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Abstract— This paper introduces the “Predator-Swarm-
Guide” (PSG) model, a hybrid approach for modeling crowd
dynamics by considering pairwise repulsive and attractive
interactions among individuals. Extending the predator-swarm
model, PSG specifically addresses the behavior of individuals
during a shooting event within a zoned environment. It accounts
for individuals’ simultaneous efforts to evade the shooter while
seeking guidance from a trusted agent. The guiding agent’s
movements during evacuation are influenced by two factors:
its orientation towards the safe zone, where individuals are
protected from the shooter, and the shooter’s location. The PSG
model incorporates crucial environmental factors, including
impermeable walls, psychological elements leading to significant
social friction, and a termination procedure to track casualties.
Outputs of the PSG model underscore the significance of coor-
dinated cooperation between individuals and the guiding agent
in minimizing casualties during an active shooting scenario.
Therefore, the objective is to reduce casualties through a hybrid
motion optimization approach for both individuals and the
guiding agent. Additionally, an equilibrium analysis, based on
the continuum-limit version of the PSG model, is conducted
to predict the crowd’s equilibrium configuration in specific
scenarios.

I. INTRODUCTION

Crowd-related disasters, such as the Hillsborough disaster
in 1989, the Hajj stampede in 2015, the Love Parade disaster
in 2010, the 2022 Seoul Halloween crush, and the Astroworld
Festival in 2021 [1]–[4], highlight the pressing need for
effective crowd management strategies. The surge in active
shooting events worldwide further underscores the urgency in
developing swift and secure evacuation strategies. According
to the Gun Violence Archive, the number of mass shootings
in the United States alone was 383 in 2016, 415 in 2019, and
646 in 2022 [5]. These statistics underline the essential need
for effective crowd modeling during emergencies to ensure
the safety of civilians.

Crowd movement models broadly fall into microscopic
and macroscopic categories [6]. Microscopic models con-
sider individual behavior, accounting for factors like psy-
chology, density, and environmental boundaries [7]. While
precise, they can be computationally demanding for large
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crowds. On the other hand, macroscopic models, examining
collective behavior, form the foundation of many crowd
models [8]–[10].

Research in this area has focused on refining these models
by incorporating psychological factors, social bonds, and
herding instincts to enhance the realism of the current
models [11]–[15]. Moreover, some studies have expanded
their crowd models to include new roles. For instance, the
behavior of a swarm of prey in the presence of a predator
has been investigated in [16]. Additionally, some studies take
into account the effect of control agents in crowd dynamics
models, aiming to optimally guide the crowd towards a
desired direction or destination [17], [18].

Drawing inspiration from the minimal microscopic model
introduced in [16], our research presents a dynamic model
specifically designed for active shooting events. The pro-
posed model, called Predator-Swarm-Guide (PSG), incor-
porates novel elements such as a guiding agent, wall im-
permeability, and zoned environments to accurately capture
the dynamics of such scenarios. PSG is a first-order model,
offering enhanced analyzability and enabling the study of
large crowd sizes, which is particularly useful for analyzing
the escape scenarios within large venues, such as stadiums.
By analyzing the impact of individual behaviors within
the model, we can gain valuable insights into the overall
outcomes of escape scenarios during active shooting events.

The paper proceeds as follows: Section II defines the
simulation environment and introduces PSG. It outlines a
termination procedure for affected individuals and explores
individual behaviors’ impact on escape outcomes. Section
III formulates a multi-variable optimization problem to mini-
mize casualties by adapting guidance routes and mass behav-
ior. Equilibrium analysis investigating crowd configuration
in the steady state is conducted in section IV. Section V
presents our conclusions and final remarks.

