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Abstract

Massively multiplexed spectrographs will soon gather large statistical samples of stellar spectra. The accurate
estimation of uncertainties on derived parameters, such as the line-of-sight velocity v, especially for spectra with
low signal-to-noise ratios (S/Ns), is paramount. We generated an ensemble of simulated optical spectra of stars as
if they were observed with low- and medium-resolution fiber-fed instruments on an 8 m class telescope, similar to
the Subaru Prime Focus Spectrograph, and determined v, by fitting stellar templates to the simulated spectra. We
compared the empirical errors of the derived parameters—calculated from an ensemble of simulations—to the
asymptotic errors determined from the Fisher matrix, as well as from Monte Carlo sampling of the posterior
probability. We confirm that the uncertainty of v, scales with the inverse square root of the S/N, but also show
how this scaling breaks down at low S/N and analyze the error and bias caused by template mismatch. We outline
a computationally optimized algorithm to fit multiexposure data and provide a mathematical model of stellar
spectrum fitting that maximizes the so called significance, which allows for calculating the error from the Fisher
matrix analytically. We also introduce the effective line count, and provide a scaling relation to estimate the errors
of vj,s measurements based on stellar type. Our analysis covers a range of stellar types with parameters that are
typical of the Galactic outer disk and halo, together with analogs of stars in M31 and in satellite dwarf spheroidal
galaxies around the Milky Way.

Unified Astronomy Thesaurus concepts: Galactic archaeology (2178); Radial velocity (1332); Doppler shift (401);

Spectroscopy (1558); Late-type stars (909); Late-type giant stars (908)

1. Introduction

To decipher the assembly history of the Milky Way and
neighboring galaxies, Galactic archeology relies on measuring
the dynamical and chemical properties of individual stars
throughout the outer disk and the halo of the Galaxy, as well as
stars in satellite galaxies and M31. The low number density of
target stars, the requirement of sufficiently large sample sizes
for statistical analysis, and the large celestial area to be covered
make wide field of view 4 and 8 m class telescopes with low-
and medium-resolution optical fiber-fed spectrographs—such
as the Subaru Prime Focus Spectrograph (PFS; Sugai et al.
2014; Takada et al. 2014) or the Dark Energy Spectroscopic
Instrument (DESI; DESI Collaboration et al. 2022; Dey et al.
2023)—are the best available tools for observations. Even with
these advanced instruments, constraints on observational time
limit the achievable signal-to-noise ratio (S/N) to a range of
S/N = 5-100 per resolution element, with the large majority of
the targets observed at S/N < 15. Typically, a constraint on the
maximally acceptable uncertainties for measured velocities
o(vis) and metallicities o ([Fe/H]) drive the requirements on
S/N for faint stars. Measuring the abundances of most
individual elements is typically reserved for brighter stars with
higher S/Ns and higher-resolution instruments.

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 4.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

In this study, our primary focus is on characterizing o(vis),
the uncertainty in the line-of-sight velocity v, based on many
repeated realizations of simulated stellar spectra. We char-
acterize the error as a function of spectral type and a wide range
of flux S/Ns. Understanding the sources of uncertainty in line-
of-sight velocity determination and precise estimation of the
error are essential to investigate the velocity distributions of
dynamically cold systems such as stellar streams and ultrafaint
dwarf spheroidal (dSph) satellite galaxies and tackle problems
such as the radial mass profile of dark matter halos in
dSph galaxies, as overestimating the uncertainties can directly
lead to underestimating the velocity dispersion and vice versa
(Koposov et al. 2011). Pessimistic error estimates lead to
underestimation of the velocity dispersion, especially when the
velocity dispersion is comparable to the measurement error. To
compile a statistically significant sample, the low potential
target density of nearby dSph galaxies might demand a fainter
magnitude limit to the survey because targeting a large number
of faint stars with less precise line-of-sight velocities—but with
well understood errors—might have better constraining power
on the radial dark matter profile than brighter but smaller
samples.

It has been established that the close binary fraction in the
stellar populations of the Milky Way increases with decreasing
metallicity (Badenes et al. 2018; Moe et al. 2019), and a similar
dependence is inferred for stellar populations in dSph galaxies,
from the frequency of blue stragglers (Wyse et al. 2020). The
majority of targets in stellar spectroscopic surveys of Local
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Group galaxies are expected to be in multiple systems. When
the brightnesses of the two stars are comparable, spectroscopic
binaries have a significant effect on the uncertainty of v
measurements when the multiplicity is not accounted for. In the
case of evolved (giant) primaries, the contribution of the
companion (dwarf) star to the spectrum is usually negligible.
However, at the distance of extragalactic targets, such as red
giants in M31 and M33, the stellar surface density can be high
enough that the probability that two stars are aligned along the
line of sight becomes significant (Kounkel et al. 2021). Even
though these are not gravitationally bound systems, the effect
of this multiplicity on the v, measurement is similar to that of
binaries. The effect of unresolved binaries on the vy
measurement is an important topic, but it is beyond the scope
of the present paper and we defer further discussion to a future
study. For a review of currently available template-based and
model-independent methods for disentangling spectroscopic
binaries from multiepoch, low-resolution spectra, we refer the
reader to the recent study by Seeburger et al. (2024).

We simulate spectroscopic observations of single stars with a
wide range of flux S/Ns, for a broad range of stellar types. We
model both the random and systematic observational effects
with software based on the spectroscopic exposure time
calculator (ETC) originally developed by Hirata et al. (2012)
for the Roman Space Telescope® and adapted to the Subaru
PFES by Yabe et al. (2017).

We determine v, and its measurement error with several
methods. We compare the empirical uncertainty of vy,
determined from an ensemble of simulations, to those that
one can derive from individual spectra via mathematical
methods. These methods include the evaluation of the Fisher
matrix of a maximum likelihood or maximum significance fit
using a single model spectrum as a template. In addition to
fitting a single template to determine v, We also optimize for
the atmospheric parameters by interpolating the templates on a
synthetic stellar spectrum grid. Although this allows for
inferring the stellar parameters, including effective temperature,
metallicity, and surface gravity, in the present study, we restrict
our focus to the uncertainties of the line-of-sight velocity.
Nevertheless, we also compare the asymptotic errors derived
from the Fisher matrix to those determined from the full Monte
Carlo sampling of the posterior distribution of v, and the
stellar atmospheric parameters.

The accuracy of the line-of-sight velocity measurement is
known to depend on the proper choice of template, and
template mismatch introduces an additional systematic error
(David et al. 2014). In the case of fitting observations with
synthetic spectra, template mismatch can mean the following:
(i) the template is inaccurate because the synthetic spectra do
not match real observations due to shortcomings of the stellar
models, and (ii) the stellar models are accurate but a template
with the wrong atmospheric parameters is used. Although the
use of templates derived from inaccurate stellar models to fit
Vios 18 considered a significant source of systematic error, we do
not investigate this topic in this work. In fact, we fit the
simulated observations using the same synthetic spectrum grid
that we used to generate the simulated observations. We
investigate, however, the magnitude of the bias and systematics
caused by mismatched atmospheric parameters and character-
ize them as a function of S/N.

6 Formerly WFIRST.
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We also omit an analysis of sources of additional systematic
error terms such as convolving stellar templates with a
mismatched line-spread function (LSF), systematic errors in
the wavelength solution due to an inaccurate wavelength
calibration, or time-dependent drifts of the wavelength solution
over the course of the night.

Software libraries for direct pixel template fitting use a range
of approaches. The approaches vary as to (i) whether fitting is
done using individual exposures on a per pixel basis or
resampled, stacked spectra; (ii) how the fluxing errors (or
template inaccuracies) are corrected for; (iii) whether errors in
the wavelength solution are corrected for or not; (iv) whether a
full Bayesian method is used including priors on the parameters,
as opposed to calculating the likelihood function only; and (v)
whether only a multivariate maximum finder is used or a full
Monte Carlo sampling of the posterior (likelihood) distribution is
done to estimate the parameters and their uncertainties. In
addition to these, many template-fitting v, finders are designed
to correct for the peculiarities of a specific instrument, which can
include fluxing systematics, wavelength shifts from slit mis-
centering (Sohn et al. 2007), etc.

We developed our of line-of-sight velocity measurement
algorithm that also works by fitting stellar templates to observed
or simulated spectra on a per pixel basis and supports fitting
multiple exposures with potentially different LSFs. The code
allows for a multiplicative flux correction to the observation in
the form of a wavelength-dependent polynomial to account for
fluxing systematics, as well as imprecisions of the templates. Our
approach is very similar to Koposov et al. (2011), with some
additions: we calculate the full covariance matrix of the parameter
errors analytically, also taking the covariances of coefficients of
the flux correction polynomial into account, and consider the case
of nonuniform priors on v}, and the template parameters when
calculating the full error covariance matrix. Our software
implementation is immensely optimized to efficiently perform
grid interpolation and convolutions at high resolution with
wavelength-dependent kernels. The optimizations were necessary
to fit a large number of simulations in a reasonable time.

It is generally useful to be able to estimate the expected
uncertainty of a parameter measurement before observations.
Scaling relations provide a simple way to approximate o(vies)
from the spectral resolution, S/N, bandwidth, and spectral type
of the target. Based on our empirical results on the uncertainty
of the line-of-sight velocity, we propose a modified version of
the scaling relation of Hatzes & Cochran (1992) that also takes
the spectral type into account.

The paper is structured as follows. In Section 2, we review
former work related to uncertainty estimation of v;,s and then
move over to describing the simulated observations in
Section 3. In Section 4, we introduce the significance function,
which provides a convenient mathematical formalism to
calculate o(vi,s) analytically, but we relegate the detailed
calculation to Appendix A. We explain our performance
optimized template-fitting algorithm in Section 5, and in
Section 6, we present the outcome of the simulations. Results
are discussed and compared to earlier work in Section 7, and
the paper is concluded in Section 8.

2. Former Work

Inferring physical parameters, including the line-of-sight
velocity from spectra is fundamental and has been in the focus
of algorithm development for decades. Although computationally
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more intensive, direct pixel fitting of model templates has largely
replaced Fourier methods, originally to extract the line-of-sight
velocity distribution from galaxy spectra (e.g., Rix & White 1992;
Newman et al. 2013), but later more complex and refined
spectrum processing pipelines have been developed for single
star v, measurement as well (Koleva et al. 2009; Koposov et al.
2011; Cunningham et al. 2019; Jenkins et al. 2021).

Among the many other spectrum fitting codes, Koleva et al.
(2009) introduced the ULySS software library to fit single
stellar spectra as well as to analyze the star formation history
and chemical evolution of composite stellar populations. They
emphasized the importance of using an LSF that closely
matches that of the instrument to achieve good results. More
recently, Koposov et al. (2011) analyzed Very Large Telescope
(VLT)/GIRAFFE fiber-fed spectra on a per pixel basis
highlighting the advantages of using native detector pixels
and likelihood stacking to fit the data. Koposov et al. (2011),
based on the earlier work of Koleva et al. (2008), developed a
pixel-fitting method that allows for a flux correction to the
template in the form of a wavelength-dependent polynomial to
account for fluxing systematics in the observations as well as
imprecisions of the templates. Koposov et al. (2011) consider
the coefficients of the flux correction polynomial nuisance
parameters and marginalize them from the joint likelihood of
Vios and the template parameters.

Koposov et al. (2011) and later Jenkins et al. (2021) realized
that the sky lines in the raw VLT/GIRAFFE spectra had
systematic shifts and developed an algorithm to recalibrate the
wavelength solutions of 1D spectra based on the positions of
sky emission lines. Walker et al. (2006, 2015) developed a
Bayesian technique to fit spectra of dSph members at medium
resolution and found that the posterior probability distribution
of vj,s and the atmospheric parameters often become strongly
non-Gaussian at low S/N.

