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Abstract. Objective: This study investigates speech decoding from neural signals

captured by intracranial electrodes. Most prior works can only work with electrodes on

a 2D grid (i.e., Electrocorticographic or ECoG array) and data from a single patient.

We aim to design a deep-learning model architecture that can accommodate both

surface (ECoG) and depth (stereotactic EEG or sEEG) electrodes. The architecture

should allow training on data from multiple participants with large variability in

electrode placements and the trained model should perform well on participants unseen

during training.

Approach: We propose a novel transformer-based model architecture named

SwinTW that can work with arbitrarily positioned electrodes, by leveraging their 3D

locations on the cortex rather than their positions on a 2D grid. We train both subject-

specific models using data from a single participant as well as multi-patient models

exploiting data from multiple participants.

Main Results: The subject-specific models using only low-density 8x8 ECoG data

achieved high decoding Pearson Correlation Coefficient with ground truth spectrogram

(PCC=0.817), over N=43 participants, outperforming our prior convolutional ResNet

model and the 3D Swin transformer model. Incorporating additional strip, depth,

and grid electrodes available in each participant (N=39) led to further improvement

(PCC=0.838). For participants with only sEEG electrodes (N=9), subject-specific

models still enjoy comparable performance with an average PCC=0.798. The multi-

subject models achieved high performance on unseen participants, with an average

PCC=0.765 in leave-one-out cross-validation.

Significance: The proposed SwinTW decoder enables future speech neuropros-

theses to utilize any electrode placement that is clinically optimal or feasible for a

particular participant, including using only depth electrodes, which are more routinely
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implanted in chronic neurosurgical procedures. Importantly, the generalizability of the

multi-patient models suggests the exciting possibility of developing speech neuropros-

theses for people with speech disability without relying on their own neural data for

training, which is not always feasible.

1. Introduction

Brain-related speech disability, which can be caused by stroke, injury, or tumor

[10, 33, 41], can seriously decrease a patient’s quality of life. In the United States,

an estimated 2.5 million people suffer from speech disability due to stroke alone [19].

There has been growing interest in using intracranial electrodes to record neural activity

during speech production in order to directly decode human speech from these signals,

making it possible to design Brain-Computer Interface to allow patients with speech

disabilities to communicate [36, 28, 7, 31, 8, 34].

Recent advancements in deep neural networks have been leveraged to push the

boundary of speech decoding from ECoG signals. The decoding pipeline proposed

in [44, 9] first applies a Neural Decoder (called ECoG Decoder) to predict time-

varying speech parameters and then uses a novel Speech Synthesizer to generate speech

spectrograms from speech parameters. Using ResNet [14] or 3D Swin Transformer [27]

as the Neural Decoder, high speech decoding performance in terms of PCC between the

decoded and ground-truth spectrograms has been achieved. In [1], densely connected

3D Convolutional Neural Networks (CNN) were applied to decode speech from ECoG

signals. Besides CNN and Transformer, recurrent neural networks (RNN) and long

short-term memory (LSTM) networks have also been explored as Neural Decoders

[29, 4, 32]. Some approaches produced naturalistic reconstruction leveraging wavenet

vocoders [1], generative adversarial networks [43], and unit selection [15], but with

limited accuracy. These studies demonstrate that deep neural networks can decode

speech information from the complex neural activity recorded by the ECoG signals.

A recent study in one patient with implanted high-density ECoG electrodes [30]

was successful in decoding naturalistic speech with high word decoding accuracy by

leveraging the quantized HuBERT features [17] as an intermediate representation space

and a pre-trained speech synthesizer which converts the HuBERT features into speech.

However, HuBERT features do not carry speaker-specific acoustic information and thus

can only be used to generate a generic speaker’s voice, requiring a separate model to

translate the generic voice to a specific patient’s voice.

The deep neural networks in previous speech decoding studies have architecture

designs with several limitations. First, architectures that use spatial convolution among

electrodes, e.g., [1, 9, 44], are only applicable to grid electrodes like an ECoG array

and hence do not work with strip or depth electrodes. Vision transformers’ absolute

position embeddings and relative positional bias are also based on the 2D or 3D grid

index [11, 26, 25, 27] and hence are only applicable to grid electrodes [9, 23, 38]. On the
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other hand, the implantation of depth electrodes (stereotactic EEG or sEEG) has been

a more popular neurosurgical approach which does not require the removal of a large

skull portion with reports of fewer surgical complications [18, 40]. Further, the approach

and electrodes employed in sEEG are similar to those used in Deep Brain Stimulation

(DBS), which has demonstrated long-term electrode safety, suggesting the possibility

of chronic sEEG for speech neuroprostheses [16]. Multiple sEEG depth probes may be

implanted, which can assay a wide range of deeper structures and thus may provide

additional information not available from the surface of the cortex. Therefore, decoding

speech from sEEG signals would have significant clinical advantages.

