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Abstract— This work presents a Sum of Squares (SOS)
based framework to perform data-driven stabilization and
robust control tasks on discrete-time linear systems where
the full-state observations are corrupted by ℓ∞ bounded
input, measurement, and process noise (error in variable
setting). Certificates of full-state-feedback robust perfor-
mance, superstabilization or quadratic stabilization of all
plants in a consistency set are provided by solving a
feasibility program formed by polynomial nonnegativity
constraints. Under mild compactness and data-collection
assumptions, SOS tightenings in rising degree will con-
verge to recover the true worst-case optimal ℓ∞ (ex-
tended) superstabilizing controllers. With some conser-
vatism, quadratically stabilizing controllers with certified
H2 performance bounds can also be found. The perfor-
mance of this SOS method is improved through the ap-
plication of a theorem of alternatives while retaining tight-
ness, in which the unknown noise variables are eliminated
from the consistency set description. This SOS feasibility
method is extended to provide worst-case-optimal robust
controllers under H2 control costs.

Index Terms— Data-Driven Control, Robust Control, Op-
timization, Linear Matrix Inequality, Sum of Squares

I. INTRODUCTION

The traditional “data to control” pipeline involves a two step
process: (i) identifying a nominal model of the plant and an
associated bounded uncertainty description from noisy, finite
data; and (ii) designing a robust controller that guarantees
worst case performance over all admissible uncertainty. Both
of these steps can lead to generically NP-hard problems,
necessitating the use of computationally expensive, potentially
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conservative relaxations. As an alternative, the last few years
have seen renewed interest in direct Data-Driven Control
(DDC), a group of methods that sidestep system-identification
in order to design controllers that guarantee worst case
performance for all possible plants which are consistent with
observed data. In this paper, we seek to extend DDC to the
case where the measurements of both the state and control
action are corrupted by noise (the so-called Error in Variables
(EIV) setting). Specifically, we consider discrete-time linear
systems with states xt ∈ Rn and inputs ut ∈ Rm for which
measured data, corrupted by noise up to a finite time horizon
of T is available as D = {ût, x̂t}Tt=1. The system includes ℓ∞-
bounded full-state measurement noise ∆xt, input noise ∆ut,
and process noise wt to form the model

xt+1 = Axt +But + wt (1a)
x̂t = xt +∆xt, ût = ut +∆ut. (1b)

It is desired to find a constant matrix K ∈ Rm×n generating
a state-feedback law u = Kx such that the closed loop
system achieves robust performance for all plants (A,B) that
could have generated the data in D. In particular we will
consider the case where performance is given in terms of
a suitable norm of the closed loop system. A large portion
of existing DDC work involves noiseless systems or sets
∆x,∆u = 0, considering only process noise w (allowing
for efficient convex optimization). [1]–[11]. The work in [3]
defines a notion of ‘data informativity,’ demonstrating that the
assumptions required for a data-driven stabilization task are
less restrictive than the assumptions needed to perform system
identification. Semidefinite Program (SDP)-based methods for
nonconservative DDC under ℓ2-bounded process noise (with
∆x,∆u = 0) include using a matrix S-Lemma [4], Petersen’s
Lemma [5], multipliers learned from data [6], and Lyapunov-
Metzler (bilinear) inequalities for switched systems [7].
ℓ∞ bounded process noise was considered in [1], [2],

[6], [8], [9], [11]. This scenario arises for instance from
error propagation of finite-difference approximations when
computing derivatives and sampling. An advantage of ℓ∞

process noise as compared to ℓ2 process noise is that multiple
datasets D with differing time horizons can be concatenated
without scaling or shifting the noise effects. The work in [6]
briefly mentions adaptation for the ℓ∞-bounded process noise
case, while the computational complexity of ℓ∞-bounded sta-
bilization increases in an exponential manner with the number
of measurements in D (T ). A lower complexity, Sum of
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Squares (SOS)-based, approach addressing the same problem
can be found in [9]. Alternatively, complexity can be reduced
through the use of the (potentially conservative) notion of
superstability [12]. Work along these lines can be found in
[1], [2], [8]. Finally, the work in [11] uses Linear Programs
(LPs) to perform positive stabilization of linear systems under
ℓ∞-bounded process noise.

Compared to the scenarios above, the EIV-aware control
setting addressed in this paper is substantially more involved
and has been considered in relatively few papers. The set
of plants (A,B) consistent with ℓ∞-bounded process noise
forms a polytope and robust performance can be achieved,
in principle, by solving a collection of vertex LMIs [8]. On
the other hand, expressing the model (1) purely in terms of
observations D and noise processes (∆x,∆u,w) leads to:

x̂t+1 −∆xt+1 = A(x̂t −∆xt) +B(ût −∆ut) + wt. (2)

Equation (2) involves multiplications (A∆xt, B∆ut) between
unknown variables inside the description of the set (A,B) of
data-consistent plants. Thus, the plants consistent with EIV are
generically contained in a non-convex region [13]. Further, as
illustrated in Section VII, using process noise to characterize
this region can lead to controllers that fail to stabilize the
actual plant.

Prior work on set membership systems identification in an
EIV setting includes [14]–[16], which sought to overbound
the consistency set. In the context of DDC, measurement
noise has been considered in [17], [18]. [17] considers ℓ2

bounded measurement noise and provides a Linear Matrix
Inequality (LMI) based synthesis procedure guaranteed to
stabilize the plant provided that the signal-to-noise ratio is
sufficiently large and the noise sufficiently small. However, as
shown in that paper, these conditions can sometimes be overly
conservative. The work in [18] handles white measurement
noise through the introduction of an auxiliary slack variable, to
ensure feasibility of the design constraints, and regularization.
EIV scenarios with ℓ2 bounded noise have been considered in
[19], [20], both posted after the present paper was submitted,
providing necessary and sufficient conditions for data-driven
stabilization when the noise is characterized by a single
quadratic constraint. In the case of multiple constraints, such
as when it is desired to impose instantaneous bounds on the
noise, these conditions are only sufficient. To the best of our
knowledge, the only paper addressing DDC in an ℓ∞ EIV
setting is [21]. The present paper continues this line of work.
It formulates control of all consistent plants as a Polynomial
Optimization Problem (POP), which is approximated by a
converging sequence of SDPs through SOS methods [22].

A theorem of alternatives based on robust SDPs is used
to reduce the complexity of the generated SOS programs by
eliminating the noise variables (∆x,∆u,w). Its contributions
are:

• Formulation of data driven robust performance under ℓ∞

EIV as a polynomial optimization problem
• Application of SOS methods to recover constant state-

feedback controllers guaranteeing worst case (ℓ∞,H2)
performance of all plants consistent with the recorded
data

• Simplification of SOS programs by using a Theorem of
Alternatives to eliminate affine-dependent noise variables

• Analysis of computational complexity of SOS programs
Sections of this work were presented at the 61st Conference

on Decision and Control [21]. New content in this journal
version as compared to the conference paper includes

• Robust ℓ∞ and H2 performance and their connection with
extended superstabilization and quadratic stabilization

• Noting that a certificate function for superstability can be
∆x-independent

• Derivation and application of the matrix Theorem of
Alternatives ensuring Positive Definiteness

• Proofs of continuity, polynomial approximability, and
convergence

• Further detail about the combination of measurement,
input, and process noise

This paper is laid out as follows: Section II introduces
preliminaries such as acronym definitions, notation, stability
conditions for classes of linear systems, and SOS methods.
Section III creates a Basic Semialgebraic (BSA) description
of the consistency set of plants compatible with measurement-
noise-corrupted data, and formulates SOS algorithms to re-
cover worst case ℓ∞ or H2 controllers. Section IV reduces the
computational complexity of these SOS programs by eliminat-
ing the affine-dependent measurement noise variables through
a Theorem of Alternatives. Section V quantifies this reduction
in computational complexity by analyzing the size and mul-
tiplicities of Positive Semidefinite (PSD) matrices involved in
these SOS methods. Section VI extends the SOS formulations
to problems with measurement, input, and process noise.
Section VII demonstrates the SOS based algorithms on a set
of examples. Section VIII concludes the paper. Appendix I
proves that multiplier functions for the Alternatives program
may be chosen to be continuous. Appendix II builds on this
continuity result and proves that the multiplier functions may
also be chosen to be symmetric-matrix-valued polynomials.

II. PRELIMINARIES

A. Acronyms/Initialisms
BSA Basic Semialgebraic
DDC Data-Driven Control
EIV Error in Variables
LMI Linear Matrix Inequality
LP Linear Program
PMI Polynomial Matrix Inequality
POP Polynomial Optimization Problem
PSD Positive Semidefinite
PD Positive Definite
SDP Semidefinite Program
SOS Sum of Squares
WSOS Weighted Sum of Squares

B. Notation
The set of real numbers is R, its n-dimensional vector space

is Rn, and its n-dimensional nonnegative real orthant is Rn+.
The set of natural numbers is N, and the subset of natural
numbers between 1 and N is 1..N .
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The set of m× n matrices with real entries is Rm×n. The
transpose of a matrix Q is QT , and the subset of n × n
symmetric matrices satisfying QT = Q is Sn. The square
identity matrix is In ∈ Sn. The rectangular identity matrix
In×m is a matrix whose main diagonal has values of 1 with
all other entries equal to zero (consistent with MATLAB’s
eye(n,m) function). The inverse of a matrix Q ∈ Rn×n is
Q−1, and the inverse of its matrix transpose is Q−T . The
trace of a matrix Q is Tr(Q). The Kronecker product of two
matrices A and B is A ⊗ B. The set of real symmetric PSD
matrices Sn+ have all nonnegative eigenvalues (Q ⪰ 0), and its
subset of Positive Definite (PD) matrices Sn++ have all positive
eigenvalues (Q ≻ 0).
ℓ∞ denotes the space of bounded real sequences equipped

with the peak norm ∥xt∥∞
.
= suptmaxi |xit|. Given a linear

time invariant operator G : ℓ∞ → ℓ∞ , we denote its ℓ∞ to
ℓ∞induced norm by ∥G∥ℓ∞→ℓ∞ := sup∥w∥∞≤1 ∥Gw∥∞. In
the case of operators represented by a finite matrix M ∈ Rm×n

its ℓ∞ induced norm will be denoted simply by ∥M∥∞ =
maxi

∑n
j=1|Mij |. The asterisk operator ∗ may be used to fill

in transposed entries of a symmetric matrix. The minimum
and maximum eigenvalues of a matrix Q ∈ Sn are λmin(Q)
and λmax(Q) respectively. The elementwise division between
vectors a, b ∈ Rn is a./b.

