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Abstract—This study presents MM-MURE, a novel method to per-
form multi-subject contactless respiration waveform monitoring
by processing raw multiple-input-multiple-output mmWave radar
data with an end-to-end deep neural network. The traditional vital
signs monitoring signal processing scheme for mmWave radar
involves analog or digital beamforming, human subject localiza-
tion, phase variation extraction, filtering, and rate or biomarker
analysis. This traditional method has many downsides, including
sensitivity to selected beamforming weights and over-reliance on
phase variation. To avoid these drawbacks, MM-MURE (for MM-
wave based MUlti-subject REspiration monitoring) is developed
to improve reconstruction accuracy and reliability by taking in
unprocessed 60 GHz MIMO FMCW radar data and outputting res-
piratory waveforms of interest, effectively mimicking an adaptive
beamformer and bypassing the need for traditional localization and
vital signs extraction techniques. Extensive testing across scenarios
differing in range, angle, environment, and subject count demon-
strates the network’s robust performance, with an average cosine
similarity exceeding 0.95. Results are compared to two baseline
methods and show more than a 10% average improvement in
waveform reconstruction accuracy across single and multi-subject
scenarios. Coupled with a rapid inference time of 8.57 ms on
a 10 s window of data, MM-MURE shows promise for potential
deployment to efficient and accurate near-real-time contactless
respiration monitoring systems.

Index Terms—MIMO radar, neural networks, beam steering,
telemedicine, biomedical telemetry.

I. INTRODUCTION

RADAR technology has been demonstrated to enable con-
tactless monitoring of human vital signs, including res-

piration and heart rate [1]. This technological advancement
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has numerous critical applications, such as long-term patient
health monitoring, rapid triage, sleep studies, through-wall life
detection, and exercise health analysis [2], [3]. Recent interest
has expanded beyond simple rate measurements to more intri-
cate indicators like interbeat intervals, times of inhalation and
exhalation, and arrhythmia detection, all of which demand the
radar to have highly accurate reconstructions of vital signs wave-
forms [4], [5]. Additionally, there’s a growing effort to transition
from experiments focused on individual subjects to scenarios
that include monitoring multiple subjects simultaneously [6].

Many of the state-of-the-art techniques in radar-based vi-
tal signs monitoring use millimeter-wave, frequency modu-
lated continuous wave (FMCW) multiple-input multiple-output
(MIMO) radars, which have heightened sensitivity to small
movements and the ability to focus signals of interest with
respect to range and angle [7]. MIMO radars help deal with
real-world scenarios where the subject under test is not typically
sitting directly in front of the radar, or there are multiple subjects
that need to be monitored, by using many transmit-receive ele-
ments with relatively wide antenna beamwidths. The traditional
multi-subject vital signs signal processing scheme for these
applications includes an array of signal analysis techniques to
perform digital beamforming and human subject localization,
arctangent demodulation (AD), phase variation filtering, and rate
or biomarker analysis [8]. In [8], [9], [10], [11], [12], various
MIMO radar architectures and beamforming-based processing
schemes are used to achieve sufficient angular separation of
multiple subjects for simultaneous vital signs monitoring. While
accurate results can be achieved with these methods, they suffer
from several drawbacks, such as sensitivity to the proper se-
lection of beamforming weights and over-reliance on the phase
variation alone, which prevent reliably accurate reconstructed
vital sign waveforms when faced with non-idealities such as
inaccurate localization or interference from other people.

Addressing the challenge of developing advanced signal pro-
cessing methods that reliably model the nuanced dynamics
between RF reflections and vital signs signals, the use of deep
neural networks has been proposed. Though results have shown
that neural networks can do an adequate job at approximating
this relationship and can outperform traditional methods [14],
care must be taken to ensure generalized performance for
subjects and scenarios not seen during training. Prior research
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TABLE I
COMPARISON OF RADAR-BASED VITAL SIGNS MONITORING WORKS UTILIZING

NEURAL NETWORKS

has already incorporated neural networks into segments of
the traditional single-subject non-contact vital signs processing
scheme using single-channel radar implementations [13], [15],
[16], but a holistic end-to-end strategy employing the angular
focusing strengths of MIMO radar for multi-subject cases has yet
to be investigated, as shown in Table I. Thus, the state-of-the-art
in multi-subject non-contact vital signs estimation still relies
on using traditional processing techniques to either perform
localization and separation of subjects with respect to angle
or extract the phase variation before the application of further
advanced traditional processing techniques or neural networks,
which open the door for unreliable performance.

In this study, MM-MURE is developed, a novel technique to
supplement the traditional MIMO-radar based vital sign signal
processing scheme with an end-to-end neural network. This
multi-functional method automatically handles the job of human
subject localization, angular separation, and subsequent signal
processing. By taking in unprocessed multi-channel in-phase (I)
and quadrature (Q) MIMO-FMCW radar data and training a deep
neural network, accurate reconstructed respiration waveforms
are output regardless of spatial location or whether there are one
or two subjects in the scene, achieving improved performance
over baseline methods. To the best of the authors’ knowledge,
this is the first method to utilize an end-to-end deep neural net-
work on multi-channel radar data to achieve angular separation
for multi-subject respiration waveform monitoring.