Secondly, models that use fully connected computations among the electrodes, e.g.,

[29, 4, 37], can only be trained for a specific participant, as the weights learned depend

on the actual locations of the electrodes in the brain. Further, electrode placement

varies quite widely across patients, and fully connected architectures can not be trained

effectively with data from multiple participants. Even convolutional [9, 44, 1] models

or transformers [9, 44, 23, 38] that leverage grid indices for position embedding cannot

generalize well to different participants because they do not specifically consider the

locations of the electrodes on the brain. Therefore, studies to date developed subject-

specific models, which suffer from small data challenges as they cannot leverage signals

from multiple subjects. More critically, such an approach requires collecting training

data for each participant, limiting its practical applicability.

Our study proposes a novel transformer-based Neural Decoder that does not rely

on a regular grid structure. We call it the Swin transformer with temporal windowing

(SwinTW). Instead of relying on the grid index, the model leverages the anatomical

location of electrodes in the standardized brain template to learn the attention between

electrodes. The proposed Neural Decoder achieved superior performances than ResNet

and 3D Swin Transformer, given the same grid electrodes, reported in [9]. The model

demonstrated further performance increase by leveraging the off-grid electrodes that

cannot be utilized in the previous studies. Importantly, the model demonstrated

promising performance given sEEG electrodes only. Most significantly, the SwinTW

model can be effectively trained with data from multiple participants, and the resulting

model can generalize well to participants outside the training cohort.

2. Method

2.1. Speech Decoding Framework

Our neural decoding framework is trained by following a 2-step approach proposed

in our previous study [9], shown in Figure 1. In the first step of Speech-to-Speech

training, a Speech Encoder is used to extract speech parameters at every time frame

(e.g., pitch, formant frequencies, loudness) from the input speech spectrogram, and a

differentiable Speech Synthesizer is designed to reconstruct the spectrogram from the

speech parameters. The Speech Encoder and the Speech Synthesizer are trained to
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match the reconstructed spectrogram with the ground truth. In the second step of

Neural-to-Speech training, the Neural Decoder is trained to predict the time-varying

speech parameters from neural signals using the speech parameters generated by the

Speech Encoder as the guidance. The predicted speech parameters from the Neural

Decoder are fed to the trained Speech Synthesizer from step 1 to generate the predicted

speech spectrogram, which is then converted to the predicted speech waveform.

Figure 1. 2-Step Speech Decoding Training Pipeline. (step 1) Speech-to-Speech

Training. (step 2) Neural-to-Speech Training.

Following [44, 9], our Speech Synthesizer composes a speech signal as a soft mix of

a voiced component and an unvoiced component: The voiced component is generated

by passing a harmonic excitation through a voice filter consisting of 6 formant filters,

designed to model vowels and nasal information; The unvoiced component is generated

by processing white noise with a broadband filter as well as the six formant filters,

designed to capture consonants (such as fricatives, plosives, semi-voiced, and unvoiced

components) and formant transition subsequent to consonants. The weighted average

of the voiced and unvoiced contents is then modulated with loudness and added with

background noise to generate the final speech spectrogram. Following the design from

our previous study [44, 9], 18 speech parameters are used as the input for the Speech
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Synthesizer at each time frame t: fundamental frequency of the harmonic excitation

f t
0, formant frequency f t

i and amplitude ati for each of the six formant filters, center

frequency f t
u, bandwidth btu and amplitude atu for the broadband filter, voice weight αt

(αt for the voiced component and (1 − αt) for the unvoiced component), and loudness

Lt. As shown in the upper part of Figure 1, during Speech-to-Speech training, the

Speech Encoder extracts 18 speech parameters at each time step from the original

speech spectrogram, which is then fed to the Speech Synthesizer to reconstruct the

original speech spectrogram. The Speech Encoder adopts a simple network architecture

with MLP (Multilayer Perceptron) and temporal convolution. The soft mix of voiced

and unvoiced components makes the speech synthesizer differentiable, which enables

the end-to-end training of this speech-to-speech auto-encoding task. Details about the

Speech Encoder and Speech Synthesizer can be found in [9].

For Neural-to-Speech training, the Neural Decoder first maps neural activity from

all input electrodes to a latent feature, which is then used to predict the 18 speech

parameters for each time frame, supervised by the speech parameters generated by the

Speech Encoder. Then, the speech parameters predicted by the Neural Decoder will be

fed into the Speech Synthesizer to generate the predicted spectrogram, which is then

converted back to the ECoG-decoded speech signal.

2.2. Neural Decoder based on Temporal Swin Transformer

In our study, we propose a novel architecture for decoding speech parameters from

electrode signals that do not require electrodes to be on a 2D grid. We name the

proposed Neural Decoder a Swin transformer with temporal windowing (SwinTW),

inspired by the Swin Transformer [26, 25]. In the vanilla Vision Transformer (ViT) for

an image [11], the self-attention layer computes global attention among all tokens (with

each token corresponding to an image patch). This global attention causes the absence of

the inductive bias of locality and heavy quadratic computational complexity to the input

image size. The Swin Transformer solves the problems by grouping tokens into local

windows and computing local attention within each window at each self-attention layer.