To evaluate the effect of template mismatch on measuring v;.,
North et al. (2002) suggested fitting spectra with several
templates and found that template mismatch is not a significant
source of systematic errors in case of G, K, and M stars. David
et al. (2014) quantified the effect of template mismatch as a
function of the atmospheric parameters and found deviations of
Avios £0.1 km s ' in the temperature range 4000 < Tep <
6000 K based on fitting mismatched templates to noiseless
spectra. They also showed that the bias can be significantly
higher for spectra with relatively broad Balmer lines, Paschen
lines, or the Call triplet. Walker et al. (2015) showed—using
Monte Carlo sampling of the posterior distribution of vy, the
atmospheric parameters, and the flux correction coefficients—
that vy 1s essentially uncorrelated with the other parameters.

In order to estimate the uncertainty of v, measurements
without detailed simulations, Hatzes & Cochran (1992) provided
a scaling formula to calculate o(vy,) from the S/N, spectral
resolving power, and instrument bandwidth and proved the
validity of the formula on simulations of high-resolution
spectroscopic observations. Bouchy et al. (2001) derived
theoretical constraints on o(vy.s) and emphasized that the spectral
type plays an important role in the precision of v,,; measure-
ments. They determined that the local slope of the spectrum—
degraded to the resolving power of the instrument and evaluated
at the center of each detector pixel—determines how much
information is carried by the spectrum about Doppler shift.

In the present work, we generalize the formalism proposed
by Kaiser (2004), originally to detect faint point sources in
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Table 1
Assumed Parameters of the Optical Spectrograph Arms, Which are Very
Similar to the Parameters of the Subaru PFS Instrument

B R MR
A coverage [nm] 380-650 630-970 710-885
pixel dispersion [A] 0.7 0.9 0.4
A spectral resolution [;\] 2.1 2.7 1.6
Av velocity resolution [km s~ '] 130 100 60
R resolving power 2300 3000 5000

noisy pixelated images. Kaiser (2004) showed how to quantify
the significance of the detections and calculate unbiased error
estimates of the parameters such as the centroid positions.
When the method is adopted to spectroscopy of faint objects,
the significance function becomes independent of the normal-
ization of the observed spectrum and the template, and the
location of its maximum will coincide with the maximum of the
likelihood function. The formalism allows for calculating the
Fisher information matrix at the best-fit parameters analytically
and deriving expressions for the uncertainties of the model
parameter as well as the Doppler shift, as we will show in
Section 4.

3. Simulated Observations

To assess the uncertainty of Doppler shift estimates from
synthetic template fitting, we rely on detailed simulations of
spectroscopic observations with known vy, as well as atmo-
spheric and observational parameters. For this study, we
generated 1000 simulated observations, in three different
spectrograph arm configurations, of every stellar type listed in
Table 2. The distribution of the observational parameters was the
same for all stellar types, representing a realistic dark night similar
to the environment on Maunakea. Our goal was to sample a broad
range of S/Ns instead of generating a synthetic catalog. Hence,
magnitudes were sampled uniformly from an interval that will
typically be accessible by Subaru PFS (Sugai et al. 2014). The
three spectrograph arm configurations of PFS that we investigated
are listed in Table 1. Simulations were executed for the blue and
red arms, with the two different resolution configuration of the
latter: low and medium resolution. We denote these with B, R and
MR, respectively. The resolution (FWHM of the LSF) is
approximately constant within each of these arms. A single
pointing of PES consists of an observation in B plus either R or
MR. PES also has a near-infrared channel, but we do not include
it in our simulations.

3.1. Simulation Software

Our simulations are based on the ETC code version 5,
originally written by Hirata et al. (2012) and modified by the
Subaru PFS team (Yabe et al. 2017) for the fiber-fed PFS
instrument. The ETC implements an optical model of the
telescope, the wide field corrector, and the spectrograph to
calculate the LSF, the fiber trace width, the effective aperture,
and vignetting. It also applies the combined transmission
function of the atmosphere, the optical elements, as well as the
quantum efficiency curve of the detector and a model of the
detector noise characteristics to calculate the noise terms. To
calculate the photon counts and the noise, object photons, sky
photon (continuum and lines separately), photons of light
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Table 2
Summary of the Stellar Models Used as the Basis for the Simulated
Observations

No [Fe/H] Tor (K) log g Phase Exp. Count
1. -2.0 6250 4.5 MS 12
2. -2.0 5500 4.5 MS 12
3. —2.0 4750 4.5 MS 12
4. —0.5 6250 4.5 MS 12
S. —0.5 5500 4.5 MS 12
6. —0.5 4750 4.5 MS 12
7. -1.5 5500 35 RGB 12
8. —1.5 4750 2.0 RGB 12
9. -1.5 4000 0.5 RGB 12
10. -2.0 8000 3.0 HB 12
11. -2.0 7000 3.0 HB 12
12. -2.0 6000 2.5 HB 12
13. -0.7 5500 35 RGB 20
14. -0.7 4750 2.0 RGB 20
15. —0.7 4000 0.5 RGB 20
16. 0.0 4750 3.0 RGB 20
17. 0.0 4000 1.5 RGB 20
18. 0.0 3250 0.0 RGB 20

Note. We list the synthetic spectrum atmospheric parameters, stellar
evolutionary phase, and the number of simulated 15 minute exposures for
each model.

scattered by the Moon, and stray light from the spectrograph are
taken into account.

Since the aforementioned computations can take a significant
time, we modified the ETC to write out the LSF, the
transmission function, and the contributions of the various
noise terms to the final flux variance. Then we ran the ETC on a
grid of observational parameters including seeing, the angle of
the target and the Moon with respect to the zenith and each
other, and the field angle of the target with respect to the optical
axis to calculate vignetting. By interpolating these pretabulated
ETC outputs, simulating a single observation takes only a few
hundred milliseconds. In order to generate tens of thousands of
simulations, we implemented a parallel spectroscopic simula-
tion library in Python that can handle very fast synthetic
spectrum grid interpolation, LSF convolution, and resampling.
The highly customizable software suite was originally devel-
oped to generate large training sets for machine learning
spectral analysis methods and its details will be published
elsewhere.

Our simulations are based on the high-resolution PHOENIX
library of synthetic stellar spectra (Husser et al. 2013), which
are available at a resolving power of R = 500,000 in the optical.

Whenever S/Ns are quoted, we refer to the 95th percentile
S/N per resolution element in the MR arm. If the simulation
was performed for the low-resolution R arm, the equivalent
S/N for the MR arm is quoted.

3.2. Model Parameters

We selected 18 stellar types that span the range of metallicity,
effective temperature, and surface gravity that optical Galactic
archeology surveys typically cover in the Milky Way,
dSph galaxies, and nearby galaxies with resolvable stars such
as in M31. Stellar types are summarized in Table 2 and indicated
in Figure 1 on top of PARSEC isochrones (Bressan et al. 2012),
both in terms of the physical parameters and the colors and
absolute magnitudes in the Subaru Hyper-Suprime Cam
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Figure 1. Location of the simulated observations in the plane of atmospheric
parameters (left) and the Subaru Hyper-Suprime Cam color—magnitude
diagram (right). We plot a selection of PARSEC isochrones for reference, as
well as the locations of the models we simulated. Note that the models were
chosen to be aligned with the synthetic spectrum grid, thus may not lie on the
isochrones. See Table 2 for a detailed list of parameters.

broadband filter set. The actual parameters slightly differ from
the isochrones because the synthetic grid in Table 2 is not
exactly aligned with the isochrones. For the sake of simplicity,
all our models have solar [«v/M] and, when fitting templates to
simulations, we fit the three fundamental parameters only.

3.3. Simulation Details

We start the simulations from fluxed synthetic models,
which have much higher resolution than the instrument, to be
able to evaluate the ability of the template-fitting algorithm to
detect subpixel Doppler shifts. As mentioned in Section 3.2, the
atmospheric parameters were chosen to match the grid so no
model interpolation was necessary to generate the simulated
spectra. When fitting the simulated observations with stellar
templates, the atmospheric parameters are treated as free
parameters, and we linearly interpolate the grid to calculate the
flux of models in between grid points.

We choose the Doppler shift randomly from a uniform
distribution and shift the wavelengths of the spectral elements of
the high-resolution model before smoothing it with the LSF and
interpolating it to the pixels of the detector. The LSF calculated
by the ETC already takes the pixelization into account. Hence,
we use linear interpolation, since flux-conserving resampling
would duplicate the effect of pixelization. We convolve the
spectrum, still at high resolution, with the instrumental LSF,
expressed as a Gaussian kernel with a wavelength-dependent
width. The width of the Gaussian is taken from the output of the
ETC, and the kernel is evaluated at high resolution, still on the
wavelength grid of the input models.

Choosing the Doppler shift for each simulated spectrum
randomly from a broad interval, instead of just measuring
0(V1es) at Vs = 0, allows us to test two important things: (i) We
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Table 3
Parameters of the Simulated Spectroscopic Observations

Parameter Range
seeing 0.6-1"0
extinction E(B — V) 0.0-0.5 mag
target zenith angle 0°-60°
field angle 020-0°5
single exposure time 15 minutes
exposure count 12 or 20
object apparent magnitude see text

line-of-sight velocity —500 to 500 km s~

can investigate the sensitivity of the template-fitting algorithm
to subpixel shifts and whether there are any systematics
depending on how the strong absorption features are shifted
with respect to the pixel edges. We ran these tests and found no
systematics. (ii) We can better test the part of the template-
fitting algorithm that provides a coarse initial estimate of vy
before starting the maximum likelihood optimization.

We assume observational parameters similar to those of at the
Maunakea Observatories on dark nights, as summarized in
Table 3. Each of these parameters is sampled uniformly between
the given limits. The 15 minute observation time was chosen
according to the design parameters of the PFS instrument and we
assumed 12 exposures (a total of 3 hr) per field for the MW and
dSph targets (model Nos. 1-12) and 20 exposures (a total of 5
hr) for the M31 targets (model Nos. 13-18).

Instead of using S/N as the input parameter, we normalize
the synthetic flux of the model spectrum to a magnitude drawn
from a uniform distribution that covers the typical magnitude
range of potential targets of PFS. Although this method will not
result in uniform sampling in S/N, it will make sure that the
flux errors from sky subtraction, scattered light, and the noise
contribution of the detector are taken into account at the right
ratio. At faint magnitudes, the sky photons are the most
significant source of flux error, hence, rescaling the noise level
of a simulation to a given S/N would change the ratio of the
noise components. We use the pretabulated output from the
ETC to obtain the combined transmission curve of the
atmosphere and the instrument, as well as the continuum and
line emission of the sky. We only simulate dark time
observations here but the software is also capable of calculating
the scattered light from the Moon. To calculate the resulting
S/N, we approximate the photon noise with a Gaussian
distribution and sum up the detector noise terms in quadrature
to calculate the variance in each pixel.

We sample the value of the E(B — V) extinction randomly
between 0.0 and 0.5 mag and apply the average Milky Way
extinction curve of Cardelli et al. (1989). When fitting the
simulated spectra, we do not correct for extinction, but rather
let the flux correction polynomial (see Section 4.4) account
for it.

We apply a multiplicative function to the flux in the form of
a slowly changing, but high-order function with a maximum
amplitude of 2%. The purpose of this function is to simulate the
effects of improper fluxing as well as differences between the
continua of the synthetic and real spectra.

