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Abstract— Data-driven controllers have gained prominence
in diverse control applications, attributed to their inherent
flexibility and adaptability to complex system dynamics. How-
ever, managing time delays in closed-loop systems remains a
significant challenge in their deployment. These delays can arise
from various sources, such as computational latency, actuator
reaction time, and communication delays. Unaddressed, these
time lags can induce system instability and degrade perfor-
mance. This paper rigorously analyzes the impact of time
delays on data-driven controllers and introduces methodologies
to mitigate their adverse effects. Specifically, we explore the
integration of the Smith predictor with Deep Reinforcement
Learning (SP-DRL) to formulate a control law capable of
effectively managing both time delays and system uncertainties,
while ensuring robust performance. We demonstrate that this
DRL-based framework, initially trained in stable environments,
generalizes well to unstable systems. Our investigation delin-
eates the scenarios conducive to the successful application of
this approach and identifies factors influencing its effectiveness.
To substantiate our findings, we present a case study involving
a first-order delayed linear system with nonlinear actuation
modules. Numerical simulations are employed to compare the
robustness of SP-DRL scheme against the DRL standalone
and the classical controls, such as PID and Linear Quadratic
Regulator (LQR), in the presence of delays.

I. INTRODUCTION

The study of learning-based control has made signifi-
cant strides in recent years, particularly with the advent of
deep-learning breakthroughs and the exploration of semi-
supervised reinforcement learning (sSRL). While the dis-
crete Deep Q-Network (DQN) featuring infinite observation
spaces and finite actions has achieved success, continuous
actions are more desirable in closed-loop control domains
[1]. Continuous deterministic-actor πθ(x) approaches have
shown promising performance in deep reinforcement learn-
ing (DRL) [2], [3], challenging classical methods under cer-
tain constraints. However, the performance of modern DRL
in practical systems with dead-time and distributed (rather
than lumped) time delays remains uncertain. Moreover, it
is of interest to investigate how DRL trained in a stable
environment adapts to dynamic changes in non-minimum
phase unstable systems.
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The concept of addressing time-delay using the Smith
Predictor (SP) control dates back to 1950s. This technique
was developed to mitigate the impact of delay on closed-
loop control designs by employing a predictive model to
anticipate the system’s delayed output and compensate for it
in the control signal [4]. This approach becomes particularly
challenging and intriguing when systems involve integrative
uncertainty exacerbated by unknown distributed delays. By
incorporating modified techniques explored in [5], [6], the
control loop can be designed using traditional methods like
Proportional-Integral-Derivative (PID) controllers and LQR
without explicitly accounting for the delay. Consequently,
SP allows for a more straightforward control design and im-
proved performance. Incorporating DRL into the control loop
can further enhance the system’s performance by adapting
the control signal based on its current state.

Assuming a system featuring states, actions, and rewards,
DRL can be formulated as a Markov decision process
(MDP), utilizing single or combined actor-critic methods,
depending on the system. However, this typically assumes
that the instantaneous state is updated following the action
taken or vice versa [7]. To address cases with delays, [8]
proposed Markov control model by augmenting the states
and the preceding actions while [9] alleviated the lumped
delay problem with stochastic bounded delays, considering
no actions if the delays exceed the bounds. Suggestions from
previous studies [10], [11] indicate the need to compensate
for enlarged states, which may lead to increased computation,
memory usage, and convergence time. However, [8]–[11]
focus on limited discrete actions, leaving the enigmatic
problems of handling time delays in infinite continuous state
and action domains unresolved, even without delays [12].