II. BACKGROUND

A. Single-Subject Vital Signs Signal Model

The use cases of the proposed system involve vital signs
monitoring of up to two people within the radar’s field of view.
The expected vital signs signal of interest can be modeled as re-
flections from a scatterer derived from FMCW radar theory [18],
[19]. The signal transmitted by the radar can be described as:

x(t) = ej2πfit, (1)

fi(t) = ft + St, 0 ≤ t ≤ T, (2)

where t represents fast-time temporal variations, fi is the in-
stantaneous frequency, ft is the carrier frequency, and S is the
frequency slope defined by the frequency bandwidth β divided
by the chirp period T . The chest displacement of a subject
(denoted as Subject 1) seated R1

nom meters from the radar is

typically modeled as the superposition of the nominal range
of the subject and the variations due to the vital signs across
slow-time index v:

R1(v) = R1
nom(v) +R1

resp(v) +R1
heart(v). (3)

The radar under test is assumed to be a MIMO system with
a virtual uniform linear array (ULA) resulting from M trans-
mitters and N receivers. The round trip time delay at v from a
single element of the M ×N element virtual array to Subject
1 seated R1

nom(v) meters from the radar at an angle θ1(v) from
broadside is denoted asΔt1ij(v). The time delay and the received
signal y1ij(t, v) are calculated as

Δt1ij(v) =
2R1(v)

c
+

2xij sin (θ1(v))

c
, (4)

y1ij(t, v) = A1(v) · x(t−Δt1ij(v)), (5)

where xij is the coordinate of the element formed by the ith
transmitter, i = 1, 2, ..,M , and the jth receiver, j = 1, 2, .., N ,
c is the speed of light, and A1(v) represents the amplitude of the
received signal and encapsulates propagation losses, antenna
gain, and the cumulative radar cross-section (RCS) of the sub-
ject. Thus, y1ij(t, v) represents an attenuated and time-delayed
copy of the transmitted signal x(t), and the specific time delay
to each virtual array element is related to its relative position in
space. After I/Q demodulation with the transmitted chirp x(t),
the down-converted received signal z1ij(t, v) for each virtual
array element can be described as

z1ij(t, v) = A1(v) · ej(−2πSΔt1ijt−2πftΔt1ij+πSΔt1ij
2
), (6)

where the nominal range of the subject R1
nom(v) has been

encoded into the frequency value of z1ij(t, v), which is effectively
constant for all transmit-receive channels under the far-field
approximation, and can be found through analysis of the inverse
fast Fourier transform (IFFT) of the signal. The resolution at
which the range can be detected in this way is equal to c

2β . On the
other hand, the first phase term, denoted as pn(v), corresponding
to subject n, is sensitive to the subject’s fine movements, and
represents complete information about the displacement of the
chest over slow-timeR1(v) (along with the amplitudeA1(v) due
to RCS variations), as well as the angle of arrival of the reflected
signal through differences in Δt1ij(v) between channels. The
second phase term is the residual video phase and is sufficiently
small compared to pn(v), and can be ignored.

An azimuth range-angle map P1(f, θ, v) can be generated
by beamforming the virtual channels through the product of
the array steering vector aij(θ) and the resulting range profile
obtained from the IFFT of z1ij(t, v), denoted as U1

ij(f, v):

aij(θ) = e−j2π
xij sinθ

λt , (7)

P1(f, θ, v) =

M∑

i=1

N∑

j=1

U1
ij(f, v) · aij(θ). (8)

The virtual channels are coherently summed to all azimuth
angles of interest θ by accounting for phase delays related to the
spacing of the array. Each frequency bin f of the beat frequency
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Fig. 1. (a) Magnitude of the range-angle map depicting the spread of a subject seated at approximately (1.5 m, +30deg); (b) Differences in respiration waveform
shape across multiple valid range-angle locations; (c) Corrupted phase variation in a simple single seated subject scenario compared with respiration belt ground
truth.

representation of the received signal at each element U1
ij(f, v)

is directly related to the range from the radar. Thus, utilizing
an object detection algorithm such as constant false alarm rate
(CFAR) [18] on the range-angle map P1(f, θ, v) enables range
and angular location estimation of the subject (R1

nom, θ1). Here
we let f1 represent the beat frequency index corresponding to
Subject 1 at range R1

nom.
Conventional radar-based vital signs monitoring techniques

use arctangent demodulation of the complex beamformed result
at the detected locationP1(f1, θ1, v) to obtain the phase variation
p1(v), which carries the information about the displacement of
the chest over time from R1(v):

p1(v) = arctan
Im(P1(f1, θ1, v))

Re(P1(f1, θ1, v))
=

−4πR1(v)

λt
. (9)

Bandpass filtering or another more complex signal denoising
technique is then typically done on p1(v) to clean up the signal
before rate or biomarker estimation.

B. Multi-Subject Vital Signs Signal Model

If we assume a second subject is present in the scene located
at range R2

nom and angle θ2, then the total received signal of
interest becomes a sum of the reflections from both scatterers:

ztotij (t, v) = z1ij(t, v) + z2ij(t, v). (10)

And the resulting range-angle map is calculated using the range
profile containing information about both subjects:

Ptot(f, θ, v) =
M∑

i=1

N∑

j=1

U tot
ij (f, v) · aij(θ). (11)

If the angular resolution condition is met, then CFAR per-
formed on Ptot(f, θ, v) should locate both subjects in the scene
and result in the extraction of both p1(v) and p2(v). Situations
where subjects occupy the same angle are a common prob-
lem for radar-based methods, and are not considered in this
study. Limitations of angular discrimination will be discussed in
Section V-E.

C. Traditional Vital Sign Extraction Method Limitations

The first problem with the formulated traditional vital signs
extraction process is that the definition of the subject as a point

scatterer is an over-simplification. In reality, depending on the
range and angular resolution of the radar under test, the subject
likely inhabits multiple range and angle indices of Ptot(f, θ, v),
as shown in Fig. 1(a). So while an object detection algorithm
such as CFAR may return the most likely approximate location
of the subject based on the signal-to-noise ratio (SNR) threshold,
denoted as (Rnom, θnom), this does not automatically imply that
the range-angle location detected by CFAR is the best precise
location to beamform towards to obtain the most accurate vital
signs signal. To address this, some works have opted to develop
ways to combine multiple range-angle indices to improve the
quality of the extracted vital signs signal at the cost of increased
computational effort [20].