II. MODIFIED PREDATOR-SWARM INTERACTIONS WITH
A GUIDING AGENT

In this section, a modified model of predator-swarm inter-
actions is introduced to investigate the outcomes of a shoot-
ing scenario under certain conditions. We consider a shooter
as the predator, a guiding agent, and a group of individuals
as the prey. The crowd-shooter and guide-crowd interactions
are modeled considering the repulsion and attraction forces
between them. Interactions are assumed to occur within a
confined environment R ∈ [0, 5]2. This room is bounded
by walls described by line segments: w1 (bottom) spanning
(0, 0) to (5, 0), w2 (right) from (5, 0) to (5, 5), w3 (top) from
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(5, 5) to (0, 5), and w4 (left) from (0, 5) to (0, 0). These
walls are collectively represented as W = {w1, w2, w3, w4},
distinctly separating R from external spaces. Within R,
we identify a safe zone Zs = [2.5, 5]2, a danger zone
Zd = [0, 2.5]2, and two free zones, accessible to all. We
assume that the shooter is restricted to moving within the
danger and free zones and will be captured upon reaching the
boundaries of the safe zone. The danger zone is the initial
location of the crowd, making it the primary target of the
shooter’s actions. It is worth noting that our assumptions on
the walls’ coordinates are for illustration and clarity, and the
results we derive can be extended to any set of walls.

The following subsection outlines the dynamics of a mass
shooting event within the aforementioned environment.

A. Predator-Swarm-Guide Model

The modified predator-swarm model, referred to as the
Predator-Swarm-Guide model in this study, is based on the
dynamics established in [16]. However, new elements and
notions are incorporated to adapt this model specifically for a
mass shooting scenario. Assuming that the individuals in the
crowd aim to follow the guiding agent while simultaneously
avoiding the shooter and preventing collisions with other
individuals, we next describe the PSG model.

We denote the position of the shooter, the guiding agent,
and the j-th individual by z(t) ∈ R, y(t) ∈ R, and xj(t) ∈
R for j ∈ V = {1, 2, · · · , N}, respectively. To maintain
brevity, we use the notations z, y, and x to represent the
states z(t), y(t), and x(t) respectively throughout this paper.

We consider pair-wise attractive and repulsive forces to
describe the interactions between individual j and the rest
of the crowd. In this regard, the total force enacting on
individual j is expressed by Fj,II = 1

N

∑N
k=1,k ̸=j

xj−xk

|xj−xk|2−
α1(xj − xk). The first term represents the inherent psy-
chological inclination of individuals in close proximity to
maintain distance from each other, enacted through a short-
range repulsive force. The second term represents a linear
long-range force between individuals. When individuals tend
to emulate mass behaviors by following each other, an attrac-
tive interaction among them is generated which is denoted
by α1 > 0. Conversely, when individuals aim to avoid
each other to prevent congestion, a repulsive interaction is
generated with a negative α1 value.

The individuals in the distance are normally unable to see
each other, and therefore, there is no interaction between
them. We employ a decaying effect, as suggested by [19], to
incorporate the effect of a reduced sightline, ensuring the
force remains bounded. Incorporating the decaying effect
involves modifying the linear force term α1(xj − xk) by
multiplying it with a decaying function h(|xj − xk|). This
function is defined as h(r) = er0−r if r > r0, and h(r) = 1
otherwise. In this context, r = |xj − xk| represents the
distance between two individuals j and k, and r0 denotes a
cutoff distance. When the distance is within the cutoff range
(r ≤ r0), the function h(r) takes the value of 1, implying
no modification to the linear force. However, for distances
beyond the cutoff range (r > r0), the sightline is reduced,

and the function decays exponentially, allowing the force to
diminish as the distance increases.

As the individuals attempt to flee from the shooter, a
repulsive effect is induced within the crowd against the
shooter’s presence. To model this effect, the j-th individual
will exert a force away from the shooter given by Fj,IS =
α2

xj−z
|xj−z|2 . Here, α2 represents the strength of the repulsive

interaction between the individuals and the shooter.
To account for the impact of the agent’s guidance on the

j-th individual, we introduce an external attraction force
denoted as Fj,IA = α3(xj − y). The parameter α3 dic-
tates the strength of attraction towards the guiding agent
and reflects the level of trust that individuals have in the
guidance provided. We assume that during a shooting event,
all individuals are aware of the danger and actively strive
to pay attention to the guiding agent and its location. In
this scenario, individuals located farther from the guiding
agent will exert more effort to approach and stay close to
the guiding agent. It is important to note that since the
simulations in this study are conducted in a confined room
with boundaries, the influence of this force remains limited.

