
Computational Illusion Kni�ing
AMY ZHU, University of Washington, USA
YUXUAN MEI, University of Washington, USA
BENJAMIN JONES, University of Washington, USA
ZACHARY TATLOCK, University of Washington, USA
ADRIANA SCHULZ, University of Washington, USA

Fig. 1. We propose a framework for computational illusion kni�ing that enables simple production of traditional and completely novel illusion designs, and
show the fabricated designs generated with our method. On the le�, Leonardo da Vinci’s Mona Lisa (public domain) appears when viewed from the side. On
the right, Vincent van Gogh’s Self-Portrait with a Bandaged Ear (public domain) appears from one side, his Sunflowers, fourth version (public domain) on the
other. The rightmost top two images are the tool inputs; the bo�om two are rendered predictions of the illusion pa�ern.

Illusion-knit fabrics reveal distinct patterns or images depending on the
viewing angle. Artists have manually achieved this e�ect by exploiting
“microgeometry,” i.e., small di�erences in stitch heights. However, past work
in computational 3D knitting does not model or exploit designs based on
stitch height variation. This paper establishes a foundation for exploring
illusion knitting in the context of computational design and fabrication.
We observe that the design space is highly constrained, elucidate these
constraints, and derive strategies for developing e�ective, machine-knittable
illusion patterns. We partially automate these strategies in a new interactive
design tool that reduces di�cult patterning tasks to familiar image editing
tasks. Illusion patterns also uncover new fabrication challenges regarding
mixed colorwork and texture; we describe new algorithms for mitigating
fabrication failures and ensuring high-quality knit results.

Authors’ Contact Information: Amy Zhu, amyzhu@cs.washington.edu, University
of Washington, Seattle, Washington, USA; Yuxuan Mei, ym2552@cs.washington.edu,
University of Washington, Seattle, Washington, USA; Benjamin Jones, benjones@
cs.washington.edu, University of Washington, Seattle, Washington, USA; Zachary
Tatlock, ztatlock@cs.washington.edu, University of Washington, Seattle, Washington,
USA; Adriana Schulz, adriana@cs.washington.edu, University of Washington, Seattle,
Washington, USA.

© 2024 Copyright held by the owner/author(s).
ACM 1557-7368/2024/7-ART152
https://doi.org/10.1145/3658231

CCS Concepts: • Computing methodologies! Graphics systems and
interfaces; • Applied computing;

Additional Key Words and Phrases: illusion knitting, machine knitting, knit-
ting, fabrication

ACM Reference Format:
AmyZhu, YuxuanMei, Benjamin Jones, Zachary Tatlock, and Adriana Schulz.
2024. Computational Illusion Knitting. ACM Trans. Graph. 43, 4, Article 152
(July 2024), 13 pages. https://doi.org/10.1145/3658231

1 INTRODUCTION
Unique and visually interesting view-dependent e�ects have been
developed for many fabrication methods and mechanisms, including
scratch-based re�ection, 3D printing, shadow casting, andmore [Alexa
and Matusik 2011; Bermano et al. 2012; Shen et al. 2023]. However,
there is currently no support for view-dependent e�ects in knit-
ting. Intrepid artists have described manual, hand-knitted view-
dependent e�ects (dubbed “illusions” [WoollyThoughts 2023]), but
their approaches are tedious, slow to knit up, and limited to single-
view; it takes hundreds of hours to design a knitted illusion, and hun-
dreds more to actually fabricate the knit object. Though machine
knitting is an obvious choice to speed up fabrication, no compilers
for illusion knitting currently exist. Nor are there machine knitting
scheduling algorithms that support arbitrary intra-row texture and
colorwork, necessary for maximizing design freedom. Furthermore,
artists have created only single-view illusions, which depict the

ACM Trans. Graph., Vol. 43, No. 4, Article 152. Publication date: July 2024.

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3658231
https://doi.org/10.1145/3658231
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658231&domain=pdf&date_stamp=2024-07-19

152:2 • Zhu et al.

same image from both side views, but we imagine enriching the de-
sign space by creating novel illusions that embed multiple images.
We create the �rst design system for illusion knitting, enabling

design without cumbersome manual e�ort, pushing the boundaries
into multi-view illusions, and correctly compiling to machine knit-
ting instructions.
First, we identify how illusions work. Illusion knitting emerges

from stitch-level microgeometry on the surface of knits (depicted
in Figure 3); we contribute a set of observations about microgeome-
try formalized as constraints, such that we can directly construct
these building blocks. These constraints capture both viewing be-
havior, i.e., what image is seen at an angle, and physical behavior,
i.e., the result of di�erent knitted design and fabrication choices.
Formalizing these constraints provides immediate bene�ts: for

single-view, we can easily satisfy the constraints to generate knit-
table illusions. Furthermore, as traditional single-view illusions
change color only between rows, we require no new machine knit-
ting algorithms. Therefore, we can quickly design and computation-
ally fabricate single-view illusions, like the Mona Lisa in Figure 1,
given a user-provided three-color image.
Trying to extend these same solutions for single-view to multi-

view illusions, we discover that they are inadequate and so we must
invent other strategies. Our key contributions focus on new tech-
niques for multi-view illusions.
Unfortunately, the constraints for multiple images are almost

never satis�able. Our insight is that we can relax these constraints
and search for the best compromise. We could do this using auto-
mated methods, such as optimization or MaxSAT. However, we be-
lieve it important to begin with a framework that lets users directly,
interactively, and iteratively edit designs, since an end-to-end auto-
mated system cannot return a perfect result for every user 100% of
the time. Because users employ human perception to gauge whether
designs are readable, we create a designer-in-the-loop framework that
uses insights from craft illusion knitting to simplify the task of im-
proving illusion quality to iterative image editing. This framework
relies on a new tile-based system to systematically relax constraints
while giving users direct control. Creating a framework also pre-
serves extensibility as we can plug in other automated algorithms.

We then face the issue of new designs intermingling texture and
colorwork within rows. Given this task, existingmachine scheduling
algorithms fail to create objects without unworkable physical �aws.
To fabricate knit illusions quickly, we introduce new scheduling
algorithms for texture and color changes within a single row of knitting,
which is necessary for multi-view illusions.