Even though we do not simulate sky subtraction systematics
or residuals, we mask out pixels where the strong sky lines are,
including the wings of those lines. We also mask out pixels
where the S/N would be extremely low due to low instrumental
transmission.
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The actual noise realization is only added to the simulated
spectra during template fitting to allow generating multiple
noise realizations to imitate multiple exposures. When fitting
templates to the simulated observations, we assume 15 minute
exposures of the target that add up to a 3 hr or 5 hr total
observation time. We assume the same instrumental noise
variance and observational parameters for each exposure. As
explained in Section 4, the exposures are not stacked, but the
templates are fitted on a per pixel basis.

We will also demonstrate how the zero-point errors of the
wavelength calibration affect the uncertainties of the vy
measurements. To simulate the zero-point error, we execute the
simulations as explained above, then we apply a small shift to
the pixel central wavelengths, which corresponds to an affine
transformation in A\ and translation in log A\. Simulating the
zero-point error this way, instead of before the step when we
interpolate the spectrum to the detector pixels, is a simple
shortcut that makes fitting templates to multiple exposures with
different wavelength solutions easier. Note, that the majority of
the simulations were generated without a wavelength calibra-
tion error, hence the results for o(v,,s) represent the theoretical
lower limit that does not take the systematic error floor of the
instrument into account. The instrumental velocity error floor is
generally thought to be around or slightly above a hundredth of
a pixel, or approximately 1.3, 1.0, and 0.6 km s~ ' in the
spectrograph arms B, R, and MR, respectively.

The steps of the simulation procedure are as follows.

1. Load the high-resolution input model from the synthetic
spectrum grid.

2. Shift the model to the desired Doppler shift between
—500 and 500 km s~ .

3. Apply the extinction model.

4. Given a randomly chosen observed magnitude, calculate
the flux in physical units.

5. Convolve the synthetic spectrum with the instrumental
LSF on the original wavelength grid of the high-
resolution model.

6. Interpolate the spectrum to the grid of detector pixels.

7. Calculate the photon count in each pixel from the source,
as well as the different components of the sky and Moon.

8. Calculate the S/N in each pixel.

9. Apply the model for simulated flux calibration error.

10. Generate a pixel mask of strong sky lines and very noisy
pixels.

11. Optionally, shift the central wavelengths of each pixel to
mimic the wavelength calibration zero-point error.

4. Template Fitting

In this section, we will follow Kaiser (2004) who introduced
a formalism for the optimal detection of faint, point-like objects
in noisy pixelated images. Here we generalize his approach in
the context of spectroscopy, where we consider the optimal
extraction of a signal from noisy observations by cross-
correlating them with a stellar template. While the objective
function derived from these calculations coincides with the
quantity that spectrum template-fitting codes typically aim to
maximize, we provide formulae for the full covariance matrix
and an analytic expression for the uncertainty of vi.

In the most general case that we consider, targets are
observed using multiple spectrograph arms and many detector
readouts. We assume that repeated observations can happen at
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different times during different atmospheric conditions and
with different fiber configurations, where the latter can
completely change both the LSF and the pixelization of the
spectrum when a different fiber is assigned to the same target.
As usual, we do likelihood stacking instead of attempting to
resample the spectra to the same wavelength grid and stack the
flux. Resampling and stacking, in addition to mixing the LSF
from different observations, would result in strong correlations
in the flux error. Likelihood stacking, on the other hand,
simplifies handling the flux error but has consequences on
computational performance that have to be addressed.

4.1. Analytic Calculation of the Significance Function

Kaiser (2004) introduced a formalism to detect faint point
sources in images. Here we generalize this formalism for
spectroscopy and show how it allows the Fisher information
matrix and elements of its inverse to characterize the error of
Vios measurements. While Kaiser (2004) assumed a point source
convolved with a spatially extended point-spread function
(PSF) to cross-correlate with the observed image, we consider a
template spectrum convolved with the LSF and its cross-
correlation with the observed spectrum. The template can be
fixed or the atmospheric parameters of the template can also be
subject to optimization, along with vy.

While the amplitude of the image of a point source can be
described by a single number, in the case of spectra, we also
have to discuss corrections to incorrect fluxing of the
observations or, not quite equivalently, inaccurate model
continua. We defer discussing the error arising from inaccurate
wavelength calibration and the methods of wavelength
correction to a follow-up paper. The most generic model we
consider here allows for finding v, the atmospheric
parameters of the template and a multiplicative correction of
the observed flux in the form of a linear combination of
wavelength-dependent basis functions where the coefficients
are unknown. When fitting the template parameters, or
including a correction for the fluxing systematics, the
calculations quickly become elaborate, hence we moved them
to Appendix A, and only quote the most important results here.

With p representing the pixel label that indexes each pixel of
each exposure, f, is the sky-subtracted photon count of the

observed spectrum, and ai is the total noise variance of the

observed spectrum. The variance af, is calculated from the total
photon count 7, which includes the object photons and sky
photons, as well as additional error terms such as the readout
noise and dark current. The model m,,(z) is the stellar spectrum
template, Doppler shifted by z=v,,/c, convolved with the
LSF at high resolution, and resampled to the detector pixels.
The orthogonal basis functions g;()\) are defined across the full
wavelength coverage and evaluated at the wavelengths of pixel
centers )\, to get the matrix g;, = g;(\,).

Assuming Gaussian errors of the flux, the likelihood function
that includes the template parameters, as well as the flux
correction, takes the form of

L(Aj,Z, 9)
2
I — 2Aiq, - mp(z, 0)
- 11 lzexP_l[" G T ] . (D)
p 2mo 2 Up

p

where the product goes over the p pixels of each
spectrograph arm and each exposure. Evaluated at each pixel
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center, m,, is the flux of the template, which depends on the
Doppler shift z and the atmospheric parameters 6, whereas the
unknown A; coefficients form a linear combination with the g;,
orthogonal functions. Here we also assume the independence of
the flux errors, measured in each pixel. This is a good first
approximation if the spectrum is not rebinned, however, the
flux error in neighboring pixels is usually covariant due to sky
and scattered light subtraction.

If we only consider a single scalar amplitude A instead of a
wavelength-dependent flux correction, the likelihood becomes

—A 2
LA, 2)=1]] expl%[f”—m"(m}. (2)

1
p JZ’ITO’?,

The log likelihood, with the constant terms omitted, can be
written as the sum of two functions in the form of

2
Tp

£MJ9:A@@W—%MX@% 3)
where
2
0@ = fl’mis(z)’ and @) =3 mpiz). @
P 9p » Op

In the original problem, Kaiser (2004) considers point sources,
so the equivalent of m, in his case is the PSF, which means ¢(z)
is the double convolution of the ideal image, i.e., the PSF-
convolved observed image. In our case, m,(z) is the spectrum
template convolved with the instrumental LSF so (z) is the
cross-correlation function of the observation and the LSF-
convolved template, i.e., a matched filter, weighted by the
inverse variance. It is interesting to see that ((z) becomes
independent of the observation when the object is so bright that
the noise is dominated by the object photons and af, becomes
approximately equal to f,. When observing faint objects,
however, the noise is dominated by the sky photons and ¢(z)
becomes independent of the template. Kaiser (2004) compares
x(z) to an exposure map whereas in our case x(z) can be related
to the information content of the spectral pixels.

At the maximum of the likelihood, the partial derivatives of
L should vanish, which yields the equations

oL 7 B
A ¢(2) — Ax(z) = 0, &)

oL 1

— =AY - -AX'(2) =0, (6)
0z 2

where the prime denotes differentiation by z. The first equation
can be solved for A and gives

A w(z)’ )
X(2)
which can, in turn, be substituted into the second one to get
P _ 1X@ ®
0 2 x@®@

This latter can be rewritten as

d| ¢@
< = 0. )
dz ( VX (@) )



THE ASTRONOMICAL JOURNAL, 168:110 (21pp), 2024 September

Kaiser (2004) called

V) = 28 (10)

VX (@

the significance function. This is the function that needs to be
maximized to get the best-fit Doppler shift. The significance is
only a function of z and the lack of explicit dependence on A
expresses the fact that the normalization of the template carries
no information on the Doppler shift.

Let us denote the quantities evaluated at the maximum of 1/(z)
with the subscript 0. Since at the maximum of the significance
function ¢y =AgXo holds and Ly = Aoy, — AO2 Xo» the max-
imum of the log likelihood is at the same z as the maximum of v
(z) and

2 2
Lo=20 1% 1, (11
Xo 2x0 2

4.2. The Fisher Information Matrix

We are now at a point to calculate the Fisher information
matrix for measuring the line-of-sight velocity from a noisy
observation, defined as

0*L
Fy, = — , 12
Az <8AaZ >0 ( )

where the 0 subscript indicates that this should be evaluated at
the parameter values corresponding to the maximum point z, of
the significance function 1(z), and the associated A that can be
calculated from Equation (7). The averaging in Equation (12) is
done over all possible realizations of the noise.

Let us first write down the curvature matrix of a single noise

realization, which consists of the second derivatives of the log
likelihood

L 9L ) )
oA 0Ad: X —e X
C = = 1 .
82,6 625 _gpl + AX/ —Acp” + EAZX//
0AOz 972

13)
By using Equations (5) and (6) at the maximum point, we can
simplify this into the Fisher matrix in the form of

/

Xo Yo
F= oy 1 , (14
o — 0% | _Lpz Xo
2
Xo X

in agreement with Equation (22) of Kaiser (2004). We can
calculate the second derivative of the significance 1/(z) as

" /2 / /
N RE
v %) 2 x 4\ x AN ¢

At the maximum point this becomes

” " " 7 \2
v_o:ﬁ_lﬁ%ﬁ} (6)
Vo Yo 2 Xo %o

Dobos et al.
Multiplying this with v3 = @S/ Xo» We get
" " 12
Pt Lo %:W%_ﬁﬂ (17)
Xo 2 Xo Xo

with which we can rewrite the Fisher matrix in the simpler form
of

/

Xo Po
F= ph? | (18)
Yo —vovg + £
Xo
The determinant of F is particularly simple and takes the form
of

IFl = —XovovG. 19)

The determinant is always positive as v has a maximum so
must be negative. Now we can easily see that the Cramér—Rao
lower bound of the Doppler shift error is

0l =— Lﬂ (20)

Vol

Equation (20) has no explicit dependence on A, the normal-
ization of the template, which means that the lower bound on
the uncertainty of the Doppler shift is independent of the
normalization (but the errors of z and A are not uncorrelated).
The scaling of 02 is very intuitive: 1 Jvovg scales with the
variance of the flux o, thus so will 0 , and the dimensions of
o, are kilometers per second In other words the Doppler shift
error is proportional to the inverse of the square root of the
typical S/N of the flux measurements.

4.3. Including the Atmospheric Parameters

When fitting synthetic spectrum templates to observations,
often not only the Doppler shift, but the atmospheric
parameters are also unknown. In this more generic case, in
addition to z, the template model m,,(z, ), and consequently ¢
and x, depend nonlinearly on the 0 parameters, and the
derivatives of the significance function and ¢, with respect to z
and 60, will appear in the Fisher matrix in the block form of

2
(pz SOZSOJ
F— @, Wy + N Vg + —— x| Q1)
2
@Oy —War + M —Ulpp + aheh
X X

where z in the index of ¢, v means partial differentiation by z,
and the Greek indices indicate differentiation with respect to
the 6 template parameters. All functions in Equation (21) have
to be evaluated at the maximum point of v. In Appendix A.2,
we show that even in this case, the Doppler shift error can be
calculated analytically and the result is

1 1
(L) @
— Ul 1 + Zu)\i

where the sum of always positive numbers in the denominator
is related to the total error of the template fit caused by the

2N
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uncertainties of the template parameters. This result is also very
intuitive as it expresses that optimizing the template parameters
—in comparison to optimizing for the Doppler shift only with a
fixed template—always decreases the error of the Doppler shift.
In general, the more free parameters the stellar template has, the
smaller uncertainty the Doppler shift can be estimated with.

