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Abstract— This paper focuses on the stabilization and
regulation of linear systems affected by quantization in state-
transition data and in actuated input. The observed data
are composed of tuples of current state, input, and the next
state’s interval ranges based on sensor quantization. Using an
established characterization of input-logarithmically-quantized
stabilization based on robustness to sector-bounded uncertainty,
we formulate a nonconservative robust linear program that
enforces superstabilization of all possible consistent systems
under assumed priors. We solve this problem by posing a pair
of exponentially-scaling linear programs, and demonstrate the
success of our method on example systems.

I. INTRODUCTION

This paper performs Data Driven Control (DDC) of
discrete-time linear systems under data quantization in the
state-transition records and logarithmic quantization in the
input. Input quantization can be encountered in data-rate
constraints for network models when sending instructions
to digital actuators, and its presence adds a nonlinearity
to system dynamics [1], [2], [3]. The logarithmic input
quantizer offers the coarsest possible quantization density [2]
among all possible quantization schemes. These logarithmic
quantizers admit a nonconservative characterization as a
Luré-type sector-bounded input [4], [5], [6]. Data quantiza-
tion could occur in the storage of sensor data into bits on a
computer, and admits the mixed-precision setting of sensor
fusion with different per-sensor precisions.

DDC is a design method to synthesize control laws di-
rectly from acquired system observations and model/noise
priors, without first performing system-identification/robust-
synthesis pipeline [7], [8]. This paper utilizes a Set-
Membership approach to DDC: furnishing a controller along
with a certificate that the set of all quantized data-consistent
plants are contained within the set of all commonly-stabilized
plants. Certificate methods for set-membership DDC ap-
proaches include Farkas certificates for polytope-in-polytope
containment [9], a Matrix S-Lemma for Quadratic Matrix
Inequalities (QMIs) to prove quadratic and robust stabi-
lization [10], [11], [12], and Sum-of-Squares certificates of
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polynomial nonnegativity [13], [14], [15]. Other methods
for DDC include Iterative Feedback Tuning [16], Virtual
Reference Feedback Tuning [17], [18], Behavioral character-
izations (Willem’s Fundamental Lemma) with applications to
Model-Predictive Control [19], [20], [21], moment proofs for
switching control [22], learning with Lipschitz bounds [23],
and kernel regression [24].

The most relevant prior work to the quantized DDC
approach in this paper is the research in [25], which casts
quantized control as an an H∞ small-gain task [4] and
enforces common stabilization over a a QMI of consistent
plants using a Matrix S-Lemma [10]. In contrast, our work
includes individually-quantized data as well as quantized
control by developing a polytopic description of the plant
consistency set. We then restrict to superstabilization [26],
[27] to formulate DDC Linear Programs (LPs) over the
polytopic consistency set. The QMI approach in [25] would
over-approximate the polytopic consistency constraint with
a single ellipsoidal region in the case of data quantization.

The contributions of this work are:
• A formulation for superstabilizing DDC under input and

data quantization
• A sign-based LP for data-driven quantized superstabi-

lization that grows exponentially in n and m
• A more tractable Affinely-Adjustable Robust Counter-

part (AARC) that is exponential in m alone.
This paper has the following structure: Section II intro-

duces notation and superstabilization. Section III provides
an overview of the data and logarithmic-input quantization
schemes considered in this work. Section IV formulates su-
perstabilizing DDC under quantization as a pair of equivalent
LPs. Section V demonstrates these algorithms on example
quantized systems. Section VI concludes the paper.

II. PRELIMINARIES

A. Notation
a..b Natural numbers between a and b
Rn n-dimensional real Euclidean space
Rn

≥0 (Rn
>0) n-dimensional nonnegative (positive) orthant

Rn×m n×m-dimensional real matrix space
1n, 0n Vector of all ones or zeros
In Identity matrix
⊗ Kronecker product
vec(X) Column-wise vectorization of a matrix
XT Matrix transpose
∥x∥∞ L∞-norm (vector): maxi|x|i
∥X∥∞ Induced L∞ norm (matrix): maxi

∑
j |Xij |

x./y Element-wise division between x and y
A ≤ B Element-wise ≤ between A,B ∈ Rn×m
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B. Superstabilization

A discrete-time system x+ = Ax is Extended Superstable
if there exists nonnegative weights v > 0 such that ∥x./v∥∞
is a Lyapunov function [28]. This condition may be expressed
using an operator norm through the definition Y = diag(v)
and the constraint ∥Y AY −1∥∞ < 1. Standard superstability
is the restriction of extended superstability when v = 1n.

