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Abstract: There is an ongoing effort in the machine learning community to enable machines to
understand the world symbolically, facilitating human interaction with learned representations
of complex scenes. A pre-requisite to achieving this is the ability to identify the dynamics
of interacting objects from time traces of relevant features. In this paper, we introduce
GrODID (GRaph-based Object-Centric Dynamic Mode Decomposition), a framework based
on graph neural networks that enables Dynamic Mode Decomposition for systems involving
interacting objects. The main idea is to model individual, potentially non-linear dynamics
using a Koopman operator and identify its corresponding Dynamic Mode Decomposition using
deep AutoEncoders, while the interactions amongst systems are captured by a graph, modeled
by a Graph Neural Net (GNN). The potential of this approach is illustrated with several
applications arising in the context of video analytics: video forward and backwards prediction,
video manipulation and achieving temporal super-resolution.
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1. INTRODUCTION

Understanding complex scenarios often requires unraveling
the dynamics of the interactions between several objects.
Formally, this problem can be stated as identifying a dy-
namical graphical model, represented by a graph structure
G = {V, E}, where each vertex is associated with a time
series generated by an underlying dynamical system and
the edges represent interactions between these systems. In
the case of linear dynamics and interactions, the problem
can be recast into a block-sparsification form (Wang et al.
(2016)) that can be solved using first order methods.
However, these results strongly hinge on the linearity as-
sumption. In addition, the resulting models provide the
sparsest representation of the underlying graph, but this
representation does not necessarily respect physical pri-
ors. A second limitation of this approach is that, even if
using efficient first order optimization methods to solve the
sparsification problem, computational complexity limits
the approach to a relatively moderate number of objects
and data points. Thus, in general they cannot handle
practical problems arising for instance in the context of
video analytics and scene understanding.

In this paper, we consider scenarios where both the indi-
vidual dynamics and the interactions are not necessarily
linear and address the problem from a Koopman operator
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perspective. Our goals are to (i) Learn the (possibly non-
linear) individual dynamics of interacting systems directly
from time series collected from the ensemble of systems.
(i) Model systems interactions in a multi-system scenario.

To achieve these goals, we propose a framework, GrODID
(GRaph-based Object-Centric Dynamic Mode Decompo-
sition), a framework based on graph neural networks.
The main idea is to model individual system dynamics
using a Koopman operator and identify its corresponding
Dynamic Mode Decomposition using deep AutoEncoders,
while the interactions amongst systems are captured by a
graph, modeled by a graph neural network (GNN).

The effectiveness of the proposed approach is illustrated
with a non-trivial application arising in the context of
video-analytics: learning the individual dynamics of indi-
vidual objects and their interactions directly from pixels
in a video. As we will show here, the proposed approach
not only learns models with good predictive power for
interacting systems, but these models also allow for video
manipulation and achieving super-resolution.

The paper is organized as follows: In Section 2 we intro-
duce Koopman operators and in Section 3 we introduce our
method in detail. In Section 4 we propose a non-trivial ap-
plication for our approach. Next, in Section 5, we describe
our experiments and results. Finally, we summarize our
conclusions in Section 6.
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2. BACKGROUND ON KOOPMAN OPERATORS

Consider an autonomous system characterized by the
nonlinear, time-invariant model:

xtr1 = P (%), x¢ € R" (1)
The key concept of Koopman operator theory lies in the
realization that the dynamics of a finite-dimensional non-
linear system can be represented as an infinite-dimensional
linear dynamical system. This is achieved by selecting a
suitable Hilbert space of observables, denoted as g, as in-
troduced in Koopman (1931); Mezic (2005). The objective
is to find an operator K : #™ — R™ that advances the
observables g one step into the future:

g = fy (Xt), 8e+1=Kg, (2)
where fy : R® — R™ is the mapping from the state space
to the observable space g; € R™. Hence:

fpo®(x4) = Kfy (x1), (3)
where o denotes the composition operator. When K has
a countable set of eigenfunctions ;(.) with eigenvalues
Ai, the observables g(.) can be propagated as follows. Let

a = [al...]T denote the coordinates of g in the basis
spanned by (.), that is

) = Zai¢i(~) = D(.)a, where: D(.) =

Then
Z az/h"/)z

(Kog)(
Extended Dynamical Mode Decomposition (EDMD) type
approaches seek to identify approximations to Koopman
operators over a restricted subspace, defined by the span
of the truncated dictionary D(.) = [¢1(.)...¥n(.)]. In
this subspace, the Koopman operator can then be ap-
proximated by a matrix K € R¥*N that propagates the
coefficients of the expansion, that is, for g(.) = D(.)a, then
(Kog)(.) = D(.)Ka. Typically, given experimental data
X = [x1 x2 ... x7], K is found by minimizing the one-
step prediction error over a set of observables. Specifically,
this approach considers m observables gt/)(.) = D(.)a;,
each defined by a coordinate vector a;, and solves:
m T-—1

= argmm Z Z (I[D

7j=1t=1

[1(.).. ]

(.)Ma, where M = diag(\;)

(xe+1) — D(xe)Klay 3 (4)

where D(x;) is the matrix obtained by evaluating the
dictionary at the point x;.

Discovering eigenfunctions can be a challenging task,
prompting the development of various algorithms to ad-
dress this difficulty. Among the most commonly utilized
methods are dynamic mode decomposition (DMD) and
its extension to nonlinear observables, known as extended
DMD (EDMD) (Schmid (2008); Williams et al. (2015)).
In earlier studies, researchers employed manually crafted
eigenfunctions to model the observable space, selecting
them from function families or leveraging prior knowledge
of the physics associated with the problem.

Currently, some approaches leverage deep neural networks
to represent the observable space (Lusch et al. (2018);
Morton et al. (2019); Li et al. (2020); Xiao et al. (2021);
Azencot et al. (2020)). Neural networks have the advantage
of being universal approximators, proving effective in
identifying the Koopman invariant subspace.

3. PROPOSED APPROACH

In this section we introduce the architectures used to learn
the individual dynamics and represent the interactions
between systems.

3.1 Koopman Embedding

To model the individual dynamics, we propose to learn a
suitable set of observables g and the associated Koopman
operator representation K using a deterministic Auto-
Encoder (AE) framework.

An AE is a Neural Network, trained end-to-end through
stochastic gradient descent (or similar), that transforms
the input data through an Encoder into a latent space,
and maps it back to the original domain with a Decoder.
The interpretation or utility of the latent space is defined
by the task for which the AE is trained. For instance, if the
latent space is low-dimensional, the AE will learn a lossy
compression of the data. When the goal is prediction by
propagating linear dynamics in the latent space, we expect
the AE to learn the desired Koopman mapping.

The observables g¢ are obtained through the Koopman
mapping far @ R — R™ (equivalent to Eq. (2)). M
makes reference to the spaces of observables, respectively.
We recover the original state by approximating the inverse
function fa-1 ~ f;/ll.

Previous work, has focused on modeling such system in
the absence of interactions among particles in a system.
A simple multi-layer perception (MLP) has been used
to map states to observables in the Koopman space,
and vice-versa. This corresponds to a function applied
independently for every trajectory as follows:

)A(i-&-l = fm-10 (’C o fm (Xi)) (5)

= fr-r (Kei) - (6)

We define the Koopman operators I : RM — RM as
a parameter matrix. This means that a single Koopman

operator must be a valid transition operator for all the
data in our dataset.

As interactions occur, correct modeling of the dynamics
requires new tools. We propose the use of graph neural
networks as described in the next section.

3.2 Koopman Interaction Network

In this paper, we will model interactions between sys-
tems using a fully connected graph neural network. The
mapping faq is parametrized by a network reminiscent
of Interaction Networks (Battaglia et al. (2016)). The N
vertices of the graph correspond to the individual systems.