This leads to the second problem for the traditional method,
which is that the resulting vital signs signal after the beam-
forming operation is relatively sensitive to the chosen range
and angle. As seen in Fig. 1(b), changing the beamforming
location by small variations in range and angle indices has a
significant effect on the shape of the signal. This means that
any processing done on this waveform such as breathing rate
(BR), interbreath interval (IBI), or inhalation/exhalation (I/E)
ratio analysis depends on consistently accurate estimation of
the optimal beamforming weights. Additionally, it is possible
that CFAR detects the location of the subject wrong altogether,
losing all information about the vital signs waveforms. In [21],
a search is done on the best power ratio among frequencies
within and outside the frequency band of interest to determine
the best beamforming weights to address this issue. A camera
vision-guided approach was proposed in [22] to inform the radar
on the optimal beamforming weights, but requires a complicated
calibration process and loses the privacy advantages of radar-
only based systems.

Finally, in real-world scenarios the displacement Rn(v) en-
capsulates not only the linear superposition of the chest motion
from (3), but also unwanted artifacts from limb movements and
swaying motions as well as nonlinear dependencies [13]. Thus,
it has been proposed that operating on the phase variation signal
pn(v) alone is equivalent to reducing the information of interest
to a lower-dimensional representation (losing the information
from An(v)) and is thus insufficient to consistently and accu-
rately reconstruct the precise shape of the vital signs signal in a
manner that can compete with wearable sensors [13]. Fig. 1(c)
shows that even in the simplest case of detecting respiration in
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Fig. 2. (a) Summary of the MRC channel combining process in communications where hij(v) is obtained through a training procedure; (b) Summary of the
neural-network-based channel combining process. A ground truth respiratory belt represents the displacement of the chest over slow-time v and allows the network
to iteratively learn to extract the respiratory depth information from the raw channel information.

a scenario where there is only one subject in the scene, phase
extraction still struggles to maintain a clean waveform.

D. Inspiration for Neural Networks

Ideally, a version of maximal ratio combining (MRC) would
be implemented to achieve generalized beamforming and leave
behind the need for subject location detection and location-based
beamforming [23]. Complex weights w(v) for slow-time index
v that embody the phase differences and channel gain informa-
tion can be used to beamform the received signals of the virtual
array elements in a way that does not align to a specific position
in space, but rather works adaptively to cancel out the phases
of the channel gain vector h(v) and extract the reconstructed
signal of interest r(v) by maximizing the SNR:

r(v) = s(v)

M∑

i=1

N∑

j=1

wij(v)hij(v) + n(v), (12)

where s(v) is the vital signs signal, wij(v) is the channel gain
of the virtual element, and n(v) is zero-mean Gaussian noise.
If the channel gain vector h(v) is known, then w(v) can be set
to h∗(v), allowing for coherent summation and preservation of
the shape of the vital signs signal s(v). While in the application
of communications, a training sequence is used to estimate the
complex channel gain information h(v) over time, this is not
applicable in our case due to the ever-changing vital signs signal
of interest. Thus, an alternative method to estimate h(v) must
be developed. While the signal of interest s(v) is never known
precisely at any given time without information from a wearable
sensor, human respiration waveforms have identifiable features
that are similar across individuals and time. Motion artifacts
from swaying or limb movements also have identifiable features
and can be associated with the current state of h(v). Convo-
lutional neural networks (CNNs) excel at iteratively learning
patterns within images or other data representations through
a training procedure to pick out objects or features of inter-
est [24]. Work has been done to utilize CNN-based variational
autoencoder neural networks as signal source separation tools,
specifically for temporal audio signals, by encoding the mixed
signal into a lower dimensional latent space and upsampling

to keep only the signal of interest [25]. Furthermore, in [13]
a variational encoder-decoder was used to extract respiratory
waveforms from the complex data belonging to multiple range
bins of a single-channel radar.

III. METHODS

Here we propose MM-MURE, a method to utilize a CNN-based
variational autoencoder to operate similarly to MRC, operating
with the same inputs and outputs. The relationship between the
complex multi-channel radar signals and the vital signs signals
is learned instead by training a neural network on a large amount
of historical data, as depicted in Fig. 2, by using a ground truth
waveform from a wearable respiration belt as the reference and
unprocessed in-phase (I) and quadrature (Q) experimental data
from a MIMO FMCW radar as the input. We aim to demonstrate
in the following sections not only that MM-MURE can reliably
reconstruct the respiration waveform of a single subject regard-
less of location and without using the traditional processing
scheme, but also that adaptive beamforming (without using
traditional delay-and-sum) is achievable through the network by
consistently reconstructing respiration waveforms of two sub-
jects simultaneously, even when they are within the same range
from the radar. Respiration waveforms are targeted in this study
because wearable chest belts directly measure the mechanical
displacement of the chest due to breathing, making them an ideal
ground truth sensor for training the radar-based neural network.
Wearable sensors that measure the heartbeat waveform, such as
ECG sensors or pulse oximeters, indirectly measure the chest’s
displacement due to the heartbeat by monitoring electrical activ-
ity or blood oxygen saturation. This indirect measurement would
hinder the goal of direct displacement waveform reconstruction,
thus heartbeat reconstruction is left for future research.

