ﬁ -exp (01(k)), Sk>0,
”}:Ik )

(10.5) bss (k n!"z[l T exp(=O1(k)), Sk <0

where

O1(k) = L/m log [1 — p2(&)p1(§) — p1(€)p2(§)p5(§) +ﬁz(f)ﬁs(f)]d

27 oo k—¢& &

Similarly, we have

Ay

(10.6) bn(k):Hk_B -exp (02(k)), Sk>0,
=1 l
o k— B,

(10.7) au(k):Hk_ﬂl exp (—04(k)), Sk<O0,
=1

where

62(@:2%/00 10g[1p2(5)/’1(§)Pi?f?(f)ﬂ:ﬁ(ﬁ)+P1(§)P3(§)]d§'
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In order to solve the inverse problem, we need ajy (), bh1(B,), bys(@;), and ai;(B,,)-
These four derivatives are shown below:

) k ;o bss(k

(10.8) azz(eg) = ng(aj, ‘ i Pal@) = ;:3(@3 ‘k:a-’
, bu (k ' (7 k

(10.9) b11(Bn) = kli(ﬁ) k=g, 11(6n) = Zl_l(g) ‘kzg

In general, ajs(;) and bis(a@;) depend on the simple zeros {a; : Sy > 0}/, and
{@; : S@; < 0}‘]-]:1. Similarly, b};(8,) and a};(83,,) rely on {8, : SB, > 0}2_; and
{B,,: SB,, <0}._,. In general, all derivatives also depend on the reflection coefficients
p1(k), p2(k), ps(k), pi(k), pa(k), ps(k). Since these derivatives can be determined by
eigenvalues and reflection coefficients, therefore they are not contained in the minimal
data.

In particular, if p1 (k) =0, p2(k) =0, p; (k) =0, and py(k) =0 on R, i.e., aj2(k) =0,
a13(k) =0, az1(k) =0, and asa(k) = 0 on the real axis (via the definitions of p;, p1,
P1s P=2), then it corresponds to the case of pure solitons, and these derivatives only
depend on the zeros mentioned above.

10.2. Classical three-wave system. Under the symmetry reduction Noj(x) =
€1€2N1*2(CC), Ngl(ﬂj) = —51€3N1*3(I‘), and Ngg(x) = 5253N2*3(SC), where 6? = 1, ] =
1,2,3, we have assumed that ass(k) and by (k) have simple zeros {a; : Sy > 0}/,
and {8, : $B, > 0}, respectively. By the symmetry relations b1 (k) = aj;(k*)
and b3 (k) = a33(k*), we deduce that bsz(k) and a1y (k) have simple zeros o and f;,
respectively, i.e., a; =, B, =f; and J=J, N=N.

By (8.4) and (10.4)—(10.7), one deduces that

(10.10) azs(k) = [[ K= oen (Os(R)),  bs(k) = II K= o (— O (k).

N N *
(1011)  bua(k) = [[ 222 exp (@4(k),  ans (B) = [ ool - exp (—@4(k))

where

1 oo log [ pa(£)71(6) + 2 p1(E)pa(€)B5(6) — 275(E)7a(€)]
@3(16):7/

2me J_ k—¢& dc
| e log [1= pa(O)71() + 21EPB(E) — 201 ()i(E)]
@4(/@:%/_00 — dc.

When we reconstruct potentials, the functions ass(;), b11(8n), b33(c), and afy(8;;)
are needed. In general, these derivatives are found as follows:

k) bss (k)
10.12 33(c :%‘ sa(03) =
(10.12) ass (o) F—a lheay’ 53(0) F—a lima;’
b (k) a11 (k)
10.13 1(Bn) = 1(Bn) = '
( ) 11(5 ) k*ﬂn k}:Bn7 all(ﬁn) k*ﬂ; k:ﬁ;
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If p1(k) =0, p2(k) =0, p;(k) =0, and py(k) =0 (equivalently, ai2(k) =0, ai3(k) =0,
az1(k) =0, and az2(k) = 0) on R, then it corresponds to pure solitons, and ajs(a;)
and bjs(a ’?) only depend on the simple zeros {¢; : Sa; > O} Also, b}, (8r) and
ai, (B only depend on {3, : 33, > 0}_,. However, in the general case, ass(c;) and
bss(aj) rely on zeros {a; : Sa; > O}J:1 and the reflection coefficients p;(k), p2(k),
P1 (k)7 ﬁ2(k) Similarly, blll(ﬁn) and alll(ﬁ;:) rely on {Bn 1B > 0}7]:[:1 and pl(k)7
p2(k), p1(k), p2(k). We note that ags(;), b11(Bn), bs3(a), and afy(f;;) are not part
of the minimal data.

10.3. Complex reverse space-time three-wave system. Under the symme-
try reduction Noj(x) = e162N{5(—x), Nsi(z) = e1e3N{5(—x), and Nio(z) =
263 N33(—x), where e = 1, j = 1,2,3, we assume that ass(k) and bsz(k) have sim-
ple zeros {a; : Sa; > 0 and ?Rozj # O}J1 LU{a : 3@ > 0 and Ra; = 0}, and
{a@; : S@; < 0 and RNa; # 0} L, U{@ : 3@ < 0 and R, = 0}, respectively,
where 2J1 + J = J. Slmllarly, we assume by (k) and a1;(k) have the snnple ze-
ros {Bn : $Bn > 0 and RB, # O} 1 U {Qm 0SBy > 0 and %ﬁm = O}m 1 and
{B,,: 3B, <0 and RB,, # O}Nl1 U {ﬁ \SE < 0 and ?RB = O}m 1, respectively,
where 2IN; + Ny = N. Utilizing an analogous method for the general trace formulae,
trace formulae for the complex RST three-wave system are stated below:

J1 J2 _a

(10.14) ass(k) = [ E:zgg:ia ;H: exp (01 (k)),
J J: =
T (k—an)(k+ak,) 71k — &

(10.15) bsz(k) = m —exp (—01(k)),

5 et (k—am)(k—l—am)l_[lk—al P

Ny k— k *

(10.16) (=11 Ek_ﬁikig; r_[ :_g exp (k)
(k= B,)(k+B,) 13 k-

(10.17) a1 (k) = Ekﬁisgkigfink %4 exp (= 0a(k))

In order to reconstruct soliton solutions, we need ajgs(a;), ais(—aj), ajs(dr), bss(ay),

43 (=a3), Vag(@), by (Bn), Uiy (=57), U51(Bim), @iy (B,), aiy(—=B,,), aty(B,,). These

derivatives are found to be

az3(k) , o a33(k) ;- as3(k)
10.1 a33\%) k)= -
(10.18) abs(aj) = k—aj’kzaj’ azs( Oég) k—i—a;‘ k:—a;’ azs(dy) k_éél’k=@l,
_ bss(k) _ bss (k) — bss(k)
10.19) bho(@:) = L o(—at) = ! —
(10.19) bs5(a;) k*aj’k:aj’ 53(—j5) F+a k= 33(01) k—al‘k 3’
(10.20)
bll(k) bll(k) ~ bll(k)
B, (8,) = B, (=) = B (B) =2\
W)= 5] e = g B = |
(10.21)
) a1 (k) ;o =y a1i(k) ) a1 (k)
= — , a —Pn) = —* ) m) — = =
(B = ﬁn\@n WP = e ) kz—ﬁm"“ -

Generally speaking, ajz(a;), abs(—a;), ajs(au), Uys(@;), bys(—;), by3(dy) depend

on simple zeros {a;, —af : Sao; > 0 and Ra; # O}}h:1 U{a@ :3q >0 and Ra; =0};2,

J
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{@j,—aj : 3a; <0 and Ra; # 0}/1, U{@, : &, < 0 and RG; = 0};2, as well as the
reflection coefficients pl(k) p2(k), ps(k), pl(k) pQ(k) p3(k‘)

Similarly, b11(58n), by, (=85, b’u(ﬁm) ay1(By), ajy(— B.), dl; Bm) rely on simple
zeros {Bn, =B : SPp > O and RS, # 0}7111 U {ﬂm :SBm > 0 and NG, = 0}N2 | and
{(B,,—B. :SB, <0 and RB, # 0}, U{B,,:SB,, <0 and RB,, = 0} . Moreover7
the above six derivatives also depend on the reflection coefficients p1(k), p2(k), p3(k),
p1(k), po(k), Ps(k).

In addition, if p1(k) =0, p2(k) =0, p; (k) =0, and p,(k) =0 on the real axis, i.e.,
a12(k) =0, a13(k) =0, and a32(k) =0 on R (via the definitions of p1, p1, Py, Py and
(8.6)), then it yields the case of pure solitons, and the derivatives only depend on the
ZETOS.

10.4. Real reverse space-time three-wave system. Under the symmetry
reductions Ngl (JJ) = 8152N12(—$), N31 (.13) = 8183N13(—1‘), and N32($) = 5253N23(—$)
as well as Ngl( ) = 6162]\7{2(717), Ngl(fﬂ) = €1€3Nf3(71‘)7 and Ngg(fﬂ) = €2€3N2*3(71‘)7
where 5 =1, 7 =1,2,3, we assume that as3z(k) and bs3(k) have simple zeros {o; :
\sa] >0 and Roy; # 0} 1, U{@ 3@ > 0 and Ry, =0}2, and {@; : 3@, < 0 and Ra; #

} LU {a;:3q; <0 and Ray = O}l 1» respectively. Slmllarly, b11(k) and a1 (k) have
the simple zeros {3, : 33, >0 and R, # 0} LU {ﬁm : \sﬁm >0 and §R§m = 0}22:1

and {B,,: 33, <0 and Rf,, # 0} LU {5 \sﬁ <0 and §RB = O}m 1, respectively.

Note that the real and complex reverse space-time three-wave systems have the
same symmetry relations among eigenvalues; thus, the statement regarding trace for-
mulae for the real nonlocal case is the same as the complex one, which is discussed in
section 10.3.

11. Riemann—Hilbert problem-left scattering problem. From (4.1), one
has Aa/lifg(ckkt;) = Ny (2, k;t) 4 p1(k, t) No(x, k;yt)etR(d2=d)z 1 5 (k) Ny (x, k;t)etF(ds—di)z
Mkl — ()N, (a2, ks )™ =0 4 5, (k) N, ki ) =007 4 No(a, kst).
Combining (5.13) and (5.14), we have

My (x, k;t B B e
M = Ny(z, k;t) + (p1(k,t)ps(k,t) + py(k, 1)) N3(z, k;t)e k(ds—dy)
(11.1) an (k1)
' X (@, k;t) ik(dy—dy)x
+ p1(k, L‘) bas (5.1) e ;
(11.2)
X(xuk;t) ik(dy —d2)x X(a@k,t) . ih(ds—da)
L = p3(k,t) Ny (x, k; t 1ma)r = 5o (k,t)Ns(x, kit 3—d2
b11(/€,t) p3( y ) 1(557 ) )6 bgg(k‘,t) ps( R ) 3(.’E, ; )e ,
Ms(x, kst _ e —dir
M = (pQ(k/”t) + pQ(k’t)p?’(kvt))Nl(x,k’,t)e k(di1—d3)x
(11.3) aga (k. ?)