We associate the states of the individual systems to the
vertices of the graph, together with a binary identifier
of the system vi = fy ([x},ID]), and consider a global
state x; formed by stacking the individual states x¢. The
corresponding observables g; are partitioned into compo-
nents g! conformally to xi. Relations are represented as
the identifiers and the dlﬁerence of the associated ver-
tices r\"Y = f ([1*, 1!, vF — vi]) ,V(k,1) € [1,...,N].
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The embedding space is the result of a message passing

procedure, where we compute an edge effect e,gk’l) =

Jee ([V“vt,rgk l)D ,V(k, 1) € [1,...,N] and a node ef-

fect g = fNE(|:V£7ET]:I 1e§1 n)D All functions f are

implemented as MLPs. Similarly to Li et al. (2020), we
apply this graph network both as the Koopman mapping
g: = fm(xy) and its inverse x; = fa-1(gt). We do not
indicate the nature of interactions supervisedly. Instead,
we will assume that interactions between systems will
remain the same across training and testing data. Thus,
we re-write Eq. (2) as

N N
8iy1 = KWg, = (Z KrDgp 4 Z /C(n’N\z)g?> (7)
n=1 n=1
where K| the i*" block-row of the global matrix K, has
been decomposed into submatrices (%) associated to the
l sender and k receiver systems, respectively. Thus, the
interactions are also linear in the Koopman space. The
corresponding state at the i*" node is given by

Xi—i—l = fm (gi_’_l)
S ) S e ®)
= fpm-1 Z /C(n,z)gg7 Z /C(n’N\’)g?
n=1 n=1

To train our model we make use of self-supervision for
reconstructing the observed time series x1.7 and predicting
that same input from few initial conditions (1 : K). We
also add regularizers for a better learning of the Koopman
embedding, so that the final expression of our objective
J. with respect to the trainable weights w is:

jw = m‘jn [LKoop] = IIliIl [Lfit +LAE+LRankIC] (9)
Lig = e |58 — %520 1H Liamckc = Mexc 1K,

(10)

2
Leiy = Asic || 850 — gzﬁT\l;T—lHQ’

where As are the weights applied to each one of the
loss terms, and ||, ||H§ represent the ¢; and ¢y losses
respectively and |||, is the nuclear norm of a matrix, used
as a convex surrogate of the rank function.

4. APPLICATION: FINDING OBJECTS AND THEIR
INTERACTIONS FROM VIDEO DATA

In this section we illustrate the proposed approach in
a non-trivial problem arising in the context of video-
analytics: given a video clip containing up to IV interacting
objects, determine the number of objects, the individual
dynamics and their interactions directly from the pixels.

4.1 Object-centric Video Representation

We draw inspiration from previous work on object-centric
representation learning to infer dynamics from pixels with-
out explicit supervision. These methods often rely on
black-box deep networks to model dynamics. Instead,
OKID (Comas et al. (2023)), is a similar methodology
that leverages a Koopman operator to model non-linear
dynamical systems. This allows for interperability and
manipulation of the scene dynamics. OKID, however, is
limited to scenes with non-interacting objects. In this
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Fig. 1. GrODID architecture. Left: an attention-based recur-
rent tracker decomposes the scene into its composing
objects. Center Down: the object representations are
disentangled into Confidence (ommited for clarity),
Layer, Shape, Appearance and Pose. Center Top: the
dynamic features of Pose are concatenated into a state
and forecasted by using a Koopman embedding. The
Koopman embedding consists of a Graph-based Au-
toEncoder with a linear operator in the center (Koop-
man). Static representations are later used to generate
objects and hierarchically compose the scene.

work we extend the OKID model to the case of multiple
interacting systems employing graph networks and provide
new manipulation techniques.

Video latent representations: We leverage the perception
pipeline of Comas et al. (2023), where a perceptual module
consisting of an array of attention-based trackers, learns to
capture object attributes from pixels, without supervision.