In this paper, we present first the impact of delay to sta-
bility limits and the relaxation of Smith control to cope with
the delays, considering the plant and the delay mismatch.
We then deliver a comprehensive analysis of two control
method scenarios, one with and one without the inclusion
of SP, in industrial plant with nonlinear actuation. Our
investigation compares classical controls with modern DRL
approach, focusing on the application of DRL-trained model
in both stable and unstable systems featuring a single delay
parameter. Furthermore, we explore the effectiveness of the
combined SP in mitigating the effects of delays by studying
the Lyapunov stability, the small gain theorem, and the gap
metric, where values deviate from the benchmark stable
system. Finally, we analyze the performance according to
the feedback of the systems, assuming the perfect matching,
the plant and the delay mismatch.
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II. PRELIMINARIES AND PROBLEM FORMULATIONS

In this section, we present a linear time-invariant (LTI)
system with a single lumped delay ζ > 0 in order to encap-
sulate various real-world practical and industrial scenarios.
The delay occurs within the loop at the input with initial
condition x0(t) = ϑ(t), t ∈ [−ζ, 0] in which ϑ : [−ζ, 0]→ R
or simply ϑ ∈ C([−ζ, 0],R). The system is described as:

ẋ(t) = Ax(t) +Bu(t− ζ), y(t) = Cx(t) +Du(t), (1)

where x ∈ Rn, u ∈ Rm, and y ∈ Rp define the states, control
signals, and the outputs, while A ∈ Rn×n, B ∈ Rn×m, C ∈
Rp×n, and D ∈ Rp×m denote constant real matrices. When a
time delay is introduced, the stability of the delayed closed-
loop system cannot be guaranteed even if the non-delayed
system is stable. Let us consider the transfer function P (s)
and a single lumped delay defined by the transfer function
e−ζs from (1), the closed-loop characteristic equation, given
a control C(s), results in ψ(s), which then can be decoupled
into ψ(s) = ψd(s) + ψn(s)e

−ζs. Thus, we have:

P (s) = Gp(s)e
−ζs, (2)

and to examine stability of such systems, the approximations
are frequently employed to replace the pure delay ζ, e.g.: the
z−domain e−ζs = z−nT , the Padé approximation, i.e., the
first-order e−ζs = (2 − ζs)/(2 + ζs), or the Taylor series
e−ζs ≈ 1− ζs+fn(ζs), where fn(ζs) is the function of the
n−term series. However, the Taylor series approach results
in infinite poles. Assuming a tiny delay ζ where ζs≪ 1, by
the first two terms of the series, e−ζs = 1− ζs, the system
P (s) in (2) yields in,

P (s) =
ke−ζs

τs+ 1 + ke−ζs
≡ ke−ζs

(τ − kζ)s+ (k + 1)
(3)

reaching the boundary of −1 < k < τ/ζ for Routh-Hurwitz
stability. Additionally, using the three terms approximation
of the series and the Padé approximation, the system P (s)
can be constructed as follows,

P (s) =


2ke−ζs

kζ2s2 + 2(τ − kζ)s+ 2(k + 1)
, Taylor

k(2− ζs)
τζs2 + (2τ + ζ − kζ)s+ 2(k + 1)

, Padé

with 0 < k < τ/ζ and −1 < k < 1 + 2τ/ζ for the stability
criteria, in turn.

Remark 1. Due to approximations, the stability limits di-
verge, and according to the Nyquist criterion, the stability of
P (s) comprises −1 < k <

√
1 + Ω2, while the value of Ω

depends on the behavior of ζ and τ .

Furthermore, we intend to design the control input u(t)
with the DRL in order to minimize the cost function:

min
u∈A,∀t∈[t0,t0+T ]

∫ t0+T

t0

c(x, u, t) dt, subject to (1) (4)

where A denotes the space of actions and c is a piecewise
bounded continuous function in (x, u). Fig. 1 illustrates the

(a) Training Environment (b) Implementation

Fig. 1: (a) The DRL algorithm is trained on the stable system Gp(s) using the state
π(x). (b) The pre-trained DRL algorithm is evaluated on the unstable system G−

p (s).

feedback control design, in which the goal is to learn the
feedback policy u = πθ(x) where θ shows the trained
weights of actor in DRL. For a time instant ti, ∀i ∈ [t0, tmax],
an observation x ∈ S is obtained, the deterministic control
action u ∈ A is applied, and the associated cost c(x, u, t) is
computed. Those three result in a set of observation-input-
cost tuples T = {xi, ui, ci}, ∀i. The DRL algorithm π(x) is
trained on the stable system Gp(s). Subsequently, the trained
DRL is analyzed in environments beyond its training condi-
tions, specifically for non-minimum phase systems with time
delay ζ and unstable systems G−

p (s). This is accomplished
by converting a few stable modes of Gp(s) into unstable
ones, by altering the sign of their real parts.