To allow inter-window information exchange, the Swin Transformer shifts the window

partition between every two windowed self-attention layers, which prevents different

windows from being segregated (details can be found in [26, 25]). However, since the

Swin Transformer was designed for 2D images (later extended to 3D videos [27]), its

architecture assumes that the input is in the formats of 2D or 3D grids. Our previous

transformer-based Neural Decoder used 3D Swin [9], where each 3D window includes

nearby 2× 2 electrodes in two adjacent time steps. In our proposed SwinTW, we made

several modifications to allow speech decoding based on electrodes in any topological

layout. The architecture of the SwinTW is shown in Figure 2.

Temporal patch partition: In the Swin Transformer [26, 25, 27] or ViT [11],

the input images or videos are partitioned into 2D or 3D patches, and each patch is

then mapped to a token with a patch embedding layer. This patch partition requires
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ordering all the electrodes into a 2D grid and makes the trained model not invariant

to the electrode order. To solve this problem, our proposed SwinTW generates tokens

from each electrode individually and only partitions the temporal dimension. As shown

in Figure 2, given an ECoG signal with the shape of T ×N (T : number of frames, N :

number of electrodes), for each electrode, the SwinTW partitions the temporal sequence

of neural activity into T
W

patches with patch size W . The temporal patch partition

generates T
W

×N patches in total, and a linear patch embedding layer is applied to each

patch to generate T
W

×N tokens with the latent dimension of C.

Temporal window attention: In Swin transformer [26, 25, 27], tokens are

partitioned into windows, where each window contains a local subset of adjacent

tokens, and attention is calculated only among tokens within the same window. In

conventional 3D Swin, the windowing is applied spatially and temporally, making the

model only suitable for electrodes arranged in a 2D grid. In SwinTW, to remove this grid

input constraint, the model only partitions tokens into local windows in the temporal

dimension and allows spatial attention across all electrodes (this can be thought of as

using a spatial window size that includes all electrodes). Given N = Nt×Ns tokens (N:

total number of tokens, Nt: number of tokens in the temporal dimension, Ns: number of

tokens in the spatial dimension, equal to number of electrodes) and window size Wt, the

N tokens are partitioned into Nt

Wt
windows and attention is calculated among Wt × Ns

tokens within each window.

Temporal patch merging: The Swin Transformer leverages patch merging to

achieve inductive bias of locality and hierarchical feature maps. However, merging

nearby patches in the spatial dimension is not feasible when the electrodes are not

arranged in a grid. Therefore, instead of using the spatiotemporal patch merging in

the 3D Swin Transformer [27], the SwinTW conducts temporal patch merging for each

electrode individually. For each electrode, every two consecutive tokens in the temporal

dimension with feature dimension C will be concatenated as a 2C dimensional latent

and get mapped to a 2C dimensional merged token.

Grid-free positional embedding: The SwinTW follows Swin Transformers [25]

to exploit positional information through relative positional bias. However, instead

of using the 2D or 3D grid index difference as the relative position like the Swin

Transformer, our SwinTW defines the relative positional bias based on each token’s

anatomical location and time-frame index. The positional bias is defined as below:

Attention(Q,K, V ) = Softmax(SIM(Q,K))V (1)

SIM(qi, kj) =
qikj

|qi||kj|
/τ +Bi,j (2)

Bi,j = MLP (xi, yi, zi, ti, xj, yj, zj, tj, xi − xj, yi − yj, zi − zj, ti − tj) + ri · rj (3)

Given Q,K, V ∈ RN×C (Q,K, V are query, key and value generated from each token, N

is number of tokens and C is the latent dimension), shown in equation 1, the softmax

of SIM(Q,K) for all pairs of token in the window is used to aggregated V (values
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of tokens within the window) to get the output token values. We define query-key

similarity following the scaled cosine attention of SwinV2 [25], defined in equation 2.

τ is a learnable parameter not shared among attention heads and layers. Bi,j is the

relative positional bias between token i and token j. In SwinTW, Bi,j consists of two

terms: MNI-based positional bias and region-based bias. We project each subject’s

electrodes to a standardized Montreal Neurological Institute (MNI) brain anatomical

map and collect each electrode’s x, y, z location in the MNI coordinate. For each token

pair, the MNI coordinates of the corresponding electrodes and time-frame index, along

with their differences, will be mapped to the MNI-based positional bias with a 2-layer

MLP, which is shown in the first term of Eq. (3). We also parcellate the standardized

brain into regions of interest (ROIs) and learn a dictionary of embeddings for all ROIs,

with ri denoting the embedding features for region i. Given Nr ROIs and Nh attention

head, the learnable dictionary has Nh sets of Nr×Cr region embeddings (Cr is the region

embedding dimension). The region embeddings ri, ∀i are learned during the training.

For a pair of tokens, the dot product of the embeddings of their corresponding electrodes’

ROIs will be added to the positional bias, shown in the second term of Eq. (3). The dot

product is used instead of cosine similarity, to allow the model to assign high attention

to certain regions by letting them have large embedding values.

Figure 2. a. SwinTW Neural Decoder. SwinTW uses three stages of transformer

blocks with spatial-temporal attention with temporal windowing to extract features.