The attributes are:

e Pose z;;, € (—1,1)* Indicates the x and y coordi-
nates of an object centroid, scale and ratio, scaled to
the range (—1,1), thus defining the 2D affine spatial
transformation of an object;

e Appearance z;, € RA: An abstract representation
of an object’s appearance;

e Shape z; , € (0,1)°: Binary object shape mask;

e Confidence z; . € (0, 1): Confidence of our model in
the estimated prediction;

e Layer z,; € (0,1)%: An indicator of relative depth.

Scene Rendering and Training. Consider a video sequence
(y1,---,yr) and its inferred attribute representations
7, = |2} .2}, 21, % 5, %; . |- Given the latent variables,
we reconstruct the frame for each object sequentially.
We first generate an object by decoding its stochastic
appearance z; ,. The decoder faec R4 — RE is a
deconvolutional layer. We then rescale and place the object
with a spatial transformer 7, according to the predicted

poses. Each object is modeled probabilistically by:

(11)

The final scene is a layer-by-layer composition, as de-
scribed in He et al. (2019). We compose the decoded
object appearances, according to their estimated shape

p(Yﬂzi,a) = T(fdeC(Zi,a); Zi,p) o Zi,cv
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z; . and layers zi’_’l, and locate the objects in the predicted
locations, with their predicted scale z§+13p.

Similarly to the VAE framework (Kingma and Welling
(2013)), we train the model by maximizing the evidence
lower bound (ELBO), with self-supervision between the
ground-truth and the generated frames. We supervise both
the reconstructed frames given initial conditions and the
predicted future frames. We add regularizations in our
intermediate representations.

Our objective function 7, for the trainable weights w is:
J.o = min [~ELBO+ L) (12)

Note that this objective contains the Koopman objective
described in (9). We add the ELBO loss to account for
reconstruction in the pixel space and regularization of the
intermediate representations (attributes).

4.2 Identifying the Koopman Operator

In the previous section, we summarized the process to
map pixels to object poses ziJ), and vice-versa, without
supervision. Next, we describe the process to identify the
Koopman operator associated with the dynamics of zl’l,’p.
We define the state by concatenating T's delayed instances
(hereafter called delayed coordinates) of the pose vector
z; for the i}, object:

(13)

Therefore, si € R*7:. Ty indicates our prior on the
maximum number of time-steps needed to model dynamics
with an Auto-Regressive (AR) approach. We assume that
the effects of the environment on each object remain
unchanged through training and testing cases. Thus, these
effects are implicitly learned by the model.

T i i i
8t = [Zt,pﬂ Zi—1pr - 7Zt*Ts+1~,;D]

4.8 Time reversal and Super-Resolution

A unique feature of the proposed approach is its ability
to easily change the discrete time resolution or reverse
time. As described in Egs. (5), (6) and (8) we advance
one step in time by using once the Koopman operator
K. Thus, GrODID is learning to model discrete time at
the sampling frequency of the training distribution. In
this context, an arbitrarily high temporal resolution can
be achieved by manipulating the Koopman operator K.
We thus would operate with the eigendecomposition of
K = QAQ~*, to compute K™ = QAY™Q~!, raising
each complex element of the diagonal to the power 1/m. to
increase resolution of our predictions by a factor of m. This
can be generalized to negative values of m. In that case,
we would be predicting backwards in time by applying the
modified operator. In our experiments, we evaluate the
qualitative performance for m = —1.

4.4 The Overall System

We will use the architecture shown in Fig. 1 which is sim-
ilar to the one in Comas et al. (2023), adapted for videos
with interacting objects. On the left, we see the perception
module, where the input video frames are encoded into
features, and a set of trackers attend to objects in the
scene through an attention mechanism and output a set of

Output (10)

GT STOVE DDPAE G-SWM Ours GT

STOVE DDPAE G-SWM OQurs

Fig. 2. Qualitative comparison of GrODID against the base-
lines for the Double Pendulum experiments. GrODID
and G-SWM generate very accurate frames. DDPAE
and STOVE fail both to generate sharp and accurate
objects, and to correctly predict their trajectory.

attributes per object (blue for static, green for dynamic).
The observed poses zip are concatenated into a state s! as
delayed coordinates. We encode all tracked objects at once
through a GNN Encoder, propagate the observables g T
steps in the future, and render an image with the decoded
pose and the remaining attributes.