Our constraint-informed, human-in-the-loop design system en-
ables fabricating the �rst double-view illusions, supporting diverse
image types across graphics, text, paintings, and more. Additionally,
our new scheduling approach avoids many failures that arise with
naive scheduling, producing successful knit illusions.
As evidence, we present multiple complex knit illusions never

previously created, examples of which we show in the teaser (Fig-
ure 1). We compare the output of our iterative, image-editing de-
sign system with other systems. Finally, we visually compare the
fabricated results of knitting with and without our new scheduling
algorithms, where the latter have notable holes and visual failures.

Fig. 2. A basic view of knits and purls. On the le� is a photo of a fabric
made of only knits next to a diagram of a single knit; on the right is a photo
of a fabric made only of purls next to a diagram of a single purl.

2 BACKGROUND
Knitting Terminology. A stitch is the basic knit unit formed by

pulling a loop of yarn through an existing loop. We refer to the
existing loop as the “parent” and the new loop formed as the “child”.
Rows of loops are called courses, and columns of loops are called
wales. The direction in which the yarn is being pulled through each
loop determines the stitch type, resulting in knit or purl stitches.
Knit stitches are created when the new loop formed is “in front of”
the parent loop (pulled back-to-front), and purl stitches are created
when the new loop is “behind” the parent loop (pulled front-to-back).
These stitches are visualized in Figure 2. There are many di�erent
textures: arrangements of knits, purls, or other types of stitches. For
example, the garter texture alternates courses of knits and purls; the
rib texture alternates wales of knits and purls. Full speci�cations of
knit designs are called patterns.
Several factors a�ect the appearance of knit objects. Knits and

purls are duals, meaning that a purl viewed from the back is a knit,
and vice versa. Thus, knit fabrics often have a “right side,”, or a
“technical face,” from which the pattern is designed to be viewed. In
this work, we focus on the appeal of the technical face and allow the
back to be aesthetically unconstrained. Additionally, there is ametric
consideration since the size of a knitted object is directly related to
the arrangement and size of the loops. The stitch gauge describes
the number of stitches per unit distance. In hand knitting, the gauge
is controlled by the size of the needle used for creating the loops
and the size of the yarn, while in machine knitting it is determined
by needle size and how close the needles are arranged on the beds.

Illusions. Illusion knitting is a technique used to create knit objects
that appear di�erent when viewed at di�erent angles. It exploits oc-
clusions between neighboring courses created by particular arrange-
ments of knits and purls. Traditional illusion knitting achieves a
single hidden image in each piece by disguising the occlusion e�ect
within alternating color stripes. All known single-view techniques
use only two yarn colors in the illusion e�ect, but it is possible to
create the impression of a third color by keeping both colors visible
(e.g., raised black next to raised white creates the impression of gray).
Section 5 further describes how to achieve single-view illusions.

3 RELATED WORK
Fabricated View-Dependent E�ects. View-dependent e�ects play

on our visual perception via lighting and shadows, utilizing self-
occlusion or self-shadowing to change the visibility of parts of the
object; these objects then reveal di�erent images at di�erent viewing

ACM Trans. Graph., Vol. 43, No. 4, Article 152. Publication date: July 2024.

Computational Illusion Kni�ing • 152:3

(a) A top-down look at
a single-view pa�ern.
The kni�ed version is
depicted in Figure 4b.

(b) A close up of the microgeometry of single-view
pa�erns. At the bo�om is a row of yellow purl
bumps, below blue and yellow knits. The yellow
purl bumps are raised above the fabric.

Fig. 3. Physical view of illusion pa�erns and microgeometry.

angles. Some works achieve a speci�c appearance of a surface un-
der a certain lighting condition or environment through optimizing
microfacets [Papas et al. 2011; Regg et al. 2010; Schwartzburg et al.
2014; Snelgrove et al. 2013; Weyrich et al. 2009] or lenticular struc-
tures [Zeng et al. 2021]. Many fabrication techniques and materials
have been employed, including Lego bricks [Mitra and Pauly 2009],
3D printing [Alexa and Matusik 2011, 2012; Bermano et al. 2012;
Peng et al. 2019], UV printers [Perroni-Scharf and Rusinkiewicz
2023; Sakurai et al. 2018], re�ection via scratches on metal [Shen
et al. 2023], and printing with magnetic [Pereira et al. 2017] or go-
niochromatic [Abu Rmaileh and Brunton 2023] materials. Also a
kind of view-dependent e�ect, illusion knitting relies on precisely
occluding certain stitches – the microgeometry in a knitted object –
to embed images in di�erent viewing angles.

Computational Knitting. Several recent papers explore computa-
tional tools for knitting design and fabrication. Some focus on how
to represent knit objects for simulation [Wu et al. 2018; Yuksel et al.
2012]. Albaugh et al. [2023] also study the grain of machine-knit fab-
ric. Others focus on creating knitting instructions given a 3D mesh
input for both hand knitting [Igarashi et al. 2008; Wu et al. 2019] and
machine knitting [Jones et al. 2022; Kaspar et al. 2021; McCann et al.
2016; Narayanan et al. 2018; Popescu et al. 2018]. Further work builds
upon these pipelines to improve knitted results, such as new strip-
ing algorithms to avoid helices [Mitra et al. 2023]. Nader et al. [2021]
focus on a machine-agnostic, hardware-independent intermediate
representation. Design methods have been developed for speci�c
applications, including actuated soft objects, pneumatic devices, and
conductive interfaces and sensing devices [Albaugh et al. 2019, 2021;
Liu et al. 2021; Luo et al. 2021, 2022]. Texture design is another im-
portant topic of research. Narayanan et al. [2019] provide a tool
that allows easy stitch-level editing of textures and colorwork while
providing machine knittability guarantees. Hofmann et al. [2020]
examine knit textures and provide a DSL for describing them.

Although colorwork is a well-known facet of computational knit-
ting, most existing work [Lin and McCann 2021; Lin et al. 2023, 2018;
McCann et al. 2016; Narayanan et al. 2019] provides insights only
on how to schedule patterns with either colorwork or texture. Re-
cently, Hofmann et al. [2023] proposed KnitScript, which provides
�oat control and a primitve called sheets for mixing colorwork and
texture; it does not focus on this mixed design space, and the �oat
control must be manually speci�ed by the user. Therefore, no past
work has focused on exploring and enabling the design space span-
ning a combination of colorwork and texture, which is a necessary

component of illusion knitting and a potential new tool in the de-
mocratized designer’s toolkit.

