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ABSTRACT

Automatic harmonic analysis of symbolic music is an im-
portant and useful task for both composers and listeners.
The task consists of two components: recognizing har-
mony labels and finding their time boundaries. Most of the
previous attempts focused on the first component, while
time boundaries were rarely modeled explicitly. Lack of
boundary modeling in the objective function could lead to
segmentation errors. In this paper, we introduce a novel
approach named Harana, to jointly detect the labels and
boundaries of harmonic regions using neural semi-CRF
(conditional random field). In contrast to rule-based scores
used in traditional semi-CRF, a neural score function is
proposed to incorporate features with more representa-
tional power. To improve the robustness of the model to
imperfect harmony profiles, we design an additional score
component to penalize the match between the candidate
harmony label and the absent notes in the music. Quantita-
tive results from our experiments demonstrate that the pro-
posed approach improves segmentation quality as well as
frame-level accuracy compared to previous methods. The
source code used in this paper is available on GitHub 1 .

1. INTRODUCTION

In music, harmony is the sound resulted from two or more
pitches being performed together. It is the vertical aspect of
music [1], and is essential for both music creation and per-
ception. During music analysis, a harmony label is often
assigned to a music segment that is harmonically coher-
ent. Many composers use harmonic progressions to set up
a musical template in which texture could then be filled [2].
For listeners, harmonic structure is a crucial mid-level rep-
resentation of music that can influence the perception of
other music elements such as melody and rhythm [3].

The task of harmonic analysis aims to find the correct
segmentation of a music piece and to identify the corre-
sponding label for each segmented region. These two goals
are closely related. Regions with strong confidence of a
candidate harmony label tend to possess the boundaries of

1 https://github.com/QiaoyuYang/harana
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a true segmentation [4]. On the other hand, the oracle seg-
mentation could help the prediction of the true underlying
harmony for the notes in each region [4]. Therefore, to
achieve successful analysis of harmony, both of the two
goals as well as their relationship should be considered.

Targeting the two indispensable components of har-
monic analysis simultaneously, we propose an approach
to jointly predict the boundaries and labels of harmonic re-
gions using neural semi-Markov conditional random field
(semi-CRF). It is well-known that the harmonic regions in
music do not always share the same length [5]. Compared
to conventional sequence labeling models, semi-CRF is
more suitable for the task because it allows for various
lengths among the labeled regions [6].

In the original setting of semi-CRF, a score is com-
puted in each segmented region using the weighted sum
of rule-based features [6]. However, rule-based features
are bounded by pre-defined rules and might not exploit
the interaction between notes and other intermediate mu-
sic representations deeply enough. To solve this problem,
we design a neural scoring function that first estimates
the frame-level harmony distributions using a neural net-
work and then adapts them to candidate harmony labels
with an attention mechanism. The attention mechanism
could make the scoring module more efficient by concen-
trating on sub-regions that are more harmonically related
to the candidate label. In addition, an absence score is
added to the scoring function to improve the robustness
of the model to imperfect harmony profiles of the music.
Through experiments we find that the proposed architec-
tural components collectively yield improvement on both
segmentation quality and harmony labels accuracy. We fo-
cus on MIDI-like symbolic music input in our experiments
but the method could be easily adapted to audio.

In summary, our contributions include:

• Proposing the first neural semi-CRF model to jointly
estimate harmony labels and their time boundaries;

• Proposing an attention-based score function to alle-
viate the influence of extra non-chordal notes and
missing chordal notes; and

• Proposing a novel absence score to improve the ro-
bustness to imperfect harmony profiles.

2. RELATED WORKS

Due to the importance of harmony in music, a substantial
amount of automatic systems have been designed for har-



monic analysis. Early systems tended to focus on using
music audio as input and apply domain knowledge from
music theory. To encode the audio waveform, a time-
frequency representation, or spectrogram, is usually ex-
tracted using the short-time Fourier Transform. Then, with
the observation that it is the pitch class of notes rather than
the absolute pitch height that affects the harmonic content,
a common practice is to reduce the spectrogram to a chro-
magram with 12 bins corresponding to the 12 pitch classes.
In the decoding stage, the chromagram can be matched to
predefined chord profiles [7, 8] or made to emit explicit
labels using probabilistic models such as hidden Markov
model (HMM) [9–11] or CRF [11].