A discrete-time linear system with input of

x+ = Ax+Bu (1)

is extended-superstabilized by the full-state-feedback con-
troller u = Kx if there exists [28] v ∈ Rn

>0, S ∈ Rm×n

with

∀i ∈ 1..n, α ∈ {−1, 1}n :∑n
j=1 αi (Aijvj +

∑
k=1 BikSkj) < vi. (2)

The controller K forming the input u = Kx is then
recovered by K = Sdiag(1./v). Problem (2) is a set of n2n

strict linear inequality constraints. A more efficient method
of imposing extended-superstability is by introducing a new
matrix M ∈ Rn×n [29],∑n

j=1 Mij < vi ∀i ∈ 1..n (3a)

|Aijvj +
∑

k=1 BikSkj | ≤ Mij ∀i, j ∈ 1..n. (3b)

Problems (2) and (3) are equivalent, in which an admissible
selection for M is Mij = |Aijvj +

∑
k=1 BikSkj |. The

conditions in (2) and (3) are necessary and sufficient for
full-state feedback extended superstabilization.

If the system in (1) is superstabilized (v = 1n) and
∥A+BK∥∞ ≤ λ with λ < 1, then any closed-loop trajectory
xt starting at x0 with ∀t : ut = 0 will satisfy ∥xt∥∞ ≤
λt∥x0∥∞ [30], [26]. The quantity λ can be interpreted as a
decay rate, and the controller K can be designed using an LP
to minimize λ and ensure the fastest possible convergence.
A similar minimal peak-to-peak design task for extended
superstabilization requires the solution of parametric LP with
a single free parameter [28].

III. QUANTIZATION

This section will introduce the two sources of quantization
considered in this paper.

A. Quantization of Data

Our data D with Ns samples is composed of the current
state x̂, input û, and bounds on the subsequent state [p, q],
forming the Ns tuples D = ∪Ns

s=1(x̂s, ûs, ps, qs). We define
the polytope P(A,B) as the set of all plants that are
consistent with the data in D:

P = {(A,B) | ∀s ∈ 1..Ns : Ax̂s +Bûs ∈ [ps, qs]}. (4)

The bounds ps, qs at each sample-index s may arise
from interval quantization. In the case where a quantization
process performs rounding to the first decimal place, the true
state transition x+ = 0.368 would be restricted to the interval
to the interval described by p = 0.3 and q = 0.4.

This data-quantization framework in D allows for the
integration of L∞-bounded process-noise. In the case where
there exists a process-noise ws such that Ax̂s+Bûs+ws ∈
[ps, qs] with ∥ws∥∞ ≤ ϵ, interval arithmetic can be used to
express the data constraint as Ax̂s +Bûs ∈ [ps − ϵ, qs + ϵ].

B. Quantization of Input

A scalar logarithmic quantizer with density ρ ∈ (0, 1) and
step δ = (1 − ρ)/(1 + ρ) is defined by gρ : R → R [4,
Equation 7]:

gρ(z) =


ρi ∃i ∈ N | 1

1+δρ
i ≤ z ≤ 1

1−δρ
i

0 z = 0

−gρ(−z) z < 0.

(5)

We will obey the convention of [4] in referring to ρ as the
quantization density, in which a larger ρ refers to a coarser
quantizer with wider intervals. A ρ-logarithmically-quantized
linear system has dynamics

xt+1 = Axt +Bgρ(ut), (6)

where the quantization in gρ should be understood to occur
elementwise in ut.

The following proposition establishes a sector-bound char-
acterization of logarithmic quantization (for m = 1):

Proposition 3.1 (Eq. (21)-(22) in [4]): For any z ≥ 0 and
logarithmic quantization density ρ > 0 with

δ = (1− ρ)/(1 + ρ), (7)

the quantization error at z satisfies a multiplicative bound

z − gρ(z) ∈ [−δz, δz]. (8)
Figure 1 plots the graph of a logarithmic quantizer with

ρ = 0.4, δ = 0.4286 along with the error bound in (8) over
the interval u ∈ [−8, 8].