An MLP layer is applied to decrease the latent dimension after patch merging. After

the last transformer block, spatial max pooling is applied across the electrodes to

generate a single feature per time step. Finally, transposed temporal convolution is

used to upsample the temporal dimension to be the same as the input. b. Prediction

head for speech parameters consists of temporal convolution and MLP that map

features from (a) to speech parameters at every frame.

The architecture of SwinTW is shown in Figure 2 (a). The input ECoG signal

with a size of T × N is partitioned into ( T
W

× N) patches, each with a patch size of

W ×1. A linear patch embedding layer maps each patch to a C dimensional token. The

7
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SwinTW has three stages with 2, 2, and 6 layers. Swin Transformer Block (consists

of a windowed multi-head self-attention layer and an MLP) is applied in each layer,

detailed in [26], and we replace the spatial-temporal windowing with temporal-only

windowing. Following the Swin Transformer, the temporal window partition is shifted

for every two consecutive layers to allow inter-window information exchange, detailed in

[26]. SwinTW performs temporal patch merging after the first and second stages, each

stage decreasing the token number by half and doubling the latent dimension. After

stage 3, an MLP is applied to decrease the 4C latent dimension to C ′. Spatial max

pooling across the electrodes is then applied to convert ( T
4W

×N)×C ′ feature maps to
T
4W

× C ′. Transposed temporal convolutions is then employed to upsample T
4W

× C ′ to

T × C ′, where T is the frame number of the input neural signal. As shown in 2 (b),

the T × C ′ latent from SwinTW next goes through the prediction head consisting of

temporal convolutions (kernel-size=3) and MLP, proposed in our previous work [9], to

predict the 18 speech parameters at every frame.

In our study, we set C = 96 and C ′ = 32. Patch-size W = 4 and window size

Wt = 4 is applied to partition temporal dimension. In our 3 stages SwinTW with 2, 2,

and 6 layers, the self-attention layers in the 3 stages have 3, 6, and 12 attention heads,

respectively. The MLP in Figure 2(a) has 3 layers (384→196→96→32) with layer norm

[5] and LeakyRELU activation in between. The transposed convolution for temporal

upsampling contains 4 1D transposed convolutional layers with stride=2 and kernel-

size=3, padding=1. These parameter choices are determined through empirical trials

and errors.

2.3. Multi-Subject Neural Decoder

The proposed SwinTW allows the Neural Decoder to take input with any electrode

layout as long as we know each electrode’s MNI coordinate and ROI index. Therefore,

this architecture allows the Neural Decoder to be trained using data from multiple

participants and then used for inference on any participant. Figure 3 demonstrates the

multi-subject Neural Decoder training pipeline. Given data from multiple participants,

a shared SwinTW-based Neural Decoder generates speech parameters based on each

participant’s electrode signals and electrode locations (electrodes’ MNI coordinates and

region index). Reference loss is calculated between the predicted speech parameters

and the speech parameters generated by the subject-specific Speech Encoder. Each

subject’s predicted speech parameters are fed into the corresponding subject-specific

speech synthesizer to generate a speech spectrogram. The neural signals and electrodes’

locations are fed into the Neural Decoder to generate speech parameters during inference.

The participant’s speech synthesizer then generates a speech spectrogram from the

predicted speech parameters. Note that the embeddings for different ROIs are also

learned as part of the Neural Decoder training. When we train a decoder using

participants with left and right hemisphere electrodes, separate region embeddings are

learned for the left and right brain hemispheres.

8
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Figure 3. Multiple-subject Neural Decoder training pipeline. Each participant’s

neural signal and electrodes’ location information (MNI coordinates and ROI index) are

fed to a shared SwinTW Neural Decoder to predict speech parameters. The predicted

speech parameters are supervised by the speech parameters generated by the subject-

specific Speech Encoder from the ground-truth speech spectrogram. Each participant’s

predicted speech parameters are fed into the corresponding subject-specific Speech

Synthesizer to generate a speech spectrogram.

2.4. Training of Speech Encoder and Speech Synthesizer

The training of the Speech Encoder and the learning of the subject-specific parameters

of the Speech Synthesizer follows our previous work [9]. In summary, we train the Speech

Encoder and Speech Synthesizer by letting them finish a speech-to-speech reconstruction

task, illustrated in (step 1) of Figure 1.

As detailed in [9], we supervise the training with multiple loss terms. The loss La2a

consists of modified multi-scale spectral loss LMSS, Short-Time Objective Intelligibility

(STOI) loss LSTOI and supervision loss Lsupervision, shown in the equation 4.

L = LMSS + λ1LSTOI + λ2Lsupervision (4)

LMSS is inspired by [12]. It supervises speech reconstruction by measuring the distance

between the ground truth spectrogram and the reconstructed spectrogram in both linear

9
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and mel-frequency scales. LSTOI measures the intelligibility of reconstructed speech

based on the STOI+ metric [13]. Higher STOI+ indicates better intelligibility, the

LSTOI is defined as the negative of STOI+: LSTOI = −STOI+. Besides, additional

supervision Lsupervision is applied to improve the prediction accuracy for the pitch f t
0 and

formant frequencies f t
i=1,2,3,4. The Lsupervision calculates the L2 distance between each

predicted frequency and the corresponding frequency extracted by the Praat method

[6]. The details of LMSS, LSTOI and Lsupervision can be found in [9]. Following [9], λ1

and λ2 are set as 1.2 and 0.1, respectively. We use the Speech Synthesizer and Speech

Encoder trained by our previous study for each participant using their speech signal

only [9]; training details can be found in [9].