The set of polynomials in variable x with real coefficients
is R[x]. The degree of a polynomial p(x) ∈ R[x] is deg p.
The set of polynomials with degree at most d for d ∈ N is
R[x]≤d. The set of vector-valued polynomials is (R[x])n, and
the set of matrix-valued polynomials is (R[x])m×n. The subset
of n×n symmetric-matrix-valued polynomials is Sn[x], and its
subcone of PSD (PD) polynomial matrices is Sn+[x] (Sn++[x]).
The set of SOS polynomials is Σ[x], and the set of SOS
matrices of size n× n is Σn[x] ⊂ Sn[x] .

The projection operator πx : (x, y) 7→ x applied to a set
X × Y is πx(X × Y ) = {x | (x, y) ∈ X × Y }.

C. Optimizing Performance of Discrete-Time Systems
Consider a discrete time LTI system of the form

G :

{
xt+1 = Axt +But + Ewt
zt = Cxt +Dut

(3)

where wt is a disturbance known to belong to some set W
and the output z measures performance. The data-driven robust
performance problem addressed in this paper is to find a static
control law ut = Kxt that minimizes the worst case value
of a suitable function of z over all wt ∈ W and all pairs
(A,B) consistent with the observed data. A prerequisite to
posing robust performance problems is formulation of robust
stabilization.

1) Superstability and the ℓ∞ induced case: The goal here
is to synthesize a control law that minimizes the induced ℓ∞

norm of the closed loop system G : wt → zt in (3). While this
problem can be solved using Linear Programming [23], these
optimal solutions can have arbitrarily high order. An elegant
approach to find static controllers is to use the concept of
(extended) superstability to minimize an upper bound of the
ℓ∞ induced norm. For exposition in this section, we assume
that C = I and D = 0.

A system xt+1 = Axt + Ewt is Extended-Superstable if
there exists a vector v > 0, a matrix X:=diag(v), and a scalar
λ ≥ 0 such that [24]

∥X−1AX∥ℓ∞→ℓ∞ ≤ λ < 1 (4)

In this case, an upper bound of the ℓ∞ induced norm of the
system (3) is given by [24, Theorem 2]:

sup
∥w∥∞≤1

∥z∥∞ ≤ max (v)

min (v)

∥E∥1
(1− λ)

. (5)

Finding a controller K that minimizes this ℓ∞ can be com-
puted through solving the following LP parameterized by
λ ∈ [0, 1) [24, Theorem 3]:

J(λ) = min
M, S, v, β

β

1− λ
(6a)

1 ≤ vi ≤ β ∀i ∈ 1..n (6b)∑n
j=1Mij ≤ λvi ∀i ∈ 1..n (6c)

|Aijvj +
∑m
ℓ=1BiℓSℓj | ≤Mij ∀i, j ∈ 1..n (6d)

v ∈ Rn>0, β ∈ R, S ∈ Rm×n, (6e)
M ∈ Rn×n. (6f)

The ℓ∞ gain of the system in (3) is upper-bounded by

sup
∥w∥∞≤1

∥z∥∞ ≤ min
λ∈[0,1)

J(λ). (7)

When (6) is feasible at a given λ, the corresponding
controller is K = SX−1. The resulting closed-loop satisfies
∥X−1(A + BK)X||∞ ≤ λ < 1. Hence it is extended-
superstable. Extended superstabilization can therefore be
achieved by finding a λ such that J(λ) <∞.

The line search over the parameter λ ∈ [0, 1) can be avoided
by considering a more conservative upper bound obtained by
setting v = 1 (X = I) and β = 1. This restricted program
with K = SI = S is:

λ∗ = min
M, K, λ

λ (8a)∑n
j=1Mij ≤ λ ∀i ∈ 1..n (8b)

|Aij +
∑m
ℓ=1BiℓKℓj | ≤Mij ∀i, j ∈ 1..n (8c)

M ∈ Rn×n, K ∈ Rm×n (8d)
λ ∈ [0, 1). (8e)

A consequence of (8) is that the closed loop system satisfies
∥A + BK∥∞ ≤ λ∗ < 1. Such a system is called superstable
[25] when λ∗ < 1. Superstable systems satisfy the following
decay relations with respect to θ∗:=∥E∥1/(1 − λ∗) [25,
Theorem A.1]

∥w∥∞ = 0 =⇒ ∥xt∥∞ ≤ (λ∗)t∥x0∥∞ (9)
∥w∥∞ ≤ 1 =⇒ ∥xt∥∞ ≤ θ∗ + (λ∗)tmax(∥x0∥∞ − θ∗, 0).

2) H2 Control: We now consider the case where w is an
impulse, and the goal is to minimize the energy of z (the H2

problem). This problem can be recast into the following LMI
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form [26], [27]:

γ2∗ = min
Y,Z,S

γ2 subject to (10)[
Y − EET AY +BS

∗ Y

]
∈ S2n+[

Z CY +DS
∗ Y

]
∈ Sn+r+

γ2 − Tr(Z) ≥ 0

Y ∈ Sn++, Z ∈ Sr+, S ∈ Rm×n.

When (10) is feasible, the optimal feedback is K = SY −1,
and the corresponding H2 gain of (3) is γ2∗ . In this case, the
function xTY −1x is a Lyapunov function for the closed-loop
system x+ = (A+BK)x.

D. SOS Preliminaries

We briefly review notation used in defining Weighted
Sum of Squares (WSOS) constraints for the imposition
of Polynomial Matrix Inequalities (PMIs) certifying that a
symmetric-matrix-valued polynomial is PSD.

A BSA set is defined by a finite number of bounded degree
polynomials {gi(x)}

Ng

i=1 and {hj(x)}Nh
j=1:

K:={x ∈ Rn | gi(x) ≥ 0, hj(x) = 0}. (11)

A matrix-valued polynomial P (x) ∈ Ss[x] is PSD (P (x) ∈
Ss+[x]) if ∀x ∈ Rn : P (x) ∈ Ss+. A matrix-valued-polynomial
is an SOS matrix (P (x) ∈ Σs[x]) if there exists a vector of
polynomials v(x) ∈ R[x]q and a Gram matrix Q ∈ Sqs+ for
some q ∈ N with P (x) = (v(x) ⊗ Is)

TQ(v(x) ⊗ Is). When
v(x) is the set of monomials in n variables from degrees 0..d,
the Gram matrix Q has dimension qs =

(
n+d
d

)
s.

The set Σs[K] of WSOS matrices over (11) is the class
of matrices P (x)∈ Ss[x] such that there exists multipliers
σ0(x) ∈ Σs[x], σi(x) ∈ Σs[x], ϕj ∈ Ss[x] with [28]

P (x) = σ0(x) +
∑
i σi(x)gi(x) +

∑
j ϕj(x)hj(x). (12)

The set K is Archimedean if there exists an R > 0 such
that the polynomial R − ∥x∥22 satisfies R − ∥x∥22 ∈ Σ1[K].
Archimedeanness of a set K is a property of its representation
in (11). Every PD-valued matrix polynomial P (x) over an
Archimedean K satisfies P (x) − εIq ⪰ 0 for some ε > 0
(Theorem 2 of [28], Scherer Positivestellensatz). The set Σs[K]
is a subset of the set of matrix-valued-polynomials in x that are
PSD over K. The Putinar Positivestellensatz is the restriction
of the Scherer Psatz to s = 1 [29].

III. FULL PROGRAM

This section will present SOS approaches towards recov-
ering robust controllers K (according to the criteria laid out
in Section II-C) applicable for all plants consistent with data
in D. In this section we set w = 0 to simplify explanation
and notation while still preserving the A∆x and B∆u
bilinearities. Section VI re-introduces process noise w ̸= 0
and modifies the developed method accordingly.

A. Consistency Sets
The consistency set P̄(A,B,∆x,∆u) of plants and noise

values (A,B,∆x,∆u) ∈ Rn×n×Rn×m×Rn×T ×Rm×(T−1)

that are consistent with data D under a noise bound of ϵ is
described by

P̄ :=

∆xt+1 = A∆xt +B∆ut + h0t ∀t = 1..T − 1
∥∆xt∥∞ ≤ ϵx ∀t = 1..T
∥∆ut∥∞ ≤ ϵu ∀t = 1..T − 1

 ,

(13)

with an intermediate definition of the affine weights h0t as

h0t :=x̂t+1 −Ax̂t −Bût ∀t = 1..T − 1. (14)

Remark 1: Multiple observations {Dk}Nd

k=1 of the same
system may be combined together by BSA intersections to
form P̄ = ∩Nd

k=1P̄(Dk).
The set of plants P(A,B) consistent with the data in D is

the projection

P(A,B):=πA,BP̄(A,B,∆x,∆u). (15)

Remark 2: The consistency sets P̄ and P may be noncon-
vex and could even be disconnected, in a similar manner to
the bilinear EIV representation in [15].

Remark 3: The describing constraints of P̄ are bilinear in
terms of the groups (A,B) and (∆x,∆u). Checking member-
ship for fixed plant (A0, B0) ∈ P may be accomplished by
solving a feasibility LP in terms of (∆x,∆u).

