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Abstract. Objective: This study investigates speech decoding from neural signals
captured by intracranial electrodes. Most prior works can only work with electrodes on
a 2D grid (i.e., Electrocorticographic or ECoG array) and data from a single patient.
We aim to design a deep-learning model architecture that can accommodate both
surface (ECoG) and depth (stereotactic EEG or sEEG) electrodes. The architecture
should allow training on data from multiple participants with large variability in
electrode placements and the trained model should perform well on participants unseen
during training.

Approach: We propose a novel transformer-based model architecture named
SwinTW that can work with arbitrarily positioned electrodes, by leveraging their 3D
locations on the cortex rather than their positions on a 2D grid. We train both subject-
specific models using data from a single participant as well as multi-patient models
exploiting data from multiple participants.

Main Results: The subject-specific models using only low-density 8x8 ECoG data
achieved high decoding Pearson Correlation Coefficient with ground truth spectrogram
(PCC=0.817), over N=43 participants, outperforming our prior convolutional ResNet
model and the 3D Swin transformer model. Incorporating additional strip, depth,
and grid electrodes available in each participant (N=39) led to further improvement
(PCC=0.838). For participants with only sEEG electrodes (N=9), subject-specific
models still enjoy comparable performance with an average PCC=0.798. The multi-
subject models achieved high performance on unseen participants, with an average
PCC=0.765 in leave-one-out cross-validation.

Significance: The proposed Swin'TW decoder enables future speech neuropros-
theses to utilize any electrode placement that is clinically optimal or feasible for a
particular participant, including using only depth electrodes, which are more routinely
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implanted in chronic neurosurgical procedures. Importantly, the generalizability of the
multi-patient models suggests the exciting possibility of developing speech neuropros-
theses for people with speech disability without relying on their own neural data for
training, which is not always feasible.

1. Introduction

Brain-related speech disability, which can be caused by stroke, injury, or tumor
[10, 33, 41], can seriously decrease a patient’s quality of life. In the United States,
an estimated 2.5 million people suffer from speech disability due to stroke alone [19].
There has been growing interest in using intracranial electrodes to record neural activity
during speech production in order to directly decode human speech from these signals,
making it possible to design Brain-Computer Interface to allow patients with speech
disabilities to communicate [36, 28, 7, 31, 8, 34].

Recent advancements in deep neural networks have been leveraged to push the
boundary of speech decoding from ECoG signals. The decoding pipeline proposed
in [44, 9] first applies a Neural Decoder (called ECoG Decoder) to predict time-
varying speech parameters and then uses a novel Speech Synthesizer to generate speech
spectrograms from speech parameters. Using ResNet [14] or 3D Swin Transformer [27]
as the Neural Decoder, high speech decoding performance in terms of PCC between the
decoded and ground-truth spectrograms has been achieved. In [1], densely connected
3D Convolutional Neural Networks (CNN) were applied to decode speech from ECoG
signals. Besides CNN and Transformer, recurrent neural networks (RNN) and long
short-term memory (LSTM) networks have also been explored as Neural Decoders
29, 4, 32]. Some approaches produced naturalistic reconstruction leveraging wavenet
vocoders [1], generative adversarial networks [43], and unit selection [15], but with
limited accuracy. These studies demonstrate that deep neural networks can decode
speech information from the complex neural activity recorded by the ECoG signals.
A recent study in one patient with implanted high-density ECoG electrodes [30]
was successful in decoding naturalistic speech with high word decoding accuracy by
leveraging the quantized HuBERT features [17] as an intermediate representation space
and a pre-trained speech synthesizer which converts the HuBERT features into speech.
However, HUBERT features do not carry speaker-specific acoustic information and thus
can only be used to generate a generic speaker’s voice, requiring a separate model to
translate the generic voice to a specific patient’s voice.

The deep neural networks in previous speech decoding studies have architecture
designs with several limitations. First, architectures that use spatial convolution among
electrodes, e.g., [1, 9, 44], are only applicable to grid electrodes like an ECoG array
and hence do not work with strip or depth electrodes. Vision transformers’ absolute
position embeddings and relative positional bias are also based on the 2D or 3D grid
index [11, 26, 25, 27] and hence are only applicable to grid electrodes [9, 23, 38]. On the
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other hand, the implantation of depth electrodes (stereotactic EEG or sEEG) has been
a more popular neurosurgical approach which does not require the removal of a large
skull portion with reports of fewer surgical complications [18, 40]. Further, the approach
and electrodes employed in sEEG are similar to those used in Deep Brain Stimulation
(DBS), which has demonstrated long-term electrode safety, suggesting the possibility
of chronic sEEG for speech neuroprostheses [16]. Multiple sSEEG depth probes may be
implanted, which can assay a wide range of deeper structures and thus may provide
additional information not available from the surface of the cortex. Therefore, decoding
speech from sEEG signals would have significant clinical advantages.