Illusion Knitting. Illusion knitting has been explored by knit-
ters for several decades, particularly in garments [Harmon 2011;
Hoxbro 2004; Nakamura et al. 1982; Stoller 2004] and art exhibition
pieces [WoollyThoughts 2023]. Current illusion knitting artwork
typically hides a single image in the side view within an apparent
striped image. In terms of design, Orochi et al. [2006] host a tool
for hand-charting illusion patterns. However, little work extends
the typical single-view-image-in-stripes idea. Some works include
patterns that change colors between di�erent areas [Hoxbro 2004;
Nakamura et al. 1982], but they use the same fundamental two-color
illusion strategy. No resources discuss multiple feature images in
one knit illusion. In this paper, we establish the foundation for un-
derstanding the broader space of illusion knitting and develop meth-
ods for hiding more than one image, using arbitrary colors, and mit-
igating fabrication challenges in using knitting machines.

4 OVERVIEW
Single-view illusions show that exploiting knit microgeometry can
achieve surprising designs, and we intend to push the boundaries
to discover even more possibilities using computation. In this work,
we consider illusions that embed two input images, A and B, where
image A is obvious from one side and image B from the other
side. However, we design approaches that can theoretically extend
beyond two inputs. Additionally, since the landscape of knitted
microgeometry is very diverse, we make it navigable by restricting
the discussion to illusions created via solid-color microgeometry
with two possible heights (�at and raised).

To create a design system, we must �rst identify what is pos-
sible in terms of the appearance of knitted microgeometry when
viewed. Doing so involves knowledge of fabrication as well as phys-
ical experimentation. We draw on these insights to develop new,
constrained design spaces using logical constraints and a new de-
sign system for traversing them.

4.1 Insights from Knit Microgeometry
To characterize a knit object’s microgeometry, we examine empir-
ical examples of knit illusions. Our goal is to abstract over the com-
plexities of knitting physics so we can streamline illusion design.
Combinations of knit and purl stitches create raised bumps that

may occlude previous stitches. A bump is created from a knit with
another loop pulled through it front-to-back; in other words, a bump
ismade of a knit with a purl as a child. Not every combination creates
a crisp occlusion e�ect, and we present some mistakes in Figure 4.
First, a single bump is not su�ciently tall to occlude a stitch behind
it from almost all angles. The legs of a bump �anked by two �at
stitches are pulled down, shown in Figure 4a. Knit stitches alone
remain �at. Second, directionality matters. Theoretically, we could
view and produce bumps along wales rather than courses, working
in ribbing rather than garter stitch. However, we �nd that height
di�erences are more pronounced in garter, as shown in Figure 4b.
Third, di�erent programs and techniques might produce excess bulk,
whether in the form of extra “�oating” yarn at the back, doubling up
the yarn used per stitch, or via other techniques. This bulk reduces

ACM Trans. Graph., Vol. 43, No. 4, Article 152. Publication date: July 2024.

152:4 • Zhu et al.

(a) The height of a
1-wide purl bump is
greatly diminished
when its legs are pulled
under the next stitch.
When next to other
purls, the legs stand
above the fabric.

(b) An illusion pat-
tern: garter on top
(colors switching
each course) or rib
on bo�om (switching
each wale). Frequent
color changes in the
a�empted rib illusion
add too much bulk.

(c) Frequent color
changes diminish oc-
clusion e�ects. The top
image is the head-on
pa�ern. Rows of purl
bumps do not obscure
many of the stitches
behind them in an an-
gle view, bo�om.

Fig. 4. Some pa�ern choices negatively a�ect occlusion. Without carefully
arranging stitches, occlusion e�ects do not appear.

the height di�erence between �ats and bumps, diminishing the
illusion e�ect. We can avoid some techniques that accrue extra bulk,
but not all: each color change within a row inevitably incurs some
added bulk.

From these insights, we draw three conclusions. From the �rst, we
choose to introduce an abstraction over these physical constraints.
In this logical space, �at and bump units are individually compiled
to stitches such that the bumps are guaranteed to occlude other
stitches at an angle, i.e., each pixel becomes a 2x2 block of stitches.
From the next insight, we de�ne our objective to view the �rst input
image from the left side of the rows and the second input image
from the right side of rows. From the �nal insight, we conclude that
our designs should mindfully reduce the number of color changes.

4.2 Defining a Design Space
To identifywhich double-view illusion designs can be knit “perfectly”
in principle (ignoring practical fabrication concerns), we formalize
the constraints for when # ⇥" pixel images� and ⌫ will be obvious
within the result of knitting the logical (color and bump level) pattern
% , where⇠8, 9 and '8, 9 indicate the color and raisedness of % at row 8
and column 9 , respectively. Since the �rst row will not be occluded
by any previous rows for�, and similarly for ⌫ with the last row, we
require ⇠0, 9 = �0, 9 and ⇠# , 9 = ⌫# , 9 . For subsequent rows, we have
¬'8�1, 9 =) ⇠8, 9 = �8, 9 and ¬'8+1, 9 =) ⇠8, 9 = ⌫8, 9 (i.e., if the cell
in the previous column is �at, then our current cell will be visible and
must match the color of the corresponding cell in the input image),
as well as '8�1, 9 =) ⇠8�1, 9 = �8, 9 and '8+1, 9 =) ⇠8+1, 9 = ⌫8, 9
(i.e., if the cell in the previous column is raised, then it will occlude
our current cell, so the cell in the previous column’s color must
match our current corresponding cell in the input image). These
constraints implicitly specify visual rendering restricted to booleans;
we present a full rendering function in Section 5.

The boolean rendering highlights the fact that multi-view illusion
knitting is over-constrained: for the vast majority of pairs of images,
no pattern can satisfy all the requirements. Intuitively, without bump

units, our images cannot di�er since bump units occlude the units be-
hind them and create the illusion. However, the color of every bump
unit must match both images since it will be visible from both sides.
We can attempt to minimize error using automated techniques,

but human perception ultimately decides illusion quality. Therefore,
we establish a �rst human-in-the-loop framework that can support
both automated design as well as interactive, iterative editing.
To do so, we abstract over the logical space to create an editing

space for designers. This design space enables robust approaches
to generating obvious and knittable illusions by reducing the devel-
opment of illusion patterns to image editing.