Problem 1: The data driven robust performance problem
is to find a control law u = Kx that minimizes the worst case,
over all pairs (A,B) in the consistency set P , of the bound
(6a) (ℓ∞ setting) or γ in (10) (H2 setting).

B. Function Programs
This section will pose Problem 1 as a set of polynomial

optimization programs, one for each performance criteria. All
programs will require the following Assumption (for later
convergence) :

Assumption 1: The sets P̄ (and therefore P) are compact.
Assumption 1 may be satisfied if sufficient data is collected.

1) ℓ∞ Robust Performance: A static gain K ∈ Rm×n

that achieves robust performance will be found by enforcing
equation (6) for all plants in P . The M matrix in (6) will be
a matrix-valued function M(A,B) : Rn×n×Rn×m → Rn×n.
For a fixed 0 < λ < 1, the problem reduces to

Problem 2:

min
v, S, M, β

β/(1− λ) subject to (16a)

∀i ∈ 1..n : 1 ≤ vi ≤ β (16b)
∀(A,B,∆x,∆u) ∈ P̄(A,B,∆x,∆u) : (16c)

∀i = 1..n : (16d)
λvi −

∑n
j=1Mij(A,B) ≥ 0

∀i = 1..n, j = 1..n : (16e)
Mij(A,B)− (Aijvj +

∑m
ℓ=1BiℓSℓj) ≥ 0

Mij(A,B) + (Aijvj +
∑m
ℓ=1BiℓSℓj) ≥ 0.

v ∈ Rn>0, β ∈ R, S ∈ Rm×n, (16f)
M(A,B) : Rn×n × Rn×m → Rn×n. (16g)
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A feasible solution (v, S,M) to Problem 2 could possess
a discontinuous M function in (A,B). We now prove that
if Problem 2 is feasible, then M can be chosen to be
continuous (Lemma 3.1), and furthermore M can be chosen
to be polynomial (Lemma 3.2).

Lemma 3.1: There exists a continuous selection for
M(A,B) given (v, S) under Assumption 1.

Proof: Define M : P ⇒ Rn×n+ as the set-valued map
(solution region to (16d)-(16e)) described by

M(A,B) := (17)
M ∈ Rn×n :
∀i :

∑
jMij ≤ λvi

∀(i, j) : −Mij ≤ ±(Aijvj +
∑m
ℓ=1BiℓSℓj)

 .

The right-hand sides of the constraints in (17) are each
continuous (linear) functions of (A,B) as parameterized by
(v, S). This linearity ensures that M is lower semi-continuous
(Definition 1.4.2 of [30]) under the affine (continuous) changes
in (A,B) in the compact domain P by Theorem 2.4 of
[31] (perturbations of right-hand-sides of linear-inequality-
defined regions). Michael’s theorem (Proposition 9.3.2 in [30])
suffices to show that a continuous selection of M ∈ M(A,B)
exists, given that M takes on closed convex values in the
Banach space Rn×n, has a compact domain, and is lower-
semicontinuous. One such continuous selection is the Minimal
Map M(A,B):= argminM ′∈M(A,B)∥M ′∥2F .

Lemma 3.2: For any (v, S, M̃) solving Problem 2 with
parameter λ < 1, (under Assumption 1), there exists a
polynomial M(A,B) such that (v, S,M) solves Problem 2
with parameter λ′ ∈ (λ, 1).

Proof:
Let ϵ > 0 be a tolerance such that ∀(i, j) :

sup(A,B)∈P |(M̃ij(A,B)+ ϵ)−Mij(A,B)| ≤ ϵ by the Stone-
Weierstrass theorem in the compact set P [32]. This implies
that M(A,B) ≥ M̃(A,B) everywhere in P , because the
residual rij(A,B) =Mij(A,B)−M̃ij(A,B) takes on values
between [0, 2ϵ]. Now consider (16d) with M :

λvi −
∑n
j=1Mij = λvi −

∑n
j=1(M̃ij + rij) (18a)

≥ λvi − 2ϵn−
∑n
j=1(M̃ij). (18b)

For each row i, define Z∗
i as

Z∗
i := sup

(A,B)∈P

∑n
j=1(M̃ij), (19)

with the property that ∀i : Z∗
i ≤ λvi. It therefore holds via

(16d) that for some δ ∈ (0, 1− λ):

∀i = 1..n : λvi − Z∗
i ≥ 0 =⇒ (λ+ δ)vi − Z∗

i > 0.
(20)

Substituting (20) into (18b) under the condition that (18b)
must be nonnegative yields

((λ+ δ)vi − Z∗
i )− 2ϵn ≥ 0. (21)

Choosing δ = 2ϵn/(mini vi) and ϵ < λ(mini vi)/(2n) (to
ensure that λ+ δ < 1) will certify that M satisfies all inequal-
ity constraints w.r.t. λ+δ, such as (λ+ δ)vi−

∑n
j=1Mij ≥ 0.

The new parameter is λ′ = λ+ δ.

Remark 4: A similar continuity analysis can take place over
the P̄-worst-case superstabilization program derived from (8).

2) Robust H2 Control: . A static gain K that minimizes the
worst case H2 norm over all plants (A,B) ∈ P can be found
by solving:

Problem 3:

γ20 = min
γ∈R+,Y,Z,S

γ2 subject to (22)[
Y − EET AY +BS

∗ Y

]
∈ S2n+ ∀(A,B,∆x,∆u) ∈ P̄[

Z CY +DS
∗ Y

]
∈ Sn+r+

γ2 − Tr(Z) ≥ 0

Y ∈ Sn++, Z ∈ Sr+, S ∈ Rm×n.

The corresponding feedback gain (independent of
(A,B,∆x,∆u)) is given by K = SY −1.
When the problem above is feasible, the function xTY −1x
is a common Lyapunov function for all plants in P . Hence
the set is quadratically stabilizable [33]. Indeed, if one is only
interested in quadratic stabilization, a simpler program can
be obtained by setting E = 0 and enforcing only the first
constraint in (22).

C. SOS Program and Numerical Considerations

Problems 2 and 3 may each be approximated by WSOS
polynomials.

1) ℓ∞ performance: SOS methods may be used to approx-
imate (16) by requiring that M(A,B) ∈ (R[A,B])n×n is a
polynomial matrix of degree 2d. We note that P̄ from (15) is
a BSA set, and will add the following assumption to ensure
convergence:

Assumption 2: The sets P̄ and P are Archimedean.
Remark 5: While Assumption 2 is stronger than the com-

pactness assumption 1, it holds in the practically relevant
scenario where (loose) upper bounds on ∥A∥F and ∥B∥F are
known. (These norm-bounding constraints are then added to
the description of P̄ or P).

Define qrow
i (A,B,∆x,∆u; v, S, λ) as the left hand side of

(16d), and let q±ij(A,B,∆x,∆u; v, S) be the left hand side of
each constraint in (16e). An example constraint from (16e) at
(i, j) may be written as

q−ij(A,B,∆x,∆u; v, S) (23)

=Mij(A,B)− (Aijvj +
∑m
ℓ=1BiℓSℓj) .

Equation (24) expresses the degree-2d WSOS tightening of
Problem 2, returning a controller K = Sdiag(1./v) if feasible:

Jd(λ) = min
v,S,M,β

β/(1− λ) subject to

1 ≤ vi ≤ β, S ∈ Rn×m (24a)
M ∈ R[A,B]≤2d (24b)
qrowi ∈ Σ[P̄]≤2d ∀i ∈ 1..n (24c)

q±ij ∈ Σ[P̄]≤2d ∀i, j ∈ 1..n. (24d)
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There are 2n2 + n nonnegativity constraints in Program
(24), each requiring a degree-2d WSOS Psatz of (12).
Each Psatz involves n(n + T ) + m(n + T − 1) variables
(A,B,∆x,∆u), which induces a Gram matrices of maximal
size

(
n(n+T )+m(n+T−1)+d

d

)
at degree d.

Theorem 3.1: For every λ ∈ [0, 1) and under Assumption
2, the objectives of program (24) will satisfy Jd(λ) ≥
Jd+1(λ) ≥ . . . and limd→∞ Jd(λ) = J(λ).

Proof: This theorem follows from results on convergence
of POPs. Applying the SOS hierarchy to a POP p∗ =
minx∈K p(x) for K Archimedean will result in a convergent
sequence of lower bounds p∗d ≤ p∗d+1 . . . with limd→∞ p∗d =
p∗. The POP realization of nonnegativity program (16) is a
feasibility problem with p(x) = p∗ = 0. The lower bounds
of the SOS hierarchy will therefore take a value of p∗d =
0 (feasible, superstabilizing K found) or p∗d = −∞ (dual
infeasible, superstabilizing K not found). By the limit property
of limd→∞ p∗d = p∗ under the Archimedean assumption 2, a
superstabilizing K will be found if possible as the degree d
increases.

2) H2 Control: The degree-d SOS truncation for (22) is

γ∗d = min
γ∈R+,Y,Z,S

γ2 (25)[
Y − EET AY +BS

∗ Y

]
∈ Σ2n[P̄]≤2d[

Z CY +DS
∗ Y

]
∈ Sn+r+

γ2 − Tr(Z) ≥ 0

Y ∈ Sn++, Z ∈ Sr+, S ∈ Rm×n.

Problem (25) involves a PMI constraint for a matrix of size
2n and a PD constraint of size n. The PMI contains n(n +
T ) +m(n + T − 1) variables (A,B,∆x,∆u). The maximal
Gram matrix size as induced by the degree-d Scherer Psatz
(12) is 2n

(
n(n+T )+m(n+T−1)+d

d

)
.

Theorem 3.2: Program (25) will return bounds γ∗d ≥
γ∗d+1 ≥ . . . with convergence as limd→∞ γ∗d = γ∗0 from (22)
Assumption 2.