Secondly, models that use fully connected computations among the electrodes, e.g.,
[29, 4, 37], can only be trained for a specific participant, as the weights learned depend
on the actual locations of the electrodes in the brain. Further, electrode placement
varies quite widely across patients, and fully connected architectures can not be trained
effectively with data from multiple participants. Even convolutional [9, 44, 1] models
or transformers [9, 44, 23, 38] that leverage grid indices for position embedding cannot
generalize well to different participants because they do not specifically consider the
locations of the electrodes on the brain. Therefore, studies to date developed subject-
specific models, which suffer from small data challenges as they cannot leverage signals
from multiple subjects. More critically, such an approach requires collecting training
data for each participant, limiting its practical applicability.

Our study proposes a novel transformer-based Neural Decoder that does not rely
on a regular grid structure. We call it the Swin transformer with temporal windowing
(SwinTW). Instead of relying on the grid index, the model leverages the anatomical
location of electrodes in the standardized brain template to learn the attention between
electrodes. The proposed Neural Decoder achieved superior performances than ResNet
and 3D Swin Transformer, given the same grid electrodes, reported in [9]. The model
demonstrated further performance increase by leveraging the off-grid electrodes that
cannot be utilized in the previous studies. Importantly, the model demonstrated
promising performance given sEEG electrodes only. Most significantly, the SwinTW
model can be effectively trained with data from multiple participants, and the resulting
model can generalize well to participants outside the training cohort.

2. Method

2.1. Speech Decoding Framework

Our neural decoding framework is trained by following a 2-step approach proposed
in our previous study [9], shown in Figure 1. In the first step of Speech-to-Speech
training, a Speech Encoder is used to extract speech parameters at every time frame
(e.g., pitch, formant frequencies, loudness) from the input speech spectrogram, and a
differentiable Speech Synthesizer is designed to reconstruct the spectrogram from the
speech parameters. The Speech Encoder and the Speech Synthesizer are trained to
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match the reconstructed spectrogram with the ground truth. In the second step of
Neural-to-Speech training, the Neural Decoder is trained to predict the time-varying
speech parameters from neural signals using the speech parameters generated by the
Speech Encoder as the guidance. The predicted speech parameters from the Neural
Decoder are fed to the trained Speech Synthesizer from step 1 to generate the predicted
speech spectrogram, which is then converted to the predicted speech waveform.

Step 1: Speech-to-Speech Training
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Step 2: Neural-to-Speech Training

Figure 1. 2-Step Speech Decoding Training Pipeline. (step 1) Speech-to-Speech
Training. (step 2) Neural-to-Speech Training.

Following [44, 9], our Speech Synthesizer composes a speech signal as a soft mix of
a voiced component and an unvoiced component: The voiced component is generated
by passing a harmonic excitation through a voice filter consisting of 6 formant filters,
designed to model vowels and nasal information; The unvoiced component is generated
by processing white noise with a broadband filter as well as the six formant filters,
designed to capture consonants (such as fricatives, plosives, semi-voiced, and unvoiced
components) and formant transition subsequent to consonants. The weighted average
of the voiced and unvoiced contents is then modulated with loudness and added with
background noise to generate the final speech spectrogram. Following the design from
our previous study [44, 9], 18 speech parameters are used as the input for the Speech
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Synthesizer at each time frame ¢: fundamental frequency of the harmonic excitation
f&, formant frequency ff and amplitude a} for each of the six formant filters, center
frequency f!, bandwidth o!, and amplitude af, for the broadband filter, voice weight o'
(! for the voiced component and (1 — ') for the unvoiced component), and loudness
L'. As shown in the upper part of Figure 1, during Speech-to-Speech training, the
Speech Encoder extracts 18 speech parameters at each time step from the original
speech spectrogram, which is then fed to the Speech Synthesizer to reconstruct the
original speech spectrogram. The Speech Encoder adopts a simple network architecture
with MLP (Multilayer Perceptron) and temporal convolution. The soft mix of voiced
and unvoiced components makes the speech synthesizer differentiable, which enables
the end-to-end training of this speech-to-speech auto-encoding task. Details about the
Speech Encoder and Speech Synthesizer can be found in [9].

For Neural-to-Speech training, the Neural Decoder first maps neural activity from
all input electrodes to a latent feature, which is then used to predict the 18 speech
parameters for each time frame, supervised by the speech parameters generated by the
Speech Encoder. Then, the speech parameters predicted by the Neural Decoder will be
fed into the Speech Synthesizer to generate the predicted spectrogram, which is then
converted back to the ECoG-decoded speech signal.

2.2. Neural Decoder based on Temporal Swin Transformer

In our study, we propose a novel architecture for decoding speech parameters from
electrode signals that do not require electrodes to be on a 2D grid. We name the
proposed Neural Decoder a Swin transformer with temporal windowing (SwinTW),
inspired by the Swin Transformer [26, 25]. In the vanilla Vision Transformer (ViT) for
an image [11], the self-attention layer computes global attention among all tokens (with
each token corresponding to an image patch). This global attention causes the absence of
the inductive bias of locality and heavy quadratic computational complexity to the input
image size. The Swin Transformer solves the problems by grouping tokens into local
windows and computing local attention within each window at each self-attention layer.
To allow inter-window information exchange, the Swin Transformer shifts the window
partition between every two windowed self-attention layers, which prevents different
windows from being segregated (details can be found in [26, 25]). However, since the
Swin Transformer was designed for 2D images (later extended to 3D videos [27]), its
architecture assumes that the input is in the formats of 2D or 3D grids. Our previous
transformer-based Neural Decoder used 3D Swin [9], where each 3D window includes
nearby 2 x 2 electrodes in two adjacent time steps. In our proposed SwinTW, we made
several modifications to allow speech decoding based on electrodes in any topological
layout. The architecture of the SwinTW is shown in Figure 2.