With the increasing popularity of deep learning in the
past decade, end-to-end models based on deep neural
networks have received extensive attention [12–16]. To
model the temporal evolution of music context, Boulanger-
Lewandowsk et al. extracted audio features using a re-
current neural network (RNN) [17]. To better aggregate
context information and learn intermediate representations
with a temporal hierarchy, Zhou and Lerch used a convo-
lutional neural network (CNN) with low-pass filters [12].
McFee and Bello further combined CNN and RNN in the
feature encoder for chord recognition [13]. As a pow-
erful attention-based architecture designed for long-term
sequence modeling, transformers have also been incor-
porated in some recent approaches to harmonic analysis
[14, 15].

While the harmonic progression or context informa-
tion can be modeled with various techniques, the majority
of existing methods do not directly optimize for region-
level output. Some methods adopt a two-stage approach,
where the first stage outputs frame-level chord labels and
the second stage smooths frame-level labels with post-
processing [9–11, 18–20]. However, different from other
simple sequence labeling tasks such as part-of-speech tag-
ging, a harmonic label could correspond to a region span-
ning multiple frames. Although temporal smoothing by
HMM or CRF regresses some sporadically outliers back
to the harmonic streams, these models could still suffer
from segmentation errors. Masada and Bunescu relaxed
the constraint on fixed-size time-span of the output predic-
tion [21]. They used a generalized variant of CRF, semi-
CRF, to jointly detect chord labels and their boundaries.
However, the features to the semi-CRF are entirely rule-
based, which means they are not necessarily optimal for
the end task. In this work, we build on the semi-CRF
framework and explore neural features and scoring tech-
niques that are jointly optimized for the end task - harmony
labeling and boundary prediction.

3. METHODS

In our proposed model, Harana, we first estimate the har-
mony (including root, quality, and pitch activation in this
work) at the frame-level; then we aggregate the frame-level
estimation into region-level segment scores based on can-
didate segments; finally, we use semi-CRF to find the best

segmentation candidate and its corresponding labels. We
focus on symbolic music input in our experiments. The
following subsections describe the model in detail.

3.1 Data Representation

3.1.1 Symbolic Music Input

Given a symbolic music piece, we slice it into short frames
of one eighth of a beat long. We use beat instead of note
duration in order to represent the basic time unit because
music with different meters may have different distribu-
tions on the note length. The pitch information in each
frame is summarized with a 12-d pitch class distribution
vector, which describes the normalized distribution of the
duration of each pitch class in the frame. To help distin-
guish between harmonies with the same pitch class vector,
we also include the bass note (the lowest note) in the input
to the model; it is represented as a 12-d one-hot vector in-
dicating the bass pitch class in each frame. Combining the
pitch class distribution and the bass note, the input to the
model is a sequence of 24-d vectors.

3.1.2 Harmony

A popular representation of music harmony in symbolic
music is the Roman numeral encoding, where the full har-
monic context of a label, including tonic and degree, is
considered [22]. However, the combination of all the com-
ponents produces 47k different harmony labels, which are
intractable for a classification model with limited training
data. A possible solution is to classify each harmony com-
ponent independently, but this is incompatible with semi-
CRF because the boundary of each component must be the
same. As a compromise, we use a subset of the harmony
components, root and quality, and model them jointly.

The root is represented as a 12-d one-hot vector cor-
responding to the 12 pitch classes. The quality is repre-
sented as a 10-d one-hot vector corresponding to 10 com-
monly used classes. In addition to root and quality, we
use another harmony representation, the pitch class activa-
tion vector, in the neural score function. Previous works
have shown its effectiveness as a label encoding for har-
monic analysis [13]. These vectors are 12-d multi-hot and
are circularly shifted from the pitch-class activation vectors
rooted at C.