III. THE SMITH PREDICTOR REVISITED

To compensate the delay ζ, the Smith predictor algorithm
is proposed, as depicted in Fig. 2a. The terms of ref ∈ Rp

and u ∈ Rm denote the reference and the control input while
{y, yn, yt} ∈ Rp define the true output, the nominal-model
output and the predicted output in turn with disturbance d.
The idea is to construct the model Pn(s) := Gn(s)×Tn(s) to
separate the information of the plant and its delay term. The
algorithm then subtracts the prediction yt, considering the
estimated delay Tn, from the actual output y obtained from
the noisy process P (s) := Gp(s)×Tp(s). The transfer func-
tion of the system in Fig. 2b with disturbance-free D(s) = 0
is formulated as Yr(s) := Y (s)/R(s), effectively removing
the delay-term. Additionally, the output-disturbance perfect-
matching system is given as Yd(s) := Y (s)/D(s),

Yr(s) =
CP

Φn + CP
, Yd(s) =

PΦn

1 + CGn
, (5)

where Φn = 1 + CGn(1 − Tn) and Yr(s) will reduce to
CP/(1 + CGn) if Pn := P .

Lemma 1. (Smith-control stability). Given a Smith-control
in a closed-loop feedback system in Fig. 2b as CΦ = C/Φn,
the instability condition yields in CGn(1−Tn) = −1 where
Tn := e−ζns = (1+CGn)/CGn =: Πn such that ∃Πn ̸= 1.
Therefore limt→∞ CΦ → 0.

Nonetheless, the inner-loop stability of the Smith-control
is independent to the overall closed-loop system. Now, if
the predicted system (Gn, Tn) fails to match the true system
(Gp = G,Tp = T ), then there exists deviations of the system
∆G and the pure delay ∆ζp as follows,

Gn := G+∆G, Tn := e−s(ζp+∆ζp) = T∆T, (6)

where using (5), Fig. 2b is now arranged as in Fig. 2c and
GnTn = GT∆T + ∆GT∆T in which ∆G is denoted as
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(a) (b) (c)

Fig. 2: (a) General Smith predictor with control C(s) and the predicted system GnTn of the plant P ; (b) Smith predictor reconstruction of (a) as CΦ; and (c) Smith predictor
reconstruction illustrating effects of model and plant mismatches.

∆G := Cd(sI−Ad)
−1Bd+Dd. The failures of capturing the

true dynamics such as delay ζ, high frequency gain, and time
constant τ cause the followings: first, supposed the dynamics
of the predicted model Gn is different from that of Gp,
∆G ̸= 0, while the time delay is on par Tn = Tp,∆T = 1,
the lack of predicting the gain Gn leads to instability due
to a positive feedback of ∆GT ; second, with the perfect
matching dynamic ∆G = 0 and lack of predicting the delay
∆T ̸= 1, the inner feedback control brings (1 − ∆T ),
leading to instability. These mismatches should be in certain
boundary as a function of the characteristic equation ψ(s)
so that the system is stable.

Supposed the plant be Gp = 1/(αs + 1), the predicted
model be Gn = 1/(βs + 1), and the controller be C =
γ(0.5s + 1) where γ ≥ β ≥ α ≥ 1 along with ζn = ζp.
Using Padé approximation for Tn = Tp in (5) with the
characteristic polynomial ψg(s) :=

∑3
i−1 fis

i−1 and the
parameters (α, β, γ), the system is stable. Furthermore, if
the dynamic is similar Gn = Gp := 1/(αs+1) with control
C = γ(0.5s + 1), the stability depends on the relationship
between Tn and Tp in denominator of (Tp − Tn), in which
for ζn ≪ ζp the system is unstable. To end this relaxation,
we bring the positive real lemma [13] to characterize the
transfer function which is used together with the passivity.