2.5. Training of Neural Decoder

Following [9], we use two types of supervision to guide the training of the Neural Decoder

that predicts speech parameters from neural signals. Firstly, we train the decoder to

generate speech parameters that match the parameters generated by the speech encoder.

Besides, the ground truth speech spectrograms act as additional supervision for the

decoder, as the predicted speech parameters are converted to spectrograms by the speech

synthesizer. The fact that our Speech Synthesizer is differentiable enables us to use the

spectrogram reconstruction loss for end-to-end training. The reference loss Lreference for

the speech parameters is defined as:

Lreference =
∑
i,t

λi||Ĉt
i − Ct

i ||
2

2, i ∈ [f t
0, f

t
1, ..., f

t
6, a

t
1, ..., a

t
6, f

t
u, b

t
u, a

t
u, α

t, Lt] (5)

where Ĉt
i and Ct

i are speech parameters generated by the Neural Decoder and the

Speech Encoder (as ground truth), respectively. We assign each speech parameter

with individual weight λi, and the values are detailed in [9]. For spectrogram-based

supervision, we follow the loss used in speech-to-speech training illustrated in Eq. 4.

The overall loss for training the Neural Decoder is

L = LMSS + λ1LSTOI + λ2Lsupervision + λ3Lreference (6)

where λ1 λ2 and λ3 are set to 1.2, 0.1 and 1.0, following [9].

Adam optimizer [21] with learning-rate=5× 10−4, β1=0.9 and β2=0.999 is used to

train the Neural Decoder. As mentioned in Section 3.1, following [9], randomly selected

50 out of 400 trials are used as the test set for each subject, and the remaining data are

used for training.

3. Results

3.1. Neural Data Collection and Preprocessing

The study includes 52 native English-speaking subjects (43 subjects with ECoG

electrodes, 20 males, 23 females; 9 subjects with only sEEG electrodes, 3 males, 6
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females) with refractory epilepsy (a disease involving seizures caused by abnormal

electrical activity in brain cell communication). Details about speech and ECoG signals

collection can be found in [9]. In brief, at each trial, a subject was requested to speak

a specific target word in response to an audio or visual stimulus while their neural

activity signals were recorded. Each subject was asked to complete 5 different tasks:

(1) Auditory Repetition (repeating the word that the care provider has spoken), (2)

Auditory Naming (naming the word based on the definition that the care provider has

spoken), (3) Sentence Completion (naming the last word to complete a sentence that

the care provider has spoken) (4) Visual Reading (reading the written word shown by

the care provider) (5) Picture Naming (naming the word based on a colored drawing

shown by the care provider). Each task included the same 50 target words [39], each

appearing once in the Auditory Naming and Sentence Completion and twice in each of

the other tasks, leading to 400 trials of ECoG signal recording, and the average duration

of word production among all trials was 500ms.

All electrodes were implanted to capture clinically relevant brain regions, detailed

in [9]. There were 43 subjects who had 8x8 ECoG electrodes with 10 mm spacing

capturing signals over the perisylvian cortex (male left hemisphere: 14 subjects; female

left hemisphere: 13 subjects; male right hemisphere: 6 subjects; female right hemisphere:

10 subjects). Besides the 8x8 grid electrodes, some subjects had additional electrode

strips outside the 8x8 grid and/or depth electrodes implanted under the brain’s surface.

We also included 9 subjects with only sEEG electrodes (male = 3, female = 6). The

experiments were approved by the Institutional Review Board of NYU Grossman School

of Medicine, and written and oral consent was collected from each participant. All

implanted electrodes were the clinical standard of care and FDA-approved. The high

gamma component (70-150 Hz) was extracted from the raw electrode signal, with

electrodes exhibiting artifacts or interictal/epileptiform activity excluded by setting their

signal to 0. The preprocessing details can be found in [9]. This study also applies a

Savitzky-Golay filter [35] with a 3rd-order polynomial and window size of 11 to further

denoise the high-gamma signal in the temporal dimension. Among the 400 trials of

ECoG signals recorded from the five-word production tasks, 350 trials were used for

model training, and 50 trials were held out for testing (10 randomly selected trials were

reserved for testing for each task).

3.2. Subject-Specific Models: Speech Decoding with Electrodes on One ECoG Grid

To compare our proposed grid-free SwinTW with the Neural Decoders based on ResNet

and 3D Swin transformer in our previous study [9], firstly, we evaluated the SwinTW

trained with 64 ECoG electrodes for each subject individually. Following [9], we used two

metrics to evaluate the speech decoding performance: 1) Pearson Correlation Coefficient

(PCC) between the decoded spectrogram and the ground-truth spectrogram, and 2)

STOI+ [13] that measures the intelligibility of the decoded speech (in the range between

-1 to 1, higher STOI+ indicates better intelligibility). For each subject, we average PCC

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2024. ; https://doi.org/10.1101/2024.03.11.584533doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.11.584533
http://creativecommons.org/licenses/by-nc-nd/4.0/


Subject-Agnostic Transformer-Based Neural Speech Decoding

and STOI+ among all the test trials for model evaluation. As illustrated in Figure 4, the

SwinTW outperforms ResNet and 3D Swin transformers in terms of CC and STOI+.