3.2 Semi-CRF

Semi-CRF is a probabilistic model for sequence labeling
with a variable label-span. Given a sequence of input
frames X = ⟨X1, X2, ..., XN ⟩, semi-CRF provides the
conditional probability of the sequence of contiguous non-
overlapping labeled segments Y = ⟨Y1, Y2, ..., YK⟩, where
N is the number of frames and K is the number of seg-
ments. Since the labeled segments could span multiple
frames, they are represented as three-dimensional tuples
Yi = (ui, vi, li), where ui, vi and li respectively denote
the onset, offset and label of the segment. In the context
of harmonic analysis, X represents the input music frames
and Y represents the harmonic regions.



Figure 1: The semi-CRF architecture in the context of harmonic analysis. The total score is computed from music input and
a set of candidate harmony segments. Numbers in the blue squares are the frame indices. Numbers in the green rectangles
are the indices of candidate harmony segments.

The conditional probability given by semi-CRF takes
the form of

P (Y |X) =
eWF (Y,X)

Z(X)
, (1)

where F is a feature vector computed from X and Y , W
is a learnable weight matrix, and Z =

∑
Y eWF (Y,X) is

a normalization factor summarizing all possible segmenta-
tion and labeling of the input sequence. In this work, we
propose to generalize the weighted feature score to a neural
score function S(Y,X) so that

P (Y |X) =
eS(Y,X)

Z(X)
. (2)

With the assumption that the harmony labels are Marko-
vian given the music input, the score function could be de-
composed into the sum of segment-level scores that are de-
pendent only on the current and the previous segments.

S(Y,X) =
K∑
i=1

Si(Yi, X;Yi−1). (3)

To simplify the notation, we treat Yi−1 as a parameter for
the i-th segment’s score function and omit it in the follow-
ing sections. Figure 1 demonstrates the structure of semi-
CRF in the context of music harmonic analysis.

3.3 Frame-Level Estimation

Followng Micci et al. [23], the frame-level estimation of
harmony information is achieved with a DenseNet-GRU
architecture. The DenseNet-GRU module is followed by
fully connected layers and finally the vectors correspond-
ing to different types of harmony information are estimated
using separate linear heads. The softmax function is used
to produce the class distributions of the root and the qual-
ity, whereas sigmoid is used to find the activation of each
pitch class. Mathematically, the computation of frame-
level harmony estimation can be formulated as

E(n) = MLP (GRU(DenseNet(Xn))),

D̂R(n) = Softmax(FCR(E(n))),

D̂Q(n) = Softmax(FCQ(E(n))),

P̂C(n) = Sigmoid(FCPC(E(n))),

(4)

where Xn is the nth frame of the input music. D̂R(n),
D̂Q(n) and P̂C(n) represent the root distribution, quality
distribution and the pitch class activations of the estimated
harmony for a frame.

3.4 Attention-Based Score Function

As described in Eq. (3), the CRF model evaluates possible
sequences of harmony labels and their segmentation. For
each segment, i.e., a candidate harmony region, we need to
aggregate the frame-level harmony information (root, qual-
ity and pitch activation) computed from Eq. (4). A simple
method would be taking the average or the mode, but we
note that a harmonic region is not likely to contain homo-
geneous harmonic content. In order to dynamically weigh
the harmonic importance of each frame within a region, an
attention module is proposed to focus on the frames that
are most similar to the candidate harmony label. In partic-
ular, the scaled dot-product attention [24] is used:

A(Q,K, V ) =

∑N
i=1 Q

TKiVi√
d

, (5)

where Q is the query vector, K is the key sequence, V is
the value sequence and d is the vector size.

In the context of our model, the estimated frame-level
harmony sequence of a candidate harmony region serves
as both the key and value while the candidate region-level
harmony itself is the query. Then, the candidate-informed
(CI) estimation can be computed as

ĤCI(Yi) = A(H(li), Ĥ(ui : vi), Ĥ(ui : vi)), (6)

where li is the i-th candidate harmony label, and H(li) is
its harmony representation, which can be root DR, quality
DQ or pitch class activation PC as defined in Eq. (4).
Variables ui and vi are the first and last frames of the ith

harmonic region Yi, and Ĥ(ui : vi) is the vector sequence
of estimated frame-level harmony representations from the
music input.