The benefits of processing the radar data for multi-subject
respiration waveform reconstruction in this way are as follows:

1) Channel combination is not dictated by conventional
beamforming equations, thus no information is lost
through specific location-based beamforming;

2) The input data is kept in its raw I/Q form, allowing the
reconstructed signals to be products of both the amplitude
and phase information;
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Fig. 3. (a) Relative positioning of the Tx and Rx arrays, with each element
having a 60◦ HPBW in azimuth and a 36◦ HPBW in elevation; (b) Resulting
MIMO virtual array.

3) The ability of neural networks to learn linear and non-
linear relationships opens the possibility to have inherent
noise removal from unwanted artifacts, promoting more
accurate reconstructions;

4) The avoidance of the need for complex traditional pro-
cessing methods to find the optimal beamforming weights
combined with the high parallelization of neural networks
means that the inference time of the developed method is
fast enough to meet the requirements of efficient near-real
time systems.

A. Hardware

To collect data for the proposed method, an RFbeam V-MD3
60 GHz FMCW radar with 3 transmitters (Tx) and 4 receivers
(Rx) is used [26]. The Tx/Rx locations, depicted in Fig. 3, result
in a 12-element virtual array that provide angular separation in
both azimuth and elevation. The elements have a 60◦ half-power
beamwidth (HPBW) in azimuth and a 36◦ HPBW in elevation,
providing enough coverage (especially with MIMO processing)
to enable subject monitoring in a wide range of locations off-
broadside. Given we are focusing on respiration, a transmitted
chirp bandwidth of 600 MHz is used, which corresponds to a
range resolution dres of 0.25 m. This allows us to comfortably
assume all of the respiration signals of interest appear across
only 1-2 range bins, rather than being discontinuously separated
across several bins, as is the case with the finer range resolutions
typically utilized in heartbeat waveform analysis. A single frame
in slow-time consists of a single chirp (counting all chirps
transmitted in a TDM-MIMO scheme as one) being received
at each Tx/Rx channel and is represented by 64 ADC samples
each. Frames are captured at a slow-time sample rate fs = 50 Hz
to sufficiently depict respiration waveforms and motion artifacts.

B. Pre-Processing

The raw I/Q radar data matrix must be formed into a repre-
sentation that allows the developed network to learn appropriate
features and reach the desired outcome rapidly and effectively.
Based on the number of ADC samples per received chirp and
the number of Tx/Rx channels in the virtual array, the I/Q data
matrix received for each slow-time index v is of size 64 × 12.

Fig. 4. Depiction of the 24 × 14 × 500 input data matrix. Normalized and
concatenated I/Q values form 24 channels, 14 cropped range bins from the range
profile form the rows, and a sliding slow-time window of 500 samples make up
the columns.

Each column represents the beat frequency representation of the
received signal belonging to each Tx/Rx channel. Subsequently,
an IFFT must be performed on the beat frequency signals to
convert the columns to range profile representation Uij(f, v), as
discussed in Section II, where each row index f then corresponds
to information present at dres · f away from the radar. Since dres =
0.25 m, if it is assumed that subjects in our scene will not be
further away than 2 m from the radar, it is more than adequate to
crop the data matrix to only the first 14 range bins, corresponding
to within a range of dres · 14 = 3.5 m away, allowing for more
efficient processing. In Section V-E, the 14 range bins fed to the
network are shifted to account for measurement distances past
2 m, which will be discussed.

Data is then accumulated on a 10-second sliding window
basis to feed into the network. This is to allow the network to
learn features that may be more easily interpreted with temporal
context. Since fs = 50 Hz, this corresponds to 500 slow-time
samples. Due to framework and training limitations, we convert
complex I and Q values of the input data matrix to concatenated
channels. Thus, for concatenated I data and Q data for 12 Tx/Rx
channels, 14 range bins, and 500 slow-time samples, the final
input shape of the data matrix is 24 × 14 × 500, as depicted in
Fig. 4.

C. Network Architecture

The proposed method builds upon work done in the field of
neural network-based signal source separation such as Wave-U-
Net [25]. Originally developed for 1-D audio signal source sep-
aration, its base upsampling/downsampling convolutional struc-
ture is extended here as the backbone to the developed network.
Several modifications are made to work with complex-valued
radar signals and to perform reliable automatic multi-subject
localization and separation of vital signs signals from noise.
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Fig. 5. Breakdown of MM-MURE, the proposed neural network-based channel combining architecture. Raw I/Q data from the FMCW radar is formed into an
input data matrix over time and fed into MM-MURE. The number of output waveforms depends on the number of subjects in the scene.

The 24 × 14 × 500 input data matrix is comprised of 500
instances of frames containing concatenated complex informa-
tion belonging to all 14 range bins for all Tx/Rx channels. It is
expected that human subjects belong to only 1 or 2 range bins
at once. At the same time, the network architecture operates by
downsampling and upsampling the input signal with multiple
1-D convolutional layers, expecting a 1-D time-varying signal
(independent of number of channels). Thus, a series of 2-D
convolutional layers is implemented on the input to effectively
scan over the range profile input and transform the overall size to
24 × 1 × 512 (512 being a power of 2 for proper compatibility
with the time halving procedure throughout the network), as
shown in Fig. 5.

The base encoder-decoder structure, skip connections, and
feature decimation techniques of Wave-U-Net are then utilized
with 5 levels, a channel interval of 32, a downsampling filter
size of 15, and an upsampling filter size of 5 [25]. However, the
middle layer is modified to become a variational bottleneck to
help improve performance on subjects and scenarios not seen
during the training process. It is assumed that the experimental
scenario under test (single or multi-subject) is known to the
user. Thus, a 1D-convolutional output layer with a hyperbolic
tangent (TanH) activation function [27] is added to the end that
reduces the channel dimension to either 1 for single-subject or 2
for multi-subject scenarios. This allows for specialized versions
of the network capable of handling both scenarios. The total
reconstructed waveform signal size is either 1 × 500 or 2 × 500
after cropping the extra padding, the same size as the ground
truth respiration waveform corresponding to the same 10-second
window. In the multi-subject case, the first output channel is
trained to reconstruct the respiration of the left-most person and
vice versa. Thus, our method is dependent on subjects being
separated in azimuth.