The shooter’s objective is to pursue and target individu-
als who are in close proximity. Conversely, as individuals
distance themselves from the shooter, the attractive force
they exert on the shooter decreases. This force is denoted
as FS = α4

N

∑N
k=1

xk−z
|xk−z|p and represents the average inter-

action between the shooter and the crowd. Each interaction
follows a power law with exponent p, causing the interaction
strength to decrease as the distance between the shooter
(z) and each member of the crowd (xk) increases. The
parameter α4 governs the strength of the shooter’s attraction
toward the crowd. We make the assumption that the shooter’s
movement is constrained to the danger and free zones within
the room and that the shooter lacks prior information about
the location of the safe zone. In the event that the shooter
pursues the crowd and reaches the boundaries of the safe
zone, the shooter is considered captured and the simulation
is concluded.

The main objective of the guiding agent is to safely navi-
gate the individuals from the danger zone to the designated
safe zone while minimizing their exposure to the shooter.
To achieve this objective, we first introduce a weighting
parameter denoted as 0 ≤ λ ≤ 1. This parameter dictates
the priority of moving towards the safe target as opposed
to moving away from the shooter. A value of λ closer to 1
emphasizes movement toward the target, while a value closer
to 0 prioritizes moving away from the shooter. We express
this weighted combination by

FA = α5λ
yr − y

|yr − y|
+ α5(1− λ)

x̄− z

|x̄− z|
, (1)

where α5 indicates the attraction level of the guiding agent
toward the crowd. yr represents the position of the guiding
agent’s target within the safe zone. x̄ denotes the average
position of the crowd. Defining the dynamics of the guiding
agent in this approach ensures that the guiding agent makes
informed decisions to steer the individuals toward safety
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while taking into account the presence of the shooter.
The impermeability of the walls can be incorporated by

considering a repulsive effect on the individuals [20], [21]
once they are located within the wall interaction range. Based
on the approach outlined in [21], we introduce the total
wall repulsive force acting on an individual with position
p ∈ {x, z,y} as FW =

∑
wi∈W α6

[
1

d(wi,p)
− 1

rw

]
+
n(wi).

The parameter α6 represents the strength of repulsion against
walls, d(wi,p) denotes the distance between the individual
and wall wi, rw is the interaction range of walls, and n(wi)
represents the outward unit normal vector of wall wi. The
operator [X]+ returns the value X if X > 0 and returns
zero otherwise. Note that the subscript {W} in FW will
be replaced by {j, IW} for individual j, by {SW} for the
shooter, and by {AW} for the guiding agent.

While attempting to escape from the shooter, individuals
seek safety by staying as close to the guiding agent as
possible. In their effort to closely follow the agent, they
experience increased ”social friction”, which can have a
significant impact on their movement. Following the princi-
ples of Newtonian mechanics, the motion of each individual,
denoted as i, with position p ∈ {x, z,y}, mass mi, social
friction coefficient µi, and the total force acting on them,
denoted as Fi, can be described by the equation mi

d2p
dt2 +

µi
dp
dt = Fi. We assume that in mass shooting scenarios,

the effect of social friction is significantly higher than the
individual’s mass, i.e., mi is negligible compared to µi, and
rescale the dynamics accordingly. This leads to simplified
first-order dynamics for each individual.