Proof: This follows from the proof of Theorem 3.1 as
modified for the Scherer Psatz in [28].

The case where only quadratic stabilization is desired leads
to the SOS program

find
Y,S

[
Y AY +BS
∗ Y

]
∈ Σ2n[P̄]≤2d

Y ∈ Sn++, S ∈ Rm×n. (26)

Problem (26) will recover a Quadratically stabilizing K
(if one exists) as d → ∞ under Assumption 2. It has the
same maximal Gram matrix size and convergence properties
(Theorem 3.2) as the robust H2 case in (25).

IV. ALTERNATIVES PROGRAM

This section will formulate and use a Matrix Theorem of
Alternatives in order to reduce the computational expense
of running Algorithms (24) and (25). The cost savings are
derived from elimination of the affine-entering noise variables
(∆x,∆u).

A. Theorem of Alternatives
Let q : Rn×n ×Rn×m → Ss be a symmetric-matrix valued

function satisfying the constraint

q(A,B) ∈ Ss++ ∀(A,B) ∈ P . (27)

If constraint (27) is satisfied (feasible), then the following
problem is infeasible:

find
(A,B)∈P

− λmin(q(A,B)) ≥ 0. (28)

Lemma 4.1: Constraints (27) and (28) are strong alterna-
tives (either one or the other is feasible).

Proof: If (27) is feasible, then λmin(q(A,B)) is positive
for all (A,B) ∈ P . Therefore, there does not exist an (A,B)
such that λmin(q(A,B)) ≤ 0, which is the statement of (28).
On the opposite side, feasibility of (28) with an (A′, B′) :
λmin(q(A,B)) ≤ 0 implies that ∃(A,B) ∈ P : q(A,B) ̸∈
Ss++, and therefore (27) is infeasible. Additionally, there is no
case where (27) and (28) are both infeasible: either all q(A,B)
are PD (27), or there exists a non-PD counterexample (28).

A set of dual variable functions
(µ(A,B), ζ(A,B), ψ(A,B))

may be defined based on the constraint description from
(13):

µti :P → Ss ∀i = 1..n, t = 1..T − 1 (29a)

ζ±ti :P → Ss+ ∀i = 1..n, t = 1..T (29b)

ψ±
ti :P → Ss+ ∀i = 1..n, t = 1..T − 1. (29c)

The multipliers from (29), the Scherer Psatz (12), and the
Robust Counterpart method of [34] can together be used to
form the weighted sum Φ(A,B; ζ±, ψ±, µ) : P → Ss with

Φ =− q(A,B) (30)

+
∑T,n
t=1,i=1

(
(ϵx −∆xti)ζ

+
ti + (ϵx +∆xti)ζ

−
ti

)
+
∑T−1,m
t=1,i=1

(
(ϵu −∆uti)ψ

+
ti + (ϵu +∆uti)ψ

−
ti

)
+
∑T−1,n
t=1,i=1(−∆xt+1,i +Ai∆xti +Bi∆uti + h0ti)µti.

The dual multipliers will always be treated as (possibly
nonunique and discontinuous) functions µ(A,B), ψ(A,B),
or ζ(A,B), but their respective (A,B) dependence may be
omitted to condense notation.

Theorem 4.1: A sufficient condition for infeasibility of pro-
gram (28) is if there exists multipliers ζ±, ψ±, µ according to
(29) such that

∀(A,B) ∈ P : sup
∆x ∈ Rn×T

∆u ∈ Rm×(T−1)

λmax(Φ(A,B; ζ±, ψ±, µ)) < 0.

(31)
Proof: This theorem holds by arguments from [34], [35]

with modifications for the matrix case.
Any point (A,B,∆x,∆u) ∈ P̄ must satisfy ∥∆xt∥∞ ≤ ϵx

for all times t ∈ 1..T and ∥∆ut∥∞ ≤ ϵx in times t ∈ 1..T−1
(13). This implies that ϵx±∆xt and ϵu±∆ut are nonnegative
vectors for each time t for (∆x,∆u) ∈ π∆x,∆uP̄ , and
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therefore (ϵx ±∆xti)ζ
±
ti and (ϵu ±∆xti)ψ

±
ti are each PSD

matrices given that ζ±ti and ψ±
ti are PSD. Additionally, the

data consistency constraints in ∆xt+1 +A∆xt +B∆ut + h0t
from (13) evaluate to 0 for (A,B,∆x,∆u) ∈ P̄ , so µ times
these zero quantities result in a zero matrix. The addition
of these PSD and Zero multiplier terms to −q ensures that
λmax(Φ) ≥ λmax(−q). Finding multipliers (ζ±, ψ±, µ) such
that (31) holds therefore implies that −q is Negative Definite
(q is PD) over the space P . This definiteness statement certifies
infeasibility of (28), because there cannot exist a negative
eigenvalue of q as (A,B) ranges over P .

Theorem 4.2: The sufficient condition in Theorem 4.1 is
additionally necessary for infeasibility of (28) in the case
where s = 1 (q(A,B) is scalar).

Proof: The term λmin(q) is replaced by q in the scalar
case of (28). The constraints in (13) are affine in (∆x,∆u),
which means they are both convex and concave in the vari-
ables (∆x,∆u). The term q(A,B) is also independent of
(∆x,∆u). Concavity of the constraints in (∆x,∆u) is enough
to establish necessity and strong alternatives by convex duality
(Section 5.8 of [35]).

Remark 6: All of the inequalities in the extended supersta-
bilizing program (16) have s = 1.

Remark 7: Refer to [36] for an example where the Al-
ternatives procedure (31) with s > 1 is sufficient but not
necessary (robust SDPs over interval matrices: “computation-
ally tractable conservative approximation”). The work in [37]
formulates robust SDPs involving polytopic uncertainty as a
generally intractable two-stage optimization program.
Equation (31) can be simplified and transformed into a fea-
sibility program by explicitly defining and constraining its
(∆x,∆u)-supremal value. The sum Φ is affine in (∆x,∆u),
and the constant terms (in ∆x and ∆u) of Φ are arranged
into Q(A,B; ζ±, ψ±, µ):

Q:=− q(A,B) +
∑T,n
t=1,i=1 ϵx

(
ζ+ti + ζ−ti

)
+
∑T−1,m
t=1,i=1 ϵu

(
ψ+
ti + ψ−

ti

)
+
∑T−1,n
t=1,i=1 µtih

0
ti. (32)

The sum Φ may therefore be expressed as

Φ =Q+
∑T−1,n,n
t=1,j=1,i=1 µtj(Aji∆xti +Bji∆uti)

+
∑T,n
t=1,i=1(ζ

−
ti − ζ+ti )∆xti +

∑T−1,m
t=1,i=1(ψ

−
ti − ψ+

ti)∆uti

−
∑T,n
t=2,i=1 µt−1,i∆xti (33)

The supremal value of Φ in (31) given (A,B; ζ±, µ) is

λ∗(Φ) = sup
∆x,∆u

λmax(Φ) (34)

=



λmax(Q) if ζ+1i − ζ−1i =
∑n
j=1Ajiµ1j

if ζ+ti − ζ−ti =
∑n
j=1Ajiµtj − µt−1,i

if ζ+Ti − ζ−Ti = −µT−1,i

if ψ+
ti − ψ−

ti =
∑m
j=1Bjiµtj

∞ otherwise.

A feasibility program that ensures

sup
∆x,∆u

λmax(Φ(A,B)) < 0, ∀(A,B) ∈ P , i = 1..n

is

find
ζ,µ

Q(A,B; ζ±, ψ±, µ) ≺ 0 ∀(A,B) ∈ P

(35a)

ζ+1i − ζ−1i =
∑n
j=1Ajiµ1j (35b)

ζ+ti − ζ−ti =
∑n
j=1Ajiµtj − µt−1,i ∀t ∈ 2..T − 1

(35c)

ζ+Ti − ζ−Ti = −µT−1,i (35d)

ψ+
ti − ψ−

ti =
∑m
j=1Bjiµtj ∀t ∈ 1..T − 1

(35e)

ζ±ti (A,B) ∈ Ss+ ∀t = 1..T, (35f)

ψ±
ti (A,B) ∈ Ss+ ∀t = 1..T − 1,

(35g)
µti(A,B) ∈ Ss ∀t = 1..T − 1.

(35h)

Theorem 4.3: When s = 1, program (35) is equivalent
to the statement in (27), and is a strong alternative to (28)
(exactly one of (27) or (28) are feasible). When s > 1, program
(35) is a weak alternative to (28), and at most one of (28)
and (35) are feasible.

Proof: Lemma 4.1 proves that (27) and (28) are strong
alternatives.

In the case where s = 1, Theorem 4.2 proves that (28)
and (31) are strong alternatives. Given that (35) is an explicit
condition for validity of (31), it holds that (35) and (28) are
strong alternatives and therefore (27) and (35) are equivalent.

In the more general case where s > 1, Theorem 4.1
proves that (28) and (31) are weak alternatives. Successfully
finding a certificate (ζ±, ψ±, µ) from (35) validates that (28)
is infeasible. It is not possible for both (35) and (28) to hold
simultaneously.

Theorem 4.4: Under Assumption 1, the dual multipliers
ζ±ti (A,B) and µti(A,B) which certify that q(A,B) ≻ 0
over P via (35) may be chosen to be continuous, and may
additionally be chosen to be polynomial.

Proof: See Appendix I for the proof of continuity, and
Appendix II for the proof of polynomial selectability.

B. Alternatives SOS

The degree-2d WSOS truncation of program (35) to certify
positive definiteness in (27) is contained in Algorithm 1.
The Alternatives Psatz in Algorithm 1 requires the following
assumption to ensure convergence as d→ ∞:

Assumption 3: An Archimedean set Π(A,B) ⊇ P is pre-
viously known.

Remark 8: Such a set Π will describe the boundedness
information on (A,B) discussed in Remark 5.