D. Dataset Normalization and Augmentation

Normalization is performed on the radar dataset by consid-
ering the polar coordinate representation of every I/Q datapoint
recorded across the entire training set. Each I/Q datapoint is
normalized in its polar form to a magnitude between 0 and 1
based on the maximum polar magnitude present in the dataset
and then converted back to cartesian I/Q coordinates. On the

Fig. 6. (a) Range-angle heatmap resulting from the default array order and
two subjects in the scene seated at (1.5 m,−30deg) and (2 m,+30deg);
(b) Resulting range-angle heatmap after the mirroring augmentation.

other hand, values recorded by the ground truth respiration belt
depend on the tightness at which the belt is worn. Thus, ground
truth waveforms are normalized between a value of −1 and
+1 based on the maximum recorded value on a per-experiment
basis.

Subsequently, several steps are taken to augment the original
recorded experiments to increase our dataset size. Firstly, after
splitting into training and testing sets, as will be discussed in
Section IV, each sample in the training set is generated by
using a 10-second window with a 9.5-second overlap between
consecutive windows on the raw data. Secondly, each 10-second
window is augmented by rotating the I/Q points from 0◦ to
360◦ by steps of 15◦ in the I/Q plane, as proposed in [13]. The
information carried within the I/Q datapoints is preserved with
rotation, with the relative phase of each point depending only
on the distance to the subject.

Lastly, we propose to further augment the dataset through
manipulation of the order of the I/Q channels as presented to the
network. The I/Q values of the 12-element virtual array layout
depicted in Fig. 3(b) can be organized in the data input matrix
to reflect their relative position in the array with respect to the
line of symmetry. Thus, reversing the order of the elements in
the dimension belonging to the 24 I/Q values of the radar data
matrix effectively mirrors the experimental data in azimuth with
respect to the axis perpendicular to the plane formed by the
array, as shown in Fig. 6. On each mirrored multi-subject dataset,
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the ground truth value assigned to the left-most and right-most
person is subsequently switched.

E. Training Hyperparameters

For training, all samples are gathered randomly in batches of
32 within a single epoch. The loss function Ltot is calculated as
the addition of the mean squared error (MSE) loss and a scaled
Kullback-Leibler (KL) divergence term to promote both accu-
rate reconstructed waveforms and regularization of the latent
space normal distribution z represented by mean μ and standard
deviation σ, shown in Fig. 5:

Ltot = LMSE + γ ·DKL(N (μ, σ),N (0, I)), (13)

where γ is found empirically to be 0.001. NAdam optimization
with a learning rate of 1e-5, decay rates of β1 = 0.9 and β2 =
0.999, and momentum decay of 0.004 were used [28].

IV. EXPERIMENTAL METHODOLOGY

The developed model requires thorough training to effectively
address a broad spectrum of targeted scenarios. To achieve this,
a series of experiments are conducted, enabling the network to
meet and exhibit the following objectives:

1) MM-MURE is expected to have the capability to precisely
reconstruct respiration waveforms for up to two indi-
viduals located within ±60◦ from the radar’s broadside,
extending well beyond the main beam, and at a distance
of up to 2 meters from the radar (unless trained for more);

2) Robust performance should be demonstrated by maintain-
ing accuracy when analyzing individuals not included in
the training set;

3) The presence of clutter with a significant radar cross-
section (RCS) should not compromise reconstruction ac-
curacy;

4) The network should exhibit angular separation by accu-
rately and reliably reconstructing the respiration wave-
forms of two individuals located at the same distance from
the radar.

To systematically work towards these objectives, experi-
ments1 are taken by placing subjects along the vertices of a
grid formed between ±60◦ from broadside in increments of 15◦

and at a distance of 0.75–2 m in increments of 0.25 m, as shown
in Fig. 7. Although not every potential scenario is tested for
clutter and multiple subjects, a sufficient variety of configura-
tions are chosen to ensure the network’s ability to account for
minor variations in position. In all experiments, the precisely
synchronized ground truth respiration signals are recorded using
a Vernier Go-Direct wearable respiration belt [29]. Unless spec-
ified otherwise, approximately 70% of data recorded is reserved
for training, while the remaining data is reserved for validation
and testing.

A. Experimental Setup

Single-Subject Experiments: To enable the network to recon-
struct the respiration waveforms of a single subject in the scene,

1This research has been approved by our institution’s IRB.

Fig. 7. Ranges and angular locations used to train and test the network.
Example of 2 subjects located at (1.75 m,−30deg) and (1.75 m,+30deg).

Fig. 8. Depiction of the different experimental scenarios: (a) Single-subject.
(b) Single-subject with clutter. (c) Multi-subject at different ranges. (d) Multi-
subject with the same range.

data at each location in the grid is taken with 3 separate subjects,
as visualized in Fig. 8(a). Each dataset ranges between 1–2
minutes and consists of one of the subjects sitting and breathing
normally. Data is taken at ±60◦ from broadside to showcase the
ability of MIMO radar to focus on subjects well outside the±30◦

HPBW. To validate the network’s applicability to subjects not
included in the training set, only portions of the data collected
from Subjects 1 and 2 are used for training, while all data from
Subject 3 is reserved for testing. The dataset comprises a total
of 136 minutes of unaugmented single-subject data.