_ X(@ kit) ik(dy—ds)a
— Dok, t)S——=e"\ 27 9)% 4 Ng(x,k;t).
p2( )bll(k,t) 3( )

Note that from Theorems 3.2, 4.1, and 5.2, A{fzgf};’;),Nl (z,k), and X(z(:)), as functions
of k, are meromorphic in the upper half plane, where ]\gzisz’;) nd )lf(x(:))
poles (by assumption) «; and f, respectively, i.e., asz(a;) = 0 and b11(8,) = 0;
similarly, Aﬁff};}?),Ng(z k), and X(z(’:)) , as functions of k, are meromorphic in the

lower half plane, where f(x(;z)) and leg(c ]§) have simple poles (by assumption) @; and

have simple

B,, respectively, i.e., bsz(@;) =0 and a11(8,) =0.
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We introduce m*(z,k;t) := (Ny(x, k;t), — Xk Malwkit)y onq = (2 kyt) =

- bi1(k) 7 ass(k)
(%, Xb(:;(]j;;),Ng(l‘, k;t)); then (11.1)—(11.3) can be written as a jump condition:

(11.4) mt (@, k;t) =m™ (z, k; t)Vo(z, ki t),

where

(11.5) Vola, kit) = (VY (@, ks t) VIO (2, kst) VI (2, k31))
and

Vo(l) _ (1 . pleik}(d27d1)x . (plﬁg +p1)eik)(d37d1)m)T,
2 i — x — — —
Vo) = (—pse™ @ 1 4 oy [p3 (o1 +7y) + sl e
3 % —d3)x (= i —d3)x - = - -

Ve = (pae™=da)e (5, — py po)e™ (27T 1 4 550 — By o — p1papy) T

Zk(dg*dQ)!D)T
Y

Consequently, we can formulate the following generalized matrix Riemann—Hilbert
problem in terms of scattering data and discrete eigenvalues, which determines m(k) :=
m(x, k;t). Essentially, we look for m(k) with the following properties:
1. Analyticity. m(k) is analytic for k € C\(RU {oy}/_, U{B,}}_, U{a; }] e
{Bnlnz)-

2. Jump condition. m(k) takes continuous boundary values my (k) :=

lims_,om(k £id) for k € R, and the boundary values are related by (11.4).
R (305, 0 s

Resce, i) = (Nita), ,,;(f:;;, W’“Zgﬁil‘fj ]

Res,_, mi) = ( “2““”“21%5? NG ).
Resgp—a,m(k) = 5{1%37 b23(aj)N?’(lfé’ija)j)ﬁﬂdr@)z,Ng(@j)).

3. Normalization condition. m(k) — 1 as k — oco.

Remark 11.1. If the potential N(x,t=0) is generic and is in Schwartz space, then
there is a unique Vo(x,k;t) such that the jump condition (11.4) holds. Moreover, the
potential N(z,t) is uniquely determined by scattering data and discrete eigenvalues
and it exists in the generic sense until possibly blow up; see [13, 14, 15].

Note that the above RH problem can be transformed to a system of linear inte-
gral/algebraic equations, once we impose the symmetry reduction for specific three-
wave systems. Then the solution of each RH problem suffices to uniquely solve each
three-wave system corresponding to the associated scattering data and discrete eigen-
values.

It follows that

azz(a)ba1 (o))

N x’a. ei(x]‘ (dl—dg).’t
bll(aj) 1( ])

M3(x,a;) = |az1(aj) +

_ asa(y)

. i(X‘(dQ—d;})fE
T,a;)e" ,
bll(aJ)X( .7)
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X(, Br) = bo1 (Bn) N1 (z, B )ePr (174202 - (3 @) = —bog (@) N3 (,@;) e (da—d2)e,

M@ 3, = |20 0) | 5] o, B, ) e

)
53(571)

a12(B,)_ iB, (da—dy)z
* bs3(ﬁn)X(x Bne .

By subtracting the poles, assumed simple in the upper/lower half planes, re-
spectively, at azs(a;) = 0 (j = 1,2,...,J), bu(Bn) =0 (n = 1,2,...,N) and
a11(8,)=0 (n=1,2,...,N), bs3(@;) =0 (j=1,2,...,J), combining (9.1), (9.2), and
(11.1)—(11.3) and the time independence of a1 (k), ass(k), b11(k), bss(k), one obtains
(11.6)

M (z,k;t) N M (x
au(k) e Z

S

o1 (K 750 )-+ 7y 1) Nali i )0~ gy 1, HERED -,
(11.7)

J
M3 (x, k;t) M3 (z, ;)
Mkt 3

Jj=1

azs (k) (k — aj)ass(ey)
J 1 L. ia‘(dz—dg)w
a (a.’t)x(m7aj7t)e ’
= N3(x,k;t) —ws — =
; (k — aj)ass(a;)
i —dz)x _ — l’,k‘;t % —d3z)x
+palht) + ) b.)) Ny o )M 092 — iy 1, YDt
N J
X(ka;t) (m an .’1? aj7
ST M Yawe —
bu(k) ;(k*ﬂn) b1 (Bn) ; s (@)
(11.8) X(x, k;t) 4

N —_— —
— _ A\ Wo — (.’E 577,; ) X(CE aj;t)
= b33(k) +Y173W2 Z (k Bn)blll(ﬁn) +Z (k‘ Oéj)b33(04])

+ Pg(k,t)Nl(l',k;t)eik(dl dz)m — sk, t)Ns(z, k;t) zk(dg d2)z

Combining the asymptotic behavior of eigenfunctions and scattering data (sec-
tion 6), (11.6)—(11.8) can be interpreted as a RH problem for suitable combinations of
the three functions Ms(z, k,t)/ass(k), N1(x, k,t), x(z, k,t)/b11 (k) meromorphic in the
upper half k-plane and M (x, k,t)/a11(k), N3(z, k,t),x(x, k,t) /b33 (k) meromorphic in
the lower half k-plane.

We now introduce the projection operators

1 /+°° f(€)

Pi(f)(k):%i B md&

which are well-defined for any function f(§) that is integrable on the real axis. If
f+(&) is analytic in the upper/lower k-plane and fi (&) is decaying at large £, then
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Py (f+)(k) = £f+(k), Px(f+)(k) =0. Applying Py to (11.6), in a similar way, one
can treat (11.7) and (11.8) by a projector P_; using (9.1) to (11.8), we obtain
N

L X(x,B,;t)ePn(dz—d)z
Ny kit _ a21(5n7t)x 0! _
(w,kst) =wr ; (k—B,)a},(8,)
(11.9) C LT pl6t) X6 ey ange g
271 J_oo € — (k+10) b33(&,t)
i /+OO p1(€7t)53(£7t) +p1(£7t) Ng(xvf;t)eiﬁ(dgfdl)zdf’

2mi g (k +1i0)
t)e’ia]‘ (dQ*d:;)I

T,
CLQJ(Oépt)X 7

(k — aj)azs ()

Ng(fﬂ,k t UJ3+Z

(11.10) B i e Pa(6:1)  x(@,E5t) iea- a5y g
2mi J_o &= (k—140) b11(€)
1 Hoo pZ(Eat) +ﬁ2(§,t)p3(f,t) . i&(d1*d3)1’
%/ N 5_(/{_20) Nl(xagﬁt)e d§7
X(@, k;t) e b21 (B, ) N1 (3, B t) e P (dr—da)e
balh) T 2 (k= Br)b (Bn)

(11.11)

n=1

. t) (e (dg*dQ)CL‘

T _
Z b23 04]7 7aj7
;)b ()

I p3<£ t)
Comi J_y €~ (k—i0)
L[t pa(g, t)

T omi ) € (k—i0)

Ni(w, &t)et(hmd)rag

Na(z,&;t)e =) ge,

Moreover, one deduces

X(-’L’yk,f) . N b21(/8n7t)N1(x’ﬁn;t>ei6n(d1—d2)x
W“Vﬂswz-i—z (kfﬂn)b,u(ﬁn)

n=1

b23 a ) a 7t) ZOCJ(CL; da)x
*Z e atin(@)
(11.12) 33
[ P3(§ t) i€ (di—
) N -t 1€(dy d2)xd
+f2m./m ey i Est)e ;

7 L oo p3(€7t)
270 J_o € — (k+10)
11.1. Closing the system. To close the system, we substitute k = 3, in (11.9),
k=wa; in (11.10), k=3, in (11.11), and k= «; in (11.12) to obtain
N b33(§1»t) . Y(fv@;t) eiﬁl(dgfdl)x
a21(B;,t)  bs3(By)
Ni(@, Bnit) =w1 — = ==
; (Bn = B1)aty (B1)
L (6 X&) git(da—di)a g
2mi —o00 f - (671 + 7’0) b33(€7t)

1 [re Pl(f»ﬂﬁs(&ﬂ‘*‘@(&ﬂ i€(ds—dy)a
(11.13) —%/ t— (.1 10) Ny(z,&;t)e d,

Na(a, &5 t)es (B d2)nqg,
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J bii(am,t) X(fC O t) eiozm(dg—dg)m

a (am,t) b11(am)
N3(z,a;;t) =ws + 23
’ mzl (@j — am)asg(am)

1 oo 52(§7t) X(Z‘,f,t) ei{(d2—d3)rd€

27 ) €= (@ —i0) bui(9)
+oo —
(1114) —+ % / P2 (57 ?j’(pof(éitz)(g3 (57 t) Nl (JJ, f? t)eiﬁ(dl —ds)mdé-’
J

xX(x,B,,;t b )N (2, By t)etPrldi—d2)z
X(z, By;t) = 13w — Z 21(Bp, t)N1(z, Bp; t)

bsa(5) = (B — By (58y)
i boz(Qg, t) N3 (2, @y t)ei®alds—dz)z
a=1 (B,, — @q)bss(@y)
L (1)) ik (dy—do)a
“am L e
+oo —
(1115) + L MN?,(JI, g’ t)eiﬁ(dg—dg)mdg’

2mi ) o ff(ﬂ —i0)

x(@ait) b1 (Bp, ) N1 (, Bys )P (h )
b1y () —Y17Y3w2 + Z (s — BV (B

+Z bas(aig,t) N3(, aq,t)eiaq(d?ﬁ'b)w
q=1 (aj — g ) b3 (alg)

L Hoe p3(£at)

2mi | oo €— (a +10)
o L e ﬁ&(gv )

21 J_o € — (a; +10)

Equations (11.13)—(11.16) are integro-algebraic equations which are used to solve the
inverse problem and reconstruct the potentials of the classical and two nonlocal three-
wave interaction equations. In fact, the system is of N + N + .J +.J vector equations
in the same number of unknowns. In order to determine the linear system for the
classical or complex reverse space-time or real reverse space-time three-wave system,
we need to impose symmetry relations on the scattering data. We will do this below
for each case.

p=1

Ni(z, & t)e (=07 dg

(11.16) Ny(z,&;t)ei€(ds—d2)z e

11.2. Classical three-wave system. By setting a; = aj, Bn =B, J=J,N=
N in (11.9)-(11.12) and using (8.4), we obtain the representations of eigenfunctions
below:

(11.17)
N 1 7(1‘ 6*.t)eiﬂ:l(d2—d1)x
az (B0 X n
Ny(z,kit) =wy — 2o
7; (k= B5)at (Br)