4.4. Linear Model for Continuum and Flux Correction

Since the flux calibration of observed spectra is often
affected by unknown systematics, a wavelength-dependent,
nonlinear correction function is typically used to correct for
fluxing errors, incorrect dereddening, discrepancies between
the templates and real continua, etc. The most practical, generic
flux correction function is a low-order polynomial in the form
of A(N) =>"A,4,()). The correction function does not depend
on the Doppler shift, which means that we always correct the
observed flux, even when the difference between the templates
and the observations comes from the incorrect templates. This
is because correcting the flux of the template would require
Doppler shifting the correction function, which we want avoid
to keep the math simple.

Introducing a wavelength-dependent flux correction results
in the log likelihood of

LA, 2)=ATp — %ATxA, (23)

where we again omitted the additive constants and A, ¢, and x
are now vectors and matrices, which take the form

f,mp(z, 0)
0z 0) =Y gm0 —. (24)
4 9p
my(z, 0)
an(Z, 0) = Z qkp CInp - 2 (25)
p Op

where g, are the linearly independent set of vectors introduced
earlier. The linear independence of the gy, vectors will ensure
that the matrix  is invertible and A can be calculated as

A=x"1o. (26)

We can now write down the curvature matrix in the block form
of

Cc

-X | P — XpA

1 1
T
¥ - AT Xz ATSOzz - EATXZZA AT(PZ;? - EATXzﬁA ,

‘P:,vr, - ATXQ ATSOM - %ATXzaA AT‘POLB - %ATXQ}BA

@7)

where z in the indices of ¢ and x means element-wise
differentiation with respect to the Doppler shift and the Greek
letters in the index mean differentiation by each of the template
parameters 6.

The corresponding significance function depends only on the
Doppler shift and the template parameters, and can be defined as

2(z, 0
2D _ ot (28)
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This is still a scalar function with no explicit dependence on the
flux correction coefficients. It has the maximum at the same
values of z and 6 where the likelihood function does. We can
now write down the Fisher matrix in a block matrix form as

X —, —;
T T—1 T —1
F=|—¥, — Wzt @X $. ~ Wi+ @X ¥l (29

_SDZ; — Ul + QOIX_IQOZ —Ulag + QOIX_ILPﬂ

where all expressions have to be evaluated at the parameters
that maximize the significance function. According to a
calculation similar to the previous case described in
Section 4.3, the uncertainty of the Doppler shift will be the
same as in Equation (22).

The Fisher matrix in Equation (29) can be evaluated
numerically by calculating the Hessian of the significance
function around the maximum, as well as the element-wise first
partial derivatives of the vector . We must point out that the
numerical differentiation happens with respect to z and the
template parameters only and not with respect to the flux
correction coefficients. This is advantageous, since algorithms
for numerical evaluation of the Hessian typically scale as
O(D?), where D is the number of parameters, but adaptive
algorithms that attempt to reduce the errors of the differentials
can scale even worse. Calculating the Fisher matrix using our
formalism efficiently reduces the number of necessary function
evaluations as there is no differentiation with respect to the flux
correction coefficients. Yet, the inverse of Equation (29) yields
the errors and covariances of the flux correction coefficients, as
well as the template parameters 6 and z. When twice
differentiating the significance functions with respect to vy
and the three fundamental template parameters, computation of
the Hessian still requires several hundred function evaluations
using the numdifftools Python package.

4.5. Bayesian Formalism with Priors

When fitting stellar spectra with templates with unknown
parameters, one can often benefit from a priori knowledge
about the spectral type of the observed object. For example,
photometric data can constrain the effective temperature and
provide some limits on the surface gravity. To incorporate this
into a probabilistic model, most often the Bayesian posterior
probability is considered, which, in the generic case of
optimizing for the template parameters and the flux correction
coefficients, can be written as

LA, z, O)pA)p)p0)

A,z,0|D) = ’
P 0lD fL(A»Za9)P(A)p(z)P(9)dAdzd9

(30)

where D is a symbol for the observations and p(z) and p(6) are
the prior probability distributions defined on the Doppler shift
and the atmospheric parameters, respectively. We will soon see
that the prior p(A) on the flux correction coefficients must be
flat in order to follow the same formalism as in Section 4.4. The
integral in the denominator of Equation (30) is the usual
normalization constant that appears in Bayesian posteriors. It is
not necessary to calculate it, as the location of the maximum of
the posterior does not depend on it, and Monte Carlo sampling
of p(z, 6| D) requires a function that is only proportional to the
posterior.
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The location of the maximum of Equation (30) coincides
with the location of the maximum of its logarithm, hence, after
dropping the additive constants that come from the denomi-
nator or elsewhere, the log posterior will be the sum of the log
likelihood and the logarithm of the priors as

PA,z,0|D)= LA, z,0) + 7)) + (&), (31)

where we denoted the logarithm of the priors with 7(z) and 7(6)
and already assumed that p(A) is flat, hence its partial derivatives
are 0. The location of the maximum of Equation (31) can be
found by equating its partial derivatives to 0, as before, in the
case of the maximum likelihood method. Since w(A) = 0, we can
write down the same system of equations for A as in
Equations (5) and (6) but ¢ and x, as well as the significance
function v, as defined in Equation (28), will also depend on the ¢
model parameters. Similarly to Equation (11), at the optimum of
the amplitude, the log posterior can be rewritten as

P(Ao. 2, 0| D) = %ﬂ(z, 0+ 7@ + 7). (32

where the 0 index expresses that the posterior and the
significance function are to be taken at the optimum with
respect to the flux correction coefficients A. The Doppler shift
and template parameters maximizing the posterior can be found
using the same nonlinear maximization methods as in the case
of Equation (11). When the priors on z and each of the 6
parameters are independent, no mixed second derivatives of
them will appear in the Fisher matrix, which takes the form of

F
X — ]
= _‘P: W + ‘ijilsoz — Tz —Vg + QOZTX71?3
7903; —Ulz + ‘szilcpz s + QDIX719% — Tap

(33)

In practice, we find that the variances of the flux correction
coefficients are several orders of magnitude smaller than the
variances of the Doppler shift and the template parameters. The
same is true for the covariances between the flux correction
coefficients and the template parameters, including the Doppler
shift. For example, Walker et al. (2015) solved a stellar
template-fitting problem by Monte Carlo sampling the posterior
of a hierarchical Bayesian model very similar to Equation (30).
They treated the flux correction coefficients as random
variables and found no correlations between the variances of
the coefficients and the rest of the model parameters including z
and the atmospheric parameters. It is general practice, there-
fore, to determine the covariance matrix of the uncertainty of
the line-of-sight velocity and the template parameters by taking
the flux correction coefficients at the location of the maximum
significance and calculating the covariance matrix from the
inverse of the Hessian of the likelihood function with respect to
z and 6 only.

5. Algorithms

We have developed our own spectral template-fitting
software library that integrates with the observation simulation
code and implements the significance maximization formalism
outlined in Section 4.1, and, in more detail, in Appendix A.3.
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Our template-fitting algorithm is straightforward but we have
two important goals: precision and performance. In order to fit
Vios With subpixel precision, we decided to use templates with as
high resolution as possible and perform the LSF convolution at
the original resolution of the synthetic spectra. High-perfor-
mance implementations of both the simulation code and the
fitting were necessary to be able to execute the large number of
simulations and fit the simulated spectra in many configurations,
including full Monte Carlo sampling of the posterior distribution.
In particular, we focused on high-performance convolution and
synthetic spectrum grid interpolation.

To evaluate the significance function, the following
procedure is followed.

1. The synthetic spectrum grid is interpolated to the given
values of the atmospheric parameters.

2. The interpolated template is shifted to the given value
of z.

3. The template is convolved with the LSF.

4. The template is interpolated to the pixels of the observed
spectrum, for each exposure.

5. The quantities x, ¢, and the logarithm of the priors are
evaluated.

6. The value of x'¢ is calculated.

Step 3 of the algorithm can be performed in conjunction with
Step 1 to optimize performance, as we will explain in the next
section.

5.1. Convolution with the Line-spread Function

When simulating spectra, as well as when processing the
templates while fitting the simulated observations, we convolve
the synthetic spectra with the LSF at the original resolution of
the synthetic spectrum grid, followed by resampling to the
detector pixels. It is important to point out that the LSF we use
already accounts for the pixelization; consequently, resampling
consists of a simple linear interpolation of the LSF-convolved
high-resolution template to the center of the pixels instead of
flux-conserving rebinning, which would take pixelization into
account twice. As a consequence, convolution, and interpola-
tion are not interchangeable and the convolution must be done
first, in the high-resolution representation.

The convolution of templates with a wavelength-dependent
LSF is implemented using a data compression method based on
principal component analysis (PCA). This algorithm is
applicable when the template spectrum uses regular binning,
either linear or logarithmic. To calculate the convolution of a
pixelated spectrum f, with a kernel k(\) that has a nonlinear
dependence on wavelength, one wants to evaluate

~

N
fp = [f*k()\)]p = E f“,; [k()‘p)]p—n’ (34)
n=—N
where [k(),)]; is the kernel evaluated at the wavelength )\, of
pixel p and discretized on the pixel grid around the central
pixel. The value N is the half kernel size necessary to evaluate
the convolution with some prescribed precision, i.e., the kernel
either has a finite support or its value is negligible outside the
[N, N] interval. The kernel k(\) is usually a high-order
function and calculating the convolution requires at least
P x (2N + 1) function evaluations, where P is the number of
pixels. As a consequence, when convolving many spectra with
the same kernel, pretabulating the kernel around each pixel is
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an obvious way of optimization. We denote the pretabulated
kernel by [k(),)];, around pixel p where the i index runs over
the neighboring pixels. A downside of pretabulated kernels,
especially when the synthetic spectra are high resolution, is that
convolution algorithms require shuffling around very large
arrays in memory. Here we show how to leverage the linearity
of the convolution operation to reduce the variable-kernel
convolution into the sum of a few fixed-kernel convolutions,
which has very fast implementations available.

Let us evaluate [k (),)]; for each pixel p and shift i € [N, N]
and express the variable kernel as a linear combination of some
basis kernels K,,; in the form of

Ky = k(A = ayEj, (35)
J

where a,; are wavelength-dependent coefficients and Ej; is a
matrix consisting of some orthogonal basis vectors. To find the
most optimal basis, we apply PCA to K,,; and factorize its
product with its transpose using singular value decomposition,
which yields

KpKy = > EsSTEy, (36)
l

where the E; matrix consists of the eigenvectors of KK and &
is a diagonal matrix of its eigenvalues. We can then determine
the T),; principal components of the kernel at each pixel as
T,;=2,K,E; and reconstruct the kernel from its principal
components as

K, = Z T,Ej. 37)
J

The sum over j in Equation (37) goes over 2N + 1 values, the
width of the tabulated kernel. Data compression in PCA is
achieved by limiting the sum in Equation (37) to only a few
eigenvectors belonging to the largest eigenvalues of KK '. This
data compression technique is lossy, but in practice, varying
width Gaussian kernels can be compressed into the first 5-10
principal components with an accuracy of 10~>. Compare this to
the typical kernel width of N > 50 when convolving down the
high-resolution templates to the low-resolution PFS instrument.

Most importantly, the first few 7,,; principal components can
be interpolated to any intermediate wavelength or fitted with
low-degree polynomials as a function of wavelength and
evaluated at any wavelength. Hence, the kernel can be
reconstructed with high accuracy at any wavelength—as long
as the spectral bins remain regular.