Proposition 1. (Kalman-Yakubovich-Popov). Let (1) be (2)
where ζ = 0 and Gp is minimum phase. Gp is strictly positive
real iff ∃Q := Q⊤ > 0, Γ, W , and ϵ > 0, such that

QA+A⊤Q = −Γ⊤Γ− ϵQ

where QB = C⊤−Γ⊤ξ and ξ⊤ξ = D+D⊤. For a positive
real of Gp, a constant ϵ equals to zero, ϵ := 0.

IV. INTEGRATED SMITH-PREDICTOR AND DEEP
REINFORCEMENT LEARNING (SP-DRL)

In this section, we introduce a linear time-invariant (LTI)
system described in (2), with a feedback deep deterministic
policy gradient (DDPG) control u = π(·) using off-policy
data and Bellman equation. Here, the state x ∈ Rn is
also considered as the output x := y. This DDPG learns
the Q−function Qη(x, u) as critic and uses that to learn
the policy as actor. The actor-critic DDPG control conducts
four feed-forward neural networks (FFNN) with parameters
η, θ and their target networks ηt, θt using replay buffer

Di(x, u, r,x
′) := Di(·) as shown in Fig. 3. Note that, there

are three times applied, where each episode ep := 1 → tc,
there are j := 1 → tb time steps consisting of i := 1 → ta
iterations. Indeed, the method interleaves learning using the
two target networks, in which they initially copy the weights
of actor-critic networks, ηt ← η and θt ← θ. It then samples
a batch Bj from the buffer Dj and updates the policy, the
Q−function, and their target networks with gradient descent
L and gradient ascent Π as,

L =
1

B
∑
(·)∈B

[r + γt maxQηt(x′, πθt(x′))︸ ︷︷ ︸
Y

−Qη(x, u)]
2

Π =
1

B
∑
x∈B

Qη(x, πθ(x))

(7)

such that,

ηj+1 ← ηj + αη∇ηL, ηtj+1 ← ρηtj + (1− ρ)ηj+1

θj+1 ← θj + αθ∇θΠ, θtj+1 ← ρθtj + (1− ρ)θj+1.
(8)

where γt denotes the discount factor, ρ = {0, 1} is the hyper
parameter, whereas αθ and αη are the learning rates of actor
and critic in turn. Moreover, r defines the reward of the form,
r = 0.1 for |e(t)| ≤ 0.1 and r = 1/|e(t)| otherwise, where
e(t) is the error between noisy state and the reference.

The actor takes the observations of the state x(t), the error
e(t) and the integral of the error eI(t) with ℓa−layer as,

x(t) =
[
x⊤(t) e⊤(t) e⊤I (t)

]⊤ ∈ S
while the critic relies on two inputs, the observations x(t)
and control action u(t), from the batch Bj under ℓc−layer.
In critic, the observation comprises ℓco−layer and the action
constitutes ℓca−layer before being added with ℓcs−layer.
The value of ℓc−layer is defined as ℓc := max(ℓca, ℓco)+ℓcs.
The FFNN actor with ℓa−layer is denoted as,

ϕ0(t) = x(t) (9a)
ϕk(t) = Λk (Wkϕk−1(t) + bk) , ∀k = 1, . . . , ℓa (9b)
u(t) =Wℓa+1ϕℓa(t) + bℓa+1 := vℓa+1 (9c)

where ϕk ∈ Rzk denote the output activations from the k−th
layer with z0 = n. The weight matrix Wk ∈ Rzk×zk−1 and
the bias bk ∈ Rzk handles the linear operations described as
vk ∈ Rzk containing zk neurons, running the calculation of

vk(t) :=
[
v1(t), . . . , vzk(t)

]⊤
=Wkϕk−1(t) + bk. (10)
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Fig. 3: Implementation of Deep Deterministic Policy Gradient (DDPG).

The non-linear operations of activation functions Λk : Rzk →
Rzk is a row matrix and Λk is represented as the element-
wise Λk(vk) := [λ(v1), · · · , λ(vzk)]

⊤ where λ is the chosen
activation function. The size of the last linear operation have
the same that of control signal u, vℓa+1 ∈ Rm. Therefore, the
actor collects the values of the linear vq := [v1, · · · , vℓa ] ∈
Rnq , Λq(vq), and the non-linear ϕq := [ϕ1, · · · , ϕℓa ] ∈ Rnq

where nq :=
∑

ℓa
zk, resulting u(t) to the plant P (s).