Fig. 1: Logarithmic quantizer (ρ = 0.4) and error bound

The trajectories of a logarithmically quantized systems
with m = 1 are therefore contained in the class of scalar-∆
sector-bounded models:

xt+1 = [A+ (1 +∆)BK]xt ∀∆ ∈ [−δ, δ]. (9)
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Theorem 2.1 of [4] proves that the state-feedback con-
troller ut = Kxt with K ∈ R1×n quadratically stabilizes
(1) iff u = Kx can quadratically stabilize (6).

For systems in which each input channel uj has a separate
quantization density (ρj , δj), quadratic state-feedback stabi-
lization of the quantized system will occur if [4, Theorem
3.2]:

∀∆ ∈
∏m

j=1[−δj , δj ]

xt+1 = [A+B(Im + diag(∆))K]xt. (10)

The work in [4] and [25] treat common stabilization of
(9) as an H∞ optimization using the small-gain theorem
for a sector-bounded uncertainty. The multi-input small-gain
formulation in (10) is posed and solved using a conservative
multi-block S-Lemma.

C. Combined Superstability and Input-Quantization

We can apply the extended superstabilization method
Section II-B towards the control of input-quantized systems,
as represented by the sector-bounded model class in (10).

Theorem 3.2: A logarithmically quantized system in (6)
is extended superstabilized by a controller u = Kx if there
exists a v ∈ Rn

>0, S ∈ Rm×n,M ∈ Rn×n with Y = diag(v)

∀i ∈ 1..n∑n
j=1 Mij < vi (11a)

∀∆ ∈
∏m

j=1[−δj , δj ]

−M ≤ AY +B(Im + diag(∆))S ≤ M. (11b)

The recovered controller is K = SY −1.
Proof: In the case where ∆ = 0, then the quantized

program (11) is equivalent to the unquantized program
(3). We can apply Proposition 3.1 to generate a sector-
bound description of quantization, together with separate
input channel quantization based on Equation (10) regarding
the multiplicative perturbations ∆. The linear inequality
constraints (11) are convex for each box-constrained ∆, such
that a common M is a worst-case certificate over all possible
closed-loop matrices AY +B(Im + diag(∆))S ≤ M . Such
a certificate ensures extended superstability of all systems in
(9).

Corollary 1: We can enumerate the convex constraint (11)
over the vertices of the hypercube formed by δ, producing
the equivalent statement of

∀γ ∈
∏m

j=1{−δj , δj}
−M ≤ AY +B(Im + diag(γ))S ≤ M. (12)

Corollary 2: An equivalent formulation to (11) with re-
spect to sign-enumeration in (2) and substitution β = 1 + γ
is the following LP in n2n+m constraints:

∀i ∈ 1..n, α ∈ {−1, 1}n, β ∈
∏m

j=1{1− δj , 1 + δj} :∑n
j=1 αj (Aijvj +

∑m
k=1 βkBikSkj) < vi. (13)

Proposition 3.3: A controller K that is feasible for quan-
tization δ ∈ Rm

≥0 in (13) will also be feasible for every
δ′ ∈ Rm

≥0 with δ′ ≤ δ.

IV. QUANTIZED DDC

This section will outline a DDC approach towards quan-
tized superstability.

Given data in D, let P in (4) be the polytopic consistency
of plants (A,B) in agreement with D.

Our task is to solve the following problem:
Problem 4.1: Find a state-feedback controller u = Kx

such that the quantized system (9) is (extended) superstable
for all (A,B) ∈ P .