Another case considered is that of objects in the scene that
cause significant RF reflections and create sources of multipath.
While radar-based vital signs studies are typically taken in a lab
environment with minimal clutter, the real-world applications
of such a system include locations such as hospital rooms that
have numerous objects and machines that could cause stronger
reflections than the subject under test. Rather than using tra-
ditional preprocessing techniques to filter out static objects,
we opt here to include several cases of single-subject datasets
with significant clutter in the scene to train the network to filter
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these out, as depicted in Fig. 8(b). The object used to represent
worst-case clutter is a large reflective metal cabinet. In total,
approximately 20 minutes of single-subject data with clutter at
various locations is included in the dataset.

Multi-Subject Experiments: While it can be argued that the
single-subject experiments could be performed using a single-
channel radar with a wide beamwidth, multi-subject analysis
typically requires the use of multi-channel radar and beam-
forming techniques in order to cover various cases where the
subjects could lay within the same range bin. Simultaneous
data of Subjects 1 and 2 are taken across 50 combinations of
locations from the defined grid. A wide variety of challenging
combinations of locations are taken, such as when one subject
is located at broadside and another subject is located outside the
main beam. A total of 17 of the 50 locations in the dataset are
allocated to scenarios where the two subjects are within different
ranges from the radar, as shown in Fig. 8(c).

Additionally, 33 of the 50 locations represented in the dataset
are ones where Subjects 1 and 2 are within the same range from
the radar, as depicted in Fig. 8(d), in order to properly train the
network to beamform to each respiration signal of interest. A
total of 2 minutes of data are taken at each location, totaling to
100 minutes of multi-subject data for this subset.

To show that the network can maintain performance over time,
an additional 20 seconds of data at each of the same 50 locations
are taken of Subjects 1 and 2 several weeks after the initial data
collection. Additionally, the applicability to subjects outside the
training set is further tested by taking 40 seconds of data at
each location several weeks after the training set collection of
two more subjects, Subjects 3 and 4. Both of these subsets are
reserved for the testing set only.

B. Evaluation Metrics

The main performance metrics used to compare the similarity
between the reconstructed r and ground truth g respiration
waveforms are cosine similarity and MSE, which are defined
as:

sim(r,g) =
r · g
|r||g| , (14)

MSE(r,g) =
1

N

N∑

v=1

(r(v)− g(v))2. (15)

Cosine similarity is applied where both signals range between
−1 to 1. A cosine similarity value of 1 is desired to maximize
proportionality. A high cosine similarity implies that analyses
for BR, IBI, and I/E ratio (defined in Section II) can be extracted
with high accuracy with respect to the ground truth. Average IBI
is calculated through basic peak detection of the valleys of the
reconstructed waveforms, while average I/E ratio is estimated
by calculating the ratio between the respective peaks and val-
leys belonging to inhalation and exhalation within individual
cycles. Breathing rate is predicted using the maximum value
in the frequency spectrum within the range of expected values
(0.1–1 Hz).

C. Baseline Systems

To benchmark MM-MURE against other state-of-the-art sys-
tems, we have adopted Ahmad et al.’s method [8], denoted
here as CFAR-AD, a conventional radar signal processing ap-
proach for multi-subject respiration monitoring that aligns with
the process detailed in Section II, as a baseline. Furthermore,
to demonstrate our learning-model’s superior performance, we
have also modified a deep-learning-based method that oper-
ates on single-channel radar data and requires prior localiza-
tion, MoRe-Fi [13], to enable its application in multi-subject
respiration monitoring. Specifically, for CFAR-AD, traditional
processing is used to locate each subject by generating the
range-angle plot with an angular resolution of approximately
12◦ through delay-and-sum beamforming and utilizing the cell-
averaging constant false alarm rate (CA-CFAR [18]) algorithm
with 1 guard cell and 1 training cell. The phase variation is
then extracted using AD over time for each subject, followed by
bandpass filtering between 0.1-1 Hz. For MoRe-Fi, CA-CFAR is
performed on the range-angle map, and MoRe-Fi is subsequently
applied separately to the groupings of hot-zones corresponding
to each identified subject in both single-subject and multi-subject
scenarios, and trained until convergence.

V. EXPERIMENTAL RESULTS

A. Single Subject Results

To verify the location-agnostic performance of MM-
MURE with a single subject in the scene, the cosine similarities
between the reconstructed waveforms and the ground truth
waveforms for the entire test dataset are compared with respect
to angle and range, as shown in Fig. 9(a) and 9(b), respectively.
The results depict the individual reconstruction accuracies of
Subjects 1, 2, and 3 as they take turns being the lone subject
under test. The network demonstrates robust performance, with
an average cosine similarity of 0.955, showing no significant link
between the subject’s location and the accuracy of waveform
reconstruction. Results are broken down between the subjects
present in the training set (Subjects 1 and 2) and the one not
present in the training dataset (Subject 3). While Subject 3’s
results are marginally lower than Subjects 1 and 2 in some
cases, an average cosine similarity of greater than 0.923 is main-
tained across all scenarios, indicating the network maintains
performance on new subjects as well. The addition of clutter
to the scene does not appear to impact MM-MURE’s ability to
reconstruct Subject 1’s respiration waveforms, maintaining a
cosine similarity of 0.96 or better, even when clutter is located
at broadside and close distances, indicating robustness against
environmental interferences.