With the same procedures, the critic FFNN with ℓc−layer
from the batch Bj is also denoted as,

φ0(t) =
[
u(t) x(t)

]⊤
(11a)[

φ1
k1(t)

φ2
k1(t)

]
=

[
Λ1
k1

Λ2
k1

]([
W 1

k1 0

0 W 2
k1

]
φk1−1(t) +

[
b1k1

b2k1

])
where k1 = 1, . . . ,max(ℓca, ℓco). Supposed ℓca > ℓco, then
the calculation from ℓco +1 to ℓca works only for u(t). The
addition of the two inputs follows till ℓcs, therefore

φ3
k2(t) = φ1

ℓca(t) + φ2
ℓco(t) (12a)

φ3
k3(t) = Λ3

k3

(
W 3

k3φk3−1(t) + b3k3

)
(12b)

φQ(t) =W 3
ℓcs+1φℓcs(t) + b3ℓcs+1 := vcℓcs+1 (12c)

where k2 := max(ℓca, ℓco) + 1 and k3 = k2, . . . , ℓcs. For
simplicity, in Fig. 3, we name Λc

k = Λ1
k1 = Λ2

k1 = Λ3
k3 and

it acts as element-wise with associated vck, where subscript k
works for the respected k1, k2, and k3, resulting Λc

k(v
c
k) :=[

λc(vc1), · · · , λc(vczk)
]⊤

. Indeed, the neural networks of the
target networks for actor and critic follow the associated
processes, having the difference to the inputs with (x′, u′)
as in (7). If the optimal values (x∗, u∗) satisfy (2), then
the state x∗ could be propagated via FFNN to reach the
equilibrium values v∗k, w

∗
k for the inputs/outputs of every

activation function, resulting (vq, wq) = (v∗, w∗) [14]. This
paper shows a healthy stable-system training in (2) given to
DRL and see how it performs beyond the environment

The stability conditions are discussed for perfect matching
(∆G = 0, ∆T = 1), plant mismatch (∆G ̸= 0), and delay
mismatch (∆T ̸= 1). Regarding the perfect matching, we
establish the connection between the passivity of plant G
and Lyapunov stability, drawing on [13], [15], [16].

Lemma 2. (Perfect matching). If Gp = Gn, ζp = ζn, then
the feedback dynamic is Gn := G. Given the storage function
V (x) = 1

2x
⊤Qx the stability is written as,

π⊤
θ y −

∂V

∂x
ẋ = π⊤

θ (Cx+Dπθ)− x⊤Q(Ax+Bπθ) (13)

= π⊤
θ Cx+

1

2
π⊤
θ (D +D⊤)πθ

− 1

2
x⊤(QA+A⊤Q)x− x⊤QBπθ

= π⊤
θ (B

⊤Q+ ξ⊤Γ)x+
1

2
π⊤
θ ξ

⊤ξπθ

+
1

2
x⊤Γ⊤Γx+

1

2
ϵx⊤Qx− x⊤QBπθ

=
1

2
(Γx+ ξπθ)

⊤(Γx+ ξπθ) +
1

2
ϵx⊤Qx ≥ 1

2
ϵx⊤Qx.

When the system ẋ = f(x, πθ) =: G is strictly passive,
then the origin ẋ = f(x, 0) is stable and π⊤

θ y ≥ V̇ + µ(x)
where (∂V/∂x)Ax ≤ −µ(x). Let ϕ̄(t;x) be the solution of
˙̄x = f(x̄, 0), x̄0 = x, then there exists ∆V := V (ϕ̄(τ ;x))−
V (x) such that V (x) > 0 and V̇ ≤ −µ(x), therefore

∆V ≤ −
∫ τ

0

µ(ϕ̄(t;x)) dt =: −µϕ(τ, x), ∀τ ∈ [0, γ̄] (14)

where V (ϕ̄(τ ;x)) ≥ 0 and V (x) ≥ µϕ(τ, x). For V (z) = 0,
then µϕ(τ, z) = 0, ∀τ ∈ [0, γ̄] and it follows µ(ϕ̄(t; z)) ≡
0→ ϕ̄(t; z) ≡ 0→ z = 0.