Remark 9: All of the equality constraints in (36e)-(36g) are
linear constraints in the coefficients of ζ±, ψ±, µ.

The Full programs in (24) and (25) may be converted to
Alternatives programs by replacing the respective cone con-
tainments ∈ Σs[P̄]≤2d by ∈ Σs,alt[Π]≤2d. The below program
(37) is an example of this type of Alternatives conversion for
the ℓ∞-regulation program (24) with the cone Σ1,alt[Π]≤2d
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Algorithm 1 Alternatives Psatz (Σs,alt[P ]≤2d)

procedure ALTERN PSATZ(d, q(A,B),Π,D, ϵ, s)
Solve (or find infeasibility certificate):

ζ±ti (A,B) ∈ Σs[Π]≤2d (36a)

ψ±
ti (A,B) ∈ Σs[Π]≤2d (36b)

µti(A,B) ∈ Ss[A,B]≤2d−1 (36c)
−Q(A,B; ζ±, µ) ∈ Σ[Π]≤2d (from (32)) (36d)

ζ+1i − ζ−1i =
∑n
j=1Ajiµ1j (36e)

ζ+ti − ζ−ti =
∑n
j=1Ajiµtj − µt−1,i ∀t ∈ 2..T − 1 (36f)

ζ+Ti − ζ−Ti = −µT−1,i (36g)

ψ+
ti − ψ−

ti =
∑m
j=1Bjiµtj ∀t ∈ 1..T − 1. (36h)

return ζ, ψ, µ (or Infeasibility)
end procedure

rather than Σ1[P̄]≤2d:

min β/(1− λ) (37a)
v ∈ [1, β]n, S ∈ Rn×m (37b)

Mij ∈ R[A,B]≤2d ∀i, j ∈ 1..n (37c)

qrowi ∈ Σ1,alt
≤2d[Π] ∀i ∈ 1..n (37d)

q±ij ∈ Σ1,alt
≤2d[Π] ∀i, j ∈ 1..n. (37e)

Remark 10: Constraints (36a)- (36c) restrict ζ±ti , ψ
±
ti , µ

±
ti

to classes of bounded-degree polynomial matrices in (A,B)
with degrees {2d, 2d, 2d − 1} respectively. Other approaches
to truncation and verification infinite-dimensional linear pro-
grams can be used instead of polynomial/SOS methods, such
as the neural-network based approach in [38] (with conver-
gence in increasing number of neurons).

Remark 11: If Assumption 3 is violated (Π is a-priori
unknown), then Equations (36) and (37) can be executed with
ζ±, ψ± ∈ Σs[A,B]≤2d (Π = Rn×n × Rn×m). Program (37)
can return sufficient conditions for ℓ∞ regulation given λ, but
it is no longer guaranteed that a λ-regulating controller will
be recovered if feasible as d→ ∞.

V. COMPUTATIONAL COMPLEXITY

This section tabulates the computational complexity in-
volved in executing (Full or Alternative) WSOS tightenings
of the robust performance programs 2 and 3 under measure-
ment noise. As a reminder, the Full methods involve pF =
n(n+ T ) +m(n+ T − 1) variables (A,B,∆x,∆u), while
the Alternatives methods employ pA = n(n + m) variables
(A,B) after eliminating ∆x and ∆u.

The following tables will use the notation R[ · ] for the size
(cone) of a vector R(·)×1 (free variable) and S+[ · ] for the size
of a matrix S(·)+ (semidefinite variable).

The extended ℓ∞-regulation algorithms (24) and (37) in-
volve 2n2+n polynomials q(A,B) that must be nonnegative.

Table I compares the variable sizes in the Putinar Psatz (12)
and the Alternatives Psatz (36).

TABLE I: Size of ℓ∞-regulation Method (Psatz)

Num. Polynomials Full Alternatives

q 1 R
[(pF+2d

2d

)]
R
[(pA+2d

2d

)]
σ0 1 S+

[(pF+d
d

)]
S+

[(pA+d
d

)]
σi 2nT S+

[(pF+d−1
d−1

)]
S+

[(pA+d
d

)]
µj 2n(T − 1) R

[(pF+2d−2
2d−2

)]
R
[(pA+2d−1

2d−1

)]

The H2-regulation algorithm (25) involves a single PMI of
size 2n, along with matrices Y ∈ S2n++ and Z ∈ Sr+. Let ν =
2n(2n+1)/2 be the number of free variables in a symmetric
matrix in S2n. Table II lists the size of the matrices involved
in the quadratically stabilizing Scherer Psatz expressions (12)
and (36).

TABLE II: Size of H2-regulation Method (Psatz)

Num. Polynomials Full Alternatives

q 1 R
[
ν
(pF+2d

2d

)]
R
[
ν
(pA+2d

2d

)]
σ0 1 S+

[
2n

(pF+d
d

)]
S+

[
2n

(pA+d
d

)]
σi 2nT S+

[
2n

(pF+d−1
d−1

)]
S+

[
2n

(pA+d
d

)]
µj 2n(T − 1) R

[
ν
(pF+2d−2

2d−2

)]
R
[
ν
(pA+2d−1

2d−1

)]
The main reduction in computational complexity stems from

the fact that the alternatives Gram matrix sizes are independent
from T . Table III displays the size (but not multiplicities) of
variables involved in the ℓ∞-regulation Algorithms (24), (37)
for parameters of n = 2,m = 1, dfull = 2, daltern = 1 and
increasing T . Table IV lists sizes of SOS-tightenings of the
H2-regulation Algorithm (26) for the same parameter values.

TABLE III: Size of Variables for ℓ∞-regulation

q σ0 σi µj

Alternatives 28 7 7 7
Full(T = 4) 5985 171 18 171
Full(T = 6) 17550 300 24 300
Full(T = 8) 40920 465 30 465

TABLE IV: Size of Variables for H2-regulation

q σ0 σi µj

Alternatives 280 28 28 70
Full(T = 4) 59850 684 72 1710
Full(T = 6) 175500 1200 96 3000
Full(T = 8) 409200 1860 120 4650

VI. INCLUDING PROCESS NOISE

This section reinserts the process noise w from the model
(1) into the description of plant consistency sets.

A. Set Description and Full
Let (ϵx, ϵu, ϵw) ≥ 0 be ℓ∞ bounds for the measurement,

input, and process noise respectively. The data D = (x̃t, ũt)
produces a consistency set P̄all as

P̄all :

∥∆xt∥∞ ≤ ϵx, ∀t = 1..T
∥∆ut∥∞ ≤ ϵu, ∀t = 1..T − 1
∥wt∥∞ ≤ ϵw, ∀t = 1..T − 1

 , (38)
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with the defined quantities for all t = 1..T − 1:

0 = −∆xt+1 +A∆xt +B∆ut + wt + hall
t (39a)

hall
t = x̃t+1 −Ax̃t −Bũt. (39b)

The set P̄all in (38) is described by 2((T − 1)(2n+m) + n)
polynomial inequality constraints and n(T −1) linear equality
constraints in terms of the pall

F = n(n +m) + (T − 1)(2n +
m) + n variables (A,B,∆x,∆u,w). Just as in (13) with P
and P̄ , the semialgebraic set of consistent plants Pall(A,B)
may be formed by the projection

Pall(A,B) = πA,BP̄all(A,B,∆x,∆u,w). (40)

The combination of measurement, input, and process noise
may be incorporated into the Full algorithms (24) (supersta-
bility) and (26) (quadratic stability) by imposing Psatz (12)
positivity constraints over the set P̄all in (38).

Remark 12: We note that structured process noise xk+1 =
Axk+Buk+Ewk for E ∈ Rn×e may be incorporated into the
All-noise framework. Additionally, the process noise variables
w may be eliminated when e ≤ n. Define a left inverse E†

with E†E = Ie and a matrix N containing a basis for the
nullspace of ET in its columns. The following equations may
be imposed to represent the process noise constraints for all
time indices t ∈ 1..T − 1 :

ϵw ≥ ∥E† ((x̃t+1 −∆xt+1)−A(x̃t −∆xt)−Bũt)∥∞
0 = N ((x̃t+1 −∆xt+1)−A(x̃t −∆xt)−Bũt) .

B. Alternatives

The BSA set (38) is described by n(n+m)+T (2n+m)−n
variables (A,B,∆x,∆u,w). The variables (∆x,∆u,w) may
be eliminated by following the Theorem of Alternatives laid
out in Section IV. The process noise variables wt under the
constraint ∀t = 1..T − 1, ∥wt∥∞ ≤ ϵw will be eliminated by
rearranging terms in (2):

wt = A(x̂t −∆xt) +B(ut −∆ut)− (x̂t+1 −∆xt+1)

= A∆xt +B∆ut + hall
t −∆xt+1. (41)

A certificate of PD-ness for the following matrix function
q(A,B) will be derived (from (27)):

q(A,B) ∈ Ss++ ∀(A,B) ∈ Pall. (42)

Dual variables may be initialized with µ± ∈
(Ss+[A,B])n×(T−1) for ϵw, ψ± ∈ (Ss+[A,B])n×T for
ϵu, and ζ± ∈ (Ss+[A,B])n×T for ϵx, according to the Putinar
multipliers (ϕ, σ) from (12), to form the weighted sum Φall

with

Φall = −q(A,B) +
∑T,n
t=1,i=1

(
ζ+ti (ϵx −∆xt) + ζ−ti (ϵx +∆xt)

)
+
∑T,m
t,i

(
ψ+
ti(ϵu −∆ut) + ψ−

ti (ϵu +∆ut)
)

(43)

+
∑T−1,n
t,i µ−

ti(ϵw − (Ai∆xti +Bi∆uti + hall
ti −∆xt+1,i))

+
∑T−1,n
t,i µ+

ti(ϵw + (Ai∆xti +Bi∆uti + hall
ti −∆xt+1,i)).