Consider the pair of inputs from the
inset �gure. These inputs are unsolvable:
one image demands white, where the
other demands black. How can we create

a double-view illusion at all?
To begin, we observe that using the logical constraints speci�ed

previously, it is possible to have the left and right views di�er. Con-
sider a 3 by 1 repeating tile, i.e., white �at, black �at, and white
bump. From the right, the white bump occludes the black �at, and
the image appears white. From the left, we see the white bump and
black �at, creating a black and white striped “�ll.” Incidentally, we
notice that in craft illusion knitting, simple repeating patterns are
occasionally used as �lls; for example, a striped black-and-white
pattern looks like a medium gray against solid black and solid white.
Leveraging the idea of black/white stripes as a �ll, we can susbti-
tute the solid black in both inset inputs with a black/white stripe to
make this illusion possible using our new tile, as shown in Figure 5.
This approach provides yet another new insight; we can mod-

ify input images to make robust double-view illusions possible. In
other words, we must relax the illusion constraints. Doing so re-
quires striking a balance between three factors: (1) constraint satis-
faction (i.e., does the pattern actually replicate the input image?),
(2) knittability (i.e., is it actually feasible to create the pattern?), and
(3) readability (i.e., if we modify the input to improve satis�ability,
will the modi�ed input still be perceived as similar to the original
input?). For example, relaxing all inputs into a white square would
make them knittable and constraint satisfying but not readable as
most input images. Or, prioritizing satis�ability, we could use an
approach such as MaxSAT or optimization. However, using these
relaxation methods might make it more di�cult to control knitta-
bility and readability, as shown in subsection 8.3.
To successfully navigate this tradeo�, we can draw on some ob-

servations from craft illusion knitting. Knit illusions become less
readable when fabricated. With a pixel mapped to 2x2 stitches, the
resulting knit objects are large, meaning input images are typically
low-resolution. As cloth, the fabric is wavy, so details are often swal-
lowed up. In response, artists segment images into large swaths of
each color and avoid dithering, instead employing regular, repeti-
tive patterns to make the borders between colors distinct. We must
relax the input simply and consistently to preserve readability. This
relaxation should be editable so the user has control.

A tile-based system balances our three concerns. Repainting input
regionswith these new �lls makes the constraints within each region
satis�able since the �lls are backed by tiles. Tiles are designed to be
fabrication-sensitive; our chosen patterns create unbroken courses

ACM Trans. Graph., Vol. 43, No. 4, Article 152. Publication date: July 2024.

Computational Illusion Kni�ing • 152:5

Fig. 5. A knit version of our recolored input pa�erns. (Le�) The black back-
ground and white square have become a striped background and white
square. (Right) The white background and black square have become a
white background and striped square.

of color within each tiled region. This property results in shorter
fabrication times with less complexity. Tiles also consistently relax
the input; all instances of the same colored regions are repainted
with a color or a simple, regular �ll, maintaining readability. Best of
all, relaxation is controlled by the user when they de�ne the color
regions of the input and decide how to repaint them. Users can �ne-
tune elements by editing the quantized design, reducing the problem
to image editing, which can be performed in any familiar software.
Thus, we propose a tile-based framework for creating illusions.

We provide a tile bank of template tiles that have known �lls from
each view, and which can be customized and extended. The user
provides simpli�ed and quantized input images. The framework then
overlays the two inputs onto each other, recording the original color
speci�cation. It then repaints the original colors in the image with
new �lls, drawing from the tile bank for the matching tiles (Figure 6).
Crucially, multiple tiles might map to the same �ll on one side but to
a di�erent �ll on the other side. The tool then displays the predicted
knitted output, and users are free to edit what tiles are used.

In this way, editing becomes as simple as modifying the input im-
age regions with a preferred image editor, knowing that knittability
and satis�ability will be preserved.

5 FOUNDATIONS OF ILLUSION KNITTING
To reason about correct illusions, we seek to establish a formal
understanding of illusion knitting. We start by describing a func-
tion called can_see, which mathematically identi�es visible logical
units in the side view. The de�nition of can_see is given by the
constraints de�ned in subsection 4.2, such that can_see from one
direction is given by the constraints for A and from the other di-
rection given by the constraints for B. Using can_see, we de�ne
a “perfect” illusion as one where the pattern viewed from the side
exactly matches the input image.

Constraints for Single-View Illusions. We use can_see to write
an algorithm for generating single-view illusions from a two-color
input. Our algorithm, shown in Figure 7, is heavily inspired by craft
examples. We alternate striped rows of colors 1 and 2 (21 and 22).
However, we translate only 21 pixels to bump units if the stripe row
is 21-colored, while 22 pixels in 21 rows are translated to 21.5 ;0C
units. This algorithm produces SAT patterns (modulo boundary
rows). While we ignore 22 pixels in 21 rows, we raise the stitches
only where 21 is used. So, a 21.5 ;0C will never block a 22.5 ;0C in the
next row. Given that all pixels are either 21 or 22, 22 pixels in row =
(when = is a 21 row) will appear in = + 1 in the knit result.

For inputs with an intermediate third color, we can extend this
algorithm to translate 23 to two adjacent bump rows. This modi�ca-
tion maintains approximate correctness.

Accelerating design for single-view illusions is simpler than our
goal of doing so for double-view, but we are still content that our
push-button solution for single-view can replace hundreds of hours
of work, lowering the barrier to entry for designing such illusions.

Di�erentiable Renderer. Though we have a formal renderer de-
�ned via our constraint system, we additionally observe that the
angle at which the image is viewed a�ects perception. Providing a
more �exible, accurate view is essential for interactively exploring
the design space. In real life, viewers will naturally move around to
�nd the sharpest image. Our new ray-casting renderer is di�eren-
tiable, enabling optimizations to be built on top of it.