_ L +oo P1 (fvt) Y(xvgﬂf) eif(dz—d1)xd§
20 J_oo €~ (k+i0) bz3()
1 oo _%Pl (gvt)ﬁ§(§7t) +ﬁ1 (fat)

- N. -t ig(dgfdl)xd
o - f—(k’—‘rZO) S(xaga )6 57
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m — m ;s )eiaj(df_)—dg)l
Ny(z, k; ) w3+Z ) k aJ)
J

(11.18) _L (6t X(@6H) e ds)e e
2mi J_oo € — (k—140) b11(€)
1[0 p2(&,t) — £p2(&,1)pi(€:t)

ass(aj)

Ni(a, & t)e (D) ge,

2mi | € — (k—1i0)
N .
—_ ket b N it iBn(d1—d2)x
X(@, k; )26163“}2_2 21(Bn, t) 1(%5; )e
baa (1) > (k= Ba)b, (5n)
7i 93 a;k,t fL‘ a*,t) Za*(dg—dz)w
(11.19) k ;)b ()
1t 216t :
. 527]\/’ -t ’L{(dlfdz)a:d
+2M./W Mgt ;
1o 2p3(600) ;
i 527]\[ -t lﬁ(ds—d2)ld
/_oo g ( 720) 3(:E>§7 )6 57
. N . 1) piBn (d1—d2)z
X(l‘,k,t) = 163wy + Z b21(6n7t)N1(xa/8n7t)e
by1 (k) (k = Bn)bi1(Bn)
i x,aj,t)e aj(ds—d2)x
(11.20) = k o} )bs3(05)
1t 2pi(6e) ;
N .t 'LE(d1—d2)xd
[W é. (k+ 0) 1(%,5, )6 €
1 e 2p3(E0t) ;
= 527]\/’ -t 1§(d3*d2)l’d )
57 | ey Ve ;

The closed system is obtained by setting a; = a7, B,=p8:and J=J, N=N in
(11.13)—(11.16). Combining (8.2), (8.4), (9.6), and (9.7), we find

(11.21)
53b21 Bla ) % Wity —di)e
N ns
1(&, fnit) =wi + Z - B )011(51*)
0 ,01(5 B X@ED e
T2 e €= (But10) bss(€,0) € %
1 +oo 75p1(£at)p2(£5t) +p1(§7t) i&(dg—dy)x
T omi ) € — (By + i0) Mol &50)e “
(11.22)

J 81()*: (a;krwt) X(z,am;t) zam(dz ds)x
N3(3;‘,O¢J ) =g — Z 23 : b11(am)

o — )@z ()
LT B(t) X6 se(dr—do)e
271 J oo €= (i —i0) bu(€) © *
1 Foo PQ(fat) - %p2(£7t)p>{(§at)
% —0 fi (O‘ﬂf - 7'0)

J

m=1

Ni(z, &t)et (B d)rag,
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N .
- ot b N -t ifp(d1—d2)x
X(Iaﬂna ) = £163wW0 72 : 21(ﬂp7 ) 1(I7Bp7 )6

bss(By) = (8% — Bp)bi1(Bp)
- J b23( * !E a*'t) ia*(dgfdz)z
(11.23) (ﬁ* — ag)bsg(ag)

1 too ELpi(€,t)
T ) B0
_L o gmEt)
21t J_ oo { (B —10)
M__ ba1 (B, t) N1 (z, Bp; t)etPr(dri—d2)o
bll(aj) T +; ( ﬂp) 11(5;;)
bas(a (z,a};t)e iy (dz—da)
+Z (05 — )Wy )
1 [t 216
- 7’/_00 &~ (a; +10)
1 /+°° =2p5(601)

% —00 f (OZJ+ZO)

Ni(a, &5 t)e (B d)mqe

(11.24)

Ni(x, &t)ets(hmd)mag

_|_

Ns(z, ;1)) dg,

Na(a, &5 t)e (B d2)mge,

4117

11.3. Complex reverse space-time three-wave system. Under the symme-
try reduction Noj(x) =e169N75(—1x), N31(2) =163 N73(—2), and Nza(x) = e2e3Nos(—x
where 5 =1, j =1,2,3, and from the distribution of zeros of a11(k), bi1(k), ass(k),

bss(k) (see section 9.2) and (11.9)—(11.12), we find

(11.25)
N, 1 B (d2—d1)x
Ny a21(ﬁn7t)x(‘r BTN ) 2T

Nl(x,k;t)zuh—nz::l (k Bty (Br)

_ gl: m?( B ) d2 dl)z o §2: aZl(%m,t)Y(zigﬂ’“t) :ﬁm(dg dl)m
n=l (k+ Br)aia (=5,) N (R
1 +oo )
omi / = ti“ (fktijofl( D Ny (a, & t)els—anzge

_ L Feo P1 (€7t) Y(Iagat) eig(dgfdl):vdg
omi | €— (k+10) bss(€) ’

(11.26)
. ia-(dz—dg)x
a3(0; atarX(@,agst)et
N3(z,k;t) =ws + 23(0. ¢
Z (k —aj)azs(ay)

(:E _a"t)eilaJ (dQ*dg):L’ J2

ei&l (d2 7d3)w

1 ~
a23 az3(ay,t) X(xa al;t)
+ E P +) 5 5
k + aj)ass(—ar) = (k — ay)ass(ou)

1 +oo /72(5775) +p2(€7t)p3(§7t) . i€(d1—ds)x
o / F N e dg
- L e p2(§7t) X(x7€7t) 1€(da—d3)z

omi oo E— (k—i0) bu(é) * 4%
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(11.27)
Xl kst) RS b (B, )N (&, B t)etn (e
()~ 2 <k—ﬁn>bal<6n>

n=1

G bt (=B )N (2, B ) Pr =) G by (B )N (3, B )P (2= )2
> (k+ B5)b1, (=By) - Z (k 6m)b’u(ﬁm)

I by (@, ) Ny, @5 )@ a—d2)e T oy (—a5 ) Ny, —ai; t)e " (da—da)a
*E (k= a,)b55(@;) B (k+ ;)b (7))

T2 s (1, ) N (2, G t)ei@ (ds—d2)e 1 400 (e gy
_; (k — a)bls (a01) S 2mi ) £—(k—i0)
1 [T pa(g, t)

n=1

j=1

Ni(x, &t)ets(hmd)mag

— _— i§(d3—d2)x
* 2mi o €—(k— )N?)(x Gite dg,
(11.28)
x(@,k;t) _ Dot (B, ) N1 (2, B t)ein (d—d2)e
S = —g1e3wn +

bll(k) 1€3W2 Z (/C Bn)bll(ﬁn)

b N, — Bt e Balti—dz 2y, (B 1N (2, By t) et (1 —d2)e

+Z 21( )N1(x, =B t)e +Z 21 (B, t)N1(z, B t)e

k+ﬂn)b’u( ) o (k= Br)b1 (Brn)

+Zb23 @, t) N3 (, @3 1) e’ (45 —d2)x L bos(—),t) N3(x, —aj;t)e e da)e
(k —ay)bs3(ay) (k+a;)bss(—aj)

+szs a1, t)N3(x, G t)eli (da—da)z 41 A (X)
(k — ay)bys () 2mi J_oo € — (k+10)

B L T p(6t)
27t J_oy € — (k+10)
Recall 2J, + Jo=J, 2J1+ Jo=J, 2N; + Ny = N, and 2N; + Ny = N. In fact,
if J is an odd integer, then Js is also odd; that is, at least one eigenvalue ¢; lies
on the imaginary axis (the actual number is Jz), and the number of eigenvalue pairs

{aj,—a;‘} is J1. On the other hand, if J is an even integer, then J, must be even.
In particular, it is possible that there is no eigenvalue on iR (J; =0, J; = J/E) or no

j=1

Ni(z, & t)e' (@) dg

Ns(z, & t)e (B d)mgg,

eigenvalue pair (J; =0, Jo =J). One has similar conclusions for j, N, and N.
For b1mphﬁcatlon we only consider the case of J; = J; = =N1=0 here. By
setting J; = J; = =0 and substituting k = 3, in (11. 25) k=a; in (11.26),

k=p,,in (11.27), k; = @; in (11.28) and applying (9.11), one derives the closed system
for the complex RST three-wave interaction equations, i.e.,

—t)- X(z, B,,t) zﬂ (da—dy)z

Ny(z, Bost) = w1 + Z bss(ﬁmt)N
r=1 (5” — Bm)at1(B,n)
(11.29) 1 teo p(6 ) X(x,&5t) e(in—iiyege

2mi | oo €= (B, +i0) b3s(€)
1P (& t)ps(Et) +71(60 1) ) i€ (ds—d1)o
= G Nl e 3
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M ias(dz—d3)x

J 51a§3(625,—t)- b11 (s t )

Nj(x,di5t) = w3 — Z

s=1 (Gu — as)ajs(as)
(11.30) L B X E i)
2 ) €= (@—i0) () *
% joo P2(5’72j(f’;l(5_7?0f;3(&t) Ny(z, & t)e sl =d)r e
M@n;t) =e183w2 — Z 21 (Bp, t) N1 (, B3 )P (1~ o)z
33(ﬁm) p=1 (ﬁm ﬁp) 11(/6)1))
_ ZJ: bos(Gg, t) N3 (2, Oig; t)eiPa(da—do)z
q=1 (Bm — ag)bsz(ag)
1 oo Pg(f,ﬁ) i&(d1—da)x
- — t 1—d2)z g
27Tl/oo £ — (ﬂ 710) ($§ ) ¢
(11.31) + L " MNP)(LE;t)eig(drdz)xd&
2mi ) oo &= (B, —i0)
x(z,ay;t) bo1( ﬂp, YNy (z, Bp' t)e iBp(di—da)x
e +
@) Z (&5 - Bt (By)
bgg Olq, )Ng(fE aq,t) iaq(dS*dz)l’
+
(; (a — aq)b33(aq)
L B (30) i€ (d1 —da)z
Pomi ) @y i) S %
(11.32 L[ Bl iy, g et -anmge,

2w J_o € —(&; +10)

11.4. Real reverse space-time three-wave system. Under the symmetry re-
ductions Naj(z) = e169N12(—2), N31(z) = €163N13(—x), and Ns(x) = e2e3Nas(—1)
as well as Noj (z) =169 N75(—1x), N3i(x) =e1e3N5(—x), and Nzo(x) =eae3Ng5(—x),
where 5? =1, j = 1,2,3, and noting again that the symmetry relations among ei-
genvalues for the real reverse space-time three-wave system are the same as the
complex nonlocal case (see section 8.3), the general representations of eigenfunc-
tions are the same as (11.25)—(11.28), and the special case is obtained by choosing
Jh :jl =N :Wl =0.

From (8.11) and (11.29)—(11.32), one obtains the closed system for J; = .J; = Ny =
N, =0, that is, the system (11.29)—(11.32) by setting a2 (B,,—t) and ags(ds, —t) to
be real, i.e., iy (B,, —t) = as (B,,—t) and a3q(ds, —t) = ags(ds, —t).