We now proceed to present the first-order dynamics that
describe an active shooting event, taking into account the
interactions between the shooter, individuals, and the guiding
agent.

dxj

dt
= Fj,II + Fj,IS + Fj,IA + Fj,IW , (2)

dz

dt
= FS + FSW , (3)

dy

dt
= FA + FAW . (4)

Note that in the model above, the friction (damping) force
is equal to the net external force applied to each individual.
For subsequent analysis in the upcoming sections, we employ
the fourth-order Runge-Kutta method with a time step of
dt = 0.05 to discretize the continuous dynamics outlined by
equations (2), (3), and (4). In the model presented above,
the removal of an individual from the system upon being
attacked by the shooter is not explicitly considered. However,
acknowledging the significance of this effect, we will address
the termination procedure in the following subsection.

B. Termination Procedure

In the simulation of shooter-crowd interactions, the termi-
nation procedure plays a vital role in modeling the shooter’s
ability to target and eliminate members of the crowd. To
implement this, we define a shot radius denoted as rs for
the shooter.

Algorithm 1 outlines the termination procedure that is

incorporated at each time step in our simulations. It involves
a simple loop through all the individuals during the entire
simulation period T . The simulation calculates the distance
between each individual and the shooter. If the distance
falls below the specified shot radius rs and the individual is
outside the safe zone Zs, the targeted individual is eliminated
from the simulation. The total number of individuals, N , is
then decreased accordingly, and the number of casualties,
K, will increase by 1. The output of this algorithm includes
the final number of casualties, denoted by K, and the set
of survived individuals, represented by Vs. These individuals
will be included in the dynamic simulations for the next time
step. It is assumed that the shooter is not able to harm the
guiding agent, even if the guiding agent is within the shot
radius of the shooter.

Algorithm 1: Termination Procedure
Input: xj , z, N , K, rs, Zs

Output: K, Vs
1 for j ← 1 to N do
2 d = |xj − z|;
3 if d < rs and xj /∈ Zs then
4 remove j from V;
5 N ← N − 1;
6 K ← K + 1;

C. Impact of Individual Behaviors on the Outcomes of Mass
Shooting Scenarios

In the study of crowd dynamics and mass shooting sce-
narios, it is crucial to recognize the impact of individual
behaviors, including the individuals and the guiding agent,
on the overall outcome. When individuals exhibit a high
attraction strength (α1 > 0) and tend to cluster together,
it can potentially facilitate the shooter in causing more
casualties. Conversely, intentional distancing among individ-
uals (low attraction strength or repulsive interaction with
α1 < 0) tends to decrease the initial number of casualties by
making it more challenging for the shooter to target dispersed
individuals. However, while individuals may strive to become
more dispersed to minimize the shooter’s impact, excessive
dispersal, e.g., highly negative α1, can lead to challenges
in following the directions of the guiding agent. This could
result in unintended consequences, as it becomes easier for
the shooter to track and inflict harm on individuals over time.

Additionally, the approach taken by the guiding agent, rep-
resented by the parameter λ in our model, is another crucial
factor in determining escape outcomes. Simply focusing on
reaching the safe zone may not always result in minimizing
the severity of the situation. Similarly, moving away from
the shooter at the expense of guiding individuals far from
the safe zone is not desirable.

The correlation between the number of casualties (K), the
attraction/repulsion strength (α1), and the guiding agent’s
decisions (λ) can be observed in Fig. 1. This figure highlights
the influence of individual behaviors on the outcomes of
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Fig. 1: The impact of attraction/repulsion strength (α1) on the
average number of casualties for varying values of λ in a crowd
with N = 500. The average number of casualties is obtained by
averaging over five iterations, each utilizing random initial positions
for the crowd members.

the scenario. The crowd consists of N = 500 individuals
whose initial positions in the room, are randomly distributed.
The shooter and the guiding agent are initially located at
z0 = [3, 1] and y0 = [0.8, 0.8], respectively. The simulation
is conducted with the following parameter values: α2 = 0.2,
α3 = −1, α4 = 5, α5 = 5, α6 = 0.1, p = 2.5, rs = 0.4,
rw = 0.5, T = 10, yr = [3.75, 3.75].