To evaluate the convolution of Equation (34) in this
compressed representation, one has to compute

N
fp = Z Z TH'pr'!i'

j n=—-N

(38)

When the kernel is compressed with PCA, the sum over j in
Equation (38) goes over only a few values, hence we replaced
the expensive array reshuffling necessary to evaluate the
convolution using a pretabulated kernel with a few fast,
optimized fixed-kernel convolutions and a summation.

10
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5.2. Synthetic Grid Interpolation Combined with Convolution
and Caching

We chose our input models of the simulations to have
atmospheric parameters that are on the grid points of the
synthetic spectrum grid, but when fitting the simulated
observations with free template parameters, interpolation of the
synthetic stellar grid is inevitable. At the same time, when
working with high-resolution spectra, one needs to make flux
interpolation as fast as possible. By ruling out higher-order
methods for performance reasons, we opted for a simple linear
interpolator, which only takes the 2° spectra in the corners of a
grid cell into account, where D is the number of grid parameters.

The simple linear interpolations of the synthetic spectrum grid
offers several optimization opportunities, especially when the
convolution step can be combined with the interpolation step.
One has to recognize that iterative optimization algorithms,
Monte Carlo samplers, and numerical Hessian computation
methods take very small steps in the direction of each parameter
around the most optimal parameters. Consequently, once
convergence has been reached, interpolation will only happen
within the very same grid cell. (Unless, of course, the best-fit
parameters fall onto a grid cell boundary.) Precomputing and
caching the LSF-convolved synthetic spectra at the grid points
surrounding the cell and interpolating the convolved templates
can save a significant amount of processing. On the other hand,
convolution with the LSF is normally done on the template only
after it is shifted to some nonzero, but typically small, line-of-
sight velocity during template fitting. Caching and reusing the
LSF-convolved templates for interpolation is only possible when
the wavelength dependence of the LSF is weak compared to the
wavelength shifts and the order of the convolution and
wavelength shift operations can be exchanged.

5.3. Maximizing the Significance Function

We find the maximum of the significance function using the
classical Nelder-Mead method. When applying a polynomial
flux correction to the observed spectra, one has to evaluate the
significance function according to Equation (28) which
involves a matrix inversion. Instead of computing the inverse
matrix x ', it is numerically much more stable to solve the
equation yx = ¢ for the vector x, which will yield x = x ' ¢.
Numerical stability of this operation also dictates that the flux
values of the template spectrum have to be scaled by a factor to
match the interval of typical flux values of the observation.

When template fitting is done in a Bayesian setting and priors
are defined on the template parameters, the posterior probability
distribution of the parameters is given by Equation (32). The
maximum a posteriori solution can be found the same way as the
maximum significance solution.

5.4. Uncertainty Estimators of Vi,

In Section 4.2, we derived an analytic formula for the
uncertainty of the line-of-sight velocity. The error estimator
based on the Fisher matrix, also called the asymptotic error,
gives only a lower bound on o(v),) and this limit is only
achievable in practice when the likelihood function is strictly
Gaussian about the maximum and has no local maxima in the
few o vicinity of the global maximum. This is rarely the case
when dealing with low-S/N spectra, as noise “smears” the
likelihood function so that its maximum will be smaller and the
curvature at the maximum larger, increasing the influence of
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nearby local maxima. Hence, precise characterization of o (v;s)
in low-S/N situations requires Monte Carlo sampling of the
significance function. We are going to demonstrate this in
Section 6.

In addition to the asymptotic uncertainty estimator derived
from the Fisher matrix, we also determine the full covariance
matrix of the parameters from full Monte Carlo sampling of the
Bayesian posterior probability distribution when vy, as well as
the template parameters, are treated as unknown.

When we present our results in Section 6, we are going to
compare the uncertainty estimates from the Fisher matrix and
Monte Carlo sampling to those that we measure from an
ensemble of repeated simulations.

5.5. Monte Carlo Sampling of the Posterior

We implemented an adaptive Monte Carlo algorithm to
generate samples of the significance function or the Bayesian
posterior probability distribution. The sampler works by alter-
nating between vy, and the rest of the parameters. In case of high-
S/N spectra when vy, is well constrained, this Gibbs-like
sampling resulted in better mixing of the Monte Carlo chains than
sampling all parameters together. The proposal distributions of
both semisteps are initialized from the covariance matrix of the
parameters, as determined from the maximum a posteriori
template fitting. The initial states were generated from the
maximum a posteriori best-fit parameters by perturbing them
with a random vector drawn from a multivariate Gaussian
distribution with the same covariance matrix as the step proposal.
Initializing the state and the step proposal distributions this way
allowed us to minimize the length of the burn-in phase and reach
a high acceptance rate sooner.

6. Results

We generated 1000 realizations of the simulated observed
spectra for each stellar type listed in Table 2 and fitted them
using different combinations of the spectrograph arms and
template spectra, as well as various different configurations of
the template-fitting algorithm. In the case of maximum
likelihood and maximum a posteriori fitting, we calculated
Ay, as the difference between the input line-of-sight velocity
and the best velocity estimate obtained by fitting the templates
to the simulations.

The results we present here do not account for some
instrumental systematics, such as the wavelength calibration.
As a result, velocity uncertainties below the typical value
equivalent to a hundredth of a detector pixel (approximately
0.6 km s~ ! in the MR arm) are unrealistic. Nevertheless, we
plot these results as they establish the theoretical lower limit on
the uncertainty of v The instrumental error floor is
considered to be due to systematics and wavelength calibration
errors, neither of which were taken into account when we ran
the simulations. We are going to discuss this issue in some
detail in Section 6.3.

When simulating the observations, we took the typical
fluxing errors into account by multiplying the flux with a
random, slowly changing function that alters the flux by about
2%, see Section 3. In addition to this, we applied the reddening
law of Cardelli et al. (1989) with a randomly chosen value of
Ay between 0 and 0.5 and but we do not explicitly correct for
this reddening when fitting the templates. Instead, we use a
fifth-order Chebyshev polynomial over the entire wavelength
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Table 4
Parameters of the Priors Used to Fit the Simulations When the Template
Parameters Are Treated as Unknowns

Parameter Distribution Parameters Limits Unit
[Fe/H] truncated normal oc=0.5 +1.0 dex
Tete truncated normal =150 +250 K
log g truncated normal c=1.0 +2.0

Note. The probability distributions are always centered on the input parameters
of the simulations and the limits are calculated with respect to the input
parameter values.

range to correct both the fluxing error and reddening, as
described in Section 4.

We fitted the simulated spectra with templates using various
configurations. In the most optimistic scenario, the atmospheric
parameters of the template were chosen to match the input
parameters. In case the atmospheric parameters of the template are
also optimized for, instead of solving the maximum significance
problem, we performed a full Bayesian maximum a posteriori fit
to the simulations. The priors used in the Bayesian model are
normally distributed in a finite interval centered on the input
parameters, as summarized in Table 4.

6.1. Signal-to-noise Ratio

Throughout this section, we adopt the following definition of
S/N, denoted with S,/N,,, when talking about the per pixel S/N
of a simulated spectrum. The signal is taken as the flux in a pixel
of the noiseless spectrum, convolved down to the resolution of
the instrument and resampled to the pixels of the detector. The
noise is taken as the standard deviation of the Gaussian noise
calculated from the observational parameters, the sky model, and
the instrumental model, as described in Section 3.

To characterize the S/N of an entire spectrum by a single S/N
number, we take the 95th percentile of the per pixel S,/N,
values. The advantage of using a high percentile to calculate the
overall S/N as opposed to the mean or the median is that the
95th percentile is less sensitive to the noisy pixels of the deep
absorption lines and more sensitive to the continuum pixels.

Characterizing a spectrum with a single S/N value has its
caveats, however. In Figure 2, we plot S, / N, for three stellar
spectra that show different levels of absorption in the MR arm.
In the plots, S,/N,, is normalized to have a 95th percentile of
1 pixel ™', indicated by the red line, and the median of Sp/N, is
plotted in blue. While the 95th percentile S/N traces the
highest-S /N pixels of the continuum remarkably well in the
case of the higher-temperature models, it is no longer a good
measure when there is no well-defined continuum, as in the
case of the cool M giant in the top panel of Figure 2. On the
other hand, using the maximum of S,/N,, in place of the 95th
percentile to characterize a spectrum would not be robust
enough.

Stoehr et al. (2008) suggested measuring the S/N from a
single realization of a noisy spectrum in the form of

J6 1 (f,)

S/N = * s
1482602  pn(12f, — f,m0 — fpiaD

(39)

where 11 denotes the median and f,, is the flux in pixel p. This is
a robust way of estimating the S/N from spectra when the
signal and the variance are not known individually, only the
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Figure 2. S/N per pixel for three different stellar types (from top to bottom:
solar metallicity M giant, metal-poor M dwarf, and metal-poor K giant). The
95th percentile S/N is plotted in red and the median S/N in blue, whereas the
dashed black line indicates the S/N as defined by Stoehr et al. (2008). See the
text for discussion.

noisy flux. For reference, we plot this quantity in Figure 2 as
well, noting that it is subject to the same dependence on
spectral type as the mean or the median, and hence cannot
characterize well the typical S/N of continuum pixels.

For easy comparison, we will refer to the 95th percentile
S/N as measured in the MR arm, even when plotting the results
for different spectrograph arms, or a combination of arms.
Whenever the S/N is expressed per resolution element, as
opposed to per pixel, we calculate it by multiplying the 95th
percentile value of the per pixel S/N by the square root of the
typical number of pixels per resolution element. Based on
Table 1, the multipliers are J3 s J3 , and J4 for the B, R, and
MR arms, respectively.

6.2. Empirical Error of v, from Repeated Simulations

Figure 3 shows the primary result of this work: the standard
deviation of Av, calculated in logarithmic bins of S/N per
resolution element. S/N is quoted for the single arm MR
configuration, even when the curves correspond to the R arm or
a combination of two arms. We will refer to the standard
deviation of Ay as the empirical error and simply denote it
with o(v)os). We determined the empirical errors for fitting each
spectrograph arm separately (thin curves) and in the blue and
red arms in combination (thick curves). The colors represent
the arms used for fitting B (blue curves), R (red curves), and
MR (gray curves). We verified that the slope and y-intercept of
these curves are insensitive to the binning in S/N: using
logarithmic bins in S/N yields very similar curves regardless of
the number of bins, see Figure 8.

The curves in Figure 3 show the general trend of o(vis)
decreasing with the square root of S/N, which is expected
based on what we calculated in Section 4.2 from the Fisher
matrix. Deviations are visible from this trend at low S/N in
most cases and at high S/N in case of the M giant. We discuss
these deviations in Section 6.3.

6.3. Error Estimators of vy, for Single Spectra

In the previous section, we looked at the empirical error of
Vies as a function of S/N, which was calculated from a large
number of simulations as the standard deviation of Avy in
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logarithmic bins of S/N. Let us now compare the empirical
error to uncertainty estimators that can be determined for a
single simulation or a nonrepeated observation, such as the one
we calculated in Section 4.2 from the Fisher information matrix
or from Monte Carlo sampling of the likelihood function or the
Bayesian posterior.

To compare the various estimators of uncertainty, we fitted
simulated spectra of a low-metallicity G subgiant, typical of stars
found in dSph galaxies. We performed the fitting in two
configurations, in order to test the effect of an uncertain
wavelength calibration. First, we assumed perfectly matching
wavelength solutions for each of the 12 exposures in both the B
and MR arms. Second, we kept the flux in each pixel, but
multiplied the wavelength values of each exposure with a
random Doppler shift sampled from a normal distribution with a
standard deviation of 25 km s~ '. Since the wavelength errors
simulated this way are independent random variables, they are
expected to average out according t0 /Nexp + Nym. Conse-
quently, the amplitude of the error was chosen to be very large to
emphasize the effect. In both cases, with and without wavelength
errors, we optimized for the three atmospheric parameters, and a
fifth-order Chebyshev polynomial was used to correct for the
simulated systematics of the fluxing. The template was fitted
using a maximum finder algorithm, as well as Monte Carlo
sampling of the posterior probability distribution.