The (∆x,∆u)-constant terms of Φall are

Qall = −q(A,B) +
∑T−1,n
t=1,i=1 ϵw(µ

− + µ+)

+
∑T−1,n
t=1,i=1 h

all
ti (µ

+ − µ−) (44)

+
∑T,m
t=1,i=1 ϵu

(
ψ+
ti + ψ−

ti

)
+

∑T,n
t=1,i=1 ϵx

(
ζ+ti + ζ−ti

)
.

Define the following symbol ∆ζ = ζ+− ζ−, with a similar
structure holding for ∆ψ and ∆µ. Following the supremum
≤ 0 procedure of Section IV leads to an alternatives-based
nonnegativity certificate of (42):

find
ζ,µ,ψ

−Qall(A,B; ζ±, µ±, ψ±) ∈ Ss+ ∀(A,B) (45a)

∆ζ1i =
∑n
j=1Aji

(
µ+
1j − µ−

1j

)
(45b)

∆ψti =
∑n
j=1Bji∆µti ∀t = 1..T − 1

(45c)
∆ζti =

∑n
j=1Aji∆µtj −∆µt−1,i ∀t ∈ 2..T − 1

(45d)
∆ζTi = −∆µT−1,i (45e)

ψ±
ti , ζ

±
ti ∈ Ss+[A,B] ∀i, ∀t ∈ 1..T

(45f)

µ±
ti ∈ Ss+[A,B] ∀i, ∀t ∈ 1..T − 1.

(45g)

The certificate (45) involves only the n(n + m) variables
(A,B) at the cost of requiring 2T (2n+m)− 2n+1 Scherer
Psatz constraints in (A,B) ((45a) and (45f)-(45g)). The cone
of matrix-valued polynomials that admit certificates in (45)
may be expressed as Σs[A,B]alt,all. The cone Σn[A,B]alt,all

≤d
may be substituted in for Σs[A,B]alt

≤d in all WSOS tightenings,
such as in Algorithm (37). (superstability). An Archimedean
set Πall ⊇ Pall must be known to ensure convergence of
the Alternatives certificate as the degree d → ∞ (from
Assumption 1). All Scherer constraints would then take place
under −Q, µ±

ti , ζ
±
ti ψ

±
ti ∈ Σs[Πall]≤2d at degree-d.

VII. NUMERICAL EXAMPLES

In this section we illustrate the advantages of the proposed
method with several examples. First, we show that attempting
to explain data generated by an EIV model using only process
noise can lead to a controller that fails to stabilize the true
plant. Then, we discuss the performance of all three stabi-
lization algorithms. This performance is empirically compared
using Monte Carlo experiments by adjusting the noise level
and number of samples of data in D. Finally, we investigate
the worst-case H2 optimal control. A followup numerical
experiment shows the result where all types of noises are
considered. Finally, we illustrate that partial plant information
helps to identify a controller.

MATLAB (2021a) code to generate the examples is publicly
available1. Dependencies include Mosek [39] and YALMIP
[40].

1https://github.com/jarmill/error_in_variables
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A. EiV vs. Process Noise Only
This example illustrates the inadequacy of using process

noise models to design controllers from data generated in an
EIV scenario. Assume that the true data is generated by the
open loop unstable system

A =

[
0.8779 −1.2450
0.3229 1.0599

]
B =

[
0.4901 −0.4777
1.1646 −0.9336

]
(46)

with noise levels ϵx = 0.0232, ϵu = 0.0133; , ϵω = 0.0042.
The corresponding noisy trajectories are

[
x1
x2

]
=

[
0.1761 −1.2377 −1.8334 −0.5104 1.1809
0.8883 0.3922 −0.8258 −1.4751 −2.1782

3.5760 5.6699
−2.2015 −1.7807

]
[
u1
u2

]
=

[
−0.1792 −1.0158 −0.6882 −0.6198 −0.1990
0.4558 −0.3985 −0.8140 −0.3163 0.0910

−0.1809
0.3804

]
To find the minimum noise level necessary to explain the above
ground-truth data using a process noise model we solved the
following LP

ϵκ = min
A,B,ϵ

ϵ (47)

∥x̂t+1 −Ax̂t −Bût∥∞ ≤ ϵ ∀t ∈ 1..T − 1

ϵ ∈ R, A ∈ Rn×n, B ∈ Rn×m.

using the trajectories above, yielding ϵκ = 0.0311. Using
the algorithm 1 to design a data-driven controller assuming
a process noise model with this bound leads to the controller

K =

[
1.5515 −4.0390
2.5919 −4.5144

]
which fails to stabilize the ground truth plant (46).

B. ℓ∞ Induced Norm Minimization
This example involves minimization of the ℓ∞-induced

norm over all systems in P̄ . The ground-truth system for this
example is

A =

[
0.6863 0.3968
0.3456 1.0388

]
B =

[
0.4170 0.0001
0.7203 0.3023

]
, (48)

and E = I2.
A trajectory of length T = 12 is collected under the noise

bounds (ϵx = 0.04, ϵu = 0.04, ϵw = 0). The Alternatives
WSOS program in (37) is solved at d = 1 with 100 equally
spaced parameter choices of λ ∈ {0, 0.01, 0.02, . . . , 0.99}.
The minimal upper-bound for the ℓ∞ gain over these sample
points takes place at λ = 0.79, with an ℓ∞ upper-bound
5.0172. The resultant vector v and controller K is

v =

[
1.0000
1.0536

]
, K =

[
−0.9123 −0.9411
1.0485 −0.9898

]
. (49)

The d = 1 Alternatives superstabilization problem over
P̄ (with v = 12) results in a worst-case decay rate of
λ∗ = 0.8013 and an ℓ∞ upper bound of θ∗ = 5.0332. While

the bound of 5.0332 computed from superstability is larger
than the bound 5.0172 based on extended superstability, the
superstability bound 5.0332 required the solution of only a
single SDP rather than iterating over all 100 λ sample values.

Figure 1 reports ℓ∞ upper-bounds as a function of λ, in
which the minimal sampled value is 5.0172. All sampled λ
values below 0.7100 returned either infeasibility or a Mosek
UNKNOWN status when Program (37) was evaluated at d = 1.

0.7 0.75 0.8 0.85 0.9 0.95 1

6

101

` 1
u
p
p
er

-b
ou

n
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Worst-Case Peak-to-Peak Regulation

d=1 bounds
best bound 5.0172

Fig. 1: ℓ∞ bound vs. λ for peak-to-peak disturbance rejection

C. Monte Carlo Simulations for Stabilization

To test the reliability of the proposed method, we collected
50 trajectories with different level of noise and choose u, x0 to
be uniformly distributed in [−1, 1]. We then apply Alternatives
WSOS tightenings of (16) and (22) on the following open-loop
unstable system:

Atrue =

[
0.6863 0.3968
0.3456 1.0388

]
, Btrue =

[
0.4170 0.0001
0.7203 0.3023

]
.

(50)
We first investigate the effect of noise by fixing T = 8.
The result is reported in TABLE V showing the percentage
of successfully stabilized designs for extended superstability
(ESS), superstabilility (SS), and quadratic stability (QS).

TABLE V: Success rate (%) as a function of ϵ with T = 8

ϵ 0.05 0.08 0.11 0.14
ESS 100 88 69 40
SS 100 84 57 39
QS 100 100 90 79

As expected, ESS performs better than SS, since ESS is a
less restrictive stability condition. We note that QS was more
successful than ESS in finding stabilizing controllers, but QS
requires a maximal-size Gram matrix that is twice as large as
in ESS. Increasing the noise level expands the consistency
set, which in turn renders the problem of finding a single
stabilizing controller more difficult. Collecting more sample
data at the same noise bound ϵ = 0.14 reduces the size of the
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TABLE VI: Success rate (%) as a function of T with ϵ = 0.14

T 8 10 12 14
ESS 40 61 78 89
SS 39 60 75 86
QS 79 86 95 99

consistency set, as illustrated for all stabilization methods in
TABLE VI.

To see an advantage of QS over SS, we now consider a
simple mass-spring-damper system shown below with x1 =
x, x2 = ẋ, u = F that includes integrator dynamics:

A =

[
0 1

− k
m − b

m

]
, B =

[
0
1
m

]
(51)

k b

m

F

x

Fig. 2: Illustration of a Spring-Mass-Damper System with
parameters in (51)

This system is not superstabilizable since any state feedback
u = Kx cannot affect the first row of A, hence the infinity
norm of A+BK is always greater or equal to 1. System (51)
is extended-superstabilizable by [24, Example 4], and one can
easily apply an Alternatives formulation (26) to try and find a
quadratically stabilizing controller at the cost of multiplying
the size of all Gram matrices involved by 2.

D. Worst-Case H2 Optimal Control
To analyze the H2 performance of the proposed method,

we first solve the standard H2 problem (10) (C = Ir×n, D =
[0n,m; Im], E = In×e), with known A,B defined by (50).
We denote the benchmark as γ2 = 1.9084. Now we apply
Program (25) to 50 trajectories with different level of noise.
The effect of noise is shown in TABLE VII with fixed T = 8.

For each of the 50 trajectories, Algorithm (25) returns a
control policy K and a worst-case-H2 upper bound γ2,worst
(valid for all (A,B) ∈ P). The quantity γ2,clp (closed-loop
poles) is the H2 norm found by applying K as an input to the
ground-truth system and solving (10). It therefore holds that
γ2,worst ≥ γ2,clp for each trajectory. The quantities returned
in Table VII and all subsequent tables are the median values
of (γ2,clp, γ2,worst) over the 50 trajectories in order to prevent
outliers deviating results.

As we increase the noise, γ2,worst also increases since
the consistency set is expanded. However, γ2,clp does not
necessarily increase since we only optimize in the worst case.