Temporal patch partition: In the Swin Transformer [26, 25, 27| or ViT [11],
the input images or videos are partitioned into 2D or 3D patches, and each patch is
then mapped to a token with a patch embedding layer. This patch partition requires
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ordering all the electrodes into a 2D grid and makes the trained model not invariant
to the electrode order. To solve this problem, our proposed SwinTW generates tokens
from each electrode individually and only partitions the temporal dimension. As shown
in Figure 2, given an ECoG signal with the shape of T'x N (T number of frames, N:
number of electrodes), for each electrode, the SwinTW partitions the temporal sequence
of neural activity into % patches with patch size W. The temporal patch partition
generates % x N patches in total, and a linear patch embedding layer is applied to each
patch to generate % x N tokens with the latent dimension of C.

Temporal window attention: In Swin transformer [26, 25, 27|, tokens are
partitioned into windows, where each window contains a local subset of adjacent
tokens, and attention is calculated only among tokens within the same window. In
conventional 3D Swin, the windowing is applied spatially and temporally, making the
model only suitable for electrodes arranged in a 2D grid. In SwinTW, to remove this grid
input constraint, the model only partitions tokens into local windows in the temporal
dimension and allows spatial attention across all electrodes (this can be thought of as
using a spatial window size that includes all electrodes). Given N = N; x Ny tokens (N:
total number of tokens, N;: number of tokens in the temporal dimension, N,: number of
tokens in the spatial dimension, equal to number of electrodes) and window size W;, the
N tokens are partitioned into %tt windows and attention is calculated among W; x N,
tokens within each window.

Temporal patch merging: The Swin Transformer leverages patch merging to
achieve inductive bias of locality and hierarchical feature maps. However, merging
nearby patches in the spatial dimension is not feasible when the electrodes are not
arranged in a grid. Therefore, instead of using the spatiotemporal patch merging in
the 3D Swin Transformer [27], the SwinTW conducts temporal patch merging for each
electrode individually. For each electrode, every two consecutive tokens in the temporal
dimension with feature dimension C' will be concatenated as a 2C' dimensional latent
and get mapped to a 2C dimensional merged token.

Grid-free positional embedding: The SwinTW follows Swin Transformers [25]
to exploit positional information through relative positional bias. However, instead
of using the 2D or 3D grid index difference as the relative position like the Swin
Transformer, our SwinTW defines the relative positional bias based on each token’s
anatomical location and time-frame index. The positional bias is defined as below:

Attention(Q, K, V') = Softmax(SIM(Q, K))V (1)
qik;
SIM(gi, k;) = /T + Bi (2)
il K]

Bij = MLP (%, Yi, 2is ti, 5, Yj, 25 Uy Ti — T4, Yi — Yjs 2 — 24,6 — ) +ri-1r; (3)

Given Q, K,V € RN*Y (Q, K,V are query, key and value generated from each token, N
is number of tokens and C' is the latent dimension), shown in equation 1, the softmax
of SIM(Q, K) for all pairs of token in the window is used to aggregated V (values
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of tokens within the window) to get the output token values. We define query-key
similarity following the scaled cosine attention of SwinV2 [25], defined in equation 2.
7 is a learnable parameter not shared among attention heads and layers. B;; is the
relative positional bias between token ¢ and token j. In SwinTW, B;; consists of two
terms: MNI-based positional bias and region-based bias. We project each subject’s
electrodes to a standardized Montreal Neurological Institute (MNI) brain anatomical
map and collect each electrode’s x, ¥, z location in the MNI coordinate. For each token
pair, the MNI coordinates of the corresponding electrodes and time-frame index, along
with their differences, will be mapped to the MNI-based positional bias with a 2-layer
MLP, which is shown in the first term of Eq. (3). We also parcellate the standardized
brain into regions of interest (ROIs) and learn a dictionary of embeddings for all ROIs,
with r; denoting the embedding features for region i. Given NN, ROIs and N, attention
head, the learnable dictionary has Ny, sets of N, x C,. region embeddings (C, is the region
embedding dimension). The region embeddings r;, Vi are learned during the training.
For a pair of tokens, the dot product of the embeddings of their corresponding electrodes’
ROIs will be added to the positional bias, shown in the second term of Eq. (3). The dot
product is used instead of cosine similarity, to allow the model to assign high attention
to certain regions by letting them have large embedding values.
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Figure 2. a. SwinTW Neural Decoder. SwinTW uses three stages of transformer
blocks with spatial-temporal attention with temporal windowing to extract features.
An MLP layer is applied to decrease the latent dimension after patch merging. After
the last transformer block, spatial max pooling is applied across the electrodes to
generate a single feature per time step. Finally, transposed temporal convolution is
used to upsample the temporal dimension to be the same as the input. b. Prediction
head for speech parameters consists of temporal convolution and MLP that map
features from (a) to speech parameters at every frame.