In panels (a) and (b) of Figure 4, we plot the empirical error
(solid red line) calculated from an ensemble of simulations, in
logarithmic bins of S/N, the asymptotic error derived from the
Fisher matrix (blue dots) for each simulation and the standard
deviation of Monte Carlo samples drawn from the posterior
probability distribution (red dots), also for each simulation, as
functions of the S/N for the case of perfect wavelength
calibration (left) and with simulated wavelength errors (right).
In the case of perfect wavelength calibration, only at low S/N,
and in the case of simulated wavelength error, both at low and
high S/Ns, obvious deviations of the empirical error from the
asymptotic error are visible.

At low S/N, the empirical error diverges sharply from the
asymptotic error, which could indicate either that the optim-
ization algorithm did not find the real maximum of posterior, or
that the logarithm of the posterior is no longer approximated well
by a quadratic function around its maximum. However, the error
estimates determined from the covariance matrix of the Monte
Carlo samples are consistent with the empirical error at low S/N,
which indicates that the maximum finder worked as expected but
instead, the posterior becomes non-Gaussian around the mode.
To investigate the Gaussianity of the posterior, we plot the
skewness and kurtosis of the Monte Carlo samples drawn from
the Bayesian posterior in panels (c)—(f) of Figure 4. These
indicate that the posterior—or more precisely its marginalization
over all parameters except v,,—is indeed Gaussian at higher
S/N, but can become non-Gaussian at low-S/N values.

At high S/N, when perfect wavelength calibration is
assumed, the empirical error and the asymptotic error remain
consistent and follow the same (S/ N)f1 scaling as at
intermediate S/N. This result is unrealistic as the practical
error floor of fiber-fed spectrographs is thought to be around a
hundredth of a pixel, which is equivalent to 0.6 km s~ for the
MR arm. On the other hand, the result shows that, despite the
pixelization of the spectrum, Doppler shift measurements could
theoretically be better than the 1/100 pixel limit if there was a
way to more precisely calibrate the instruments. When we
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Figure 3. Comparison of the typical empirical line-of-sight velocity error, without any instrumental systematics, for the models listed in Table 2 using the Subaru PFS
B (thin blue curves), R (thin red curves), and MR (thin gray curves) arms, as well as the combination of B + R (thick black curves) and B + MR (thick red curves).
The curves show the standard deviation of the line-of-sight velocity error Ao, with respect to the model input, in logarithmic bins of S/N. For purposes of easy
comparison, the values of S/N on the horizontal axes are always the 95th percentile S/N in the MR arm only, even when the fitting was done using different arms or a

combination of arms.

include the effect of incorrect wavelength calibration, the
empirical errors calculated from multiple simulations show the
expected error floor, as visible in the top right panel of
Figure 4. Neither the asymptotic error, nor the error from
Monte Carlo sampling, is capable of accounting for the error
floor, however. This is the result of the simplification of the
likelihood function, which only accounts for the uncertainty of
the observed flux but has no additional error terms to account
for the imprecise wavelengths. We will address this issue in an
upcoming paper.

6.4. Effect of Mismatched Template Parameters

So far we have seen how the uncertainty of line-of-sight
velocity measurement depends on the S/N of the observed
spectrum when fitting templates with atmospheric parameters
that match the input parameters of the simulated spectra. Let us
now study the case when the template parameters are far off the
real values. This is a realistic scenario because synthetic spectra
are precomputed on grids of the parameters and the atmo-
spheric parameters of observed stars seldom coincide with the
grid points. On the other hand, we do not take into account the
imperfections of the models because we generated the
simulated observations from the same synthetic spectrum grid
from which we take our templates.

In Figure 5, we plot the uncertainty and bias of v, as a
function of S/N determined using template spectra with different
atmospheric parameters. The curves show the standard deviation
(top panels) and the mean (bottom panels) of A, for many
repeated simulations. The observations were simulated with
artificially introduced fluxing errors, as described in Section 3.3
and we repeated fitting vi,s with and without correcting for
fluxing errors. The tests were performed on simulated observa-
tions of a model with atmospheric parameters [M/H] = —1.5,
T.s=4750 K, and log g = 2.0, whereas the templates were
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chosen to be one or two grid points away in the direction of each
parameter (but only one parameter at a time). Step sizes of
AT.= 1200 K, A[M/H] = +1.0 dex, and Alogg = £2.0
were used in effective temperature, metallicity, and surface
gravity, respectively.

The two top panels of Figure 5 show ov from fitting the
different templates with and without the polynomial flux
correction. The curves overlap remarkably well, which
indicates that using mismatched templates has very little effect
on the uncertainty of vy, In general, fitting the simulated
spectra with a template that matches the input atmospheric
parameters, or letting the parameters vary freely, yields the best
results in terms of bias and error variance while nonmatching
templates tend to cause a bias of 1-2 km s~ ', even at higher
S/N, which is consistent with earlier results (Walker et al.
2015). Templates with mismatched metallicity have the largest
detrimental effect on the precision of v,,s measurements.

Slight deviations from the exactly matching template (blue
curves) are visible only at S/N>50 where using certain
templates resulted in an overestimate of the uncertainty.
However, as we showed in Section 6.3 and illustrated in
Figure 4, at such high S/N, errors of the wavelength calibration
already start to dominate the uncertainty, which we did not take
into account in the simulations.

A stronger effect on the bias of vy is visible in the two
bottom panels of Figure 4 when using mismatched templates to
fit the line-of-sight velocity. Using a polynomial for flux
correction tends to eliminate the bias, as it can be seen in the
bottom right panel of Figure 4. It is important to point out,
however, that even the bias from fitting with a perfectly
matching template (blue curves) shows visible fluctuation at
lower S/Ns, which we attribute to the small number of
simulations.
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Figure 4. Comparison of the error estimates and bias for a model with
atmospheric parameters [M/H] = —1.5, T = 5500 K, and log g = 3.5, for
the case of fitting v;,s plus the atmospheric parameters, both with and without
simulated wavelength calibration error when fitting of arms B + MR in
combination. In panels (a) and (b), the blue dots indicate the asymptotic error
calculated from the Fisher matrix at the maximum value of the significance
function, the red dots show the standard deviation of Monte Carlo samples
drawn from the Bayesian posterior, and the red curve shows the empirical error
calculated from an ensemble of simulations, all in logarithmic bins of S/N. For
this particular stellar type, different error estimates start to diverge below
S/N < 6 and the error estimator from the Fisher matrix is no longer a good
measure of the uncertainty. Panels (c)—(f) show the skewness and the kurtosis
of the Monte Carlo samples drawn from the Bayesian posterior, to demonstrate
that the posterior marginalized for the atmospheric parameters is no longer
Gaussian at low S/N. In panels (g) and (h), the red curve indicates the
expectation value of the bias Avy, as determined from a Monte Carlo sample
of the likelihood function, while the blue curve shows the same bias determined
from the maximum a posteriori method. Both bias curves are calculated in
logarithmic bins of S/N. The bias shows no significant trend over this S/N
range, but its large scatter at low S/N is obvious. These plots are qualitatively
the same for lower temperature, but more luminous, metal-poor giant stars.

6.5. Correlations of the Template Parameter Errors with
G(Vlos)

In order to assess the correlations between the measurement
error of v, and the variance of atmospheric parameters of the
best-matching template spectrum, we fitted the simulated
spectra with full Monte Carlo sampling of the posterior
probability. To illustrate the results of a Monte Carlo run, we
used scatterplots of Awy, as a function of the difference of
atmospheric parameters from their input values in Figure 6 for
a single simulated observation of the model with atmospheric
parameters [M/H] = —1.5, T;=4750 K, and log g = 2.0.
The various colors show three different Monte Carlo chains,
with 1000 samples each, which are plotted without any
thinning. The good mixing of the Monte Carlo chains is
apparent, as well as that practically no correlation between the
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Figure 5. The variance and bias of line-of-sight velocity fits to simulations of a
star with atmospheric parameters [M/H] = —1.5, T.x=4750 K, and
logg = 2.0, with and without flux correction. The statistics are calculated
from an ensemble of simulations in logarithmic bins of S/N. The blue curves
indicate the results from fitting a matching template with the same parameters
as the input model, whereas the red curves show the result from fits where we
optimized for the atmospheric parameters as well. The rest of the curves, as
indicated by the color given in the legend, show the results when we used
templates that are one or two grid points away from the input model, on the
synthetic stellar spectrum grid. Solid (dashed) lines indicate a deviation in the
positive (negative) direction from the input parameters for [M/H], T.g, and
log g. See the text for detailed discussion.

atmospheric parameters and vy, exists. For reference, the
Pearson correlation coefficients are printed in the top left corner
of each panel.

In Figure 7, we plot the histograms of correlation coefficients
between vs and the error of the template parameters for all
realizations of all models in Table 2 to demonstrate that the
correlations are indeed very small, independently of stellar type
and S/N. We also plot the distribution of the coefficient of
multiple correlations, which expresses how well v, can be
expressed as a linear combination of the atmospheric
parameters within a Monte Carlo sample drawn from the
posterior. Similar to the bivariate correlation, a value much
smaller than 1 means linear independence. The bivariate
correlations are normally distributed around O with a standard
deviation of about 0.1, which indicates the lack of any
significant correlations. This reinforces the results presented in
Section 6.4, where we observed that fitting the simulated
spectra with templates that did not precisely matched the input
parameters did not result in increased uncertainties of the line-
of-sight velocity. This is true in a broad range of S/Ns except
for high S/Ns where the effect of using a mismatched template
is more clearly detectable. On the other hand, at high S/N, our
simulations are inaccurate because we do not take any kind of
wavelength calibration error or systematics into account.

7. Discussion

7.1. Scaling Relations of o(v,,s) and Signal-to-noise Ratio

To estimate the uncertainty of line-of-sight velocity
measurements from the S/Ns of observations and the primary
parameters of the spectrograph arms, Hatzes & Cochran (1992)
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Figure 6. Results from Monte Carlo sampling of the posterior for two different
realizations of the model with atmospheric parameters [M/H] = —1.5,

Teir = 4750 K, and log g = 2.0, and S/Ns (measured per resolution element
in the MR arm) of S/N = 11.76 (top) and S/N = 2.33 (bottom). The first three
panels of each row show scatterplots of the deviations of the atmospheric
parameters from the model input vs. Av.. The colors indicate samples from
three different Monte Carlo chains. The rightmost panel of each row shows
histograms of Av,s for each Monte Carlo chain in color, whereas the black
histogram is the combined histogram of all samples. In the top left of each
scatterplot, the correlation coefficient of the two variables is printed. The small
values of the Pearson correlation coefficient indicate that v, does not correlate
with the atmospheric parameters. In the corner of the histograms, the values of
the skewness s and the kurtosis k (0 for a Gaussian distribution) of the Monte
Carlo samples are indicated. Note the different scales on the axes.

introduced the formula

oHC(vys) = 1.45 x 10 - (S/N)"' . R™1. B~1/2, (40)
where velocity is measured in units of km s~', S/N is the S/N
of the flux measurement per pixel,’ R is the dimensionless
spectral resolution, and B is the total wavelength coverage in
units of A. While the formula is certainly an approximation—
since it does not take important effects into account, such as the
varying S/N over the wavelength coverage, nor the contrast,
width, and density of the absorption lines—it captures the
primary relation between the uncertainty of the line-of-sight
velocity measurements and the square root of S/N.