12. Minimal data. In this section, we define the minimal data needed for the
inverse scattering reconstruction of the eigenfunctions and potentials. In the general
case, we need the following:

(i) Continuous spectra: reflection coefficients p;1 (k), 7

(ii) Discrete spectra: eigenvalues o, j =1,2,...,J; @;, j = 2, B, n=

1,2,...,N; B,,n=1,2,...,N.
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(iii) Reduced normalization coefficients (see section 9: (9.1)—(9.2) and (9.5)):

ba21(Bn), bas(@y), azi(f,,), azs(ay).

We remark that the following values are obtained from the trace formulae in terms
of eigenvalues and the above reflection coefficients: a';(By), ass(a;), b1 (Bn), bss(a;)-
These latter values are not part of the minimal data since they are expressed in terms
of known data.

Due to symmetry reductions for the potentials, it induces the symmetries among
scattering data, reflection coefficients, and eigenvalues. Therefore, the number of
minimal data can be reduced. Next, we discuss the minimal data for the case of clas-
sical, complex reverse space-time, and real reverse space-time three-wave interaction
equations, respectively.

12.1. The classical three-wave system. To solve the inverse problem, we
need the following quantities:

(i) Continuous spectra: reflection coeflicients p1(k), p2(k), p,(k), po(k) (via (8.4),
the number of reflection coefficients is reduced by two).

(i) Discrete spectra: eigenvalues «j, j=1,2,...,J, and B,, n=1,2,...,N (via
aj=aj, B,, = 3%, the number of eigenvalues is reduced by a factor of two).

(iii) Reduced normalization coefficients: bz1(Bn), baz(a) (via (9.6) and (9.7), the
number of reduced normalization coefficients is also reduced by a factor of two).

In summary, we need reflection coefficients p1 (k), p2(k), p1(k), po(k), eigenvalues
@, B, and reduced normalization coefficients b1 (/53,), bgg(a;‘) to recover potentials.
In particular, the reflectionless potentials only depend on eigenvalues and reduced
normalization coefficients.

12.2. Complex reverse space-time three-wave system. In order to recon-
struct the potentials, the following data are needed:
(i) Continuous spectra: reflection coefficients p1 (k), py(k), p2(k), po(k), p3(k), p3(k).
(ii) Discrete spectra: eigenvalues
{a;:Sa; >0},

={am, —al, :Say, >0 and Ry, £ 0}, U{& :3a; > 0 and R, =0};2,,
{@;: Q@ <0},
= {@m, —@, : STy, < 0 and R, # 0}, U{Q,: S7; < 0 and R, =0};2,,

{Bn 1B > 0}7127:1
={Bp,—B; 3By >0 and RB, #0322, U{ B : SBy > 0 and RB, =0}V,

{Bn : C\\an < O}nﬁzl
= {Bp, —B; : SBP <0 and %Bp # O}é\[:l1 u {Bm : %Em <0 and %Em = 0}%221.

(iii) Reduced normalization coefficients: by (Bp), bag(Qm), a21(B,,), azs(cum) and phases
(defined below)

0 m=1,2,... No; 09, 1=1,2,... To;

o™ m=1,2,... No; 00, 1=1,2,..., .
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In general, we Eeed bgl(ﬂp), b21(—ﬁ;), bgl(ﬂm>, bas(Qip), b23(—a:1), b23(&l), agl(ﬂp),
a21(—5;), a21(B ), a23(am), azs(—as,), azs(ay).

By (9.8)-(9.11), it follows that by (—3%), bos(—al,), azi(—B,), ax(—as,) are
related to b21(Bp), bas(@m), agl(ﬂp), ag3(ayy,) and some values obtained from the
trace formulae in terms of known data.

Thus, ba1(—f;), bas(—ay,), (l21(—BZ)7 asz(—a,) are not part of the minimal

m m
data. In fact, (9.11) implies that for purely imaginary eigenvalues, one has

€3|a2l@m)|2 _
b33(5m)

e (@) _ esba1 (Bm) . _e1lbas(a)?

= 5 ~ = =1,-
bii () as3(Bm) arr (o)

)

Thus, |ba1(Bm )], |b23(al)\ \azl( m)|, |azs(@;)| are able to be represented in terms
of a53(ﬁm) au(al) bgg(ﬁ ), b11(ay), respectively. These four values can be found
from the trace formulae, which consist of known data: eigenvalues and reflection
coefficients. If the reduced normalization coefficients ba1 (B ), bas(ay), as1(B,,), and

ass(qy) are omitted, then the above phases Hgm), 9§l), s=1,3, j =2,4, are introduced.

12.3. Real reverse space-time three-wave system. To recover the poten-
tials, we need the data stated below:

(i) Continuous spectra: reflection coefficients p;1 (k),py(k), p2(k), o (k), p3(k), s (k).

(ii) Discrete spectra: eigenvalues

{a; :Sa; >0},
={am, —a, : Say, >0 and Ray, # 0}, U{d; : Sq; >0 and Ra; = O}i]ip

{@; : Sa; <0},
={am, —a,, : Sa,, <0 and Ra,, # O} _,U{@;:Sa; <0 and Ra; = 0}2];1,

{ﬁn : %ﬂn > 0}1];7:1
={Bp, —ﬁ; 1By >0 and RB, # 0} 1Y {ﬁm \sﬂm >0 and %ﬂm = O}m 1

{B,: 9B, <O}, - -
— {B,,—B,: 9B, <0 and ®3, # 0}, U{B,, : 3B, <0 and RB,, =0}V,

(iil) Units: 6™ n=1,2,...N; 69, j=1,2,...,0; 6{", n=12,...N; 6 j=
., J, where 6" = 41, 5(” +1, 6" = 41, and&”
Actually, the above units are 1ntroduced due to (9. 12) and (9.13). In fact, (9.12)

and (9.13) imply —Seale) — 1 =) _ g _abh@) _ _ﬁ# _
which shows that the reduced normalization coefficients only rely on b1 («;), (133( )
a11(@;), b33(B,) and units. Moreover, bi1(a;), ass(Bn), a11(@;), and bsz(5,,) a
derived from the trace formulae in terms of known data.

In conclusion, the minimal data for reconstructing potentials contain the reflec-
tion coefficients, the eigenvalues, and the above units. In addition, the pure soliton

solutions are only relevant to the eigenvalues and the units.
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13. Reflectionless potentials and soliton solutions. In this section, we dis-
cuss reflectionless potentials and hence when time is included in the associated soliton
solutions. The soliton solutions for the classical and nonlocal systems provide con-
crete examples of how energy is shared between the three components. Reflectionless
potentials and pure soliton solutions correspond to zero reflection coefficients, i.e.,
P1 (6) =0, p1(§) =0, p2(5) =0, ﬁQ(g) =0, p3(§) =0, and ﬁ?)(f) =0 on R. Recall the
notation d; = —C4, dos = —C5, and d3 = —Cj for the classical and two nonlocal cases
(see section 2).

13.1. General case. Letting J = N =.J = N =1, by (11.9) and (11.10), one
obtains

bsz(B1) X(z,B1;t) eigl (do—dy1)x

a (Eut) b33(51)
(13.1) Ni(z,kst) =wy — = 2 — ,
(k= B1)ay,(8)
bii(a1) x(z,a1;t) pion (dz—dg)x

13.2 Ny (@, k; t) = wy 4 228t0nt)_bualon)
(182) @ kit) =ws (k — a1)ags(on)

By (11.13)—(11.16), one has

b33(51) . Y(I,El;t) eiﬁl (dz—dl)l

az1(B1,t)  bss(By)
Ny (z, ;1) =wy — =22 e )
(81— B1)at,(By)

bii(an) | x(z,0a5t) eial(dg—dg)w
az3(a1,t)  bii(ay)

(@1 — ai)ajss (o)

Ns(z,a13t) =ws +

)

X Bust) (BN frsyel (o)
b33(ﬁl) (Bl - 51)5/11(B1)
B b23(51,t)Ng(x7a1;t)ei51(d3—d2)x
(B, —@1)bs (@)

)

yar;t b AN , Bt if1(dy—d2)x

Xwonit) o b (BN Britle

bu(an) (a1 — Bu)biy (Br)
bos(@y,t)Ns(z,ay;t)ei®r (ds—dz)z

(o — @ )bys (@)

Combining the trace formulae, the above algebraic system reads as

Y@)(fﬂfﬁt) _ o ms [1 o =B bag(an,t) ei(al—al)(dg—dg)w:|
b33(/31) D(z,t)

N @ — B, a3(a,t)

~(3) n . a1 —
X (xflat) - _ 1 ) aq 21 b23(al’t)eial(d3—d2):c’

b33(1) D(x,t) @ — B4

XP(@at) s {1+ Br=t1 baa(But) s 5y)i—dae
bi(ay) D(z,t)

_ }, where
a1 =B an(By,t)
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D(z,t) := {1 — ?l —a b21(§1’t> ei(ﬁl—ﬁl)(dl—dm}
By —ar an(By,1)
1o bule

2
ay; — B, as(aq,
)

(i —a@) (B - By

. b23(alat) ba1 (Blat) ei(ﬁl—Bl)(dl—d2)x+1’(a1—61)(d2—d3)r.

(o1 — By)? azs(ai1,t) ag; (By,t)
By substituting OBt XPwhit) g4 the first equation of (13.1) and X2 (@onit)
533([31) ’ 533(/31) ' b11(0t1)

to the second equation of (13.1), we deduce

o o eiP1(da—dp)z
Pr= BB~ 1) “anBrt) . N

B — a1 k— B4 D(:z:,t)
L =B bs(@t) iar—a)(de—da)e

a; — f; a2s(a,t)

N (ki) = -

)

_ _ _ ePrlda—di)e -
Pr=P)B1~T) “anGrn 1 WO G, 1) (o)
By — o k— B4 D(»’C’t) ay — B4

NP (@, ks t) _

eiv1(dg—dy)z

N§2) (x,kz;t) __ (a1 —@1)(041 - 51) az3(a,t) :YI'VS

ay — By k—a1  D(z,t)

Bl M b21(§1’t) ei(Bl_Bl)(dl—dZ)x .
ar = B1 asn (By,t)

Note that (6.2) and (6.4) imply Naj (2, t) ~ ik(dy — do) N2 (x, k: t), Na1 (2, t) ~ ik(dy —
ds)N¥ (2, k;t), and Nos(x,t) ~ik(ds — dy) NS (2, ks t) as k — co. Thus,

i(dy — do)(By — $1) (B — @) ¢iB1(dz—d1)z

1+

Noy(z,t) = — & =
B1— o 21 (B, 1)
~7173 1- . 7§1 b23(51,t) ei(alfal)(dzfd‘%)m
D(x,t) oy — B4 a23(0¢1,t) ,
i(dy — ds) (B, — B — @) eiPild—d)z | . _
N31(:L‘7t):_'5( 1 3)(@1 ﬁl)(ﬂl al)e 1 T — oy

51_0‘1 a21(617t) l’j(‘xat)al_gl
. b23 (al, t)eial (d37d2)d7’

Z(d3 — d2)(a1 761)(a1 - Bl) elor(dz—di)z Y173
a1 — By azs(a1,t) D(w,t)
14 py—a1 b21(§17t) Gi(B1—Fy)(d1—da)a |
a1 —B1 a(Bq,t)

Once the symmetry reductions for the potentials are imposed, the specific reflec-
tionless potentials {Q1, @2, @3} will be obtained; the details are discussed below.