The architecture of SwinTW is shown in Figure 2 (a). The input ECoG signal

with a size of T' x N is partitioned into (% x N) patches, each with a patch size of

W x 1. A linear patch embedding layer maps each patch to a C' dimensional token. The
7
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SwinTW has three stages with 2, 2, and 6 layers. Swin Transformer Block (consists
of a windowed multi-head self-attention layer and an MLP) is applied in each layer,
detailed in [26], and we replace the spatial-temporal windowing with temporal-only
windowing. Following the Swin Transformer, the temporal window partition is shifted
for every two consecutive layers to allow inter-window information exchange, detailed in
[26]. SwinTW performs temporal patch merging after the first and second stages, each
stage decreasing the token number by half and doubling the latent dimension. After
stage 3, an MLP is applied to decrease the 4C' latent dimension to C’. Spatial max
pooling across the electrodes is then applied to convert (% x N) x C" feature maps to
% x C'. Transposed temporal convolutions is then employed to upsample % x C" to
T x C’, where T is the frame number of the input neural signal. As shown in 2 (b),
the T' x C’ latent from SwinTW next goes through the prediction head consisting of
temporal convolutions (kernel-size=3) and MLP, proposed in our previous work [9], to
predict the 18 speech parameters at every frame.

In our study, we set C' = 96 and C' = 32. Patch-size W = 4 and window size
W, = 4 is applied to partition temporal dimension. In our 3 stages SwinTW with 2, 2,
and 6 layers, the self-attention layers in the 3 stages have 3, 6, and 12 attention heads,
respectively. The MLP in Figure 2(a) has 3 layers (384—196—96—32) with layer norm
[5] and LeakyRELU activation in between. The transposed convolution for temporal
upsampling contains 4 1D transposed convolutional layers with stride=2 and kernel-
size=3, padding=1. These parameter choices are determined through empirical trials
and errors.

2.8. Multi-Subject Neural Decoder

The proposed SwinTW allows the Neural Decoder to take input with any electrode
layout as long as we know each electrode’s MNI coordinate and ROI index. Therefore,
this architecture allows the Neural Decoder to be trained using data from multiple
participants and then used for inference on any participant. Figure 3 demonstrates the
multi-subject Neural Decoder training pipeline. Given data from multiple participants,
a shared SwinTW-based Neural Decoder generates speech parameters based on each
participant’s electrode signals and electrode locations (electrodes’ MNI coordinates and
region index). Reference loss is calculated between the predicted speech parameters
and the speech parameters generated by the subject-specific Speech Encoder. Each
subject’s predicted speech parameters are fed into the corresponding subject-specific
speech synthesizer to generate a speech spectrogram. The neural signals and electrodes’
locations are fed into the Neural Decoder to generate speech parameters during inference.
The participant’s speech synthesizer then generates a speech spectrogram from the
predicted speech parameters. Note that the embeddings for different ROIs are also
learned as part of the Neural Decoder training. When we train a decoder using
participants with left and right hemisphere electrodes, separate region embeddings are
learned for the left and right brain hemispheres.
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Figure 3. Multiple-subject Neural Decoder training pipeline. Each participant’s
neural signal and electrodes’ location information (MNI coordinates and ROI index) are
fed to a shared SwinTW Neural Decoder to predict speech parameters. The predicted
speech parameters are supervised by the speech parameters generated by the subject-
specific Speech Encoder from the ground-truth speech spectrogram. Each participant’s
predicted speech parameters are fed into the corresponding subject-specific Speech
Synthesizer to generate a speech spectrogram.

2.4. Training of Speech Encoder and Speech Synthesizer

The training of the Speech Encoder and the learning of the subject-specific parameters
of the Speech Synthesizer follows our previous work [9]. In summary, we train the Speech
Encoder and Speech Synthesizer by letting them finish a speech-to-speech reconstruction
task, illustrated in (step 1) of Figure 1.

As detailed in [9], we supervise the training with multiple loss terms. The loss Ly,
consists of modified multi-scale spectral loss Lj;sg, Short-Time Objective Intelligibility
(STOI) loss Lsror and supervision 10ss Lgypervision, Shown in the equation 4.

L = LMSS + )\ILSTOI + AQLsupervision (4)

Lysss is inspired by [12]. It supervises speech reconstruction by measuring the distance
between the ground truth spectrogram and the reconstructed spectrogram in both linear

9
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and mel-frequency scales. Lgror measures the intelligibility of reconstructed speech
based on the STOI+ metric [13]. Higher STOI+ indicates better intelligibility, the
Lsror is defined as the negative of STOI+: Lgror = —STOI+. Besides, additional
supervision Lgypervision 15 applied to improve the prediction accuracy for the pitch f¢ and
formant frequencies fit:17273’4. The Lgypervision calculates the L2 distance between each
predicted frequency and the corresponding frequency extracted by the Praat method
[6]. The details of Lass, Lsror and Lgypervision can be found in [9]. Following [9], Ay
and Ay are set as 1.2 and 0.1, respectively. We use the Speech Synthesizer and Speech
Encoder trained by our previous study for each participant using their speech signal
only [9]; training details can be found in [9].