Bouchy et al. (2001) pointed out that the information a
spectral pixel carries about the Doppler shift depends on the
slope of the original spectrum (after instrumental broadening)
in the pixel. They provide the formula

1o/

where W, = >
o2(f,)

UBPQ(VIOS) =cC-

1
JEW, ’
@1

to predict the measurement error of vi,,. On the other hand,
when the [9f, /6)\]2 slope is to be calculated numerically at
pixel boundaries from neighboring spectral pixels, one has to

The exact definition of S/N is unspecified by Hatzes & Cochran (1992).
Hence, we assume it was set to the same in every pixel of their simulations.
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Figure 8. Comparison of o(v},s) predictors of Hatzes & Cochran (1992, dashed
black line, see Equation (40)) and Bouchy et al. (2001, solid black line, see
Equation (41)) compared to our results from repeated simulations (blue lines)
for a low-metallicity K giant with T = 4000 K. The multiple blue lines
indicate different logarithmic binning of Av to calculate o(v}os). The red line
is a linear fit to the logarithm of the data with a slope of —0.95, very close to
the theoretical value of —1.

take the covariances into account, so the symbol ZWI, becomes
S W, =Trw'C lw, (42)

where the w vector is one element shorter than f,, and takes the
form of

W= O+ A,-H)[M]. 43)

2 Aiv1 — N
The covariance matrix is tridiagonal and can be written as

a?(f) + o*(fi.y)
a2(f)

In Figure 8, we plot the uncertainty estimates of v
calculated from the formulae of Hatzes & Cochran (1992) and
Bouchy et al. (2001), comparing their results to the empirical
errors determined from repeated simulation of the spectrum of a
low-metallicity K giant with T.g = 4000 K.

Here we introduce a new quantity, the effective line number,
which can be calculated from synthetic spectra without
identifying the individual lines. We are going to use the

ifi =j,

. (44)
ifj=i+1lori=j+ 1.

Cj=
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Figure 9. Dependence of the effective line number N.g on the atmospheric
parameters in four different projections, calculated for the MR arm. In this
wavelength range, the effective number of lines depends primarily on
metallicity and temperature and only secondarily on surface gravity, as it can
be seen in the top two panels and and bottom left one, respectively. While the
depth of the hydrogen lines grows with temperature in the range we tested, the
roughly inverse relation between T.g and Negr suggests that the calcium and
iron lines play a more significant role.

effective line number to derive a correction to Equation (40) of
Hatzes & Cochran (1992). Let us define the effective line
number as

(45)

- df;
R Z‘ dIn(\/1A) ‘/Zﬁ’

where f; is the flux in the ith pixel and ),; is the wavelength
measured at the pixel center. We use the derivative by In A
since the broadening of spectral lines scales with the
wavelength. This definition is additive in the sense that the
effective number of lines scales with the wavelength coverage
and the effective number of lines is always the sum of parts of
the spectrum. We also introduce the quantity ng, which is the
effective number of lines per resolution element.

Figure 9 illustrates the behavior of N.g as a function of the
fundamental atmospheric parameters for the models in Table 2,
where the effective line number is determined for the MR arm
configuration. The strong dependence of the effective line
number on metallicity is obvious, as well as that N.¢ decreases
sharply with increasing temperature, at least in the parameter
range of our models. This suggests that N is indeed sensitive
to metal lines instead of the hydrogen line series. N also
depends strongly on surface gravity, having a much larger
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Figure 10. The dependence of the ratio of Equation (40) of Hatzes & Cochran
(1992) to empirical measurements of o(vy.s) based on our simulations, plotted
as a function of the effective line number per resolution element as defined in
Equation (45) for the arm configurations B (blue dots), R (red dots), and MR
(black dots). Correcting the formula in Equation (40) using n.g can account for
a factor of 10 change in the uncertainty of the line-of-sight velocity as a
function of spectral type. The black line is not a fit but rather the function
0.6 - ng’*. The outlier point is an M giant, see Section 7.2 for discussion.

value for giant stars than dwarf stars of the same metallicity.
This is in accordance with our intuition that the line-of-sight
velocity of giant stars with narrow lines can be measured with
lower uncertainty at the same S/N of the flux than dwarf stars
with pressure-broadened lines.

To adopt Equation (40) to different stellar types, we calculated
the ratio of the empirical o(vy,s), as measured from our
simulations, and oyc(vies), as calculated from Equation (40), as
a function of S/N for the arm configurations B and MR. The
95th percentile of the per pixel S/N turned out to be a much
better characterization of noise in the continuum pixels than the
median of the per pixel S/N when the overall S/N of spectra
from different spectral types as compared. In Figure 10, we plot
the ratio o(vios)/oc(Vios) as a function of the effective line count
per resolution element. We find it remarkable how the points
distribute along a single line in the log—log plot even though we
did the analysis on fluxed spectra covering a broad range of
atmospheric parameters.

The black line in Figure 10 is not a fit to the data but
indicates the function 0.6 - ne}f’/ 4 that we can use to adapt
Equation (40) to different spectral types in the form

0(Vies) = 0.87 x 10° - n2/* - (S/N)"' - R™1- B~1/2, (46)

where the unit of velocity is in units of km s™'.

7.2. Different Scaling of o(v,,s) for M giants

In the bottom right panel of Figure 3, we plotted the uncertainty
of vi,s as a function of the 95th percentile S/N per resolution
element for various combinations of the spectrograph arms. The
scaling of g(vy.) is significantly different for the MR arm relative
to the other two and also differs from the scaling of o(v,s) of any
other models. The flattening of the black curve is most likely due
to the adopted definition of an overall S/N, which characterizes
the rest of the studied stellar types well.

In Figure 2, we plotted the per pixel S/N for three different
stellar types in the MR arm, as a function of wavelength, where
the top panel is for an M giant, compared to the normalized
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S/N of a metal-poor M dwarf and a metal-poor K giant. The
horizontal red line indicates the 95th percentile of the S/Ns,
which we used on the x-axis of Figure 3. The 95th percentile
was chosen to define a measure of noise, which is mostly
sensitive to the continuum pixels where the S/N is the best—as
in the case of absorption spectra. Figure 2 clearly shows that
the mean and median S/N cannot capture the continuum pixels
while the 95th percentile works for most stellar types except
when the absorption features are so strong that we see no
continuum pixels anymore. As a consequence, the M giant is an
outlier on the rest of the plots as well.

7.3. Uncertainties at Low Signal-to-noise Ratios from Markov
Chain Monte Carlo

We have seen in Section 6.3 that the uncertainty estimate of
Vios Calculated from the Fisher matrix becomes unreliable at low
S/N and significantly underestimates the empirical error
determined from repeated simulations. On the other hand,
Monte Carlo sampling of the same objective function yields
uncertainties consistent with the empirical errors. Even when
flux correction coefficients are set aside, a full Monte Carlo
sampling of the posterior of v, and the template parameters
has a high computational cost compared to evaluating the
Fisher matrix at the best-fit parameters.

Nevertheless, some applications might benefit from measur-
ing vy from a large number of stellar spectra observed at very
low S/N. For example, the surface density of relatively bright
stars of faint satellite galaxies of the Milky Way might be too
low to fill the fibers of an instrument similar to the Subaru PFS.
However, measuring the line-of-sight velocity of a large
number of fainter stars—even if only with high uncertainties
—might carry useful information when the uncertainties are
estimated correctly and the data are treated in a statistically
robust way.

8. Conclusions

We have investigated the dependence of the uncertainty of
line-of-sight velocity measurements on the S/N of the flux in
the case of a wide selection of stellar types that are relevant to
Galactic archeological observations. We found that at inter-
mediate S/N, the uncertainty of v}, scales with the square root
of S/N as expected from theory, but significant deviations arise
at low S/N. We have shown that asymptotic estimators of the
uncertainty, such as the Cramér—Rao lower bound, calculated
from the Fisher matrix, is unable to correctly characterize
0(vios) When measured from noisy spectra, but a full Monte
Carlo sampling of the posterior probability can account for the
empirical variance that we see in repeated simulations of the
template fitting.

We have calculated the elements of the Fisher matrix for the
parameters of the best-fitting template spectrum and also given
analytic results for the uncertainty of the line-of-sight velocity.
We have shown how the full covariance matrix of the flux
correction function coefficients and the template parameters
can be calculated efficiently when the systematics of the flux
calibration of the observation or the differences between the
template spectrum and the observation require correcting the
stellar continuum with some wavelength-dependent correction
function in the form of a linear combination of base functions,
such as polynomials.
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We have defined a new quantity, the effective absorption line
density, which can be used to estimate the expected uncertainty
of line-of-sight velocity measurements from a spectrum with a
certain stellar type, as a function of the continuum S/N. The
method works as well as the uncertainties calculated by
Bouchy et al. (2001) and gives more realistic results than the
formula of Hatzes & Cochran (1992).

Our work informs best practices for estimating uncertainties
in vjos. Our conclusions are relevant to the new era of massively
multiplexed spectroscopy, featuring spectrographs such as
Subaru PFS, DESI, WEAVE, 4MOST, and VLT/MOONS.
These spectrographs will inevitably observe many—perhaps a
majority—stars at low S/N where we have found that simple
estimators of uncertainty are inaccurate. We advocate for the
computation of full posterior v, distributions for science cases
where accurate estimates of uncertainty are important, such as
the computation of dark matter density profiles.
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Appendix A
Properties of the Fisher Matrix

In Sections 4.2—4.5, we calculated the Fisher matrix of the
significance function to estimate the uncertainty of vy
measurements. Here we outline the calculations necessary to
evaluate the formulate numerically, as well as show that the
uncertainty of velocity measurements decreases when the
template parameters are allowed to vary. We also prove that the
formulae introduced in Sections 4.3 and 4.4 for simultaneously
fitting the Doppler shift, the template parameters and the
coefficients of the envelope correction are correct.

A.1. Numerical Evaluation Scheme for the Fisher Matrix

While Equation (18) is an intuitive analytic result, this is not
the most convenient way to compute the Fisher matrix
numerically. In case of high S/N, values of the significance
function v become large, and in the second derivative, one
needs to take small differences of large numbers, leading to
fairly large numerical errors. We can minimize the errors by
calculating the relevant second derivatives as pixel-wise sums
over the numerical derivatives of the template spectrum. In
order to facilitate this, we will introduce the following set of
new functions containing the derivatives of the models

o = 2 2 COED (A1)
p 9p

o= 3 mp(Zo)Tp(Zo) ’ (A2)
p Op

T mp/(Zo)T,/;(Zo) , (A3)
p Tp

oo = 3 20 G0, (A4)
p Ip
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oy = 32 L2100 (AS)
p p

o= 3 s m,,z(ZO)’ A6)
P p

bor = Z JCI’LZ(ZO). (A7)
p Tp

It turns out that the function vy, will never appear in the Fisher
matrix. We can also define the matrix W as

~ (%oo Yo
\I’_('(/JOI %1).