TABLE VII: H2 performance as a function of ϵ with T = 8

ϵ 0.05 0.08 0.11 0.14
γ2,clp 1.9684 2.0715 2.1773 2.1456

γ2,worst 2.3004 2.7308 3.2279 4.3137

It is also worth noting that γ2 ≤ γ2,clp ≤ γ2,worst and the
equality holds only if there is no noise. H2 performance can
be improved by collecting more samples as shown in TABLE
VIII.

TABLE VIII: H2 performance as a function of T with ϵ = 0.08

T 8 10 12 14
γ2,clp 2.0715 1.9637 1.9373 1.9321

γ2,worst 2.7308 2.4160 2.2328 2.2014

E. All Noise

Consider the following set of noise bounds:

set 1 : ϵx = 0.03, ϵu = 0.00, ϵw = 0.00

set 2 : ϵx = 0.00, ϵu = 0.02, ϵw = 0.00

set 3 : ϵx = 0.00, ϵu = 0.00, ϵw = 0.05

set 4 : ϵx = 0.03, ϵu = 0.02, ϵw = 0.00

set 5 : ϵx = 0.00, ϵu = 0.02, ϵw = 0.05

set 6 : ϵx = 0.03, ϵu = 0.02, ϵw = 0.05

(52)

For system (50), we collected a single data trajectory of length
T = 8 starting from an initial state of x1 = [1; 0] with u
uniformly distributed in [−1, 1]2. The worst-case H2 norm
for the all-noise bounds in (52) is collected in Table IX:

TABLE IX: H2 performance for different sets of noise

set 1 2 3 4 5 6
γ2,clp 1.9340 1.9131 1.9750 1.9615 2.1249 2.1659

γ2,worst 2.0681 1.9628 2.1294 2.1554 2.5029 2.5973

The H2 norm for the nominal plant is γ2 = 1.9084. It is
clear that adding more type of noise expands the consistency
set, hence leading to a larger worst-case H2 norm.

F. Partial Information

Partial information of the values of (A,B) can be easily
incorporated into the proposed framework. Instead of treating
all entries of A,B as unknown variables, we can suppose q
entries of (A,B) are known. There are now n(n + m) − q
free variables defining the consistency set, producing a smaller
Gram matrix of

(
n(n+m)−q+d

d

)
as compared to

(
n(n+m)+d

d

)
.

This size reduction ensures that it is theoretically and compu-
tationally easier to find stabilizing controllers K when partial
information is known. For instance, if we assume that the first
row of A is known and apply Program (25) with T = 8,
ϵ = 0.08, we get γ2,clp = 1.9568, γ2,worst = 2.2566 as
compared to γ2,clp = 2.0715, γ2,worst = 2.7308 in the first
column of TABLE VII.
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VIII. CONCLUSION

This paper formulated data-driven state-feedback stabiliza-
tion and robust performance problems for systems corrupted
by ℓ∞-bounded measurement, process, and input noise. (Full)
WSOS programs for ℓ∞ induced performance, superstabiliz-
ability, robust H2 and quadratic stabilizability will converge
to their respective controllers (if such a controller exists) as
the degree tends towards infinity. Such programs are computa-
tionally expensive with regards to the size of the PSD matrices
required in SDPs. A theorem of alternatives was deployed to
create equivalent (superstability) and conservative (quadratic
stabilizability) programs at a reduced computational cost by
eliminating the noise variables.

Future work involves developing MIMO dynamic-output-
feedback controllers in the case of combined input noise and
measurement noise. Other work involves analyzing conditions
for which the sets P̄ and P are compact in terms of the
collected data D (e.g. sampling complexity), and quantifying
the conservativeness involved with utilizing the Theorem of
Alternatives in the s > 1 case. Tractability of this method
would improve with further development and reductions in
complexity of solving SDPs.

APPENDIX I
CONTINUITY OF MULTIPLIERS

This appendix proves that the multiplier functions
(ζ±(A,B), ψ±(A,B), µ(A,B)) from program (35) (when
feasible) may be chosen to be continuous for any PD function
q(A,B) over P (Theorem 4.4). This proof will establish that
a set-valued map based on a variant of the feasible set of
(35) is lower semicontinuous, and will then apply Michael’s
theorem to certify continuous selections. The approach taken
in this proof is similar to establishing lower semi-continuity
of ρ-indexed sets from [41], but our problem has perturbations
in the left-hand side multiplying the equality-multipliers µ.

We will pose the following assumption over the course of
this appendix:

Assumption 4: The function q(A,B) : P → Ss++ is PD
over the consistency set of plants P .

The function q(A,B) from Assumption 4 has a certificate
of nonnegativity (ζ±(A,B), ψ±(A,B), µ(A,B)) by program
(35). We note that P is compact by Assumption 1 and that the
mapping from P to the constraints in (35) are affine (Lipschitz)
in (A,B) over the compact P .

Let Z = ((Ss)n×T )2 × ((Ss)m×(T−1))2 × (Ss)n×(T−1)

be the residing space (possible range) of the multipliers
(ζ+(A,B), ζ−(A,B), ψ+(A,B), ψ−(A,B), µ(A,B)). In this
appendix, the notation (ζ±(A,B), ψ±(A,B), µ(A,B)) will
refer to functions from (35), and variables (ζ±, ψ±, µ) lacking
arguments (A,B) will be values in Z.

A convex-set-valued map S : P ⇒ Z may be defined as
the feasible set of program (35) for each (A,B) ∈ P . The
domain of S is equal to P by Assumption 4 since the functions
(ζ±(A,B), ψ±(A,B), µ(A,B)) have values in Z (S(A,B) ̸=
∅) for all (A,B) ∈ P . The range is nonclosed due to the PD
constraint in (35a).

Define τ∗ = min(A,B)∈P λmin(q(A,B)) as the minimal
possible eigenvalue of the PD matrix q(A,B). We note that
the minimum is attained with τ∗ > 0 because P is compact
and λmin(q(A,B)) is a continuous function of (A,B) (given
that the eigenvalues of a matrix are continuous in the matrix
entries).

We define the closed-convex-valued map Sτ : P ⇒ Z for
a value 0 < τ < τ∗ as the set of solutions (ζ±, ψ±, µ) ∈ Z
for each (A,B) ∈ P of

−Q(A,B; ζ±, µ)− τI ∈ Ss+ (53a)

ζ+1i − ζ−1i =
∑n
j=1Ajiµ1j (53b)

ζ+ti − ζ−ti =
∑n
j=1Ajiµtj − µt−1,i ∀t ∈ 2..T − 1 (53c)

ζ+Ti − ζ−Ti = −µT−1,i (53d)

ζ±ti ∈ Ss+, µti ∈ Ss ∀t = 1..T (53e)

ψ+
ti − ψ−

ti =
∑n
j=1Bjiµtj − µt−1,i ∀t ∈ 1..T − 1. (53f)

The set-valued mappings S and Sτ are related by Sτ ⊂ S
for all admissible τ .

We first note that Assumption 4 implies that q(A,B) −
τ∗

2 I ∈ Ss++ over (A,B) ∈ P . The set of multipliers that
certify of PSD-ness for q(A,B)− τ∗

2 I is Sτ
∗/2, which in turn

is sufficient to prove that q(A,B) is PD.
Any (possibly discontinuous) solution function

(ζ±(A,B), ψ±(A,B), µ(A,B)) that certifies positive-
definiteness of q(A,B) over P via (35) satisfies

∀(A,B) ∈ P , τ ∈ (0, τ∗/2) :

(ζ±(A,B), ψ±(A,B), µ(A,B)) ∈ Sτ (A,B). (54)

A solution (ζ±, ψ±, µ) ∈ Sτ (A,B) is a Slater point
if all matrices in (53a) and (53e) are PD and all equality
constraints are fulfilled. A solution (ζ±, ψ±, µ) ∈ Sτ

′
(A,B)

for some τ ′ > 0 may be transformed into a new solution
(ζ̃±, µ) ∈ Sτ/4(A,B) such that (ζ̃±, ψ̃±, µ) is a Slater point.
Specifically, we express −Q− τI from (32) as

−Q− τI = q(A,B)−
∑T,n
t=1,i=1 ϵx

(
ζ+ti + ζ−ti +

τ
2Tnϵx

I
)

−
∑T,m
t=1,i=1 ϵx

(
ψ+
ti + ψ−

ti +
τ

2Tnϵu
I
)

−
∑T−1,n
t=1,i=1 µtih

0
ti − τ

2 I. (55a)

The shifted multipliers (ζ̃±, ψ±) may be defined as

ζ̃±ti = ζ±ti +
τ

8Tnϵ
I ψ̃±

ti = ψ±
ti +

τ

8Tnϵ
I (55b)

which yields

−Q− τI = q(A,B)−
∑T,n
t=1,i=1 ϵx

(
ζ̃+ti + ζ̃−ti

)
−

∑T−1,m
t=1,i=1 ϵx

(
ψ̃+
ti + ζ̃−ti

)
−

∑T−1,n
t=1,i=1 µtih

0
ti − τ

2 I (55c)

= −Q̃− τ
2 I. (55d)

The differences in (53b)-(53d) cancel out with ∀t, i :

ζ̃+ti − ζ̃−ti =
(
ζ+ti +

τ

8Tnϵ

)
−

(
ζ−ti +

τ

8Tnϵ

)
= ζ+ti − ζ−ti ,

(56)
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and likewise for ψ± and ψ̃±

Lemma 1.1: The solution (ζ̃±(A,B), ψ̃±(A,B), µ(A,B))
constructed from a certificate (ζ(A,B), ψ(A,B), µ(A,B))
from (35) by (55b) is a Slater point of S

τ
8 (A,B) for each

(A,B) ∈ P .
Proof: Given that ζ±ti (A,B) and ψ±

ti (A,B) are both
PSD for each (t, i) (from (35f)), adding a PD matrix τ

8TnϵI to
ζ±ti (A,B) will produce a PD ζ̃±ti (A,B) from (55b) (similar for
ψ̃). The matrix −Q̃ from (55d) is also PD, since −Q̃− τ

2 I ⪰
0 =⇒ −Q̃ ≻ τ

8 I . All equality constraints remain feasible by
the observation in (56), fulfilling the Slater point description.

Lemma 1.2: The set-valued mapping Sτ is lower-
semicontinuous over P .