Two simplifying assumptions allow for autodi�erentiating stitch
occlusion. First, we treat logical stitches as cuboids of �xed height.
Second, we �x a camera that is orthographic with respect to the
width. As a result, all predictions are rectangular, which aids when
�tting an illusion knit pattern to the target input. Thus, viewing rays
can only intersect with the leading or top faces of each stitch cuboid
within one wale. The 3D rendering problem is thereby reduced to a
single 2D problem with wales computed independently.
To render a wale, we analytically compute the contribution of

each line segment (8 to each pixel %8 , accounting for occlusion by
earlier segments (9<8 : |

�
(8 \ [9<8

�
(9
� �
\%8 |. Here, (: and %: are the

projections of the :�th stitch and pixel onto image space. We show a
di�erentiable closed form expression in the Supplemental Material.

To tune the renderer’s parameters, we knit a test pattern, shown
in Figure 8. We measured the angle at which each purl bump con-
�guration obscured the opposite-color stitches and used this to cal-
culate the height of the purl stitches. The same pattern can be used
to tune parameters for a new setup, e.g., when using a thicker yarn
or di�erent gauge needles. We show the results of rendered outputs
compared to knit outputs in Figure 18. The rendered output strongly
replicates the real, physical illusion e�ect, successfully making im-
mediate visual feedback possible.

6 DESIGN FRAMEWORK
Double-view illusions are di�cult because they are over-constrained.
In fact, every example in our evaluation was not satis�able in the
original input. Thus, we propose a design system based on tiles,
which relax the illusion constraints in a constraint-satisfying, knit-
table, and readable way. Using tiles as a fundamental construct, we
reduce illusion design tasks to familiar image editing tasks, e.g., how
to quantize input images into large colored regions, without requir-
ing knitting knowledge. Combined with our di�erentiable renderer
for previewing illusions without actually manufacturing them, our
approach simpli�es and accelerates iteration. We now describe in
more detail the development of this framework.

6.1 Developing Tiles
Guided by the illusion constraints, we design a series of new canoni-
cal tile types, pictured in Figure 10. A tile maps to a �ll of some color
(solid or two-color alternating stripes) and can be used to design
single-view head-on and double-view illusions, or more. We chose
only simple striped �lls since they are the common non-solid �ll
used in artists’ illusion knits. Along with the principle that a bump
can block one unit beyond it, we naturally ended up with a series of

ACM Trans. Graph., Vol. 43, No. 4, Article 152. Publication date: July 2024.

152:6 • Zhu et al.

W | B

W | W

B | B
B | W

F F F F F F R F F R F FF F F F F F

L R L R L R

Left input

Right input

New left input New right input

Tiled pattern
(light gray = raised black)

Tile bankGenerated image “overlaps”

Fig. 6. The workflow for our tile-editing framework. (Le�most) Our original inputs for each view, with large, simple color regions. (Center le�) The system
then overlaps the images, creating many new smaller regions where the two inputs had di�erent colors. For example, the blue region in the middle should be
white on the le� and black on the right. (Center right) The system repaints the inputs with new fills. It must assign a new fill to each color 2 in the original le�
input such that for each overlap region 2 |3 , there is a tile that shows 2 on one side and 3 on the other, and same for the right. (Rightmost) The final tiling.

0

1

2

3

4

5

B B B
F F F
B F B
F B F
B B B
F F F

Initial image Compiled pattern
Viewed results

(a) An example of our compila-
tion algorithm and the result of
can_see. The two rightmost im-
ages are the viewed image from
the top and bo�om, respectively,
according to can_see.

j

2i C1

j

2i+1 C1

j

2i+1 C2

j

2i C2C1.B

C2.F
C2.k

C2.k

C1.k

C1.p
C2.B

C2.p

C2.k

C1.F
C1.k

C1.k

C1.k

C1.p

C2.k

C2.k

C2.p

C2.k

C1.k

C1.k

(b) A visual description of our single-
view image-to-illusion compilation al-
gorithm. Each pixel in the input is
compiled first to a logical unit and
then to a physical unit depending on
its row of origin.

Fig. 7. Illustrations of the single-view compilation algorithm.

Fig. 8. Our calibration pa�ern. We knit sets of various sizes of white bumps
next to various sizes of black flat stitches. Our examples use di�erent colored
yarns of the same dimensions; however, given varied yarn sizes, we could
knit a di�erent version of the calibration pa�ern, with each distinct yarn
replacing the white stitches, to learn the height of purl bumps for each yarn.

1 to 3 color tiles with alternating stripes. Variations are possible; e.g.,
a tile could use a checkerboard pattern instead of straight rows, or
could leverage a combination of colors that would look blended from
afar, employing more than three colours. Our chosen tile types are

easily fabricated yet still �exible and expressive, but motivated users
may implement their own tiles custom-designed for other e�ects.

6.2 Implementing the Image Editing Illusion Design System
Our tool’s other main algorithmic function is to suggest mappings
from regions to tiles. First, the tool computes the overlap of both
inputs. It then attempts to match each original input color to a
new �ll. In doing so, it must ensure that the overlaps of two new
�lls is possible — a black and white stripe �ll on the right input
can overlap with black on the left, but pure white cannot overlap
with pure black. Basically, if the two �lls share at least one yarn
color for all overlapped regions, it is viable. If an assignment for
all colors exists, we perform a second �ltering check to ensure that
the brightness order of the original image is preserved, with stripes
being an average brightness of the yarns used.
A default option is automatically applied, so if there are any

satisfying assignments, the user already has a quality illusion pattern.
To go further, users can select and preview many candidate tiles for
each color region. We depict the tool in Figure 9.

6.3 Workflow Example
We demonstrate the power of image editing for generating and im-
proving illusion patterns. For our double-view evaluation exam-
ple of Van Gogh’s Self-Portrait and Sun�owers, we edited the Self-
Portrait input (pictured in Figure 11a). Starting with a basic quanti-
zation of the input image (Figure 11b), we get the projected result
in Figure 12a. The painting in the background of the self-portrait
has become unreadable, so we modify the original image by erasing
the painting around his head. We also make the bandage clearer by
adding a shadow. The resulting image is shown in 11c. These edits
can be performed in minutes using a program like Microsoft Paint.
The illusion produced from the edits is shown in Figure 12b, and
the �nal knitted image in Figure 1.

ACM Trans. Graph., Vol. 43, No. 4, Article 152. Publication date: July 2024.