Also note that 1y = x(z0) = xo- The ensemble averages of the
different terms taken at the maximum of the significance
function are the following

()0 =A0Pgys  (¢')o = Aoy,
(X)o = o0,  (X")o = 2 %01,

(A8)

(") = Ao Py,

(X" = 2(h11 + o2).
(A9)

At the maximum of the significance function ¢y = Ao and
2¢01/Poo = Yo1/1oo hold. We can use this and substitute the
ensemble averages of the derivatives into the curvature matrix
at the true position of the maximum, giving us the Fisher matrix
in the form of

A
_ Yoo i 0%o1 . (A10)
Ao Ag (Y11 + Yo2) — Aoy,
We can write the determinant of F as
| F | =Ag1 V| + Agoo(Aothor — $pp)- (Al1)

The last term in the determinant should go to 0 as we approach
the optimal template. Now we can compute the a? element,
which gives the Cramér—Rao lower bound on the error of line-

of-sight velocity measurement as

2= Yoo, (A12)

|F|
We can use Ag= o/ X0 to reduce this to quantities that are
already calculated during the likelihood evaluation. In any case,
Ay is dimensionless, x( scales with the inverse variance, and ¥
scales as the square of the inverse variance. Overall, ag should
approximately scale with the variance of the noise, and its units
should be km s~ from ||

A.2. Including the Template Parameters

Including the template parameters into the optimization—as
opposed to only optimize for the line-of-sight velocity with a
fixed template—involves taking the partial derivatives of the
significance function with respect to the atmospheric para-
meters 0,. The curvature matrix of the likelihood surface will
be larger, augmented by a row and column for each parameter,
but the expressions for the matrix elements will be very similar.
Here we will use the subscript z to denote differentiation with
respect to z, and « and [ to denote differentiation with respect
to the template parameters. Omitting the zero subscript for the
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maximum, the augmented Fisher matrix can be written as

X P1 ¥s
2
Y1 193
$p —wint — —wigt+ ——
|F|=]|"" X | X (A13)
0Py
(pu _I/V(‘tl + M _Vl/(lﬂ + O._/j
X X

In order to calculate the Cramér—Rao bound for the Doppler
shift, we need to calculate the zz matrix element of the inverse
matrix. This requires calculating the determinant of the matrix

X Y3

X

, (A14)

Y —Vlap +

where we eliminated the column and row of F corresponding to
the zz element. The velocity error bound a? is given by

ol = ISt (A15)
| F |

We can get a relatively simple expression if we rewrite these
matrices in a block form as

F:(A B) and S:(a b),
BT D b d

where B and b are row vectors. The determinants of F and S
can be expressed as

|F|=|A||D—-B'A'B|=|A|lG|, (A7)
|S|1=lalld-b'a'b|=]|allg]l (A18)

where we introduced G=D —B"A"'B and g=d — b"a"'b.

Let us now consider our actual problem where, in the
optimum of the likelihood function, the matrix blocks will be
A=x,B=(p, ¢.),and A~' =1/, thus

Gij = —wy,

(A16)

(A19)

where i, j = (z, a...) go over z and the atmospheric parameters
of the template. Similarly

8 = —Vaps (A20)

but the indices only run over the templates parameters «. Here
g is the Hessian of the log likelihood at the maximum point,
with respect to the template parameters, and its determinant is
the Gaussian curvature. With these transformations, the
variance of the Doppler shift becomes much simpler. With

|A| =|a]| = x, it can be written as
2 |g |
ol =-2" A21)
© G| (
Let us separate off the first row and column of G and write it as
I G
G = (_WM 25 ) (A22)
Knowing that G;; = —vv,, the determinant of G can be
expressed as
4% %
1Gl=—w | g+ —— | = —wlgl,  (A23)
VZZ
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where
A v
gm’i = gryﬁ + (_)Val/& (A24)
T
with which the variance becomes
ol = (—1 )—If’: X (A25)
v )| gl

One can see how this is different from Equation (20), where the
template parameters were not considered. We will now show
that| g | /| € | < 1, which indicates that the error of the line-
of-sight velocity measurement decreases when the template
parameters are optimized as well.

Let us factorize the symmetric, positive definite matrix g as
g=U"SU, where X is diagonal and rotate the v., partial
derivatives of the significance with U as

T
Umy Vy.

(A26)

T
s3 = vy Usps Sa =
Since the determinant is invariant under the rotation, we can

write | g | as

[g]= ‘ UT™SvU + (L)UTSTSU ‘ = ‘ >+ (i)sTs

VZZ VZZ

(A27)

According to the determinant lemma, see Appendix B.3, the
determinant of a matrix of this special form (diagonal plus an
outer product of a vector with itself) can be calculated
analytically as

«

2
mhﬂm@+z%} (A28)

where ), are the eigenvalues (diagonal elements) of 3. This
yields the very intuitive result of

(A29)

0, = 2
—z )1 _i_z)s\i

which relates to the simple case where we only maximized the
likelihood to get the amplitude and the line-of-sight velocity,
but not the atmospheric parameters. Furthermore, it shows that
the more parameters we optimize for, the lower the uncertainty
of the inferred line-of-sight velocity will be.

A.3. Linear Model for Envelope Correction

We made the assumptions in Sections 4.3 and Appendix A.2
that the observed spectrum is noisy and the template differs
from the observation only by a linear amplitude; this
assumption is obviously too simple. It is reasonable to expect
that the models need to be corrected with a smooth multi-
plicative function of wavelength to account for small errors in
the spectrophotometric calibration, or slight differences in the
continuum of the template and the real spectrum. As introduced
in Section 4.4, we model the flux correction with a function that
is a linear combination of functions ¢,()), such as Chebyshev
or Legendre polynomials, which only depend on the
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wavelength in the form of

N
A()\) = Z Anqn()\)-

n=0

(A30)

The orthogonality of the functions is not necessary but the
gn(),) vectors must be linearly independent to ensure that we
can always solve for the best-fit A, coefficients when all
template parameters, including z, are given.

We can now rewrite the log likelihood using a vector
notation, where the quantities A, ¢, and x are vectors and
matrices of dimension of N + 1, as

LA, z) =ATp — %ATxA, (A31)

where (z) is a vector-valued function and x(z) is matrix-
valued function of the Doppler shift, defined as

@
o = X g o, (A32)
p Op
2
@ = 3 6O 4, ) T2 (A33)
P 9p

These are the natural extensions of Equation (4) from
Section 4.1, with the addition of the array of multiplicative
functions ¢g;. Evaluating the partial derivatives of £ with
respect to A, and z, an equating them to 0, we get

oL
= _ YA = 0,
3 @(2) x(2)

oL _ ATp/(7) — lATx’(z)A =0,
0z 2

where we denoted the differentiation with respect to z by the
prime and continued to use vector notation. Since x is a
symmetric, positive definite matrix, it has an inverse, and from
the first equation we can solve for A at the maximum point of

(A34)

(A35)

L, denoted by the zero subscript. The solution of
Equation (A34) is simply
Ao = X, ' Po Ag = X - (A36)

The solution of Equation (A35) gives us the line-of-sight
velocity. At the maximum point with respect to the A,
coefficients, it becomes

1 1
fﬁ%fgﬁxwozﬁ{%fgnm]:& (A37)

which means that the quantity in the square brackets, composed
of the first derivatives of ¢ and Y, is orthogonal to A, at the
maximum. Substituting the values of A, from Equation (A36),
we can rewrite this in the form of

aL_T—lllT—l/—l
62 X - 900X0 ‘100 2‘P()X() X()X() Po-

(A38)
Here and later we will be using the identity

K' = —Kx K, and K" = —Kx K + 2Kx Kx K, (A39)
for the derivative of the inverse of a symmetric invertible

matrix, where K = Xo_]' With this, we can rewrite
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Equation (A38) in the more suggestive form of

oL Tl I 1.
D2 OZ%XO Yy + E%(XO ) @
(e 1e)
— 9 1oy —1p) |- A40
Py 2‘PX ¥ S ( )

The expression in the parentheses is identical in function to the
significance function v, defined in Equation (10) of Section 4.1
as /2 = ¢*/x. The significance function in vector form can
be written as
2
LA

> X P
which can be evaluated at any Doppler shift z, and whose
maximum coincides with the maximum of L.

(A41)

A.4. The Fisher Matrix in Vector Form

Similarly to Section 4.1, we can calculate the elements of the
Fisher information matrix. First, let us write down the second
derivatives of the log likelihood, which are

1L

X (A42)
0*L
oAp: ¥ XA (A4
2
—ng —ATy" — %AT x'A. (Ad4)

The Fisher matrix is the negative of this, evaluated at the
maximum point as

Xo *902) + XGAO

F= 1 . (A45)
—@) +Ag xy —Ag Py + ~40 X(Ao

This is a symmetric block matrix of size N + 2, composed of an
N + 1 matrix x, augmented by a single row and column that
corresponds to the Doppler shift. We can use the so called
bordering formula, see Equation (B1), to evaluate the elements
of the inverse of the Fisher matrix S=F 71, block by block,
starting with S, as

R @y + Lag X4 Ao
S 2
— (@ — Ag X)X, (¥} — XoAo). (A46)
1 _
= —Ag ) + SAI X540 — 95 X, ¥
— AJ X)Xy XhAo + A XhXo Pl (A47)

where we already aggregated the symmetric terms. Let us now
show that this term is exactly —vyv by using the expressions
from Equations (B5), (B6), and (A36)

()
Sl ey
0z2\2

1
= oy Koy + Engé’LPo + ¢y Kowy + 20, Koy (A49)

T, —1

1
=—(p'x 'v)|, (A48)
2 0

0

20

Dobos et al.
1 B
=A¢ X5 — A0 XgAo + 5 X, ')
+AJ Xy Xo ' XpAo — 240 XX, Pl (A50)

We can thus express S,, through v/ in a much simpler form
as

1

S

and the rest of the matrix elements are

W = —1/01/6/, (A51)

_ 1 _ _
S = Xol + ZXOI(*‘PG + XE)AO)(*‘PBT + AOTXE))XO L

(A52)
Si2 = =X, ' (=) + XhAo)/ 1. (AS3)
Soi=—(—¢ +Ag X0 X,/ - (A54)

Next, we define the vector B for the first derivatives as

By = X, ' (¢} — Xx(A0)- (A55)

With this, the expression of inverse of the Fisher matrix
simplifies considerably to

-1 BOB() BO
0 Y/ /
S — T”‘”’O Yo¥o (A56)
B! 1
Voy(/)/ Vol/g

To us the most important is the S,, element. This is in exact
agreement with the previous, scalar result, except that v* is
calculated as a quadratic form of ¢ and x'. The rest of the
inverse matrix can be calculated numerically using the
formulae provided above.

Appendix B
Matrix Identities

In the paper, we use several identities to aid in the inversion
of matrices and element-wise derivatives of matrices. Here we
summarize these identities along with some explanation.

B.1. The Bordering Formula

To analytically calculate the inverse of the Fisher matrix, we
used a matrix identity called the bordering formula. Here F is a
symmetric matrix of size N+ 1, built by padding an existing
invertible square matrix M of size N with an extra row and column
in a symmetric fashion, using the vector d and the scalar ¢ as

Fl(M d)l M+ M 'dd"™M "/ —Md/p
d’ ¢ —d™ '/ 1/p )

(BD)
where

w=c—d'Md. (B2)

B.2. Derivative of an Inverse Matrix

This formula deals with computing the element-wise
derivative of a matrix inverse. Let us take a symmetric
invertible matrix 7y, and denote its inverse as K=~ . We can
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show that the derivative of K can be calculated as
K' = —Kx'K. Let us start from the equality

1=xx"=xK. (B3)
By differentiating the above equation we arrive at
0=x'K + xK' (B4)
Rearranging this gives
K' = —KxX'K, (BS)
from which we can calculate the second derivative as
K" = -2K'x'K — Kx"K = —Kx"K + 2Kx'Kx'K. (B6)

B.3. The Determinant Lemma

The determinant lemma states that the determinant of a
matrix in a special form (diagonal plus an outer product of a
vector with itself) can be calculated as

|[Awv™ | = |A |1 +vTA 'w), (B7)

where v and u are arbitrary column vectors.
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