A. Consistency Polytope Representation

Let us define X,U,p,q as the following concatenations
of data in D:

X =
[
x̂1; x̂2; . . . x̂Ns

]
(14a)

U =
[
û1; û2; . . . ûNs

]
(14b)

p =
[
p1; p2; . . . pNs

]
(14c)

q =
[
q1; q2; . . . qNs

]
. (14d)

The data-consistency polytope in (4) may be represented
using the data matrices in (14) as

GD =

[
−XT ⊗ In −UT ⊗ In
XT ⊗ In UT ⊗ In

]
hD =

[
−p; q

]
(15)

P = {(A,B) | GD[vec(A); vec(B)] ≤ hD},

using the Kronecker identity vec(PXQ) = (QT⊗P )vec(X)
for matrices (P,X,Q) of compatible dimensions. We will
denote L ≤ 2nNs as the number of faces in (15) (hD ∈
R1×L). The number of faces L can be reduced from 2nNs by
pruning redundant constraints from P [31] through iterative
LPs.

B. Sign-Based Approach

The sign-based program in (13) in the DDC case can be
considered as a finite-dimensional robust LP:

∀i ∈ 1..n, α ∈ {−1, 1}n, β ∈
∏m

j=1{1− δj , 1 + δj} :

(16)∑n
j=1 αj (Aijvj +

∑
k=1 βkBikSkj) < vi, ∀(A,B) ∈ P.

Program (16) features a total of n2n+m strict robust
inequalities. We will add a stability tolerance η > 0 in order
to modify the comparator and right-hand side of (16) into a
nonstrict inequality ≤ vi−η. Each nonstrict robust inequality
in α, β may be formulated as a polytope:

Gαβ =
[
(diag(v)α)T ⊗ In (diag(β)Sα)T ⊗ In

]
hαβ = v − η1 (17)
Pαβ = {(A,B) | Gαβ [vec(A); vec(B)] ≤ hαβ}.

We will enforce containment of P in each Pαβ using the
Extended Farkas Lemma:

Lemma 4.2 (Extended Farkas Lemma [32], [33]): Let
P1 = {x | G1x ≤ h1} and P2 = {x | G2x ≤ h2} be a
pair of polytopes with G1 ∈ Rm×n and G2 ∈ Rp×n. Then
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P1 ⊆ P2 if and only if there exists a matrix Z ∈ Rp×m
≥0

such that,

ZG1 = G2, Zh1 ≤ h2. (18)
Remark 1: The Extended Farkas Lemma is a particular

instance of a robust counterpart [34] when certifying validity
of a system of linear inequalities over polytopic uncertainty.

A sign-based program to solve Problem 4.1 is:

find
v,S,Z

∀α ∈ {−1, 1}n, β ∈
∏m

j=1{1− δj , 1 + δj} : (19a)

ZαβGD = Gαβ , ZαβhD ≤ hαβ (19b)

Zαβ ∈ Rn×L
≥0 (19c)

v − η1n ∈ Rn
≥0, S ∈ Rn×m. (19d)

C. Lifted Approach

We can solve Problem 4.1 by posing (11) as an infinite-
dimensional LP in terms of a function M : P → Rn×n.

Theorem 4.3: A state-feedback controller u = Kx will
solve Problem 4.1 if the following infinite-dimensional LP
has a feasible solution with v ∈ Rn

>0, S ∈ Rm×n,M : P →
Rn×n with Y = diag(v)

∀i ∈ 1..n∑n
j=1 Mij(A,B) < vi (20a)

∀β ∈
∏m

j=1{1− δj , 1 + δj}
−M(A,B) ≤ AY +B(diag(β))S ≤ M(A,B). (20b)

Proof: Each plant (A,B) ∈ P has a certificate of
extended superstabilizability (v,M(A,B)) by Theorem 3.2.
If (20) is feasible, then all plants in P simultaneously
extended superstabilized by a common K = SY −1.

Remark 2: The function M(A,B) may be treated as
an adjustable decision variable given the a-priori unknown
(A,B) ∈ P [35].

The infinite-dimensional LP in (20) must be truncated into
a finite-dimensional convex program in order to admit com-
putationally tractable formulations. One method to perform
this truncation is to restrict M(A,B) to an affine function
by defining M0,MA

ij ,M
B
ik ∈ Rn×n to form

M(A,B) = M0 +
∑

ij M
A
ijAij +

∑
ik M

B
ikBik, (21)

We can define the quantities m = (m0,ma,mb)

m0 = vec(M0) (22a)

ma =
[
vec(MA

11), vec(MA
21), . . . , vec(MA

nn)
]

(22b)

mb =
[
vec(MB

11), vec(MB
21), . . . , vec(MB

nm)
]
. (22c)

in order to obtain a vectorized expression for (21) with

vec(M(A,B)) = m0 +mavec(A) +mbvec(B). (23)

The row-sums of M can be expressed as

vec(M(A,B)1n) = (1T
n ⊗ In)(m

0 +mavec(A)) (24)

+ (1T
n ⊗ In)(m

bvec(B)).