Corollary 3. (Plant mismatch). If Gp ̸= Gn with uncertainty
∆(s) and ζp = ζn, the transfer function of the system Y (s)
from reference r to the output y result in,

Y =
Φ0(1 + ∆)

1 + Φ0∆e−ζs
e−ζs, Φ0 =

CG

1 + CG
(15)

and based on the small gain theorem, the system is stable if
|Φ0(jω)∆(jω)| < 1, ∀ω ≥ 0.

Moreover, the plant mismatch could also be seen using
ν−gap metric. Given two plants of P1(s), P2(s) with left
normalized coprime factorizations Pi = NiD

−1
i , i = 1, 2,
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the corresponding ν−gap is defined as

δν(P1, P2) =


Ψ

(1,2)
p , if det [Φ(jω)] ̸= 0, ∀ω

wno(det [Φ(s)]) = 0

1, otherwise
(16)

where Ψ
(1,2)
p := ∥Ψ(P1, P2)∥∞, Φ(s) := N∼

2 N1 + D∼
2 D1,

Ψ(P1, P2) := −Ñ2D1 + D̃2N1, P̃ (s) = P⊤(−s), and
wno denotes winding number. The significance of the gap
metric resides in the fact that it can be used to establish
whether a controller C that stabilizes P1 will also stabilize
P2. Specifically, given a controller C that stabilizes P1 define

bP1,C =

∥∥∥∥[ IC
]
(I + P1C)

−1
[
I P1

]∥∥∥∥−1

∞
. (17)

Then, as shown in Theorem 17.8 in [17], if δν(P1, P2) <
bP1,C , then the controller C also stabilizes P2.

Lemma 4. (Delay mismatch). If Gp = Gn, ζp ̸= ζn :=
T∆T and V (x) = x⊤Px, then the feedback dynamic is
G+GT (1−∆T ). Given a storage function V (x) = x⊤QPx,
with Q > 0 and a small constant ϵ > 0, then V (x) ≥ ϵ∥x∥2.

Proof : The delay mismatch ẋ = Ax + Bπθ(t − ζ) is
asymptotically stable if ∃α > 0 and a symmetrical matrix Q
such that Ξ < 0. Let us pick V̇ along trajectory of ẋ, then

V̇ (x(t)) = 2x(t)⊤Q [Ax(t) +Bπθ(t− ζ)] (18)

satisfying V (x(t+ ς)) < q̄V (x(t)), ∀− ζ ≤ ς ≤ 0 for q̄ > 1
where for arbitrary α > 0,

V̇ (x(t)) ≤ 2x(t)⊤Q [Ax(t) +Bπθ(t− ζ)]
+ α

[
q̄x⊤(t)Q(x(t))− π⊤

θ (t− ζ)Pπθ(t− ζ)
]

= Θ⊤
g

[
QA+A⊤Q+ αq̄Q QB

B⊤Q −αQ

]
︸ ︷︷ ︸

Ξ

Θg (19)

where Θg =
[
x⊤(t) πθ(t− ζ)

]⊤
. This yields Ξ < 0 such

that V (x) ≥ ϵ∥x∥2.

V. NUMERICAL EXAMPLES AND INSIGHTS

In this section, we examine the impact of delays on the
robustness of various control strategies, including classical
PID, LQR, and the learning-based DDPG reinforcement
learning (RL). Furthermore, we investigate the affect of the
Smith predictor in capturing delays and analyze the changes
in the feedback as a result. In this analysis, we employ a
stable system P (s) := Gp(s)e

−ζs = ke−ζs/(1 + τs) DRL
agent in two distinct scenarios: stable and unstable systems
with k = 3.8163, τ = 156.46, and ζ = 2.5 as described in
[18]. The primary distinction between the stable and unstable
systems is by altering the sign of real parts in stable system
into unstable. However, since |τ/ζ| ≫ 0.5, determining
the control gains for the PID case becomes straightforward.
Moreover, we also consider the non-linearity of the actuator
output signal φt := φ(t), arising from valve stiction, where
the initial friction within the valve exceeds the dynamic
friction, denoted as φt = Nv(φt−1, ut). With the inherent

property that fs ≥ fd where fs and fd represent the static
and dynamic friction, such that