Ngg(l',t) = —
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13.2. Classical three-wave system. Letting J =N =1, by (8.2), (9.6)—(9.7),
and (11.17)—(11.18), we have

EBb21 (ﬁla ) Xu(’gl ’t)) i8] (d2—dy1)x

(13.3) Nyi(z, k;t) =wi + ’
(k — B7)a1(87)
o bk (a*,t)w iay(dz—ds)z
(13.4) Ny(z, by t) =ty — —— 2 20 (21D)

(k — a1)azs (o)

Now, letting oy = &; +im and 31 = &, +i7;, where 1; > 0 and 7, > 0, adding time
dependence (see section 7), and using (10.12) and (11.21)—(11.24), we obtain

2 X(@, 8138 @, +i8,)(C1—Ca) (e —Cat)
ﬁ, — —_c M 1 1 2 3 ,
N, frit) = 54 b33 (B, )
N3(z,a7;t) = ws +517§7X(x al’t)6("1%51)(02703)(%0”),
bii(ai,t)
Y(xaﬁf;t) — 163w _'_ElNl(x’ﬁl;t)e(ﬁl—igl)(Cl—Cz)(ﬁc—C’st)
b33 (B1,1)
211 ea N3 (2, 0 t)elm He (€2~ =it
(&, — &) +ilm —) ’
-t 2721 N- -t ™ *’L‘E )(C1—C2)(z—Cst)
X(I,Oq, ):7€1€3w2+ 2111 C1 1(%,&1,7)6 1. ! -
bi(ai,t) (61— &) +i(m —m)
— G N3(z,a;t)e (m+i€1)(Ca C’:s)(ﬂf—clt)7

_ b3 (8], "

where C1:= bzl(ﬁl? ) 02 - b23( 15 )7 azigg};; = _E3b21(515 )

— 753C 603(02 C1)(771+1§1) leigzi ?) €1b§3(04>f,t) — 7516 6C1(C'5 Cz)(n17i§1)t. The
above equations are an algebralc system, from which one can get Ni(z, 81;t), N3(x, af;t),

ZF:(E% f))7 and fl(f(zll :)) in particular, we find
~+(2) *.
X (x, B15t) 1 ( — 12 211 (C2—C3)(z—Cht)
= 1 N1(C2 3)(® 1 )
ba(Br) Dy el
1 2i83’f]1‘Eg|2€2m(02_c3)(m_clt)
D(z,t) (& &) +i(m—m)
X, iit) 1 2ipepem )G
bs3(B1,t) D(z,1) & —&)+im—m)
(2) .
X' (@, an5t) 1 ( _ 1297, (CL—Ca) (2—Cst)
— 1 . M1 (C1—C2)(z—C3s )
bri(on) D(x,t)glgs +esler e
1 2i€1ﬁ1|61|262ﬁ1(C17C2)(I7C3t)
D(z,1) (&= &) +ilm =) ’
where D(z,t) := (1+61\52\262”1(02_03)(1'_01”) . (1+53|51|2e2ﬁ1(cl—cg)(x—cgt)) +

dere3mm, e |2 [e2)%e 271 (C1—C2)(z—C3t)+2n1(C2—C3)(¢—C1t)

(&1—&)2+(m—7,)?
tials, we apply the asymptotl(lzs discussed in section 6. For example, (6.2) and (6.4)

. In order to reconstruct the poten-
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vield Noy(z,t) ~ ik(Cy — C1)NP (2, k;t), Nai(z,t) ~ ik(Cs — C1)NP(x, k;t), and
Nos(z,t) ~ik(Cy —Cg)N?EZ)(;v, k;t) as k — oo. Indeed, we are able to find NI(Q) (z,k;t),

3 2 e XD (gt X (2.7
N1( )(I,/{;t)7 and Né )(x,k;t) by substituting Xb33((61£37175)t), wa((ﬁ?’lt)t) to the first equa-

) .
tion of (13.3) and % to the second equation of (13.3). It turns out that

Noy (z,t) = .27, 3(Cy — Cy )Tt eMHi€)(C1=C2)(w=Cst)

1
D(z,t)

. —~ 12,2
. [8183 (1 +51\Ez|262m(02—03)(w—01t)) _ 228377,“02' e
(& — &) +i(m —my)

Cz—Cg)((L‘—Clt)

_ o i£1)(C2—C3s)(z—C
Nan(.8) = 97 4(C — Oy Yt T HE (1O Oyt 2itCae M TSV (Com ) ()
D(x,1) (&1 —&)+ilm —m)
1 ,
Nog(z,t) = 7D(:r 5 2m1e1(Cs — 02)636(771_151)(02_03)($_Clt)

o 2 = |=. 12 2ﬁ1(leC‘2)(me’3t)
. {5153 (1+63|61|262"1(C“Cz)(“03t)) + EUINE }

(61— &) +i(m — )
From (2.5), it yields that

V(Cy — C1)(C3 — Ch)

Q1 (x,t) = D(z,t) 201 (C5 — Cp) el —i€)(C2=Ca)@=Cit)
T
(13.5) ’ 77, o1 [262T (C1=C2) (=
' |:€3 (1 +63‘61|2€2ﬁ1(C1*C2)(1*C3t)) n 22771|Cl|232771(c1 Cs)( C3t):| ’
(51 — 51) + 2(7]1 _ﬁl)
Qo (z,t) = VG 6;1)(?3 —C) 207, 5(C5 — Cy )i M HiE)(C1=Ca)(a=Ct)
’ D(x,t
(13'6> Qinlﬁge(m+i§1)(02_03)(x_01t)
(& — &) +i(m —my)
(13.7)
C3—C1)(C3 —C i€
Qs(x,t) = V(G = (G — o) 27 £185(C — Cp)ere M6 (1) (o= Cat)

D(z,t)

. {51 (1 +61|52|262"1(02703)(I7C1t)) + 21’77462
(&1 —&) —i(m —m)

solve the classical three-wave system (2.4). In addition, the solutions are nonsingular
whenever €1 =1 and 3 = 1.

The minimal data we use for constructing 1-0-1 soliton solutions of the classical
three-wave interaction equation include the following four values: the reduced nor-
malization coefficients ¢ := ba1(51,0), & := baz(af,0) and eigenvalues a; =& + iny,
81 =&, +im;, where ay # B;.

We have the following theorem.

|2627]1 (CQ*Cg)(I*Clt)

THEOREM 13.1. Given the minimal data ¢, T2, oy, and By with aq # B, then the
classical three-wave system admits a unique global soliton solution given by (13.5)—
(13.7) for the case of 1 =e3 =1, while in the remaining cases, there exists a blow-up
time to such that the solutions exist for t <tg.
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Fi1c. 1. (a) The amplitudes (magnitudes) of Q1(z,t) (red), Q2(x,t) (yellow), and Q3(z,t) (blue)
att1 = —10. (b) The amplitudes of Q1(x,t) (red), Q2(x,t) (yellow), and Q3(x,t) (blue) atta =0. (c)
The amplitudes of Q1(z,t) (red), Q2(z,t) (yellow), and Q3(x,t) (blue) at t3 =10. Here, e1 =e3 =1,
co=—1,C1=1,Cy=2 C3=3, & =& =0, m =1, 7, =2, &1 =2, and c2 =5.

Remark 13.2. For large negative time t, Q2 is exponentially small; @1 and Q3
are nonzero along characteristics x — C1t and x — Cst. At a later (interaction) time,
Q2 grows and becomes O(1). Later, Q2 decays to become exponentially small again,
while Q1 and Q)3 interact and continue traveling with their respective velocities. At
this point, Q3 is to the right of Q1. Moreover, ;1 and ()3 maintain their initial and
final amplitudes, but their centers/phases are shifted.

The following figures depict the traveling of Qi(z,t), Q2(z,t), and Qs3(z,t).
Figure 1(a) illustrates that Qs is to the left of 1, and @2 is small at large nega-
tive time t¢1; Figure 1(b) describes the three waves interacting at to = 0; Figure 1(c)
shows that @3 is to the right of @1, and @2 decays to be small again at large positive
time ¢3. Note that the initial and final amplitudes of @1 and @3 do not change; only
the phases are shifted.

It should be remarked that this 1-0-1 soliton solution is only one type of solution
to the classical three-wave system; more general solutions can be obtained according
to the discussion below Remark 9.1. A full classification of solutions is outside the
scope of this paper.

There is an interesting case for the two eigenvalues satisfying oy = (1, which
yields splitting/joining solitons; see also [23]. Using the method described above, one
can obtain splitting/joining solitons, for example,

Ql(llf,t) = —2i77161(03 — CQ)\/(CQ - Cl)(cg - Cl)eii&(03702)(1’701)57931)61-71/Al,
QQ(Z‘,t) = 2i771€2(03 — Cl)\/(og — Cl)(C;), — Cg)eigl(Cs_cl)(z_CQt_IQ)ei’YQ/AQ,
Q3($,t) = —2i77163(02 — Cl)\/(Cg, — Cl)(C;), — CQ)e_igl(CQ_CI)(x_C3t_x3)ei73/A3,

with (Cg - Cg)xl + (02 - Cl).’Eg + (Cl - Cg)(EQ =0 and Y1 + Y2 + Y3 = 0, where

Al = 67771(03*02)(1’*Clt7m1) _ 62636”1(6‘3702)@:701]&7%1)

— €160 [(C3—C1)(z—Cat—z2)+[(C2—C1)(z—Cst—x3)]] ,

AZ = 6771(03701)(£E7C2t711?2) + 6163677]1(Cgfcl)(wfcztfajz)

— exeze™ [(02*Cl)(T/*Cst*%)*[(Csfcz)(l’*clt*xl)]]’

Ay = e—m(Cz—Cl)(x—Cg,t—xg) o 61626771(02_01)(9“_03‘5_“3)

+€1e5e™ [(C3—C1)(z—Cat—z2)+[(C3—C2)(z—Crt—z1)]]
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(a)
F1G. 2. (a) The amplitudes (magnitudes) of Q1(z,t) (red), Q2(x,t) (yellow), and Q3(z,t) (blue)
att1 = —10. (b) The amplitudes of Q1(x,t) (red), Q2(x,t) (yellow), and Q3(x,t) (blue) atta =0. (c)

The amplitudes of Q1(z,t) (red), Q2(z,t) (yellow), and Q3(x,t) (blue) at t3 =10. Here, e1 =e3 =1,
eo=—-1,C1=1,C2=2,C3=3,& =0, m=1, 21 =x2=0, and y1 =v2 =0.

The following figures depict the traveling of Q1 (x,t), Q2(x,t), and Q3(x,t) at t = —10,
t =0, and t = 10, respectively. Figure 2(a) shows that there are 1-0-1 solitons at
t = —10, and the interaction of all solitons at ¢ = 0 are displayed in Figure 2(b).
Eventually, as t increases further, there is only a 0-1-0 soliton at ¢ = 10, which is
described in Figure 2 (c). In summary, these figures illustrate that the 1-0-1 solitons
at large negative time (t = —10) merge to a 0-1-0 soliton at large positive time (¢ = 10).