The reconstruction performance of MM-MURE across all sub-
jects is also compared with the baseline methods with respect
to angle and range, as seen in Fig. 10. MM-MURE’s cosine
similarity is approximately 10% higher than that of the next-best
performing baseline (MoRe-Fi, 0.872 average cosine similarity)
across all scenarios. Additionally, MM-MURE showcases high
accuracy regardless of location, validating the advantages of
bypassing the traditional CFAR-based localization procedure
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Fig. 9. (a) Single-subject reconstruction accuracy for subjects 1, 2, and 3
across angle and (b) range (subjects 1 and 2 are in the training set, while subject
3 is not). (c) Effect of significant clutter.

Fig. 10. (a) Single-subject waveform reconstruction performance comparison
to baselines across angle and (b) range.

by operating on multi-channel data with a variational U-Net
architecture.

B. Multi-Subject Results

Fig. 11(a) and 11(b) show the reconstruction performance of
the network for all subjects with respect to angle and range. High
cosine similarity for Subjects 1 and 2 is achieved for all scenarios
(0.953 average), with only slight degradation on subjects out-
side the training set (0.919 average), confirming the network’s
generalizability. Additionally, no significant performance is lost

Fig. 11. (a) Multi-subject reconstruction similarity for subjects 1-4 across
angle and (b) range (subjects 1 and 2 are in the training set, while subjects 3 and
4 are not).

Fig. 12. CDF curve comparison between MM-MURE and baselines for multi-
subject cases where two subjects are located in the same vs. different range bins,
demonstrating angular separation.

when compared to the single subject scenarios of Fig. 9, even
while testing on data collected several weeks after the initial
training set collection, promoting confidence in the network’s
stability over time.

The improvement compared to baseline methods is even more
stark in the multi-subject case. Fig. 12 shows a cumulative
distribution function (CDF) curve of multi-subject performance
comparisons for each method between cases of subjects being
in the “same” range bin vs. “different” range bins. The pro-
posed method shows consistent performance across the two
scenarios, with 87% and 81% of estimations achieving a cosine
similarity of 0.9 or better in different-range and same-range bin
scenarios, respectively, proving that the network successfully
achieves adequate angular separation. These same values drop to
73%/61% for CFAR-AD and 24%/26% for MoRe-Fi, revealing
the significant improvement for our system. An example of a
same range bin multi-subject reconstruction from all methods
is shown in Fig. 13. While baselines successfully locate both
subjects using the range-angle heatmap, the reconstructed res-
piration waveform contains artifacts that can negatively impact
further waveform analysis.
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Fig. 13. (a) Range-angle heatmap for use by CFAR-AD and MoRe-Fi. (b) Detections made by CFAR. (c) Reconstructed waveforms from MM-MURE vs. baselines
for subject 1 (MM-MURE - 0.96, MoRe-Fi - 0.85, CFAR-AD - 0.85 cosine similarity) and (d) subject 2 (MM-MURE - 0.95, MoRe-Fi - 0.94, CFAR-AD - 0.90 cosine
similarity).

Fig. 14. (a) Multi-subject waveform reconstruction performance for MM-
MURE vs. baselines across angle and (b) range.

A comparison with respect to location is also demonstrated in
Fig. 14 for the subjects in the training set. The reconstruction ac-
curacy of MM-MURE remains consistent across all locations yet
again, with an average multi-subject cosine similarity of 0.953.
The signal mixing in multi-subject scenarios makes proper
CFAR-based identification of beamforming weights for each
individual crucial, with improper selection of weights causing
waveform degradation, shown by the decrease in performance
of the baselines as compared to single-subject experiments
(0.863 and 0.822 average multi-subject cosine similarity for
MoRe-Fi and CFAR-AD, respectively). On the other hand,
MM-MURE maintains similar performance in both single-subject
and multi-subject scenarios, showing the strengths of not having
traditional localization preprocessing steps before the imple-
mentation of the network.

C. Biomarker Estimation

To demonstrate how a high cosine similarity between the
predicted and ground truth waveforms is an indicator for more
accurate biomarker analysis, other performance metrics such
as MSE, BR, IBI, and I/E ratio (see Section IV-B) are calcu-
lated across the entire test set for MM-MURE, MoRe-Fi, and
CFAR-AD, as shown in Table II. MM-MURE offers improved

TABLE II
COMPARISON OF RESULTS BETWEEN THE PROPOSED AND BASELINE METHODS

performance over baselines in each analysis. Additionally, per-
formance is not degraded between single- and multi-subject
cases, showing the network’s consistency in performing similar
to wearable respiration sensors.

D. Computational Analysis

The applications of mmWave radar-based vital signs mon-
itoring involve scenarios where having a wearable sensor is
either non-ideal such as long-term patient health monitoring
or sleep studies, or impossible such as some through-wall life
detection [30], [31]. In such applications, near-real time analysis
is crucial and a requirement for developing advanced processing
methods. The average inference time of MM-MURE across each
10-second window in the test dataset is found to be 8.57 ms on
an Intel i7-8665 U CPU @ 2.11 GHz, which shows its potential
for deployment to near-real time systems. The input data can be
fed to the network on a sliding-window basis to provide updated
waveform analysis at the desired frame rate. On the same CPU,
the average inference times for MoRe-Fi and CFAR-AD on the
test dataset are 20.42 ms and 48.3 ms, respectively.

E. Generalizability Studies

In this work, sensible limitations are set on the expected
functionality of MM-MURE for both narrowing the focus to
target indoor monitoring applications and setting boundaries on
the range of data to be collected for training. However, it is
important to test how generalizable the system is to conditions
not well represented in the training dataset, more than to just
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Fig. 15. Depiction of the extended experimental scenarios: (a) Inside car (both
front and back). (b) Angular discrimination limitation test. (c) Multi-subject with
different elevations. (d) Single-subject at varying elevations.

new test subjects, such as a different environment or variations in
elevation. Similarly, the limitations of the system are of interest,
such as the angular discrimination capabilities and how far away
the subjects can go before reconstruction accuracy significantly
degrades. Thus, additional data is taken in a variety of extended
scenarios, as shown in Fig. 15. For each individual additional
scenario, a total of two minutes of data is taken, 80 seconds of
which is added to the original training set and 40 seconds of
which is used to analyze the capabilities.