Note that SwinTW differs from 3D Swin primarily in how the spatial positions of two

electrodes affect the spatial attention bias between the two electrodes. With 3D Swin,

the relative position between the two electrodes on the 2D grid determines the attention

bias, whereas, with SwinTW, the attention bias depends on the MNI coordinates and

ROI embeddings of these electrodes. Our results suggest that using the MNI coordinates

and ROI information can lead to better decoding performance while making the model

applicable to non-grid electrodes.

Figure 4. Subject-specific models when trained and tested on grid electrodes using

different Neural Decoder architectures. Comparison of the distributions of decoding

PCC (a) and STOI+ (b) over 43 participants. The SwinTW outperforms the ResNet

and 3D Swin Transformer regarding both PCC and STOI+.

3.3. Subject-Specific Models: Speech Decoding with Additional Electrodes

As the SwinTW does not rely on the 2D grid positions of the electrodes, the proposed

SwinTW can easily leverage off-grid electrodes to provide additional information for

speech decoding. In our study, for each participant with additional electrodes beyond

one ECoG grid, we selected additional electrodes with a standard deviation of the signal

greater than a subject-specific threshold, determined following the approach described

in [20] for identifying active electrodes. We then trained the SwinTW Neural Decoder

with 64 electrodes from the 8x8 grid and the selected additional electrodes for each

subject. As 4 participants do not have any additional electrodes that fulfill the threshold

requirement, we compared the models based on the remaining 39 participants. Each

participant had 1 to 19 strip electrodes, 1 to 21 depth electrodes, 1 to 21 extra grid

electrodes, and 1 to 11 electrodes with unknown locations (we set the MNI coordinates
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of these electrodes as 0 and the region index corresponding to Unknown instead of

discarding them). Figure 5 compares the SwinTW Neural Decoder performance using

all selected electrodes and with the performance using only electrodes on one ECoG grid.

The results demonstrate that additional electrodes can further improve the decoding

performance.

Figure 5. Comparison between subject-specific SwinTW Neural Decoder performance

obtained with all selected electrodes and with only electrodes on one 8x8 grid for 39

participants. Each point corresponds to one participant, with the x-axis being the

performance of the SwinTW with all electrodes and the y-axis being the performance

of the SwinTW with only 8x8 grid electrodes. SwinTW with all electrodes: PCC mean

0.838 and median 0.843, STOI+ mean 0.359 and median 0.376. SwinTW with only 8x8

grid electrodes: PCC mean 0.825 and median 0.829, STOI+ mean 0.318 and median

0.320.

3.4. Subject-Specific Models: Speech Decoding with sEEG electrodes only

We also attempted to train the proposed SwinTW model to decode speech production

from only SEEG electrodes. Our study included 9 subjects (male = 3, female = 6) with

only sEEG electrodes implanted. For each subject, electrodes with a standard deviation

of the signal greater than a subject-specific threshold derived following the approach

of [20] were included. The number of selected electrodes for each participant ranges

from 19 to 178. Figure 6 demonstrates that the SwinTW can achieve promising speech

production prediction based on sEEG electrodes only, with the mean and median of PCC

slightly lower but STOI+ slightly higher than the decoding results from 43 participants

with 64 ECoG electrodes.

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2024. ; https://doi.org/10.1101/2024.03.11.584533doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.11.584533
http://creativecommons.org/licenses/by-nc-nd/4.0/


Subject-Agnostic Transformer-Based Neural Speech Decoding

Figure 6. Subject-specific SwinTW Neural Decoder performance based on sEEG

electrodes only over 9 participants. The results indicate the SwinTW can achieve

promising speech decoding from sEEG electrode data.

Figure 7. Comparison between the SwinTW Neural Decoder trained with 8x8 ECoG

data from multiple (15) subjects and the subject-specific SwinTW. PCC and STOI+

were evaluated on test trials from the 15 participants. Multi-Subject SwinTW: PCC

mean 0.837, PCC median 0.849; STOI+ mean 0.352, STOI+ median 0.378; Subject-

Specific SwinTW: PCC mean 0.831, median: 0.846, STOI+ mean 0.335, STOI+

median 0.340.

3.5. Multi-Subject Model: Evaluation on Test Trials of Participants within the

Training Set

As the proposed SwinTW architecture does not require the electrodes to be arranged

in a grid but relies on the electrode position in the brain, it can potentially handle the

differences in the electrode placements among different participants and allow a single

model to be trained with multiple patient data. To validate this idea, we trained a single

SwinTW decoder with 15 randomly selected male participants with ECoG electrodes

14
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implanted in either the left or right brain hemisphere (4 on left and 11 on right).