Now that we have a single embedding vector to summa-
rize the harmonic content in the i-th candidate region, the
score of assigning the candidate harmony label li to this
region can be described by the similarity between the can-
didate harmony label embedding H(li) and the candidate-
informed music embedding ĤCI(Yi). Dot product is used



Figure 2: The proposed pipeline of the neural encoder and scoring function.

to calculate the similarity:

SH
i (Yi, X) = H(li)

T ĤCI(Yi). (7)

To further model the transition probability between adja-
cent harmony labels and enforce more inductive bias in de-
coding, a transition score between segments is computed:

ST
i (Yi) = T [li−1, li] + (vi − ui)T [li, li], (8)

where T is the transition matrix containing log-
probabilities of harmony transitions at the frame level. It is
pre-computed from the ground-truth labels in the training
data.

Combining the similarity score and the transition score,
the score function of a candidate harmony region is

Si(Yi, X) =
∑
H

SH
i (Yi, X) + λST

i (Yi), (9)

where λ is a hyperparameter to balance the two score com-
ponents. Figure 2 illustrates the overall structure of the
neural front end and the scoring function.

3.5 Absence Score

In Eq. (7), the comparison between the candidate-informed
music embedding ĤCI with the candidate harmony repre-
sentation H indicates the likelihood of the candidate har-
mony. However, this comparison may not be robust when
there are many non-chordal notes or missing chordal notes
in the estimation. In this case, the estimated class distribu-
tions D̂R and D̂Q in Eq. (4) would be relatively flat and
the pitch class activation vector P̂C would not align well
with a chord template. In other words, the neural front-end
may not sufficiently suppress non-chordal notes and rec-
ognize missing chordal notes to produce class distributions
discriminative enough for the semi-CRF to decode the har-
mony. To improve the robustness of the model to such
issues, we introduce an absence score to allow the model
to filter out pitch activations that are not active within the
input music, the majority of which represent non-chordal
notes that should not intersect with chordal notes of the un-
derlying harmony. To compute the absence score, the com-
plement of the input pitch class vector is sent to the neural

front-end. That means the input to Eq. (4) is transformed
by

Xn[1 : 12] = 1−Xn[1 : 12]. (10)

The harmony information estimated from the inactive mu-
sic Ĥinact are then compared with the candidate harmony
vectors H(li). The similarity between them should be min-
imized. In summary, the absence score of a candidate har-
mony region is

ASH
i (Yi, X) = −H(li)

T Ĥinact
CI (Yi). (11)

When the absense score is used, the complete score func-
tion becomes

Si(Yi, X) =∑
H

SH
i (Yi, X) +ASH

i (Yi, X) + λST
i (Yi),

(12)

3.6 Optimization

For training, both the input music frames and the ground-
truth harmony label segments are provided. The goal is
to update the model parameters such that the probability
computed in Eq. (2) is maximized. This is equivalent to
minimizing the negative log likelihood (NLL) loss:

NLL(θ) = − logPθ(Y |X)

= log(Zθ(X))− Sθ(Y,X),
(13)

where θ are the model parameters. We then compute the
gradient of the loss with respect to the parameters to train
our model using gradient descent.

During inference, where only the input music frames
are provided, the goal becomes finding the correct seg-
mentation and the corresponding labels that maximize the
probability P (Y |X). Since the normalization factor as a
sum of exponential scores stays positive, maximizing the
score function S(Y,X) suffices to decode the segments
and labels.

In both training and inference, we used the algorithms
based on dynamic programming proposed in the original
semi-CRF paper to expedite the optimization process [6].



4. EXPERIMENTS

4.1 Data

A collection of datasets from various sources [22, 25–27]
organized by Micchi et al. [28] is used to train and evaluate
the proposed architecture. Table 1 summarizes the statis-
tics of the data included in our experiments. MusPy [29] is
used to read the compressed MusicXML files and a parser
adapted from [28] is employed to handle the proposed data
representations. To increase the size of the dataset and help
alleviate possible data imbalance, each piece is transposed
to 12 different keys. The dataset is split into disjoint sub-
sets for training and testing with a 2:1 split.