Computational Illusion Kni�ing • 152:7

Fig. 9. An illustration of the interface to our simple design system. The
interface itself functions as an alternative to running scripts in the command-
line and is not meant to be evaluated on its novel interaction. Within the
interface, users load their input images, select the number of yarns to use,
and press a bu�on to get candidate tile mappings. The rendered output of
each mapping is displayed so that the choice is a personal ma�er of human
perception. In many cases, the default tile mapping is the best choice, and
users can save the illusion pa�ern immediately. Theymay also select another
candidate tile mapping that they prefer, again based on the rendered output.
Power users may even modify the tiles directly if they have a deliberate
e�ect in mind.

F F F F F F F B F B F B B F F B F FF F F F F F B F F B F F

L R L R L R L R L R

Fig. 10. New tile types (colors can be freely assigned). Tile pa�erns are shown
top-down (top), with its height map (middle) and two side views (bo�om).

(a) The original paint-
ing as input.

(b) The input image af-
ter quantization.

(c) The final cleaned
image from user edits.

Fig. 11. The evolution of Van Gogh’s Self-Portrait as the designer performs
simple image editing and transformation tasks to change the illusion knit
output. The final image is the simplest and cleanest, without substantially
altering the painting’s main details. The edit from (b) to (c) took less than
five minutes in an image editing application such as Microso� Paint.

(a) The rendered result of making
an illusion image from Figure 11b
and Van Gogh’s Sunflowers

(b) The rendered result of making
an illusion image from Figure 11c
and Van Gogh’s Sunflowers.

Fig. 12. Comparing the results of the illusions generated from the originally
quantized input image (le�) and the edited input image (right). Each set
of images is the le�- and right-view rendered prediction of the generated
pa�ern. Notice that in the edited image, removing the painting next to Van
Gogh simplifies the superimposed overlap, making the rightmost sunflower
detail much clearer and the head’s definition more distinct.

7 FABRICATION
The illusion patterns we designed require changes between knits
and purls and changes between colours within a single row. In hand
knitting, the knitter is entrusted to make decisions handling yarn
behaviours, e.g., whether the yarn runs along the front or back of
the knit object or whether to twist the yarns around each other
when they need to catch. In machine knitting, these subtle details
must be concretized and managed. Furthermore, operations that
non-experts might expect to freely compose, such as knitting a
section in one yarn and a second section with another yarn, do
not do so because of the implicit changes in machine state that
are not explicitly surfaced to the level of abstraction we use to
program the machine. Thus, to automatically compile our designs
to knitting programs, we must develop new mixed-colorwork-and-
texture-aware scheduling strategies to ensure correctness.

7.1 Machine Kni�ing Background
As opposed to hand knitting, which uses two long needles that
holds multiple loops, machine knitting uses a set of adjacent hooked
needles in a row (called a bed), each of which hold a single free loop.
Each needle then forms a new loop by pulling yarn through the loop
it is holding. A carriage runs back and forth along the length of the
needle beds and actuates each needle. In general, the time it takes to
knit an object is a function of the number of carriage passes required.
We focus on enabling fabrication on a V-bed knitting machine,

which steeple two opposing beds of needles in an inverted "V",
hooks at the top. When knitting texture, the front bed produces
knit stitches, the back bed purls. Carriers run along rails above the
bed to guide yarn over the needles. We have multiple yarn carriers
for colorwork but must coordinate them to ensure the knit object
stays together. These machines are fully computerized and execute
programs written by domain experts. Figure 16 depicts a simpli�ed
view of the knitting machine.

7.2 Colorwork Background
Single-view knits posed no scheduling issues. With tiles, however,
we must account for color changes within a row, which entails
mixing colorwork and texture. Existing machine scheduler algo-
rithms [Lin and McCann 2021; Lin et al. 2023, 2018; McCann et al.

ACM Trans. Graph., Vol. 43, No. 4, Article 152. Publication date: July 2024.

152:8 • Zhu et al.

Doubleknit jacquard Stranded Intarsia Plated

Fig. 13. Examples of colorwork techniques, with the front face (top row)
and back face (bo�om row). Doubleknit jacquard embeds a di�erent image
on each side. Stranded kni�ing results in long, unkni�ed yarn floats across
the back. Intarsia is seamless from the front, but the yarn- catching used to
keep the two di�erent-colored fabrics together is visible along the vertical
join on the back. Plated produces the inverse of the front design on the back.

2016; Narayanan et al. 2019] are not designed to support both switch-
ing between knits and purls and switching colours within a row,
as is needed in illusion patterns. One work [Albaugh et al. 2023]
deals with the mixed colorwork and texture required for brioche
knitting, a well-known special style of knitting that uses a particu-
lar rib texture and usually employs a colour change to highlight it;
we still need new strategies for the arbitrary mixed colorwork and
knit-purl texture demanded in illusion knitting.

There are many existing techniques for colorwork. Plating works
all yarns together, producing color patterns by switching which yarn
sits in front. Stranded knitting passes unused colors behind stitches,
forming strands (a.k.a. �oats) along the back. Intarsia portions the
knitted item into single-color blocks, intertwining the yarns at the
borders of the blocks. Doubleknit jacquard, arguably the most com-
mon technique for machine-knit colorwork, uses all needles on both
beds. Importantly, these techniques do not systematically integrate
with textures. We now provide a more in-depth explanation of each
colorwork technique and illustrate each in Figure 13.

Stranded Colorwork. In stranded colorwork, the knitter transports
all yarns as they knit, even if they are not actively in use. Yarns that
are not being used for the current loop lie along the back. These
loose strands, or �oats, end when that color’s yarn is returned to
use, but overly long strands are undesirable. To avoid this, stranded
designs employ small motifs close together to keep color changes
frequent. Thus, stranded colorwork is appropriate for regions with
frequent color changes, but it incurs unnecessary material cost and
complexity when a carrier is crossing large swaths of other colors.
Also, machine knitting stranded colorwork when patterns have purl
textures requires special handling because a naive program will
create �oats in front of any purl stitches on the back bed.

Intarsia. Instead of carrying every yarn when it is not in use,
intarsia knitting divides up regions of colour such that each region
is knit with just one yarn moving back and forth, Sometimes, due
to how the colour regions are arranged, the project may require
two or more instances of one yarn color. Intarsia produces fabric
that matches the drape and feel of a single-color knit, but because it
requires a new yarn for each color change in a course, it is meant
for designs that have larger color regions and few color changes.