The constraint in (20a) with stability factor η > 0 can be
reformulated as membership in the following polytope PM :

GM = (1T
n ⊗ In)

[
ma, mb

]
hM = [v − η − (1T

n ⊗ In)m
0] (25)

PM = {(A,B) | GM [vec(A); vec(B)] ≤ hM}.

The polytopic constraint region in (20b) for each β ∈∏m
j=1{1− δj , 1 + δj} is

Gs
β =

[
−ma − diag(v)T ⊗ In −mb − (diag(β)S)T ⊗ In
−ma + diag(v)T ⊗ In −mb + (diag(β)S)T ⊗ In

]
hβ =

[
m0; m0

]
(26)

Pβ = {(A,B) | Gβ [vec(A); vec(B)] ≤ hβ}.

The affine restriction of M in (21) results in an AARC
program for (20):

find
v,S,Z,m

∀β ∈
∏m

j=1{1− δj , 1 + δj} : (27a)

ZβGD = Gβ , ZβhD ≤ hβ (27b)

Zβ ∈ R2n2×L
≥0 (27c)

ZMGD = GM , ZMhD ≤ hM (27d)

ZM ∈ Rn×L
≥0 (27e)

m0 ∈ Rn2×1, mA ∈ Rn2×n2

(27f)

mB ∈ Rn2×nm (27g)
v − η1n ∈ Rn

≥0, S ∈ Rn×m. (27h)

D. Computational Complexity

We will quantify the computational complexity (19)
and (27) based on the number of robust inequalities (for
(16) and (20)), scalar variables (v, S, Z,m), slack vari-
ables/constraints introduced in reformulations of scalar in-
equality constraints (e.g., v − η1n ∈ Rn

≥0 7→ q ∈ Rn
≥0, v −

η1n = q), scalar inequality constraints (∈ R≥0), and scalar
equality constraints. These counts (up to the highest order
terms to save space) are listed in Table I.

TABLE I: Comparison between LPs (19) and (27)

sign-based (19) AARC (27)
robust ineq. n2n+m n+ n22m+1

scalar vars. n(m+ 1 + 2n+mL) n(m+ 1) + n2(1 + nm+ n2)
+n2L2m+1

slack vars. n+ 2n+m+1n2 n(1 + 2m+1)
eq. cons. n2(n+m)2n+m + n (2m+1n2 + n)(n+m) + n

ineq. cons. 2n+m(n+ nL) + n n(L+ 2) + n2(L+ 1)2m+1

Note how n appears exponentially in the sign-based
scheme (19), while n enters only polynomially for quantities
in the AARC (27).

Given that the running-time of an Interior Point Method
for N -variable LPs up γ-optimality is approximately
O(Nω+0.5|log(1/γ)|) (with matrix multiplication constant
ω) [36], the AARC is more computationally efficient than
the sign-based scheme as n increases.
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V. NUMERICAL EXAMPLES

MATLAB (2021a) code to execute all examples is publicly
available 1. The convex optimization problems (19) and
(27) are modeled in YALMIP [37] (including the robust
programming module [38] with option ‘lplp.duality’)
and solved in Mosek 9.2 [39].

A. 3-state 2-input

The first example will involve superstabilization of the
following system 3-state 2-input discrete-time linear system:

A =

−0.1300 −0.3974 0.2030
−0.3974 −0.5000 0.2990
0.2030 0.2990 −0.5262

 , (28a)

B =

 0.2179 1.2300
0.3592 0
−1.1553 0

 . (28b)

System (28) is open-loop unstable with eigenvalues of
[−1.0185,−0.2613, 0.1236].