To test MM-MURE’s performance in a different environment,
the radar was positioned on the dashboard inside a car, as shown
in Fig. 15(a). This scenario is similar to the majority of the
training dataset, with two subjects in view of the radar, separated
in angle but located at approximately the same range. This setup
is particularly relevant for radar-based vital signs monitoring
applications [32]. Tests were conducted with subjects in both
the front and back seats. For the back seat dataset, the radar
was moved to the middle console to maintain a line of sight to
the chests. As seen in Fig. 16(a), the network achieved average
cosine similarities of 0.957 and 0.961 for the front and back seat
scenarios, respectively. This demonstrates that performance can
be maintained in a different environment, even with minimal
representation in the training dataset.

The angular discrimination capabilities are also tested, as
seen in Fig. 15(b). First, we determined the maximum dis-
tance from the radar at which the network could maintain high
single-subject reconstruction accuracy. A single subject was
placed in front of the radar at 0◦ off-broadside and moved from
1 m to 10 m away, with 10 m being the limit of our testing
capability. By adjusting the 14 range bins fed into the network
to include those where the subject is present, we found no
significant drop in MM-MURE’s single-subject performance up
to the 10 m limit. Thus, by repeating the experiment with two
subjects shoulder-to-shoulder, angular separation values (mea-
sured from chest-to-chest) of 2.9◦–25◦ are achievable, and drops

Fig. 16. (a) Multi-subject performance vs. car location. (b) Performance vs.
angle between two subjects seated shoulder-to-shoulder (obtained by continually
increasing distance). (c) Two subjects seated in the same range bin at different
elevations. (d) Single-subject performance vs. elevation angle.

in performance can safely be attributed to angular separation
limitations rather than the effects of increasing distance. The
results, shown in Fig. 16(b), indicate that the network tends
to favor the reconstruction of one subject over the other past
approximately 6.4◦, but maintains relatively high performance
until approximately2.9◦, where the reconstruction of one subject
completely dominates (0.972 cosine similarity versus 0.473).

As seen in Fig. 3, the virtual array in use has elements that
provide some resolution in elevation, each with a 36◦ HPBW.
While the majority of the experiments in this work aim to
test performance versus azimuth angle, it is also of interest to
test slight variations in elevation between subjects. There are
slight variations in elevation present in the original multi-subject
dataset due to differences in height between subjects, but a more
exaggerated difference in elevation should be tested, as depicted
in Fig. 15(c). Therefore, an additional dataset is taken where one
subject is seated at approximately 0◦ elevation to the center of
the chest while the other is located at approximately +15◦ el-
evation, with both being 0.75 m from the radar and separated
by 60◦ in azimuth, and another where they switch places. The
results of Fig. 16(c) show high average reconstruction cosine
similarities of 0.955 and 0.929 are achieved for Subjects 1 and
2, respectively.

The effects of changes in elevation are further analyzed by
varying the location of a single subject in elevation to well
outside the main beam, as shown in Fig. 15(d). The height
of the radar is adjusted up and down relative to a stationary
subject located 0.75 m away, in order to make the angle to
the center of the chest relative to broadside vary from −30◦ to
+30◦ in steps of 15◦. As seen in Fig. 16(d), high performance is
achieved for elevation angles greater than 0◦ (worst case 0.956
cosine similarity), and and performance gradually decreases as
the elevation angle moves to −30◦ (0.846 and 0.525 cosine
similarity for −15◦ and −30◦, respectively). This is explained
by the fact that the majority of the data in the training set
contains information where the subjects’ chests are at or above
0◦ elevation. Thus, the system performs best when the radar is
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positioned lower rather than higher. The network would likely
account for significant decreases in elevation if provided with
sufficient training data for these cases.

This leads to the most notable limitation of MM-MURE, which
is that the end-to-end development of the method causes it to be
tailored to the application it is trained for, which is multi-subject
monitoring of up to 2 people. So while it has been shown that
performance can be maintained for variations in environment
and measurement angle, extending its capability to monitoring
3 or more subjects simultaneously would warrant significantly
more training data. So while it offers increased performance and
efficiency compared to baselines when monitoring two or less
people, more research is needed to achieve improved scalability.

VI. CONCLUSION

In this work, multi-subject respiration waveform reconstruc-
tion is achieved using an end-to-end neural network rather than
traditional FMCW radar processing techniques for the first time.
The novelty of the approach lies within the representation of the
raw in-phase and quadrature radar data of a MIMO array as an
input data matrix to an integrated neural network. This approach
successfully achieves adequate angular separation of subjects
and extraction of their respiratory waveforms, similar to the
workings of an adaptive beamformer. MM-MURE offers a 10%
improvement in average reconstructed waveform similarity for
both single- and multi-subject cases compared to baselines, as
well as improved biomarker analysis accuracy. Results showcase
the generalizability of the network to subjects not in the training
set, scenarios where there is clutter in the scene, variations
in environment and measurement angle, and to datasets taken
with a significant time delay to those taken for training. In-
teresting next steps to this work would be investigating if the
proposed network can be extended to reconstruct both fine respi-
ration and heartbeat waveforms, analyzing its motion mitigation
capabilities, and evaluating the methodology on other radar
systems.
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