Proof: This follows from the (strong) Slater point char-
acterization points in Sτ within S

τ
8 from Lemma (1.1) by

arguments from [42] extended to the Matrix case, given that
Sτ has closed convex images and sends a compact set to a
Banach space.

The condition for Michael’s theorem (Thm. 9.1.2 of [30])
to hold, guaranteeing a continuous selection of Sτ , is that P
is compact, Z is a Banach space, Sτ is lower-semicontinuous,
and Sτ has closed, nonempty, convex images for each
(A,B) ∈ P . All of these conditions hold, so a continuous
selection (ζ±s , ψ

±
s , µs) : P → Z may be chosen with

(ζ±s (A,B), ψ±
s (A,B), µs(A,B)) ∈ Sτ (A,B) ⊂ S(A,B).

The continuous functions (ζ±s , ψ
±
s (A,B), µs) may therefore

be used to certify positive-definiteness of q(A,B) over P in
(35).

APPENDIX II
POLYNOMIAL APPROXIMABILITY OF MULTIPLIERS

This appendix proves that a PD function q(A,B)
over P may be certified using polynomial multipliers
(ζ̃±(A,B), ψ̃±(A,B), µ̃(A,B)) whenever (35) is feasible
(Theorem 4.4). The proof will proceed through the introduc-
tion of three positive approximation tolerances (η0, η1, η2) >
0 for use in the Stone-Weierstrass theorem over the com-
pact set P . For a matrix F ∈ Rn×m, define the element-
wise maximum-absolute-value operator as Mabs(F ) =
max(i,j)|Fij |.

Let (ζ±(A,B), ψ±(A,B), µ(A,B)) be a continuous mul-
tiplier certificate from (35), in which continuity was proven
by Appendix I. A symmetric polynomial multiplier matrix
µ̃ti ∈ Ss[A,B] can be created for each (t, i) using the Stone-
Weiesrtrass theorem:

sup
(A,B)∈P

Mabs(µ̃ti(A,B)− µti(A,B)) < η0. (57)

A. Multiplier Bound

This subsection will approximate the ζ and ψ multipliers
by polynomials. The following explanation will only detail
ζ multipliers, as the ψ derivation follows identical steps. Let
γti ∈ S[A,B] be the right-hand-sides of constraints (35b)-

(35d) given µ̃ with (∀i = 1..n):

γ1i =
∑n
j=1Ajiµ̃1j (58a)

γti =
∑n
j=1Ajiµ̃tj − µ̃t−1,i ∀t ∈ 2..T − 1 (58b)

γTi = −µ̃T−1,i. (58c)

The equations ζ+ti − ζ−ti = γti from constraints (35b)-(35d)
have solutions that can be parameterized by a set of continuous
symmetric-matrix-valued functions ϕti(A,B) : P → Ss:

∀(t, i) : ζ+ti (A,B) = ϕti(A,B)/2 + γti(A,B)/2 (59a)

ζ−ti (A,B) = ϕti(A,B)/2− γti(A,B)/2. (59b)

The functions ϕti may be η1-approximated by polynomials
ϕ̃ti(A,B) ∈ Ss[A,B] for each (t, i) in the compact region P:

sup
(A,B)∈P

Mabs(ϕ̃ti(A,B)− ϕti(A,B)) < η1. (60)

A tolerance η2 > 0 is introduced to define the polynomial
approximators ζ̃ti for each (t, i):

ζ̃+ti (A,B) = ϕ̃ti(A,B)/2 + γti(A,B)/2 + (η2/2)I (61a)

ζ̃−ti (A,B) = ϕ̃ti(A,B)/2− γti(A,B)/2 + (η2/2)I. (61b)

The approximators ζ̃ are related to the original multipliers
ζ for each (t, i) by

ζ̃±ti (A,B) = ζ±ti (A,B) + (ϕ̃ti(A,B)− ϕti(A,B))/2 (62)
+ (η2/2)I.

The approximant ζ̃ must take on PSD values in order to
ensure that it is a valid multiplier for (35f).

Lemma 2.1: Let M ∈ Ss++ and R ∈ Ss be matrices with
Mabs(R) ≤ η for some η > 0. A sufficient condition for
M +R ∈ Ss++ for all R is that M − ηsI ∈ Ss++.

Proof: The minimum eigenvalue of M + R is lower-
bounded by Weyl’s inequality for the sum of Hermitian
matrices as

λmin(M +R) ≥ λmin(M) + min
R∈Ss, Rij∈[−η,η]

λmin(R).

The minimum eigenvalue of R is in turn lower-bounded by
−ηs through the Gershgorin circle theorem, implying that

λmin(M +R) ≥ λmin(M)− ηs. (63)

A sufficient condition for (63) to hold is if M−ηsI ∈ Ss++.

The matrix (η2/2)I− (ϕ̃ti(A,B)−ϕti(A,B))/2 from (62)
may be analyzed using Lemma 2.1 with M = (η2/2)I and
η = (η1)/2. Given that ζ±ti ∈ Ss+(A,B), a sufficient condition
for ζ̃±ti ∈ Ss+(A,B) by Lemma 2.1 is

η2 > η1s. (64)
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B. Certificate Bound

Let us express ψ± in terms of functions ϕ̃uti, γ̃
u
ti in a similar

manner to (61) as

ψ̃±
ti (A,B) = ϕ̃uti(A,B)/2± γuti(A,B)/2 + (η2/2)I. (65)

The (∆x,∆u)-constant term Q in (32) has a polynomial
approximation (when substituting ζ± → ζ̃±, ψ± → ψ̃± µ →
µ̃) of

Q̃ = −q(A,B) +
∑T,n
t=1,i=1 ϵx

(
ζ̃+ti + ζ̃−ti

)
+
∑T−1,m
t=1,i=1 ϵu

(
ψ̃+
ti + ψ̃−

ti

)
+
∑T−1,n
t=1,i=1 µ̃tih

0
ti (66a)

= Q+
∑T,n
t=1,i=1 ϵx(ϕ̃ti − ϕti + η2I)

+
∑T−1,m
t=1,i=1 ϵu(ϕ̃

u
ti − ϕuti + η2I)

+
∑T−1,n
t=1,i=1(µ̃ti − µti)h

0
ti (66b)

= Q+ η2(ϵxTn+ ϵu(T − 1)m)I +
∑T,n
t=1,i=1 ϵx(ϕ̃ti − ϕti)

+
∑T−1,m
t=1,i=1 ϵu(ϕ̃

u
ti − ϕuti) +

∑T−1,n
t=1,i=1(µ̃ti − µti)h

0
ti.

(66c)

The negative of (66) is

−Q̃ =−Q− η2(ϵxTn+ ϵu(T − 1)m)I

−
∑T,n
t=1,i=1 ϵu(ϕ̃ti − ϕti)−

∑T−1,m
t=1,i=1 ϵu(ϕ̃

u
ti − ϕuti)

−
∑T−1,n
t=1,i=1(µ̃ti − µti)h

0
ti. (67)

Lemma 2.1 will be used to derive a sufficient condition on
(η0, η1, η2) such that −Q̃ is PD for all (A,B) ∈ P (satisfying
condition (35a)). Define the smallest eigenvalue of −Q as

λ∗ = min
(A,B)∈P

λmin(−Q(A,B)) > 0. (68)

Because Q satisfies (35a), −Q is PD over P and therefore
λ∗ > 0. Further define h̄0 and H̄ using (14) as

h̄0ti:= max
(A,B)∈P

h0ti(A,B), ∀(t, i) (69)

H̄:=
∑T−1,n
t=1,i=1 h̄

0
ti. (70)

The expression in (67) therefore satisfies

−Q̃ ⪰ (−Q− η2(ϵxTn+ ϵu(T − 1)m)I)−
−
∑T,n
t=1,i=1 ϵu(ϕ̃ti − ϕti)−

∑T−1,m
t=1,i=1 ϵu(ϕ̃

u
ti − ϕuti)

(71)

−
∑T−1,n
t=1,i=1(µ̃ti − µti)h̄

0
ti, (72)

and we further note that

−
∑T−1,n
t=1,i=1(µ̃ti − µti)h̄

0
ti ≥ −H̄

(∑T−1,n
t=1,i=1(µ̃ti − µti)

)
.

(73)
We can apply Lemma 2.1 towards the right-hand-side of

(72) under the definitions of

M :=−Q− η2(ϵxTn+ ϵu(T − 1)m))I (74a)
η:=(Tnϵx + (T − 1)mϵu)η1 + H̄η0 (74b)

to form the condition

λmin(−Q̃) ≥ λmin(M)− ηs (75)
≥ λ∗ − η2s(ϵxTn+ ϵu(T − 1)m)

− s(Tnϵx + (T − 1)mϵu)η1 + H̄η0. (76)

The combined conditions for admissible (η0, η1, η2) such
that −Q̃ is PD are

η0, η1, η2 > 0, η2 > η1s (77a)
λ∗ > (ϵxTn+ ϵu(T − 1)m)s)η2

+ (Tnϵx + (T − 1)mϵu)sη1 + (H̄s)η0. (77b)

Under the definition

η̄:=(2s+ 1)(ϵxTn+ ϵu(T − 1)m)), (78)

one possible choice of (η0, η1, η2) > 0 satisfying (77) is

η0 =
λ∗

4H̄s
η1 =

λ∗

2η̄
η2 =

λ∗(s+ 1)

2η̄
. (79)

A polynomial multiplier certificate (ζ±, µ) will therefore
always exist whenever (35) is satisfied.
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