13.3. Complex reverse space-time three-wave system. We let J = J =
N=N-= 1, a; = 11, gl = 1v9, 31 = —1ivq, and gl = —1V3, where v; > 0, vo > 0,

71 >0, and U2 > 0. For more than one eigenvalue, the detailed analysis was discussed
in section 11.3. Then (9.11) and (11.25)—(11.26) give

Y(Qﬁ,—iﬂg;t) 662 (Cl —CQ)CL‘

v
e3a%, (—10a, —t) e e

(k + i@g)a/ll(—iﬁg)

(13.8) Ni(z, kyt) =wi +

3

x(z,ivi;t) ev1(Ca—Cs)a
b1 (ivy,t)

(k —ivy)abs(iv1)

€1a55(—10g, —t)
(13.9) No(z, kit) = wg — ——on 2

By adding time dependence and combining (10.18), (10.19), (10.20), (10.21) and
(11.29)—(11.32), we have

; 7*X($7 iU2§t) T (C1—C —_Cat
Ni(x,tv9;t) =wy — e3¢C AT PP2 ) ua(Cr—C2)(x—Cs )’
1( 2 ) 1 3C3 133( iUQ,t)

— o X(@,0013t) (o) (a—Cp)
N3 .’L',—Z’Ul;t :w3+g C '7611 2 3)(x 1 ;
( ) )

b33 (—iU2,1)

= e163wg + 1 V] (l’,ivg; t)e'u2(01—02)(w—03t)

O ) . 5 _ _
1 152N3($, _Zﬁl;t)em(cb Cs)(z Clt)’

U1 — U2

X (z,iv1;t) Vg + Vg _

_ s C1—C2)(xz—Cst)
" = —€1E3Wy — clNl(m,zvg,t)e“2( L 2
bu(l’l}l,t) Vo —

_ EgNg(.%‘, _2@1;ﬁ)eﬂ(C'2—C3)(97—Clt)7

\;)Vh?l‘e El) = bgl(ivg,O), Co = b23(—i51,0), C3 = a%jl((—iﬁg),()), Cq = agg(ivl,O),
33(—i0a,t) % . _ —x _—C3(C1—C2)Tat b11(ivi,t) * i _
m = _53(121(_7,'[)2, _t) = _53036 3( 1 2) 2 s m = _81a23(—’”}2, —t) =
—eicieC1(C2=Cs)uit  The above algebraic system yields
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X (z, —ivg5t) vzt 1 (Ca—C3)(v1+71) (w—C1t)
b33(—i@2,t> B Dl(ﬁU,t) {6183 * Vo — ’01536 C ¢

Y(?)) (.T/" _Zﬁg,t) _ 1 Ul +’U17 51(02_03)(3:_0175)
bgg(f’iﬁg,t) D1 (l’,t) Ul — ’U2 €€ ’

@) (2, vyt 1 v
X (1‘7“)17 )_ {_5153+U

_ U1 —+ (C1—C2)(va+02)(z—C3st)
bll(ivl,t) Dl(w7t) Elc e 7

V2 — U1

where Dy (,t) := [1 + e3e1¢5e(C1-C2) (2 472)(2=Cat)] . [1 4 g7,z e(C2 = Ca)(iHm)(@=Cat)] .
Tty | Tatos | (€2 =C3) (01471) (2~ C1 1) 1(C1 ~Ca) (v242) (2~ C51)]
V2 —U1 V2 —V1

By substituting ;- ((z’;f:i)t), ;Sl(f’;f:i’)t) to (13.8) and % to (13.9), we
obtain

€1€3C1CQC3C

1 (’Ug—‘r’l}g) * 1}2(6’1 C3)(z—Cst)
Dl(:c t) k+’i§2

{51 L tu astle (CgCg)(v1+U1)(zC1t)}
U2 — U1

N1(2)<.'I,‘,k7t) =

)

1 Ty + vy i(vg + Ta)eztacyelt (C2—Ca)(@=Crt) 472 (C1—C2) (2= Cst)

Nl(g) (x,k;t) =—

Dl(x,t) V1 — V2 k+i52 ’
1 v1(C2—C3)(z—C1t)
(2)(37 it) = i(v1 +7U1)ce
Dl (117 t) k— ’LUl
{53 L2t U1,17§ (Ci— 02)(v2+v2)(:v03t)} '
V2 — U1

As we mentioned in the classical case, Noj(x,t) ~ik(Cy — Cl)Nl(Q)(:v, k;t), Ngi(x,t) ~
ik(Cs — C’l)Nl(g)(a:, k;t), and Nas(z,t) ~ik(Coy — 03)N352)(.’13, k;t) as k — oo. Thus,

N21(x, t)

Oy =y kT2 (C1—Ca) (z—Cist) V2t U1 zre(C2=Cs) (i 47) (@~ Cr)
_m~(vz+vz)03e Q€1 +v2—v162 ’

03—01 '@14—1}1
Dl(.’E t) V1 — U2

01 (C2—C3)(z—C1t)+v2(C1—C2)(z—Cst)

N3 (a: t) (’UQ + U2)€3CQC e’

N23($,t)

02_03 *ov1(C2—C3)(a—C Vo +v1_ _, C1—C2)(va+v2)(z—C
:m-(vl +v1)cse 1(C2—C3)( 1t) | _53—’_1}2—1}101636( 1—C2) (va+T2)( st) |

By (2.8), one has

. . Cy—C
Q1(x,t) =i\/(Cy — C1)(Cs — C1)Nag(x,t) = i\/(Cy — C1)(C5 — C) - ﬁ
vy + vl)cZevl(Cz C3)(z—C1t) | {_53 I V2 + v 61C§6(01Cz)(v2+v2)(zc3t)} 7
Vg — U1
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QQ(z7t) :i\/(c2 - 01)(03 — 02)N31($,t = Z\/(Cg — 01)(03 — 02)

C3—-C1 D1+

" Di(z,t) T -7y
Qs(x,t) =i\/(C3 — C1)(Cs — C2) Nia(a, 1)

=iy/(C3 — C1)(C3 — C3) - e162 - N3y (—x, —t)

(U2+U2)€3CQC e’Ul(Cz C3)(x701t)+62(01702)(17C3t)’

. Cy — - T (Co— _
= Z\/(03 — Cl)(C3 —C9) - e169 - - (va + ’U2)036U2(C2 C1)(z—Cst)
Dl (—.’L’, _t)
{51 + 2t C*C4€(C3Cz)(v1+v1)(a:01t)} )
Vg — U1
iy =12 _ _ . v2—v1 & V2—=U1 | |2 _ _ . V2=
In a;ddmon, (9.11) shows. that [¢1]* = E352 oL, 62| = =a 2L, les]? = 5.3 vy s
[C4]* = €1 . Hence, if €1 = 1, then vy > vy, U2 > 71, and €5 = —1. Similarly,
if e1 = —1, then vo < vy, Ta < 71, and €3 = 1. It implies that 1 and e3 are of
opposite signs, i.e., 163 = —1. On one hand, when €1 = 1 and 3 = —1, we obtain
= = V2—V1 & | — V2—U1 |7, — V2—=U1 |&,| — V2 —VU1 3
[e1] = /220, 1G] = (/25 6] = \/v5ms, [ca| = (/32 Thus, one can write

- _ Va—v; u91 = V2—01 L1602 V2 —U1 293 V2 —V1 16'4

A=V 558 2T VTt C3 =\ 01T5,C 0 4=\ TG where all §;
are real, j = 1,2,3,4. Note that e1e9e5 = 1 (see section 2.2), so one has g5 = —
Therefore,

(13.10)
Ql(xv t)

Dl( 9 (CQ—Cs)\/(Cz—Cl)(C:S—Cl)(vrl-@l) Ui—?—ﬁ;

e iba+01(Ca—Co)(a—Crt) ) 1 (s + v1) (D2 —51)ei(al793)+(cl702)(@%2)(1;70315)
(v —v1)(T1 + v2) 7

(13.11)
i (51 —+ ’Ul)(’l}g +52)
Qu(a.1) = -
2(%:1) Di(z,t) /(01 +v2)(v1 +72)
A (03 o Cl)\/(OQ _ Cl)(C3 _ 02)61'(92—93)—&-W1(Cg—C;;)(:B—Clt)-‘rEQ(Cl—02)(I—Cst)7
(13.12)

Q3(.13,t) =

7 _ Vo — U1
Di(—a,—t) (C2 = C1)V/(C5 = C1)(C — C2) (v +T2) m—

. i03+T2(C2—C1)(@=Cst) | ) 4 (U2 +v1)(v2 —v1) i(04—02)+(C5—C2)(v1+71)(z—C1t)
(52 — 51)(@1 + ’Ug)

are solutions to the complex reverse space-time system (2.7), where

Dl(if,t)

_ [1 _ \/(Uz — 1) (T2 — 1) £i(01=05)+(C1—~C2) (v2+72) (z—Cst)
)

(51 +v9)(v1 + 7}2)

14 (v2 —v1) (V2 — 71)ei(92—94)+(02—cs)(ulwl)(x—clt)
(U1 + v2)(v1 + T2)

_ UitV U2 V2 (0140205 —04)+(Ca—Ca) (11 +71) (1—Cit) +(Cr—Ca) (v2+72) (@ —Cit)
V1 +v2 v+ U2

and vy > vy, Uy > 01.
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Remark 13.3. In general, there exist singular points for @, j = 1,2,3; that is,
in general, Dq(z,t) is not zero-free. However, we can choose 0; — 03 =7 + 2k 7 and
0y — 04 = 2kom such that D;(z,t) > 0, where ky,ky € Z. Thus, for these special
parameters, (); are regular for all z,¢.

On the other hand, when €y = —1 and €3 = 1, the solution is given by
(13.13)
7 _ V1 — V2
t)=———— (Co—C Cy—Ch)(C5—-C
Q1(z,1) Dy (z,t) (G 3)\/( g (G Dl +7) v1 + V2

bt 01 (Ca=Ca)(z—Crt) [ q 4 (T2 + 1) (T3 _62)ei(el—03)+(01—Cg)(vz+§2)(w—03t) 7
(v1 —v2)(V1 + v2)

(13.14)
. _ 7 ' (51 + 1]1)(1]2 +@2)
Qa(e:1) Dy (z,t) \/(51 + ) (v1 + V2)

. (03 _ Cl)\/(CQ _ C])(C3 _ 02)ei(92—93)+51(CQ—Ca)(ﬁ—clt)-‘rﬁz(cﬁ—CQ)(JC—Cgt)’
(13.15)

Q3(Z‘,t):

7 _ V1 — Vs
“Dia o (T COV(Cs = C1)(Cs = Ca)(v2 + T2y [ =

. ei63+52(02—01)(1—03t) . 1 + (62 + Ul)(vl B U2) ei(04—92)+(C3—Cg)(’U1+i1)(:E—Clt) ;
(U1 —02)(01 + v2)

where

Dl(:c,t)

1+ (Ul — U2

(61 +’l)2

_ [1 - \/Em - vz% U1 —vziei(ez_94)+(cz—cg)(vl+v1)(m—clt)1
V1 + v2)(v1 + V2

_ U1+ . V2 + V2 _ei(gl+92—93—94)+(C2—Cs)(U1+51)(z—Clt)+(C1—CQ)(UQ-"-@Q)(I—Cst)
U1 +v2 U1+ U2

- v1—v2 107 = V1—V32 10y = V1—Vg 103 = __ V1 —V2 104
C1= /o€, 2=/ 506", C3 = ‘/7v1+me ;G4 = [ oigae™™t, v > v, and

U1 > V2.