5. EXPERIMENTS

With our experiments, we attempt to demonstrate the
ability of our model to (i) Forecast videos with interact-
ing objects and (ii) Manipulate dynamics in videos. We
evaluated GrODID’s performance in the presence of interac-
tions, with realistic dynamics, by performing experiments
with data from a real Double Pendulum. Also, we show
quantitatively and qualitatively GrODID’s ability to per-
form temporal super-resolution and backwards sequence
forecasting. For this we use the Moving MNIST dataset.

The dimension of the observable space gi : RM, ranges
from 15 to 30 per object. We use an appearance vector
of size 46 for Moving MNIST and 26 for the Double
Pendulum. The number of delayed coordinates per state
st, Ty, corresponds to the number of input frames.

Baselines. We choose our baselines to be established state-
of-the-art methods for decomposed self-supervised video
generation: DDPAE, G-SWM Lin et al. (2020), and STOVE
Kossen et al. (2020). All baselines model dynamics with
black-box neural modules.
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Evaluation Metrics. Our quantitative results report per-
frame metrics, including Mean Square Error (MSE), Mean
Absolute Error (MAE), Structural Similarity (SSIM), and
the Perceptual Similarity Metric (LPIPS) Zhang et al.
(2018). The quantitative comparisons are meant to show
that our performance is competitive while providing the
benefits of being able to decompose, interpret, and manip-
ulate the learned dynamics.

5.1 Double Pendulum Ezxperiments

We propose to learn object-centric dynamic modes from
video of a double pendulum in motion. A double pendulum
exhibits a rich dynamic behavior with a strong sensitivity
to initial conditions and noises in the environment, despite
being a simple physical system. We employ the Double
Pendulum Chaotic (DPC) dataset (Asseman et al. (2018))
to generate video samples.

In this dataset, 21 individual runs of a real double pendu-
lum were recorded. Each of the recorded sequences lasts
around 40s and consists of around 17,500 frames. Three
pairs of marker positions (x,y) were extracted, represent-
ing the coordinates of the anchor, and the extremes of the
arms. We constructed a dataset by locating three objects
with different appearances at the coordinate locations pro-
vided by the DPC dataset (see Fig. 2).

For this experiment, we predict 10 frames from an input of
5, at a sample rate 5x lower than the original. Our setup
encompasses approximately 280k frames for training, 70k
for validation and 9k for testing. We train Gr0ODID for 400
epochs.

Results. The correct modeling of the three moving objects
dynamics is not possible by treating them as independent
entities. Hence, GrODID must face challenges specific to
this dataset. i. Assigning each scene object to a particular
tracker. Not only across time frames, but across video in-
stances. And ii. Learning the correct Koopman mappings
so that both individual dynamics and interactions can be
modeled linearly by .

Table 1 shows the quantitative evaluation of our method.
GrODID outperforms the baselines except for G-swM.
While, in that case accuracy is worse but fairly similar 2,
our approach has the benefit of interpretability bringing
along the capability of increasing resolution.

Figure 2 illustrates our model’s qualitative performance.
We show 10 predictions. Objects look sharp and dynamics
are correctly modeled. We can see how GrODID correctly
identifies the objects, and generates them with high accu-
racy. GrODID and G-SWM predict correctly the trajectories
and generate accurate frames, however, G-SWM models
dynamics with Recurrent Neural Networks.