In general, carrier positions diverge for intarsia, i.e., carriers may
move in di�erent directions and be in di�erent ranges of the needle
bed. As a result, carriers may not be appropriately positioned to
knit the next course and might require extra instructions to ensure
correctness. In addition, knitting each section with a di�erent yarn
produces disconnected pieces that require explicit joining.

Plated Knitting. In plating, each loop is made with two yarns
pulled through the parent loop. On the machine, we can control the
appearance of a plated stitch: whichever carrier is “�rst” contributes
most of the color, with the second carrier barely peeking through.
Colorwork pieces can be constructed entirely from plating; however,
we avoid it because the thickness of plated stitches interferes with
the illusion, making knits much taller than non-plated knit stitches.

Doubleknit Jacquard. Jacquard knitting is a very common ma-
chine knitting colorwork technique that creates a double-sided stock-
inette. Notably, the color pattern on the front may completely di�er
from that on the back. Both the front and back beds are used (and in
all-needle jacquard, which is the standard for machine knitting, all
needles are used) and the two sides of the fabric are held together
when the yarn crosses from one to the other. Because both beds are
used, it is impossible to use the back bed needles for purls or trans-
fers at full gauge, which means texture is not easily accomplished.

7.3 Combined Colourwork Strategy
We propose a novel colorwork strategy that supports the colorwork
and textures found in illusion knits, based on four key properties
of illusion patterns: (1) bumps must be clear so that the illusion is
visible; (2) patterns often have many large regions or long runs of
a single color; (3) there may be areas with dense color switching,
perhaps if there are many small regions; and (4) purls may occur
anywhere, and for the knitting machine, where purls are created on
the back bed, this means that the back bed cannot freely be used.
From (1), we decided against plating for colorwork since bulky

knit stitches interfere with the illusion. Considering properties (2)
and (3), neither stranded nor intarsia obviously prevails since one is
better suited for frequent and the other infrequent color changes,
respectively. We therefore propose a best-of-both-worlds combina-
tion of stranded colorwork and intarsia, but we must still address
technique-speci�c challenges. In stranded, �oats should not appear
on the front of the knit item; in intarsia, di�erent yarns must be
securely connected so the piece does not unravel. While solutions
exist in typical contexts, they may not apply when combining these
techniques or under the constraints imposed by (4). Thus, we intro-
duce three compiler passes to address each concern.

Float Avoidance. Floats appear when a carrier knits on one part of
the bed, then moves to knit on another section of the bed. Because
the yarn is not cut, it runs loosely along the work. Since carriers
move in the space between the front and back beds, �oats appear on
the front of the work when this movement passes in front of stitches
on the back bed. To avoid �oats, whenever a carrier moves freely
(i.e., not while knitting), we check for purls it might cross in front of,
and surround the carrier movement with extra transfer instructions
such that stitches move to the front bed before the carrier passes and
return to the back bed after. This operation incurs two extra carriage

ACM Trans. Graph., Vol. 43, No. 4, Article 152. Publication date: July 2024.

Computational Illusion Kni�ing • 152:9

Fig. 14. We depict a 3/4 view representation of the needle bed, with the
front and back needles tented inwards and the front needles closer to the
camera. The loops currently on the needles are the most recently created,
with the fabric moving down as rows are knit. Le�: (Incorrect) Floats passing
across loops formed on the back bed appear on the front of the fabric. Right:
(Correct) Floats passing across the bed go behind loops on the front bed, so
they appear on the back of the fabric.

passes per free carrier movement if there are back-bed stitches to
transfer, so checking that this operation is needed saves time.

Algorithm 1 Decide to move purls to the front bed to avoid �oats.

function F����A�������T��������G��������(colorCourse,
carriageDir, backBedNeedlesWithLoops, anchors, program)

carrier carrier for loops in colorCourse
anchor anchors[carrier]
�rstNeedle �rst needle of colorCourse
pretransfers []
posttransfers []
for needle between anchor and �rstNeedle in carriageDir do

if needle in backBedNeedlesWithLoops then
pretransfers += xfer(needle, FrontBed(needle))
posttransfers += xfer(FrontBed(needle), needle)

end for
program += pretransfers
for loop in colorCourse do

program += getInstsToKnitLoop(loop, carriageDir, carrier)
end for
program += posttransfers
anchors[carrier] last loop in colorCourse

end function

Yarn Catching. Changing colors typically means using a new
yarn, and without explicitly ensuring that two yarns are “caught”
(meaning entangled or twisted together), doing so causes gaps in the
knit. These gaps are especially apparent when they span multiple
rows in the same column. Imagine a degenerate example where a
knit piece consists of two di�erent-color rectangles side-by-side.
Without catching, the two yarns never contact each other, and the
piece is therefore simply two disjoint single-color rectangles.
Yarns do not “catch” on their own since the carrier rail of the

knitting machine is designed to avoid yarns tangling. There is a folk
method that creates a catch using the back bed. Unfortunately, in
illusion knitting, the back bed is densely occupied.
Our strategy uses a plating stitch at the beginning of a color

change to catch. Though using plating throughout causes overly

Fig. 15. We depict a 3/4 view representation of the back needle bed, with
the front bed omi�ed. Le�: (Incorrect) Kni�ing two regions of separate
colors back and forth without intervention leads to disconnected pieces
of fabric. Right: (Correct) Using plating to knit both colors together at the
color change ensures that the two halves are intertwined, with the yarn on
top contributing the most to the overall colour of the plated stitches.

thick fabric, we have observed that sporadic use is �ne. Both yarns
are used in the same stitch and are pulled through one loop together,
durably ensuring yarn contact and connecting the two sides. We
control which color is more prominent by laying it down �rst.

Algorithm 2 Modify loop data structure to plate at color changes.

function A��P������T�C����(loopNeighborPairs, loops)
currentYarn loops[0].yarns[0] ù First yarn is “main” yarn
for n1, n2 in loopNeighborPairs do

if n1, n2 have di�erent yarns then
n2.yarns += currentYarn
currentYarn n2.yarns[0]

end for
end function

Yarn Path Planning and Anchoring. In our programs, carriers do
not always move together, so some scheduling assumptions do not
hold. Given a carriage direction, the knitting machine expects the
carrier to originate from behind the carriage in that direction. Con-
sider the case where a carrier is anchored, i.e., has last knit in the
middle of the bed, and, in the next course, is going to be used to
knit from the very left side to the very right side of the bed. Regard-
less of which side the carriage starts from, the carrier will originate
from in front of the carriage, so no yarn is placed onto the needles
and no stitch is formed. This problem is illustrated in Figure 16.