2.5. Training of Neural Decoder

Following [9], we use two types of supervision to guide the training of the Neural Decoder
that predicts speech parameters from neural signals. Firstly, we train the decoder to
generate speech parameters that match the parameters generated by the speech encoder.
Besides, the ground truth speech spectrograms act as additional supervision for the
decoder, as the predicted speech parameters are converted to spectrograms by the speech
synthesizer. The fact that our Speech Synthesizer is differentiable enables us to use the
spectrogram reconstruction loss for end-to-end training. The reference 10ss Ly ference for
the speech parameters is defined as:

~ 2 .
Lreference - Z)\zHCzt - Cf“ga (S [f(§7 ff7 cey féa CLi, ---aaga Z)bfuafuatal/t] (5)

it

where éf and C! are speech parameters generated by the Neural Decoder and the
Speech Encoder (as ground truth), respectively. We assign each speech parameter
with individual weight \;, and the values are detailed in [9]. For spectrogram-based
supervision, we follow the loss used in speech-to-speech training illustrated in Eq. 4.
The overall loss for training the Neural Decoder is

L = LMSS + )\ILSTOI + AQLsupervision + /\SLrefe’/‘ence (6)

where A\; Ay and A3 are set to 1.2, 0.1 and 1.0, following [9].

Adam optimizer [21] with learning-rate=5 x 107%, 3;=0.9 and 3,=0.999 is used to
train the Neural Decoder. As mentioned in Section 3.1, following [9], randomly selected
50 out of 400 trials are used as the test set for each subject, and the remaining data are
used for training.

3. Results

3.1. Neural Data Collection and Preprocessing

The study includes 52 native English-speaking subjects (43 subjects with ECoG
electrodes, 20 males, 23 females; 9 subjects with only sEEG electrodes, 3 males, 6
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females) with refractory epilepsy (a disease involving seizures caused by abnormal
electrical activity in brain cell communication). Details about speech and ECoG signals
collection can be found in [9]. In brief, at each trial, a subject was requested to speak
a specific target word in response to an audio or visual stimulus while their neural
activity signals were recorded. FEach subject was asked to complete 5 different tasks:
(1) Auditory Repetition (repeating the word that the care provider has spoken), (2)
Auditory Naming (naming the word based on the definition that the care provider has
spoken), (3) Sentence Completion (naming the last word to complete a sentence that
the care provider has spoken) (4) Visual Reading (reading the written word shown by
the care provider) (5) Picture Naming (naming the word based on a colored drawing
shown by the care provider). Each task included the same 50 target words [39], each
appearing once in the Auditory Naming and Sentence Completion and twice in each of
the other tasks, leading to 400 trials of ECoG signal recording, and the average duration
of word production among all trials was 500ms.

All electrodes were implanted to capture clinically relevant brain regions, detailed
in [9]. There were 43 subjects who had 8x8 ECoG electrodes with 10 mm spacing
capturing signals over the perisylvian cortex (male left hemisphere: 14 subjects; female
left hemisphere: 13 subjects; male right hemisphere: 6 subjects; female right hemisphere:
10 subjects). Besides the 8x8 grid electrodes, some subjects had additional electrode
strips outside the 8x8 grid and/or depth electrodes implanted under the brain’s surface.
We also included 9 subjects with only sEEG electrodes (male = 3, female = 6). The
experiments were approved by the Institutional Review Board of NYU Grossman School
of Medicine, and written and oral consent was collected from each participant. All
implanted electrodes were the clinical standard of care and FDA-approved. The high
gamma component (70-150 Hz) was extracted from the raw electrode signal, with
electrodes exhibiting artifacts or interictal /epileptiform activity excluded by setting their
signal to 0. The preprocessing details can be found in [9]. This study also applies a
Savitzky-Golay filter [35] with a 3rd-order polynomial and window size of 11 to further
denoise the high-gamma signal in the temporal dimension. Among the 400 trials of
ECoG signals recorded from the five-word production tasks, 350 trials were used for
model training, and 50 trials were held out for testing (10 randomly selected trials were
reserved for testing for each task).

3.2. Subject-Specific Models: Speech Decoding with Electrodes on One ECoG Grid

To compare our proposed grid-free SwinTW with the Neural Decoders based on ResNet
and 3D Swin transformer in our previous study [9], firstly, we evaluated the SwinTW
trained with 64 ECoG electrodes for each subject individually. Following [9], we used two
metrics to evaluate the speech decoding performance: 1) Pearson Correlation Coefficient
(PCC) between the decoded spectrogram and the ground-truth spectrogram, and 2)
STOI+ [13] that measures the intelligibility of the decoded speech (in the range between
-1 to 1, higher STOI+ indicates better intelligibility). For each subject, we average PCC
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and STOI+ among all the test trials for model evaluation. As illustrated in Figure 4, the
SwinTW outperforms ResNet and 3D Swin transformers in terms of CC and STOI+.
Note that SwinTW differs from 3D Swin primarily in how the spatial positions of two
electrodes affect the spatial attention bias between the two electrodes. With 3D Swin,
the relative position between the two electrodes on the 2D grid determines the attention
bias, whereas, with SwinTW, the attention bias depends on the MNI coordinates and
ROI embeddings of these electrodes. Our results suggest that using the MNI coordinates
and ROI information can lead to better decoding performance while making the model
applicable to non-grid electrodes.