4.2 Implementation Details

Following the original paper for faster training [30],
DenseNet is implemented in three separate blocks. 1-D
convolution along the time frame dimension is used in
each convolutional layer. Guided by the observation that
harmony changes usually occur on average at a lower fre-
quency than the frame rate, pooling layers are added be-
tween blocks to reduce the temporal resolution of the har-
mony output.

To ensure continuity and completeness of harmony re-
gions in the training samples, we force the sample bound-
aries to be aligned with measure boundaries. A sample
is chosen as 96 frames because it is divisible by all the
common measure lengths existed in the dataset. Addition-
ally, to avoid over-sampling from music pieces with longer
length, the piece index is sampled uniformly first before a
music sample is selected from the piece.

The entire pipeline is implemented using PyTorch.
Adam optimizer is applied with learning rate of 10−4 and
weight decay of 10−2. Dropout with rate 0.2 is added be-
tween GRU layers and after each hidden fully-connected
layer to avoid over-fitting. The λ in Eq. (12) is chosen
empirically to be 0.001.

4.3 Evaluation Metrics

The task of music harmony analysis is two fold: recogniz-
ing the correct labels and finding the correct segmentation
corresponding to the labels. To obtain a full picture of the
model performance, we used two types of evaluation met-
rics to assess both aspects of the task.

First, the frame-level accuracy is computed for both root
and quality. The accuracy on a reduced dictionary of qual-
ity including only major and minor is also reported due to

Pieces Crotchet Chord Annotations

BPSFH 32 23554 8615
Roman Text 82 18208 7935
Tavern 27 20673 10723
Lopez 180 31367 16666

Table 1: Summary of statistics of the datasets.

its prevalence in the literature and adequacy in many prac-
tical uses. During training, the accuracy is computed at
the sample level. During inference, the result is averaged
across all frames in a song.

The other evaluation metric focuses on the segmenta-
tion quality of the output. We use the standard segmenta-
tion scores from the mir_eval package [31,32]. The scores
are based on directional Hamming distance and consider
the overlap between the estimated harmony intervals and
the ground-truth intervals. The directional Hamming dis-
tance between the set of estimated intervals Î = {Îi} =
{[ûi, v̂i]} and the set of ground-truth intervals I = {Ii} is
computed as the following:

DHD(Î, I) =
∑

Îi∈Î (|Îi| −maxIj∈I |Îi ∩ Ij |))∑
Îi∈Î |Îi|

.

(14)
When a harmony boundary is missing from the estima-
tion, an estimated harmony interval overlaps with mul-
tiple ground-truth intervals, but the maximum overlap is
bounded by the length of the ground-truth intervals, leav-
ing a large portion of the estimated interval not sub-
tracted hence a large distance value. Therefore, a large
DHD(Î, I) often indicates under-segmentation, while a
large DHD(I, Î) often indicates over-segmentation. To
summarize the two directional distances in a single metric,
the overall segmentation quality score is computed as

SQ = 1−max(DHD(I, Î), DHD(Î, I)). (15)

4.4 Baseline Models

Three baseline models are included in our experiments
to demonstrate the performance improvement of our pro-
posed method. The chosen baselines are all relevant to our
model by sharing parts of the architecture. Since the neu-
ral front-end of Harana is CRNN, we first test if a plain
CRNN model [23] could achieve comparable results. A
second baseline model, frog [28], also relies on CRNN to
extract music features. In contrast to our model, it uses a
neural autoregressive distribution estimator (NADE) to de-
code the harmony label. At the decoding stage, it defines
an order of the harmony components and iteratively predict
the next component conditioned on the current component.
The same output harmony categories of root and quality
output are considered in the NADE decoder. A third base-
line worth comparing to is the rule-based semi-CRF pro-
posed by Masada and Bunescu [21]. It uses handcrafted
rules as features to compute the segment scores in semi-
CRF. For simplicity, we implemented the two most impor-
tant features, chord coverage and segment purity, in our
experiment. Chord coverage measures what percentage of
chordal notes are covered by the music segment while seg-
ment purity describes what proportion of notes in the music
segment are indeed chordal notes.