φt =


ut − fd, if ut − φt−1 > fs

ut + fd, if ut − φt−1 < −fs
φt−1, if |ut − φt−1| ≤ fs

(20)

comprising a multi-mode discontinuous model. Here we
then consider the increment multiple delays ζi, where ζi =
[5, 10, 25, 50, 100, 150, 300]. For the small delay ζs, the Padé
approximation approach closely agrees, but for the higher
delay ζh, the behavior might be divergent. In this case,
performance can be improved, at the cost of more expensive
computations, by considering higher-order approximations.

Delay ζ Stable Unstable Delay ζ Stable Unstable

5 0.1120 0.4904 100 0.8133 0.9116
10 0.2069 0.4904 150 0.8913 0.9699
25 0.4181 0.5251 300 0.9648 0.9999
50 0.6254 0.7345

TABLE I: The ν−gap metrics for various ζi from the benchmark Gp(s).

Using the well-behaved system Gp(s) as a benchmark,
we present the ν−gap metrics between Gp(s) and the non-
minimum phase systems with time delays ζi as well as their
unstable counterparts in Table I. For the non-minimum stable
systems, it is evident that as ζi increases, the gap grows,
and this effect is exacerbated for the unstable systems where
0 ≤ δv ≤ δg ≤ 1. The term νζ represents the ν−gap metrics
between the stable and unstable systems for the same delay
ζi, yielding identical values of 0.4909. The H∞ optimal
cost, which serves as a threshold for the existence of a
controller that stabilizes the original plant P (s), amounts
to bp = 0.7917. Here, δv(P, P1(ζi)) < bp and bp is derived
from the left-normalized coprime factorization. Fig. 4a-4d
demonstrate the effectiveness of capturing delays even in un-
stable systems, and the performances with those delays ζi are
precisely the same as those without delay (ζ = 0). However,
in Fig. 4e-4h, when considering the inability to handle delays
without the Smith predictor (SP), the well-trained DRL with
Gp(s) can manage delays of about ζi < 20s, while the
considered classical controllers guarantee stability for delays
with |τ/ζ| ≫ 0.5 and begin to exhibit unbounded behavior
if |τ/ζ| ≈ 0.5 and ζ = 300s. The ν−gap metrics increase as
the system becomes unstable, as shown in Figs. 4i-4l, causing
the boundary of the trained DRL without SP to decrease and
resulting in worse performance for the same delay ζ = 10s
compared to the stable system.

VI. CONCLUSIONS

In this study, we have investigated between the deep
reinforcement learning (DRL) operating beyond its training
environment and classical control methods in non-minimum
phase systems. Our findings demonstrate that combining
DRL with a Smith predictor (SP-DRL) can significantly
improve performance, even in unstable systems. When the
DRL is combined with a Smith predictor, it outperforms
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(b) Unstable with SP ζ = 25s
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(c) Unstable with SP ζ = 100s
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(d) Unstable with SP ζ = 150s
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(g) Stable ζ = 100s
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(h) Stable ζ = 300s
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(i) Unstable ζ = 0s
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(j) Unstable ζ = 5s
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(k) Unstable ζ = 10s
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(l) Unstable ζ = 25s

Fig. 4: This figure presents eight subplots, each comparing three distinct controllers for tracking a desired reference. The controllers are applied to two first-order linear systems
with time delays: one stable and one unstable, with varying time delays. The specific time delays are indicated in each subplot.

classical controllers. However, DRL alone, in the absence
of a compensatory mechanism such as the Smith predictor,
fails to capture the time delay, leading to unbounded states
as the time delay becomes larger. Notably, the well-trained
learning-based control can manage delays ranging from
10s to 20s, with the performance gap decreasing as the
system dynamics become more unstable. Additionally, we
considered the analytical ν−gap metrics derived from the
benchmark transfer function P (s) for various time delay
values and unstable systems to provide further insights into
the comparative performance of the control methods.
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