~— | —

(51 _fQ)ei(01—93)+(01—CQ)(UQ—"‘@Q)(.’L‘—Cgt)
(v1 +72)

—~|

)

Remark 13.4. Similarly, @); do not blow up if 6; —0; = 2k, and 0 — 0, = 7+42ka,
where j=1,2,3 and ky,ky € Z.

The data needed for recovering 1-0-1 soliton solutions via the IST include the
eigenvalues v1, va, U1, U2 and phases 61, 6a, 03, 64. In fact, (9.11) implies that
the reduced normalization coefficients ¢; depend on eigenvalues, where j = 1,2, 3,4.
Specifically, the moduli of ¢; are uniquely determined by eigenvalues; however, the
phases 0; are introduced by polar exponential.

We state these results as a theorem.

THEOREM 13.5. Given the minimal data vy, vo, U1, Uo and 01, 0o, O3, 04, then
the complex reverse space-time three-wave system admits a unique soliton solution
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(a) (d)

® (@

F1G. 3. (a) The amplitudes of Q1(z,t) (red), Q2(x,t) (yellow), and Q3(x,t) (blue) at t1 = —10.
(b) The amplitudes of Q1(z,t) (red), Qa2(x,t) (yellow), and Qs(x,t) (blue) at t = 0. (c) The
amplitudes of Q1(x,t) (red), Q2(x,t) (yellow), and Qs(x,t) (blue) at ts =1. (d) The amplitudes of
Q1(z,t) (red), Q2(x,t) (yellow), and Q3 (x,t) (blue) at t4 =10. Here, e1 =1, e =e3=—-1, C1 =1,
Co=2,03=3,01=m,02=03=0,=0,v1 =01 =1, vo=1v2=2.

mo s W w

@ © @

Fi1G. 4. (a) The amplitudes of Q1(x,t) (red), Q2(x,t) (yellow), and Q3(x,t) (blue) at t1 = —10.
(b) The amplitudes of Qi(z,t) (red), Qa2(z,t) (yellow), and Q3(z,t) (blue) at ta = 0. (c) The
magnitudes of Q1(x,t) (red), Q2(x,t) (yellow), and Q3(z,t) (blue) at tz3 =1. (d) The magnitudes of
Q1(z,t) (red), Q2(z,t) (yellow), and Q3(x,t) (blue) at t4 =10. Here, e1 =eg=—1,e3=1, C1 =1,
C2=2,03=3,01=02=03=0,04=m, v1 =01 =2, vga=0v2=1.

{Q1,Q2,Q3} given by (13.10)—(13.12) and (13.13)-13.15) until possibly blow up. In
particular, if 61 — 03 = 2k;m and 03 — 04 = 7 + 2kow, then {Q1,Q2,Qs} is a global
solution.

The following figures illustrate the traveling of @1, @2, and Q3. Specifically,
Figure 3 is for the case of €1 =1 and €3 = —1. From Figure 3, we see (J3 is to the
left of @1, the amplitude (magnitude) of @; is smaller than @3, and @2 is small at
t; = —10. At a later time, e.g., at to =0 and t3 =1, Q2 grows and interacts with @1
and (3. In particular, at to = 0, the amplitudes of these three waves are symmetric
about z =0. Figure 3(d) indicates that ()2 decays to be small again, and Q3 is to the
right of @1 at t4 = 10. In this process, the initial and final amplitudes of Q)7 and Q3
are kept, while the positions are shifted. A different case is given by Figure 4 below,
where €1 = —1 and €3 = 1. Compared with Figure 3, now the amplitude of @; is
bigger than Q3.

13.4. Real reverse space-time three-wave system. We let J = J = N =
N= 1, o, = i, b1 = My, El = —in2 and 51 = —iTy, where n1 >0, n2 >0, > 0, and
7, > 0. By a similar analysis for the complex RST three-wave system, one obtains

(C2 = C1) (7, + Ty Jege™ (1~ CaD

- t)=
2 (m7 ) DQ(xat)
{51 4 w ,62046(C2Cs)(wc1t)(771+772)} ,
N2 — 12
C3—Cv _ | _ 5ici— _ nm+mn _ o (Co— _
N. H=_23_=1. N3(C1—C2)(x—Cst) [N T2 = = n2(C2—C3)(z—Cht)
31 (x? ) DQ(ZL’,t) (TIQ + 771)53036 7]2 — s Cy-€ 5
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(Ca — C3) (1 + 12)Tgem (G2~ Ca)(=Chl)

NQg(lE,t) = —

Dg(l‘,t)
{63 I Tkl TS 02)(E—C3t)(n1+7i2)}’
m—1m
where 21 == by (B1,0), T = bys(@1,0), € = a21(5;,0), T4 := an3(ds,0), % N
— a1 1
_630,21(51, —t) = —63036"1203(02 Ch)t %leat)) €1a23(a1’ —t) _ —8164€n101(c3_02)t7
DQ(IC t) = [1+5301036(C1 C2)(z— C3t)(771+n2)} . [1+5102046( Ca)(ifclt)(ﬂﬁrﬂz)]

+ MmNz Tt o caE Gty - e(C2mC8)(@=Crt) (m+n2)+(C1—C2) (2= Cst) (M, +772)

n
From (2. lé) one has

(Cy — C3)4/(C2 — C1)(C5 — Ch)

Q1(x,1) = DAER) (m — 1o)EgeM Oz~ Co)lr=Cht)
. {53 LTt .ClcgewlCz><mczt><m+n2>} 7
m—"m
Cs — C1)\/(Cs — C1)(Cs — C .
Qa(w,t) = < 1)\/5)22(55 t)l)( 2= ) (Tl + 7 Jestatse @1 —C2)(@=CsD)
M+ 72 e2(C2—Cs)(z— Clt)
N2 — M2
(C2 = C1)/(C3 — C1)(C5 — Cs) SN
Qs(z,t) =— g2(_x s €182+ (T +71)Cs
. e2(C2—C1)(z—Cst) | { T et - oty e(Cs— C2)(-T—Clt)(711+7]2)} .
N2 — 72
Besides, (9.12) and (9.13) imply & = —5331+Z; 3= szrgf? 3= —EdﬁZJer =

51%. Recall from section 8.3 that ¢; are real, j = 1,2,3,4. Thus, cj > 0 and

€163 = —1. When ¢; =1 and €3 = —1, it implies 77; > m; and 7y > n2. As a result,
c1 = (51 %1;2;, Co = 52\/ Zi;gf, Cc3 = 53 %z;Zf, Cq4 = 64 Zi;g;, where 5]' = :‘:17
j=1,2,3,4. Noting that e1e2e3 =1 (see section 2.3), one has g9 = —1. Therefore,

(13.16)

(02_03)\/(02—01)(03—01) m—m Co O (e
,t)=— . + .9 1M (Ce—C3)(z—Ch1t)
Q1 (x,1) Da(@.0) (m +mn2) - 64 771+ﬁ26

K14+ 6153 (72 T Th)(?Q _ 772) 6(C17C2)(I7C3t)(ﬁ1+ﬁ2) ,
(M +m2) (@ —m)

Oa(t) = - (G~ CVC=CI(Ca=Ca) (i +10)(s +7)

(13.17) Ds(,t) N eSO
. 52636ﬁ2(01*02)(Ifcgt)+772(02703)(w701t)’

(13.18)
(CQ_Cl)\/(C3_Ol)(C3_CQ) _ o ﬁ2—772 P (Co—C. .
T, t)= . +7,)6 T2 (C2—C1)(z—Cst)
Q3( ) Dz(—l’,—t) (772 771) 3 ﬁz"‘nl

. {1 + 5254\/(771 +77) (111 =) 6(03—02)(97—Clt)(771+712)}

(M1 +n2) (M — n2)
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solve the real reverse space-time three-wave system (2.11), where Ds(x,t) is shown as
follows:

D, ( ) [1 _(S (5 \/Enl n ( ) _CQ)(I_CSt)(U1+772)‘|
(7

1+m(%+m)

)
)

1+5254 ( ) 7’1) (CZ CB)(I Clt)("71+7]2)
0h+m(m+ng

5060655, MR A M) (C2-09) - Crt) (mbne) (1= Ca) (0= Cst) (1 7).
(771 +12) (. +772)

Remark 13.6. If 5163 = —1 and 6204 =1, then these three envelopes are regular.

Similarly, when €y = —1 and €3 =1, we deduce that

(13.19)

(02_03)\/(02—01)(03—01) m—7 _ B
t) = : oun T i (Co—Cs) (@—Cnt)
Qi(z,1) Da(z,t) (M +n2) - 04 m +ﬁ26

. {1 +5153\/(772 +m)(1m2 _772)e(Cl—Cg)(z—Cgt)(n1+n2)},

(M1 +n2)(m — 1)

Q2(z,t) =— (C5 = C)V(C2 = C1)(C5 — Ca) (1 +112) (71 +72)

590572 (C1=C2)(@=Cst)+n2(C2—Cs)(@—Crt)

(13.21)

(02—01)\/(03—01)(03—02) — — 772_ﬁ2 M5 (C2—C —
z,t) = . +m,)6 776772( 2—C1)(z—Cst)

. {1 + 5254\/(7]1 + 1) (m — 771)6(0302)(mclt)(m+7,2)}

(M1 +m2) (N2 —72)

also solve the real nonlocal three-wave interaction system (2.11), where 7; < 71,
Ny < M2, and

Dy(a,t) =

1+ 0103 (m = 11) (12 —775) e(C1=C2)(z—=C3t) (7, +772)
(T + 1) (T + 1)
(

)

)

608 (2 — M) (M — 1)6( —C3)(2—C1t) (m+12)
(n2 +71)(m +72)

_&®%@QF+nﬂMI+ﬁﬁ.é@—@MwCﬂmeﬁHQ—@ﬂwCMWﬁ%X
(7 +m2) (m. +72)

Remark 13.7. If 5163 =1 and d204 = —1, then the three waves do not blow up.

Remark 13.8. The system (2.11) implies that the corresponding solution set
{Q1,Q2,Q3} must be real-valued. Obviously, our solutions are consistent with the
reality of (2.11).

The inverse problem shows that the minimal data for reconstructing 1-0-1 soliton
solutions contain the following eight quantities: four eigenvalues 11, 12, 7;, 7o and
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Fic. 5. (a) Q1(z,t) (red), Q2(z,t) (yellow), and Q3(z,t) (blue) at t1 =—10. (b) Q1(z,t) (red),

Q2(z,t) (yellow), and Q3(z,t) (blue) at t2 = 0. (c) Qi(z,t) (red), Q2(x,t) (yellow), and Q3(z,t)
(blue) at t3 =10. Here, e1 =1, e90=e3=-1,C1=1,C2=2,C3=3, 61 =—1,00=03 =04 =1,

Mm=m2=2,m=n2=1
.
2
. .
15 1
AL

(a) ' (b) ©

F1G. 6. (a) Qi(z,t) (red), Q2(z,t) (yellow), and Q3(x,t) (blue) at t1 = —10. (b) Q1(z,t) (red),
Q2(x,t) (yellow), and Qz(z,t) (blue) at t2 =0. (c) Qi(x,t) (red), Q2(x,t) (yellow), and Q3(x,t)
(blue) at t3 =10. Here, e1 =ea=—-1,e3=1,C1=1,C2=2,C3=3, 61 =02=03=1, 04 = —1,
Mm=np=1m=n=2.

four units d1, d2, 03, 04. The reason is similar to that in the complex reverse space-
time three-wave system. Indeed, (9.12)—(9.13) imply that the reduced normalization
coefficients ¢; only depend on four eigenvalues and §;, where 5j2- =1,j=1,2,3,4.