5.2 Time reversal and Super-Resolution Experiments

Similarly to Comas et al. (2023), in our experiments,
we found that small eigenvalues have almost no effect
on the dynamics. To handle unnecessary amplification
during time reversal, we suppress the effect of inverting

2 Following indications from their paper, STOVE pre-processes and
evaluates data in grayscale.

Table 1. Quantitative Double Pendulum re-
sults. We evaluate 10 frame prediction. SR
for Super-Resolution. We evaluate GrODID pre-
dicting the sequence at the original sampling
rate. Instead of 10, it predicts 54 frames.

Pendulum - Prediction | MSE | | MAE | | SSIM 1 | LPIPS |
DDPAE 171.72 | 339.02 0.85 0.119
STOVE 438.98 | 532.78 0.83 0.15
G-SWM 112.45 | 137.74 0.95 0.019
Gr0ODID 120.82 | 162.44 0.95 0.026
GroDID (SR) 133.06 | 174.69 0.94 0.029

eigenvalues close to zero. Concretely, we avoid the effect of
small eigenvalues by clipping them to a maximum module
of 1.5 after applying the negative power to K.

Figure 3 shows an example of our results trained on
Moving MNIST dataset. It displays how we can increase
the temporal resolution by a factor of 3 or 15 or reverse
time prediction by manipulating K. Note that the model
has only been trained to predict in the forward direction
at a specific time resolution. For the Double Pendulum
experiments, we quantitatively evaluate how adding super-
resolution hurts performance. As seen in Table 1, with
Gr0ODID (SR) we predict 54 frames at the original sampling
rate. Here we interpolate the missing steps. Accuracy
drops, but remains similar.

5.8 Conditioning the Koopman Operator

Some engineering decisions must be made to properly
condition matrix /. The operator is initialized to very
small values, although we make sure that no eigenvalue is
0 so that the matrix can be safely inverted. We expect it
to learn the needed eigenvalues (or poles) by optimization
during training. Therefore, at the beginning of training,
K will map any value of g to a vector of 0 (or very small
values). Some of those eigenvalues will remain practically
static during training, as they might not be needed to
model the observed object dynamics.

Finally, having a negative real eigenvalue can also originate
problems when applying an arbitrary power to K1/,
However, in principle only frequency components at the
Nyquist sampling rate in the training data could lead to
having an eigenvalue in such location. In our experiments
we observe that our sampling rates are much higher
than the maximum frequency in the dynamics. Hence, we
assume that a negative real eigenvalue will be an artifact of
training with no observable effect on the object dynamics,
therefore we suppress its effect.

6. CONCLUSION

Many problems of practical interest require identifying the
dynamics of interacting objects from time traces of rele-
vant features. In this paper, we address this problem using
a combination of Koopman operator, learned using an
auto-encoder, and graph neural net ideas. The Koopman
operator models individual, potentially non-linear dynam-
ics, while the Graph Neural Net (GNN) captures the in-
teractions between systems and the effects of the environ-
ment. The potential of this approach was illustrated with a
non-trivial problem: given a video clip containing up to N
interacting objects, determine the number of objects, the
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Fig. 3. Visualization of GrODID’s unsupervised temporal super-resolution and backward predictions. Top row: Ground
Truth sequence, in orange we highlight the frames from which we estimate the current dynamic state sg. Middle
row: Forward prediction (right) at the input sample rate; Backward unsupervised prediction (left) by applying
the inverse Koopman operator X ~!. Note that although the input frames are encoded into sg, S[—1:—5] are also
predictions from sg. Bottom rows: Unsupervised interpolation of the future frames. The green arrow indicates
the exact instant where the objects in the predicted scene do not superpose anymore. Only with high temporal
resolution not present in the input data we could find that instant.

individual dynamics and their interactions directly from
the pixels. As shown in the paper, the proposed Koop-
man based architecture successfully accomplishes these
tasks, allowing for forward and backwards prediction. In
addition, by manipulating the eigenvalues of the operator,
the proposed approach can also achieve super-resolution,
assuming that the sequence is sampled fast enough.
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