The observations from Fig. 1 highlight the existence of
a critical threshold for both individuals and guiding agent
actions. Specifically, in this scenario, when crowd members
exhibit extreme behaviors, such as closely following others
(α1 → 4) or attempting to move away from individuals
(α1 → −10), the effectiveness of the guiding agent dimin-
ishes. Conversely, the guiding agent emerges as a crucial
factor in minimizing casualties when the crowd demonstrates
rational movements – balancing between following others
and avoiding tightly packed groups. Therefore, cooperation
between the crowd and the guiding agent may result in fewer
casualties. Building upon this observation, the subsequent
section focuses on designing an effective escape policy that
involves the active participation and cooperation of both
individuals and the guiding agent.

III. OPTIMIZING GUIDANCE AND CROWD MOVEMENT
TOWARD SAFE ZONE

In scenarios where a large crowd is confined to a room
and under attack by a shooter, the exposure to the shooter
and, consequently, the number of casualties are significantly
influenced by two key factors:

• Proximity to the shooter: The exposure increases if, on
its way to the safe zone, the guiding agent moves closer
to the shooter, i.e., λ→ 1, as this brings the individuals
in closer proximity to the shooter as well.

• Formation of large clusters, i.e., large α1: The exposure
also increases if the individuals tend to cluster together
in a tight formation. Large clusters are more easily

accessible to the shooter, posing a higher risk to the
individuals.

By carefully considering the impact of both the guid-
ing agent’s decisions, reflected on parameter λ, and the
individuals’ reactions, reflected on parameter α1, we can
design strategies that optimize the escape scenario toward
the safe zone. To accomplish this, we present an optimization
problem based on the movement of the guiding agent and
the individuals. The objective is to minimize the number of
casualties K during the escape process toward the safe zone
while avoiding the shooter.

The following optimization problem is designed to tune
the evacuation factors α1 and λ in order to minimize the
number of casualties K in a given crowd during an evacua-
tion process over a specified time interval T .

minimize
α1,λ

K =
T∑

t=1

N∑
j=1

I(|xj(t)− z(t)| < rs)

subject to x(0) = x0, z(0) = z0, y(0) = y0,

(2), (3), (4),
0 ≤ λ ≤ 1,

(5)

where

I(|xj(t)− z(t)| < rs) =

{
1 if |xj(t)− z(t)| < rs,

0 otherwise.
(6)

The objective function K represents the total number of
casualties, which is obtained by summing up the indicator
functions for all the individuals and time intervals.

In what follows, we present two simulated shooting sce-
narios using the dynamics from Section II in the specified
environment. The simulated crowd consists of N = 500
individuals initially scattered randomly in the danger zone,
shown as blue dots in Fig. 2a. The shooter is denoted by
×, and the guiding agent by +. We maintain the same
parameters as in Fig. 1 for all simulations. Note that if the
crowd jams against the walls, individuals may exert a force
against the wall to free themselves and move toward the safe
zone.

In the initial scenario, as depicted in Figs. 2b, 2c, and
2d, the individuals demonstrate a strong tendency to cluster
together due to the influence of an interaction strength
parameter of α1 = 1. This leads to the formation of a
tightly grouped crowd. On the other hand, the guiding agent’s
priority lies in distancing itself from the shooter to minimize
the risk to the crowd, indicated by a low value of λ = 0.1.
Once the guiding agent reaches the safe zone, it maintains its
position at the designated target to ensure the crowd’s safety.

In an attempt to pursue the crowd, the shooter advances
until reaching the boundaries of the safe zone, where they are
ultimately captured, marking the termination of the scenario.
The combination of crowd clustering and the guiding agent’s
movement leads to a significant casualty count of K = 450.

To avoid outcomes such as the one represented in Figs. 2,
we have employed the optimization algorithm presented in
(5) and used the Bayesian Optimization toolbox in Matlab
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(a) (b) (c) (d)

Fig. 2: A composite figure illustrating three distinct stages of a simulated crowd guidance scenario for N = 500 with parameter values
α1 = 1 and λ = 0.1. The blue dots represent the individuals, the symbol × indicates the shooter, and the symbol + represents the
guiding agent.