We express the above as a theorem.

THEOREM 13.9. Given the minimal data m, n2, Ny, Ny and 61, d2, 63, 04,
then the real reverse space-time three-wave system admits a unique soliton solution
{@Q1,Q2,Q3} given by (13.16)—(13.18) and (13.19)—(13.21) until possibly blow up. In
particular, if 5105 =1 and 6204 = —1, then {Q1,Q2,Qs} is a global solution.

We plot the interactions of @1, @2, and @3 below for the real reverse space-
time three-wave system. Figure 5 is a typical example, where ¢; = 1 and €3 = —1.
Figures 5(a)—(c) describe the traveling of three envelopes at t; = —10, t2 = 0, and
t3 = 10, respectively. At t; = —10, Q3 is to the left of @1 (both are elevation waves),
the amplitude (magnitude) of Q3 is greater than @1, and @ is small. Later, at to =0,
these three waves are interacting. Specifically, Q2 is found to be negative (recall that
the values Q; are real); @ is symmetric about (0,0) (positive for > 0) and Q3 is
still positive, where Q2 and @3 are even functions. At t3 =10, Q2 decays back to be
small, Q3 always remains positive, and at this point, ()1 is a depression wave and is to
the left of Q3. However, their magnitudes are unchanged. In Figure 6, we find similar
phenomena for ey = —1 and €3 = 1. In conclusion, the one with bigger amplitude is
an elevation wave from initial time to final time, but a polarity shift occurs for the
other one.

14. Connection with physical models. Equations that are “close” to phys-
ical equations such as those presented in this paper are often related to physically
significant systems. Thus, it is natural to ask if the nonlocal reductions of the sixth
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order wave system (2.3) can be related to equations arising from a physical model.
In [9], it was shown that the coupled second order “g,r” system derived in [1] arises
from an asymptotic reduction of the nonlinear Klein—-Gordon, KdV, and water wave
equations. In turn, this implies that the classical NLS equation and the nonlocal
PT symmetric and the nonlocal reverse space time NLS equations are all asymptotic
reductions of these physical systems since the “q, r” system contains the classical and
nonlocal reductions [6, 8]. The reduction to the g, r system is, in general, complex. We
find the same here. Complex equations are common in the field of integrable systems,
e.g., Painlevé equations, self-dual Yang—Mills, self-dual reductions of Einstein’s equa-
tions, such as those contained in Bianchi IX cosmological models (see, e.g., [4, 34]) and
water waves (see, e.g., [33]). The three-wave equations discussed in this paper are dif-
ferent from NLS-type systems in that they are quadratically nonlinear and are derived
from evolution equations with linear dispersion relations that admit three-wave/triad
resonance. As discussed in the introduction, triad resonance occurs widely in physical
applications, e.g., in water waves, plasma physics, and nonlinear optics. Motivated by
water/ocean wave phenomena, a simple model was introduced in [22] that illustrates
the underlying three-wave resonant mechanisms. We consider the following nonlinear
partial differential equation which apart from a sign is the one discussed in [22]:

(14.1) Ofu—02u+ Otu+u+esu® =0, 0<e<1,

where o is constant. This equation is motivated by the study of water waves with
surface tension (see [10, 22]). We remark that water waves without surface tension
do not exhibit triad resonance. Below we show that the sixth order wave system (2.3)
is an asymptotic reduction of (14.1). As mentioned in the introduction, in a separate
paper we show that the sixth order wave system (2.3) can be derived from the classical
water/gravity wave equations with surface tension [11].

The linear part of this equation (o = 0) has waves of the form e
w(k) the dispersion relation is given by w(k)? =1+ k2 + k*.

We need to establish that this dispersion relation has triad resonance, which we
will take to be of the form

ikx—w(k)t ’ where

ks=ki+ ko, w3z=wi+wy, where wj:w(kj),

with associated group velocities C; =w'(k;), j=1,2,3.

As an example, suppose we take ko =1, wo = \/3; then k3 =1+k1, ws =w(1+k;)
solving for k; from the triad equation w3 = wy +ws yields /14 (1 +k1)2 + (1 + k1)t =
V1+E+E+ V3. Numerically, we find a solution k; ~ 0.497: hence k3 ~ 1.497, and
S0 k1 < ko < /4}3; we also find wy; ~ 1.143 < wy < w3 ~ 2.875 and C; ~ 0.649 < Cy =
V3 < O3 2.854.

Similar arguments and numerical computations show that by varying ko there is
a broad range of such solutions for k1, ke. Therefore, we have shown that (14.1) has
triad resonance.

Next we show how to obtain equations governing three-wave resonance. We in-
troduce multiple scales X = ex,T = et so that 0; — 0; + €0, 0, — 0, + €dx. Hence,
(14.1) takes the form ((0; + €0r)? — (0 + €9x)? + (0 + €0x)* + 1)u + eou? = 0.
Expanding v =ug + euj + - - - yields the following for the first two orders in e:

(14.2)
Lug= (6252 — 82 + 8;1 + 1)UO =0, Luy=-2 (8t8T — 0,0x + 2828)() Ug — O'U(ZJ.
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We take as our solution of the leading order equation
uowz (X, T)e% + Bj(X,T)e” "),

where 0; = kjx — wjt.
Since in general B;j(X,T) # A;(X,T), the solution can be complex. When we
proceed to the next order and remove secular terms, we find

iwl(é‘TAl + 018XA1) + 0B A3 = 0, w1 (6TB1 + ClﬁxBﬁ —0A3B3=0
iOJQ(aTAQ + CgaxAQ) + O'BlAg = 07 iWQ(aTBQ + CgaxBQ) — O'AlBg =0
(14.3) iW3(8TA3 + CgaxAg,) +0A1As =0, io.)g(aTBg + CdaxB3) —oB1By=0.

The usual three-wave equations are obtained when we assume B;(X,T') = Ax (X,T),j=
2,3, where * stands for complex conjugate. But here we allow B;(X,T), j=1,2,3,
to be free; so the solution is, in general, complex.
We rescale the equations by taking flj =v;4;, Bj =;B;, j=1,2,3; introducing

i(Y17273) Wi X — _ U2‘-"JXJ ] —
o wiwawzXx1X2X3 "’

another parameter x;, j = 1,2,3, leads to 7]2 =—
. 3
1,2,3, since y1v27y3 = 77«&)15&/2‘4?:3)(1)(2)(

Dropping the tilde: ~ yields the following A, B system of equations

OrA1 + C10x A1 — x1B2A3 =0,  OrBy +C10xB1 + x14283=0
OrAg + Co0x Ay — x2B1A3=0, OBy + C20x B+ x2A183=0
(14.4) OrAs + C30x A3 — x3A145 =0, OrBs + C30x B3 + x3B1Bs = 0.

Next, consider the sixth order wave system (2.3) and identify the following compo-
nents: Al = Ngg, A2 = ]\/v137 A3 = N12, Bl = N23, BQ = Ngl, Bg = N21. Comparing
the A, B equations (14.4) with the wave system (2.3), we identify C1 = —ag3, Cy =
—Q13, 03 = —Q91 and X1 = C3 — CQ, X2 = Cl — 03, X3 = 01 — 02. We also remark
that for the compatibility of the above system, we require x3 = x1 + X2.

Therefore, the A, B system is equivalent to the sixth order wave system (2.3).
Moreover, since this sixth order wave system has reductions to the classical three-wave
equations and the nonlocal complex and real three-wave systems, we have established
that these nonlocal reductions are asymptotic limits of the original nonlinear PDE
(14.1).

15. Conclusion. Three-wave interaction equations are extremely important non-
linear wave systems; they arise in many physical problems. In this paper, the classical
three-wave and two nonlocal three-wave systems: complex reverse space-time and real
reverse space-time equations, are investigated in detail. It is shown how to derive these
systems from 3 X 3 linear compatible systems. The inverse scattering transform with
rapidly decaying data is employed to analyze these systems. The direct and inverse
problems are carefully analyzed. Considering the behavior at plus and minus infinity
of the six possible scattering eigenfunctions in the direct problem, four are shown to
be analytic in the upper/lower half planes. The adjoint eigenvalue problem is used
to find the remaining two analytic eigenfunctions. Bound states and symmetry rela-
tions are then found. The inverse problem is developed via Riemann-Hilbert (RH)
methods, and the scattering data is connected to the initial values for data decaying
sufficiently fast; to our knowledge, even for the classical three-wave system, this has
not been done before. Formulae to reconstruct the potentials, trace formulae, and
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minimal data are obtained for the general case and for the reductions to the clas-
sical, complex and real reverse space-time three-wave interaction systems. Explicit
reflectionless potentials/soliton solutions are also found; figures describing various
typical interactions and energy sharing are provided as illustrations. In the direct
and inverse scattering analysis, as compared with the classical three-wave interaction
system, there are numerous differences and new features associated with the nonlo-
cal three-wave interaction equations. Finally, we showed that the underlying sixth
order compatible system and its reductions to the classical and nonlocal three-wave
equations are asymptotic reductions of a nonlinear PDE that is motivated by physical
applications and exhibits triad/three-wave resonance.

16. Appendix. Suppose
v(z, k) = =D - (u(a, k) x w(z, k)) - e*4®

is a solution of (3.2), where D = diag(dy , da, d3), u(z, k) = (u1 (z, k), us (z, k), us(z, k)T,
and w(z, k) = (w1 (z, k), wa(z, k), ws(z,k))T. Our aim is to determine D. By direct
computation, we have

= 75[(uad « wad)m . gikdz ikd(uad % wad) . eikdz]
= DL(ikD + NT)u x w® + u® x [(ikD + NT)w®] — ikd(u®® x w*®)}
e (dy [Nz (w§ g — utwi?) + Nig(wi®ug? — ujtwi?)
— ikdy (w§ ug? — uadw;dﬂ,
do[Nag(wi™usg® — uf®ws®) + Noy (w§*ug? — ugwi®) — ikds(wi*ug® — uftws™)]

)
[Ny (w§ug? — ug™wi?) + Nag(w§*ui — ug*wi?) — ikds(ws ui® — ugwi®))",

(ikD + N)v = —™*® . (ikD + N)D(u®® x w?)
= e (dy Nyg(wi uf® — u§™wi®) + ds Nyg(wiug” — uf®ws?)
— ikdldl(wgdugd — ud%ws§?),
d3 Nog (wiug? — udws®) + dy Nog (wiul? — udwg?) — ikdydy (wiud? — udhwgd),

JlNgl(wgdugd ug wgd) +d2N32(wgdu‘fd ugdw1 )—ikdgdg(wgdu‘fd u“dw‘fd))

vy = (ikD + N)v yields di = dy = d3. Without loss of generality, we choose may
dy =dy =d3 = —1, and thus v(z, k) = e (4% (x, k) x w(x,k)) solves for (3.2).
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