As detailed in Section 2.3, subject-specific speech encoder and speech synthesizer are

applied while the Neural Decoder is shared among subjects. We compare the decoding

performance of the multi-subject and subject-specific models on the test trials of each of

the 15 participants included in the multi-subject model training. As shown in Figure 7,

the multi-subject SwinTW model showed slightly better performance than the subject-

specific model, and the improvement is more significant in terms of STOI+.

Figure 8. The decoding performance of the trained multi-subject model on

participants outside the training set. Cross-validation was conducted on male and

female subjects separately. Although the performance is lower than subject-specific

models, these results demonstrate that the SwinTW decoder trained with multi-subject

data can generalize quite well to unseen subjects.

3.6. Multi-Subject Model: Evaluation on Participants Outside the Training Set

We also evaluated the multi-subject SwinTW decoder on test trials of the subjects

outside the training set. We conducted 5-fold cross-validation separately for male

(n=20) and female (n=23) participants. Specifically, we partitioned all male (resp.

female) participants (with ECoG electrodes implanted in either the left or right brain

hemisphere) into five folds. Each time, we used four-folds participants to train a

SwinTW decoder and evaluate its decoding performance on the remaining one-fold

participants. The process is repeated to use every fold as the test fold once. As shown

in Figure 8, although the performance achieved by participants outside the training set

is significantly lower than the subject-specific models, the decoded speech still has a

high mean PCC of 0.765. The results demonstrate the proposed SwinTW decoder can

achieve generalizability to participants unseen during model training.

To investigate if separate models should be used for decoding from neural data

in the left and right hemispheres, we performed additional experiments, where we

trained and evaluated multi-subject models for the two hemispheres separately, each

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2024. ; https://doi.org/10.1101/2024.03.11.584533doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.11.584533
http://creativecommons.org/licenses/by-nc-nd/4.0/


Subject-Agnostic Transformer-Based Neural Speech Decoding

Figure 9. The comparison of speech decoding performance on unseen subjects

between SwinTW trained on data from one hemisphere and SwinTW trained on data

from both hemispheres. Models were trained separately for males and females. The

results demonstrate that, compared with hemisphere-specific models, the SwinTW

Neural Decoder trained on both hemispheres can achieve comparable or slightly better

performance when inference on unseen subjects.

through cross-validation. Among male participants, there were 14 with left hemisphere

data and 6 with right hemisphere data. For female participants, we had 13 with left

hemisphere data and 10 with right hemisphere data. We used 5-fold cross-validation for

training and evaluating each model. As shown in Figure 9, compared with hemisphere-

specific models, the SwinTW decoder trained using data from both hemispheres achieved

comparable or slightly better performance when tested on unseen subjects. This suggests

that a single SwinTW model can effectively extract and synthesize information from

both hemispheres for speech decoding.

4. Discussion

This study proposes a new Neural Decoder architecture, SwinTW, that does not have

the grid-input assumption and can predict speech parameters from electrodes in any

topological layout in the brain. The SwinTW removes the grid-based operations in the

3D Swin Transformer model used in our prior study [9] to make the model applicable

for electrodes in any layout. Instead of relying on 2D grid indices to provide positional

information about each electrode, the SwinTW relies on the electrodes’ position in the

standardized brain coordinate (i.e., MNI) and the brain region that the electrode resides

in to generate relative positional bias for self-attention. The SwinTW was used as the

Neural Decoder in the speech decoding pipeline proposed in our previous work [44], and

was trained using the 2-step training pipeline in [44].

Our proposed SwinTW Neural Decoder achieved superior performance than the

Neural Decoders based on ResNet and 3D Swin Transformer in [44, 9], both can only
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work with ECoG data. As illustrated in Figure 4, over 43 participants with low-density

8x8 ECoG electrodes, the SwinTW achieved higher PCC and STOI+ (PCC: mean 0.817,

median 0.828; STOI+: mean 0.309, median 0.292) than the ResNet (PCC: mean 0.804,

median 0.815; STOI+: mean 0.264, median 0.275) and 3D Swin Transformer (PCC:

mean: 0.785, median: 0.797; STOI+: mean 0.216, median 0.205) using the same 64

electrodes from the 8x8 ECoG grid. We attribute SwinTW’s better performance to its

utilization of electrodes’ locations on the brain cortex (the MNI coordinate and brain

region information) rather than the 2D grid index.

Unlike ResNet and 3D Swin Transformer, the SwinTW does not rely on 2D

grid indices of electrodes and can, hence, accommodate both ECoG electrodes, strip

and depth electrodes, and additional grid electrodes. Our results demonstrate that

leveraging the additional electrodes can improve speech decoding performance, as

illustrated in Figure 5. Specifically, for 39 subjects with additional active electrodes, the

SwinTW utilizing the additional electrodes achieved better PCC (mean 0.838, median

0.843) and STOI+ (mean 0.359, median 0.376) compared with the SwinTW using

grid electrodes only (PCC: mean 0.825, median 0.829; STOI+: mean 0.318, median

0.320). The superior results indicate that the neural activity recorded by the additional

electrodes contains complementary information for decoding speech.