We collect T = 100 input-state-transition observations
of system (28) to form D. The transition observations are
quantized according to the following partition with 9 bins:

(−∞,−4] ∪ [−4,−3] ∪ [−3,−2] . . . [3, 4] ∪ [4,∞). (29)

Superstabilization (v = 13) is performed by solving the
sign-based scheme in (16). An objective is added to minimize
λ ∈ R such that ∀i :

∑
j Mij ≤ λ, in which λ < 1 indicates

a successful worst-case superstabilization under input and
data quantization.

Figure 2 plots worst-case optimal values of λ as a function
of the quantization density ρ, in which ρ is the same for all
inputs. The T = 60 data preserves the first 60 elements of the
100 observations in D (with a similar process for T = 80).
Gain values for the ground truth (model-based case when
(28) is known) are presented as a comparison. We note that
ρ → 1 results in δ → 0 by (7), for which the (limiting)
quantization law at ρ = 1 is gρ=1(u) = u.

Fig. 2: Peak-to-peak gain (λ) vs. quantization density (ρ)

1https://github.com/Jarmill/quantized_ddc

Table II lists the minimal feasible ρ (up to four decimal
places) such that the sign-based formulation in (16) returns
a feasible superstabilizing (SS) or extended superstabilizing
(ESS) controller. The symbol ∅ indicates primal infeasiblil-
ity of the LP for all ρ ≤ 1.

TABLE II: Minimal ρ with sign-based of (28)

T 60 80 100 Truth
SS ∅ 0.6727 0.6182 0.3182

ESS 0.9397 0.3494 0.2081 0.1422

Table III lists the minimal ρ for AARC-based quan-
tized superstabilization. There is no difference between the
ground-truth values in Tables II and III, because the un-
derlying finite-dimensional LPs with nonrobust inequality
constraints are equivalent.

TABLE III: Minimal ρ with AARC stabilization of (28)

T 60 80 100 Truth
SS ∅ ∅ 0.9500 0.3182

ESS ∅ ∅ 0.7723 0.1422

B. 5-state 3-input

The second example performs extended superstabilization
over the following system with 5 states and 3 inputs:

A = (1/5)[min(i/j, j/i)]ij + (1/2)I5, (30a)
B = [I3;02×3]. (30b)

System (30) is open-loop unstable with purely real eigen-
values of [1.0633, 0.6507, 0.5502, 0.5046, 0.4812]. The nom-
inal system in (30) can be extended-superstabilized until
ρ = 0.2245.

The T = 350 state-input collected transitions of (30) are
quantized according to the following partition with 26 bins:

(−∞,−6] ∪ [−6,−5.5] ∪ [−5.5,−5] . . . [5.5, 6] ∪ [6,∞).
(31)

The polytope in (4) has 2nT = 3500 faces in n(n+m) =
40 dimensions, of which 185 of these faces are nonredundant.

We successfully solve the data-driven common-extended-
superstabilizing AARC program in (27) at ρ = 0.8 to acquire
a feasible controller with parameters

K = −

0.6434 0.0943 0.0785 0.0609 0.0330
0.0965 0.6513 0.1409 0.0899 0.0842
0.0650 0.1392 0.6528 0.1463 0.1183


v =

[
0.0137, 0.0069 0.0058 0.0289 0.0289

]
. (32)

VI. CONCLUSION

This paper presented a method to perform superstabilizing
control of linear systems under state-transition data quanti-
zation and actuated-input quantization. The generated sign-
based finite-dimensional LP and lifted infinite-dimensional
LPs are nonconservative with respect to the common super-
stabilization task. This infinite-dimensional LP has a number
of constraints that is polynomial in the number of states n
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and exponential in the number of inputs m. An AARC was
employed to truncate the infinite-dimensional LP, in order to
gain tractability at the expense of conservatism.

The logarithmic-quantization approach laid out in this
paper involves an infinite number of quantization levels.
Future work includes adapting the adaptive finite-level quan-
tizing method of [5] for DDC-superstabilization. Other in-
vestigations aim to decrease the computational impact of
the presented scheme by formulating nonconservative LP
formulations that scale in a polynomial manner with m rather
than in an exponential manner, by reducing the conservatism
of the AARC truncation by allowing M to be polynomial
(using sum-of-squares certificates of nonnegativity), and by
formulating control laws in the setting where (x̂, û) are also
data-quantized (resulting in an Error-in-Variables model [40]
addressable by polynomial optimization [15]).
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