[22] to determine the optimal values of parameters α1 and λ
to minimize the number of casualties, denoted as K. Through
the optimization process conducted for 10 iterations with
different random initial positions for individuals, an average
of observed minimum casualties K̄∗ = 69.6 for the average
optimal values of ᾱ1 = −1.6250 and λ̄ = 0.7135 was
achieved. 1

IV. EQUILIBRIUM

In this section, we study the equilibrium configuration of
the crowd with respect to the positions of the shooter and the
guiding agent, as well as the escape parameters. To conduct
an equilibrium analysis of the system described by equations
(2)-(4), we assume that all interactions occur within an open
environment (α6 = 0), and that both the shooter and guiding
agent have attained a stationary state, implying dz

dt = 0

and dy
dt = 0. This assumption is considered valid for the

scope of our analysis, which focuses on the equilibrium
states of the system. Namely, equilibrium in this context
refers to the state of the system when time goes to infinity,
during which the guiding agent has established its position
within the safe zone. In parallel, the shooter has reached
a decisive moment—either being captured at the boundary
of the safe zone or being encircled by the crowd, thereby
unable to decide its path due to the symmetry of the crowd.
This effectively confirms the assumed velocities for both the
shooter and the guiding agent. Additionally, we assume that
at equilibrium, the crowd will aggregate with individuals
maintaining a relatively close distance, i.e., |xj − xk| < r0
for all j, k ∈ V , which implies h(r) = 1. The subsequent
simulation results confirm the validity of this assumption.

Leveraging the analytical advantages offered by the con-
tinuum models [24], we subsequently proceed to establish
the continuum-limit model for the crowd as described by
equation (2), while taking into account the aforementioned
assumptions. In the continuum-limit model, we consider
the number of individuals to be infinite. This assumption
accommodates the mean-field approximation of the crowd,
introducing a new perspective to the problem. The expec-
tation is that the outcomes derived from the discrete model

1The simulated evacuation scenarios described in this paper, as well as
the associated MATLAB code, can be accessed via the GitHub repository
provided in [23].

will be consistent with those obtained from the continuum-
limit model, as the continuum model essentially represents
a mean-field approximation of its discrete counterpart [25].
As the number of individuals N approaches infinity, the dy-
namics of the crowd convergese to the following continuum
model.

∂ρ(x, t)

∂t
+∇ · (ρ(x, t)v(x, t)) = 0, (7)

v(x, t) =

∫
R2

(
x−w

|x−w|2
− α1(x−w)

)
ρ(w, t)dw

+ α2
x− z

|x− z|2
+ α3(x− y). (8)

Here, ρ(x, t) ∈ R denotes the density distribution of the
crowd at position x and time t, satisfying

∫
R2 ρ(w, t)dw =

1. The velocity field of the crowd is represented by v(x, t).
Initially, the crowd is distributed with a density probability
distribution of ρ(x, 0) = 1

N

∑N
j=1 δ (x− xj), where δ is

the delta function. The assumption of a small shot radius
(rs → 0) ensures the conservation of mass in the crowd, as
described by (7).

The following theorem outlines an equilibrium configura-
tion of the crowd. The analytical approach adopted in this
section closely follows that of [16]. However, the inclusion of
a guiding agent in our analysis has led to a generalization of
the crowd’s equilibrium configuration for different scenarios.

Theorem 1: Consider a crowd with dynamics (7) and (8),
where both the shooter and the guiding agent are stationary.
If the distance between the shooter and guiding agent satisfies
|z − y| ≤ d1 (refer to Table I(D)), then the the dynamics
admit an equilibrium state in which individuals uniformly
distribute within the region A = {x | |x − c1| ≥ R1, |x −
c2| ≤ R2}, where

d1 =
α3

α1α2 + α3
(R2 −R1),

R1 =

√
α2

α1 − α3
, c1 = z,

R2 =

√
1 + α2

α1 − α3
, c2 =

α1α2z+ α3y

α1α2 + α3
.