Our results further demonstrate that the SwinTW can achieve high decoding quality

based only on sEEG electrodes. Specifically, as shown in Fig. 6, for nine subjects with

only sEEG electrodes implanted, we achieved PCC: mean 0.798, median 0.792, and

STOI+: mean 0.342, median: 0.329. The mean and range of PCC and STOI+ are

slightly lower than the decoding performance obtained using ECoG electrodes, but

significantly higher than previously reported decoding performance from sEEG only,

ranging between 0.54 to 0.77 in mean PCC [2, 3, 22, 42].

Since the SwinTW directly uses the anatomical positions of electrodes rather than

their grid indices, it can be trained with data from multiple subjects. As shown in

Fig. 7, when evaluated on the testing trials of the participants in the training cohort

and using only data on 8x8 grids, the resulting multi-subject model trained with data

from 15 participants achieved slightly better decoding performance (PCC: mean 0.837,

median 0.849; STOI+: mean 0.352, median 0.378), compared with the SwinTW trained

for each subject individually (PCC: mean: 0.831, median: 0.846; STOI+: mean: 0.335,

median: 0.340). The performance improvement is likely due to more training samples

and higher data diversity from the multiple subjects. Previously, we have attempted

to train ResNet and 3D Swin-based Neural Decoders using ECoG data from multiple

participants. We were not able to improve the decoding performance compared to

subject-specific models. That is likely because ResNet and 3D Swin models rely on the

relative positions in the 2D grid of the electrodes. Because the ECoG grid is placed

differently among the participants, the same relative difference in the 2D grid can be

associated with very different anatomical positions in different participants, making

using the grid index as positional information unsuitable when the data come from

multiple participants.
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The success achieved by the SwinTW can be attributed to its grid-free architecture.

As the SwinTW directly relies on the electrodes’ locations in the standardized brain

coordinate and brain region information, the SwinTW can better handle the differences

in electrode placement between subjects, leading to success in training with multiple

participants’ data. Besides, as illustrated in Figure 7, the SwinTW can be successfully

trained with data from both the left and right hemispheres. The success of the left and

right hemispheres co-training demonstrates the strong learning capacity of the SwinTW.

The two-hemisphere co-training also allows the Neural Decoder to fully leverage the

whole dataset as we no longer need to train the model separately for each hemisphere.

Most significantly, the SwinTW model trained with multiple participants data

demonstrated generalizability to participants outside the training cohorts, with high

average decoding PCC (mean PCC = 0.765 over 43 unseen participants through a cross-

validation study conducted separately for males and females). Figure 8 shows that the

speech decoding performance achieved on unseen subjects overlaps significantly with

that of the subject-specific model. Furthermore, a model trained with data from both

the left and right hemispheres performs slightly better than those trained using only the

left or right hemisphere on unseen participants (Fig. 9). These results suggest that the

SwinTW training using multiple participants’ data can successfully learn how to handle

differences among subjects based on electrode signals and the anatomical position of

the electrodes.

To summarize, the SwinTW Neural Decoder can predict speech parameters from

electrode signals and electrodes’ positions on the brain cortex without requiring the

electrodes to be arranged in a grid. The SwinTW Neural Decoder, in conjunction with

our previously reported Speech Synthesizer, demonstrated superior speech decoding

performance compared with our prior works based on ResNet and 3D Swin Transformers

when only electrodes on a single ECoG array were used. Besides, the grid-free

architecture of the SwinTW allows the model to leverage off-grid electrodes to improve

speech decoding further. When using only sEEG data, the decoding performance was

comparable with that using ECoG data. As explained in the Introduction, decoding

speech from sEEG signals would have significant clinical advantages over using ECoG

data. Furthermore, the SwinTW can be trained with data from multiple subjects

regardless if the electrodes were implanted in the left or right brain hemispheres.

The multi-subject SwinTW performed better than the subject-specific models for

participants within the training cohort. Most importantly, our SwinTW trained with

multiple participants’ data demonstrated good generalizability to subjects outside the

training cohorts, achieving high average decoding PCC.

We are unaware of other published studies demonstrating speech-decoding models

trained across multiple participants. Our result demonstrates the exciting possibility of

developing speech prostheses without collecting subject-specific training data: We can

train a reliable decoder with data from selected participants and then directly deploy the

model to a new participant. Note that although our experiments on the multi-subject

model only considered the ECoG grid data, we expect similar trends when using ECoG
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plus non-grid data or non-grid data only.

It is also noteworthy that the proposed SwinTW Neural Decoder is not limited

to being used with our speech synthesizer. It could potentially be used to decode

other latent features, e.g. the HuBERT latent features [17], which can then drive a

corresponding synthesizer [24]. The work in [30] successfully decoded speech with high

word decoding accuracy by decoding to quantized HuBERT units using an RNN decoder

from high-density ECoG signals of a single participant. It will be interesting to explore

the potential of training a SwinTW decoder using data from multiple participants with

surface and/or depth electrodes, to map the neural signals to the HuBERT units and

compare the decoding performance with the subject-specific RNN model.

One limitation of our current study is that the decoding performance for

participants outside of the training cohorts is not consistently high. This could be

potentially solved by including more participants in the training set when larger datasets

become available.

Data availability

The data of this study are available from the corresponding author upon reasonable

request.
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