Model Root Acc Quality Acc Overall Acc Under Seg Over Seg Overall Seg
Harana 0.744 0.743 0.651 0.722 0.747 0.649
Harana - no semi-CRF 0.732 0.715 0.634 0.678 0.740 0.639
Harana - no Attention Fusing 0.741 0.738 0.650 0.716 0.749 0.645
Harana - no Absence Score 0.743 0.746 0.643 0.719 0.748 0.650

Table 2: The result of ablation studies summarizing the effect of removing each proposed component of the model on both
frame-level accuracy and segmentation quality.

Model Root Quality Majmin Overall
CRNN 0.735 0.714 0.865 0.634
frog 0.733 0.542 0.815 0.459
RuleSCRF 0.684 0.645 0.847 0.600
Harana 0.744 0.743 0.886 0.651

Table 3: The frame-level accuracy for different models.

5. RESULTS

5.1 Frame-Level Accuracy

Table 3 shows the result on frame-level accuracy. It can be
seen that Harana outperforms the baseline models on all
the measures. The large gap between Harana and the rule-
based semi-CRF model demonstrates the value of a neural
score function. Without a neural front-end, the rule-based
model even has weaker performance than the plain CRNN.
We also notice that frog has lower accuracy than the plain
CRNN model. While the autoregressive decoding in frog
could help enforce coherence between harmony compo-
nents, it may require the full spectrum of the harmony com-
ponents including key and degree. However, only root and
quality were used in our experiments. Complete harmony
information is difficult to collect so we believe Harana has
a greater potential to leverage larger datasets in the future.

5.2 Segmentation Quality

As shown in Table 4, Harana provides improvement on
segmentation quality compared to other models. Higher
under-segmentation score of Harana means there are fewer
missing boundaries in the estimation. Higher over-
segmentation score shows that most detected boundaries
are indeed true boundaries. An interesting observation is
that the rule-based semi-CRF yields the most severe under-
segmentation even though it is optimized on the segmen-
tation boundaries. The reason for this might be that rule
based-features are unable to clean noises such as the non-
chordal notes and missing chordal notes in the input music
but directly compute features from them. The noise in the
features of short regions may be confused with the intrinsic
noise of longer regions.

5.3 Ablation Studies

To show the effectiveness of each component of the ar-
chitecture, we conduct additional ablation studies by re-
moving each component. Table 2 summarizes the results.

Model Under Seg Over Seg Overall
CRNN 0.681 0.738 0.639
frog 0.681 0.724 0.624
RuleSCRF 0.666 0.741 0.625
Harana 0.722 0.747 0.649

Table 4: The segmentation quality for different models.

We can see that the full architecture achieves the best re-
sult overall. Among the missing components, semi-CRF
leads to the largest performance drop. That confirms semi-
CRF is an indispensable component to capture boundary
information in harmony analysis. The attention module,
although also helpful, produces relatively smaller perfor-
mance gain. It is expected because after the neural front-
end, the frame-level estimations to be aggregated may be
already harmonically coherent; The attention module only
helps to focus on the most representative frames. The
effect of removing the absence score is less significant.
Without it, the quality accuracy and overall segmentation
quality even slightly improved. The phenomenon could
result from the more difficult training objective. Inactive
pitch class activations of the input music are an extreme
scenario of noisy harmonic information. More data and a
larger neural front-end might be needed to fully leverage
the advantage of the absence score [33].

6. CONCLUSIONS

In this paper, we proposed an automated approach for har-
monic analysis based on neural semi-CRF to jointly seg-
ment the harmonic regions and predict the labels. We de-
veloped a neural encoder and an attention mechanism to
replace the conventional rule-based score function. We
further proposed an absense score to improve the model
robustness to imperfect harmony profiles. Experiments
showed that our proposed architecture improves the per-
formance on both frame-level accuracy and segmentation
quality. Although our experiments focused on music in-
put of symbolic format, the architecture could be adapted
to audio input by simple modifications on the neural front-
end. One limitation of the semi-CRF architecture is that
it has quadratic time complexity with respect to sequence
length so it is difficult to train the model on very long se-
quences. To capture the long-term dependency of harmony
progression, more efficient sequence modeling methods
could be explored in the future.
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