Proof: Define characteristic curves X (X0, t) such that
for x = X (X0, t) we have dx

dt = v(x, t) and a constant
density distribution ρ(x, t) along X, which is a valid as-
sumption based on [26]. Specifically, since the nonlinearities
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(A). No shooter
or guiding agent

(α2, α3 = 0)

(B). Shooter only
(α3 = 0)

(C). Guiding
agent only
(α2 = 0)

(D). |z− y| ≤ d1 (E). d1 <
|z− y| < d2

(F). |z− y| ≥ d2

R =
√

1
α1

c = x̄ R1 =
√

α2

α1

R2 =
√

1+α2

α1

c1 = c2 = z

R =
√

1
α1−α3

c = y
R1 =

√
α2

α1−α3

c1 = z

R2 =
√

1+α2

α1−α3

c2 = α1α2z+α3y
α1α2+α3

R1 ≈
√

α2

α1−α3

c1 ≈ z

R2 ≈
√

1+α2

α1−α3

c2 ≈ α1α2z+α3y
α1α2+α3

R =
√

1
α1−α3

c = y

TABLE I: Equilibrium configuration of the crowd depending on the presence of the shooter and the guiding agent and
their distance at equilibrium. The blue dots, symbol ×, and symbol + represent the individuals, shooter, and guiding agent,
respectively. Solid circles correspond to the continuum-limit asymptotics. The figures are generated using parameters α1 = 1,
α2 = {0, 0.2}, and α3 = {0,−1} depending on the presence of the shooter and guiding agent.

in (2) are deliberately chosen to be Newtonian, the density
remains constant inside the swarm. As a result, the mass
conservation equation (7) along the characteristic curves is
simplified to

dρ

dt
= − (∇x · v) ρ. (9)

We next obtain the divergent of crowd’s velocity field
for x ̸= z and x ̸= y. Using the identity ∇x.(

x−z
|x−z|2 ) =

∆x(ln |x− z|) = 2πδ(x− z), (8) yields

∇x · v = 2πρ− 2α1 + 2α3, (10)

which returns the following solution to the ordinary differ-
ential equation (9)

ρ(t) =
(α1 − α3)ρ0e

2t(α1−α3)

π(ρ0e2t(α1−α3) − 1) + α1 − α3
, (11)

where ρ0 = ρ (X0, 0). Note that obtaining the crowd density
solely as a function of time directly stems from the assump-
tion of constant density field along characteristic curves.

As (11) suggests, for any ρ0 > 0 and α1 − α3 > 0,
the crowd density distribution will approach limt→∞ ρ(t) =
α1−α3

π . It is worth noting that when α1−α3 < 0, we observe
limt→∞ ρ(t) = 0, signifying that the repulsion interaction
among individuals surpasses their attraction towards the
guiding agent, leading to dispersion of the crowd and the
density approaching zero in the continuum.

We now aim to identify a steady state in which the crowd
has reached a stationary condition, meaning v(x, t) = 0. We
seek a steady state in which the crowd aggregate inside an
off-center annular area described by A = {x | |x − c1| ≥
R1, |x − c2| ≤ R2} where c1 = z and |z− y| ≤ d1. Using
(8), we can determine the velocity field of the crowd along
the characteristic curves x = X (X0, t) within A as follows

v(x, t) = ρπ(x− c2)− ρπR2
1

x− z

|x− z|2
+ α1x̄

− ρπα1x
(
R2

2 −R2
1

)
+ α2

x− z

|x− z|2
+ α3(x− y).