® left ® right

3DSwin] 00— —o0— 0 WP SN VOB oo
ResNet{ ————0-0—0—endil SRE D SN0 —0°
SwinTW o o oo ooliaid IHOAPME 00

T T

0.6 0.65 0.7 0.75 0.8 0.85 0.9
PCC

® left ® right

3D Swin{ O— Qo NN TP @ 00-0—0 00
ResNet|{ O@—es—0 —o @GNS S e B @00
SwinTw{ @ o & PPN, N0 PP %0ees o %0

0 0.1 0.2 0.3 0.4 0.5
STOI+

Figure 4. Subject-specific models when trained and tested on grid electrodes using
different Neural Decoder architectures. Comparison of the distributions of decoding
PCC (a) and STOI+ (b) over 43 participants. The SwinTW outperforms the ResNet
and 3D Swin Transformer regarding both PCC and STOI+.

3.8. Subject-Specific Models: Speech Decoding with Additional Electrodes

As the SwinTW does not rely on the 2D grid positions of the electrodes, the proposed
SwinTW can easily leverage off-grid electrodes to provide additional information for
speech decoding. In our study, for each participant with additional electrodes beyond
one ECoG grid, we selected additional electrodes with a standard deviation of the signal
greater than a subject-specific threshold, determined following the approach described
in [20] for identifying active electrodes. We then trained the SwinTW Neural Decoder
with 64 electrodes from the 8x8 grid and the selected additional electrodes for each
subject. As 4 participants do not have any additional electrodes that fulfill the threshold
requirement, we compared the models based on the remaining 39 participants. Each
participant had 1 to 19 strip electrodes, 1 to 21 depth electrodes, 1 to 21 extra grid
electrodes, and 1 to 11 electrodes with unknown locations (we set the MNI coordinates
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of these electrodes as 0 and the region index corresponding to Unknown instead of
discarding them). Figure 5 compares the SwinTW Neural Decoder performance using
all selected electrodes and with the performance using only electrodes on one ECoG grid.
The results demonstrate that additional electrodes can further improve the decoding

performance.
PCC STOI+
0.95 0.6
O 0.9 0 0.5
° 3
C C 0.4
'g 0.85 8’
o o 0.3
5 08 5
a a 0.2
a 0.75 ? 0.1
© ©
0.7 o left 0 left
® right ® right
0.7 0.8 0.9 0 0.2 0.4 0.6
all electrodes all electrodes

Figure 5. Comparison between subject-specific SwinTW Neural Decoder performance
obtained with all selected electrodes and with only electrodes on one 8x8 grid for 39
participants. Each point corresponds to one participant, with the x-axis being the
performance of the SwinTW with all electrodes and the y-axis being the performance
of the SwinTW with only 8x8 grid electrodes. SwinTW with all electrodes: PCC mean
0.838 and median 0.843, STOI+ mean 0.359 and median 0.376. SwinTW with only 8x8
grid electrodes: PCC mean 0.825 and median 0.829, STOI+ mean 0.318 and median
0.320.

3.4. Subject-Specific Models: Speech Decoding with sSEEG electrodes only

We also attempted to train the proposed SwinTW model to decode speech production
from only SEEG electrodes. Our study included 9 subjects (male = 3, female = 6) with
only sEEG electrodes implanted. For each subject, electrodes with a standard deviation
of the signal greater than a subject-specific threshold derived following the approach
of [20] were included. The number of selected electrodes for each participant ranges
from 19 to 178. Figure 6 demonstrates that the SwinTW can achieve promising speech
production prediction based on SEEG electrodes only, with the mean and median of PCC
slightly lower but STOI+ slightly higher than the decoding results from 43 participants
with 64 ECoG electrodes.
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Figure 6. Subject-specific SwinTW Neural Decoder performance based on sEEG
electrodes only over 9 participants. The results indicate the SwinTW can achieve
promising speech decoding from sEEG electrode data.
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Figure 7. Comparison between the SwinTW Neural Decoder trained with 8x8 ECoG
data from multiple (15) subjects and the subject-specific Swin'TW. PCC and STOI+
were evaluated on test trials from the 15 participants. Multi-Subject SwinTW: PCC
mean 0.837, PCC median 0.849; STOI+ mean 0.352, STOI+ median 0.378; Subject-
Specific SwinTW: PCC mean 0.831, median: 0.846, STOI+ mean 0.335, STOI+
median 0.340.

3.5. Multi-Subject Model: Fvaluation on Test Trials of Participants within the
Training Set

As the proposed SwinTW architecture does not require the electrodes to be arranged
in a grid but relies on the electrode position in the brain, it can potentially handle the
differences in the electrode placements among different participants and allow a single
model to be trained with multiple patient data. To validate this idea, we trained a single
SwinTW decoder with 15 randomly selected male participants with ECoG electrodes
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implanted in either the left or right brain hemisphere (4 on left and 11 on right).
As detailed in Section 2.3, subject-specific speech encoder and speech synthesizer are
applied while the Neural Decoder is shared among subjects. We compare the decoding
performance of the multi-subject and subject-specific models on the test trials of each of
the 15 participants included in the multi-subject model training. As shown in Figure 7,
the multi-subject SwinTW model showed slightly better performance than the subject-
specific model, and the improvement is more significant in terms of STOI+-.