(12)

This expression is obtained using the following identity for
both areas indicated by |x − c1| ≥ R1 and |x − c2| ≤ R2,
while shifting the origin with respect to the corresponding
center of these circles.∫

|w|≤R

x−w

|x−w|2
dw =

{
πR2 x

|x|2 |x| > R,

πx |x| < R.
(13)

By replacing x̄ in (12) using the simple geometry rule
c2R

2
2 = x̄(R2

2 − R2
1) + zR2

1 as well as replacing the steady
state density by limt→∞ ρ(t) = α1−α3

π , we get

v(x, t) = (α1 − α3)(x− c2)− (α1 − α3)R
2
1

x− z

|x− z|2

+ α1
c2R

2
2 − zR2

1

R2
2 −R2

1

− α1(α1 − α3)(R
2
2 −R2

1)x+ α2
x− z

|x− z|2
+ α3(x− y). (14)

A proof follows by solving the equation (14) for R1, R2

and c2 such that zero velocity for all x ∈ A is guaranteed.
The three following equations are derived from setting the
vector field v(x, t) to zero.

[
(α1 − α3)R

2
1

|x− z|2
+

α2

|x− z|2

]
(x− z) = 0, (15a)[

(α1 − α3)− α1(α1 − α3)(R
2
2 −R2

1) + α3

]
x = 0, (15b)

− (α1 − α3)c2 + α1
c2R

2
2 − zR2

1

R2
2 −R2

1

− α3y = 0. (15c)

From (15a), (15b), and (15c), we deduce R1 =√
α2

α1−α3
, R2 =

√
1+α2

α1−α3
, and c2 = α1α2z+α3y

α1α2+α3
respectively.

The same analytical approach can be taken to determine
the precise equilibrium configuration of the crowd for the
scenarios represented in Table I(A), (B), (C), and (F), where
d2 = α3

α1α2+α3
(R2 +R1).
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When the shooter and guiding agent are within d1 <
|z − y| < d2 (Table I(E)), the approximate crowd con-
figuration can be obtained using the same parameters R1,
R2, c1, and c2 as in case |z − y| ≤ d1. However, as
the distance between the shooter and the guiding agent
increases, this approximation becomes less accurate. It is
also worth noting that for the case with no guiding agent
(Table I(B)), the shooter is assumed free to move and follow
the crowd. By the time t → ∞, this interaction leads to a
static state for both shooter and the individuals, attributed
to the crowd symmetrically surrounding the shooter who is
stabilizing its position. Consequently, the crowd formation
follows Theorem 1 and the proof outlined earlier in this
section. This observation explains the convergence of the
crowd to a circular formation that envelopes the shooter.
When the shooter is in a stationary state and there is no
guiding agent in the vicinity, the configuration in case (A)
of the table is observed, where individuals form a circle
away and out of the influence of the shooter as if the
shooter’s presence is ineffective (α2 = 0). Overall, as Table
I demonstrates, the discrete model’s outcomes (visualized
as blue dots) are in agreement with the continuum model’s
equilibrium prediction (illustrated by solid circles).

Acknowledgements: The authors would like to thank Dr.
Jared Miller for his valuable comments.

V. CONCLUSION

In this study, we propose a hybrid approach for dynamical
modeling and guiding crowds in mass shooting scenarios.
The presented PSG model relies on pairwise repulsive and
attractive interactions among individuals to predict their
movement while considering a given set of evacuation
factors. These factors define both the psychological and
physical parameters of such events. The observations de-
rived from our PSG model suggest that in scenarios where
individuals within a crowd exhibit erratic behaviors, such
as excessive aggregation or dispersion, it becomes increas-
ingly challenging for the guiding agent to exert effective
control over their movements, highlighting the crucial role
of cooperation between the crowd and guiding agent for
a secure escape to a safe zone. Through our model, we
have developed an optimized motion strategy for both the
guiding agent and the crowd, aiming to minimize casualties
in specific scenarios. Furthermore, the steady-state analysis
provides valuable insights into crowd configurations based on
evacuation parameters and the positions of the shooter and
guiding agent. Future research can enhance the PSG model
by considering factors like reaction times and familiarity with
building layouts.
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