® left ® right

unseen subjects - H—.—@—“—H
subject-specific model Q—‘-‘.—@—“

06 065 07 075 0.8 0.85 0.9
PCC

® left ® right

unseen subjects - O—'@“—‘H
subject-specific model - Q—.—'—@w

0 0.1 0.2 0.3 0.4 0.5
STOI+

Figure 8. The decoding performance of the trained multi-subject model on
participants outside the training set. Cross-validation was conducted on male and
female subjects separately. Although the performance is lower than subject-specific
models, these results demonstrate that the SwinTW decoder trained with multi-subject
data can generalize quite well to unseen subjects.

3.6. Multi-Subject Model: Evaluation on Participants Outside the Training Set

We also evaluated the multi-subject SwinTW decoder on test trials of the subjects
outside the training set. We conducted 5-fold cross-validation separately for male
(n=20) and female (n=23) participants. Specifically, we partitioned all male (resp.
female) participants (with ECoG electrodes implanted in either the left or right brain
hemisphere) into five folds. Each time, we used four-folds participants to train a
SwinTW decoder and evaluate its decoding performance on the remaining one-fold
participants. The process is repeated to use every fold as the test fold once. As shown
in Figure 8, although the performance achieved by participants outside the training set
is significantly lower than the subject-specific models, the decoded speech still has a
high mean PCC of 0.765. The results demonstrate the proposed SwinTW decoder can
achieve generalizability to participants unseen during model training.

To investigate if separate models should be used for decoding from neural data
in the left and right hemispheres, we performed additional experiments, where we
trained and evaluated multi-subject models for the two hemispheres separately, each
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Figure 9. The comparison of speech decoding performance on unseen subjects
between SwinTW trained on data from one hemisphere and SwinTW trained on data
from both hemispheres. Models were trained separately for males and females. The
results demonstrate that, compared with hemisphere-specific models, the SwinTW
Neural Decoder trained on both hemispheres can achieve comparable or slightly better
performance when inference on unseen subjects.

through cross-validation. Among male participants, there were 14 with left hemisphere
data and 6 with right hemisphere data. For female participants, we had 13 with left
hemisphere data and 10 with right hemisphere data. We used 5-fold cross-validation for
training and evaluating each model. As shown in Figure 9, compared with hemisphere-
specific models, the SwinTW decoder trained using data from both hemispheres achieved
comparable or slightly better performance when tested on unseen subjects. This suggests
that a single SwinTW model can effectively extract and synthesize information from
both hemispheres for speech decoding.

4. Discussion

This study proposes a new Neural Decoder architecture, SwinTW, that does not have
the grid-input assumption and can predict speech parameters from electrodes in any
topological layout in the brain. The SwinTW removes the grid-based operations in the
3D Swin Transformer model used in our prior study [9] to make the model applicable
for electrodes in any layout. Instead of relying on 2D grid indices to provide positional
information about each electrode, the SwinTW relies on the electrodes’ position in the
standardized brain coordinate (i.e., MNI) and the brain region that the electrode resides
in to generate relative positional bias for self-attention. The SwinTW was used as the
Neural Decoder in the speech decoding pipeline proposed in our previous work [44], and
was trained using the 2-step training pipeline in [44].

Our proposed SwinTW Neural Decoder achieved superior performance than the
Neural Decoders based on ResNet and 3D Swin Transformer in [44, 9], both can only
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work with ECoG data. As illustrated in Figure 4, over 43 participants with low-density
8x8 ECoG electrodes, the SwinTW achieved higher PCC and STOI+ (PCC: mean 0.817,
median 0.828; STOI4: mean 0.309, median 0.292) than the ResNet (PCC: mean 0.804,
median 0.815; STOI4: mean 0.264, median 0.275) and 3D Swin Transformer (PCC:
mean: 0.785, median: 0.797; STOI+: mean 0.216, median 0.205) using the same 64
electrodes from the 8x8 ECoG grid. We attribute SwinTW’s better performance to its
utilization of electrodes’ locations on the brain cortex (the MNI coordinate and brain
region information) rather than the 2D grid index.

Unlike ResNet and 3D Swin Transformer, the SwinTW does not rely on 2D
grid indices of electrodes and can, hence, accommodate both ECoG electrodes, strip
and depth electrodes, and additional grid electrodes. Our results demonstrate that
leveraging the additional electrodes can improve speech decoding performance, as
illustrated in Figure 5. Specifically, for 39 subjects with additional active electrodes, the
SwinTW utilizing the additional electrodes achieved better PCC (mean 0.838, median
0.843) and STOI+ (mean 0.359, median 0.376) compared with the SwinTW using
grid electrodes only (PCC: mean 0.825, median 0.829; STOI+: mean 0.318, median
0.320). The superior results indicate that the neural activity recorded by the additional
electrodes contains complementary information for decoding speech.

Our results further demonstrate that the SwinTW can achieve high decoding quality
based only on sEEG electrodes. Specifically, as shown in Fig. 6, for nine subjects with
only sEEG electrodes implanted, we achieved PCC: mean 0.798, median 0.792, and
STOI+: mean 0.342, median: 0.329. The mean and range of PCC and STOI+ are
slightly lower than the decoding performance obtained using ECoG electrodes, but
significantly higher than previously reported decoding performance from sEEG only,
ranging between 0.54 to 0.77 in mean PCC [2, 3, 22, 42].

Since the SwinTW directly uses the anatomical positions of electrodes rather than
their grid indices, it can be trained with data from multiple subjects. As shown in
Fig. 7, when evaluated on the testing trials of the participants in the training cohort
and using only data on 8x8 grids, the resulting multi-subject model trained with data
from 15 participants achieved slightly better decoding performance (PCC: mean 0.837,
median 0.849; STOI+: mean 0.352, median 0.378), compared with the SwinTW trained
for each subject individually (PCC: mean: 0.831, median: 0.846; STOI+: mean: 0.335,
median: 0.340). The performance improvement is likely due to more training samples
and higher data diversity from the multiple subjects. Previously, we have attempted
to train ResNet and 3D Swin-based Neural Decoders using ECoG data from multiple
participants. We were not able to improve the decoding performance compared to
subject-specific models. That is likely because ResNet and 3D Swin models rely on the
relative positions in the 2D grid of the electrodes. Because the ECoG grid is placed
differently among the participants, the same relative difference in the 2D grid can be
associated with very different anatomical positions in different participants, making
using the grid index as positional information unsuitable when the data come from
multiple participants.
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The success achieved by the SwinTW can be attributed to its grid-free architecture.
As the SwinTW directly relies on the electrodes’ locations in the standardized brain
coordinate and brain region information, the SwinTW can better handle the differences
in electrode placement between subjects, leading to success in training with multiple
participants’ data. Besides, as illustrated in Figure 7, the SwinTW can be successfully
trained with data from both the left and right hemispheres. The success of the left and
right hemispheres co-training demonstrates the strong learning capacity of the SwinTW.
The two-hemisphere co-training also allows the Neural Decoder to fully leverage the
whole dataset as we no longer need to train the model separately for each hemisphere.

Most significantly, the SwinTW model trained with multiple participants data
demonstrated generalizability to participants outside the training cohorts, with high
average decoding PCC (mean PCC = 0.765 over 43 unseen participants through a cross-
validation study conducted separately for males and females). Figure 8 shows that the
speech decoding performance achieved on unseen subjects overlaps significantly with
that of the subject-specific model. Furthermore, a model trained with data from both
the left and right hemispheres performs slightly better than those trained using only the
left or right hemisphere on unseen participants (Fig. 9). These results suggest that the
SwinTW training using multiple participants’ data can successfully learn how to handle
differences among subjects based on electrode signals and the anatomical position of
the electrodes.

To summarize, the SwinTW Neural Decoder can predict speech parameters from
electrode signals and electrodes’ positions on the brain cortex without requiring the
electrodes to be arranged in a grid. The SwinTW Neural Decoder, in conjunction with
our previously reported Speech Synthesizer, demonstrated superior speech decoding
performance compared with our prior works based on ResNet and 3D Swin Transformers
when only electrodes on a single ECoG array were used. Besides, the grid-free
architecture of the SwinTW allows the model to leverage off-grid electrodes to improve
speech decoding further. When using only sEEG data, the decoding performance was
comparable with that using ECoG data. As explained in the Introduction, decoding
speech from sEEG signals would have significant clinical advantages over using ECoG
data. Furthermore, the SwinTW can be trained with data from multiple subjects
regardless if the electrodes were implanted in the left or right brain hemispheres.
The multi-subject SwinTW performed better than the subject-specific models for
participants within the training cohort. Most importantly, our SwinTW trained with
multiple participants’ data demonstrated good generalizability to subjects outside the
training cohorts, achieving high average decoding PCC.

We are unaware of other published studies demonstrating speech-decoding models
trained across multiple participants. Our result demonstrates the exciting possibility of
developing speech prostheses without collecting subject-specific training data: We can
train a reliable decoder with data from selected participants and then directly deploy the
model to a new participant. Note that although our experiments on the multi-subject
model only considered the ECoG grid data, we expect similar trends when using ECoG
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plus non-grid data or non-grid data only.

It is also noteworthy that the proposed SwinTW Neural Decoder is not limited
to being used with our speech synthesizer. It could potentially be used to decode
other latent features, e.g. the HuBERT latent features [17], which can then drive a
corresponding synthesizer [24]. The work in [30] successfully decoded speech with high
word decoding accuracy by decoding to quantized HUBERT units using an RNN decoder
from high-density ECoG signals of a single participant. It will be interesting to explore
the potential of training a SwinTW decoder using data from multiple participants with
surface and/or depth electrodes, to map the neural signals to the HuBERT units and
compare the decoding performance with the subject-specific RNN model.

One limitation of our current study is that the decoding performance for
participants outside of the training cohorts is not consistently high. This could be
potentially solved by including more participants in the training set when larger datasets
become available.

Data availability

The data of this study are available from the corresponding author upon reasonable
request.
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