To ensure that every stitch is knit, we propose two di�erent strate-
gies. In the �rst, we divide the course where the yarn is anchored,
�rst knitting in one direction from the anchor to one side, then turn-
ing around and knitting from the anchor to the other side. However,
imagine a plated stitch where the carriers involved are on separate
sides of the carriage. There is no direction that the plated stitch can
be knit such that both carriers will come from behind the carriage. In
this scenario, we introduce an anchoring stitch. The secondary plat-
ing carrier �rst makes an anchoring stitch (for example, a knit) to
anchor it on the same side of the carriage as the primary carrier. Of
course, this movement may incur further �oat-avoidant transfers.

ACM Trans. Graph., Vol. 43, No. 4, Article 152. Publication date: July 2024.

152:10 • Zhu et al.

Fig. 16. From a top-down view, we depict two needle beds with four needles
each, which move up into the gap to grab yarn and form loops. In each
case, the carriage is moving le�-to-right, as indicated by the arrow on it.
There is one carrier for yellow yarn. Le�: (Incorrect) When the carrier is
anchored in front of the carriage in the carriage direction, the carrier stays
in front of the carriage, and the yarn retracts rather than being laid over the
needles. Right: (Correct) When the carrier is anchored behind the carriage,
the needles can move into place before the carrier passes over them.

Algorithm 3 Modify carriage direction and course ordering or add
instructions to set correct yarn path.

function S��Y���P���(colorCourse, rest, anchor, program)
if anchor is closer to colorCourse start then

carriageDir LeftToRight
else

carriageDir RightToLeft
if anchor is between colorCourse start and end then

if strategy is Split then
�ip carriageDir
left, right split(colorCourse, anchor)
if carriageDir is RightToLeft then

colorCourse left
rest += right

else
colorCourse right
rest += left

if strategy is Anchor then
if carriageDir is LeftToRight then

program += knitWTransfers(start, RightToLeft)
else

program += knitWTransfers(end, LeftToRight)
if carriageDir is RightToLeft then

reverse colorCourse
end function

8 EVALUATION
To demonstrate that our approach is successful, we created a broad
variety of traditional and totally novel knitted illusions, showing that
the design burden is low, the resulting illusions obviously exhibit
the input images in each view, and actual fabrication is possible.

8.1 Automating Single-view Illusions
The Mona Lisa illusion in Figure 1 demonstrates our automation of
single-view illusions: only one input image is required. Compared
to the traditional approach requiring hundreds of hours of manual
labor, our framework signi�cantly expedites the process and en-
ables non-experts to create intricate illusion knits.

Fig. 17. A single-view head-on illusion and its inputs. Viewed from the front,
the dragon is visible, but when viewed at an angle, the larger circle illusion
engulfs it, and only a circle is visible. A tile variation makes it possible to
produce this other type of knit illusion.

8.2 Beyond Single-view Illusions
This paper expands the range of achievable illusions in knitting; in
particular, we have detailed techniques for novel double-view illu-
sions and provided the formal foundations for even more illusion
types. We show examples generated with our system, all taking �ve
to twenty minutes of design time to iterate on the input images,
yarn choices, tile selection, and editing.
Figure 17 shows an example that can be viewed head-on but is

occluded in a side view; this novel e�ect was enabled via tile editing
in our design tool. We also produced the �rst known double-view
illusions, where two two-color images are knitted using two yarn
colors. In our examples, we choose the automated assignments that
replace the background color with a striped pattern. This approach
yields sharp results, as in the bunny and teapot (Figure 18 (d)) and
the ECG pulse and heart (Figure 18 (a)). We demonstrate text leg-
ibility in a more challenging example, where one side reads “ILLU-
SION” and the other reads “KNITTING” (Figure 18 (b)).
We push the boundaries further with illusions using more than

two yarn colors. In Figure 18 (c), we show the SIGGRAPH logo
in red and blue on one side and an orange logo for SIGGRAPH
Asia on the other side. This example uses four yarn colors, with a
�xed background and changing logo colors. Finally, to even further
push the limits of our techniques, we knit two complex Van Gogh
paintings using a three-color quantization and three yarn colors,
requiring a total of nine unique tiles that were automatically created
and assigned (Figure 1). The di�erent views are distinct, and the
images are recognizable. This example demonstrates the potential
of our technique.

8.3 Comparison with Other Design Methods
We also experimented with fully automatic methods for designing
illusion patterns. We encoded constraints from subsection 4.2 as a
MaxSAT formula and solved for the lowest-logical-error pattern. We

ACM Trans. Graph., Vol. 43, No. 4, Article 152. Publication date: July 2024.

Computational Illusion Kni�ing • 152:11

Fig. 18. Double-view examples, pictured with their inputs, and, in (a) and (d), the rendered prediction of their pa�erns. In each example, the image from the
le� and right viewing angle di�ers, as depicted. In (d), we also show the head-on view.

also used our di�erentiable renderer to perform gradient descent,
using MSE for the loss. Figure 19 shows results of both.

These patterns are slow to knit: 12 hours for theMaxSAT-generated
bunny and teapot vs 2 hours for our tiled solution, and an estimated
30 hours of knitting for the optimized Van Gogh vs 10 hours for our
tiled solution (which is a conservative comparison, as our evalua-
tion example is a larger piece). Additionally, we found the illusions
from the automated techniques less obvious than our tiled approach.
Other automated methods may improve clarity and lower fabrica-
tion times, but those can also be incorporated into our framework. In
our experience, a designer-in-the-loop tool is highly e�ective for op-
timizing the ultimate objective of human-perceptible knit illusions.

8.4 Fabrication
We implemented a knitting pattern to machine instruction pipeline,
which lowers a logical design to a physical pattern, then compiles it
to a knitout program. We use the KnitPaint program to generate ma-
chine code and knit the objects on a 7-gauge (i.e., 7 needles per inch)
SWG091N2, which is a Shima SeikiWholeGarment knittingmachine.

Designs took between 50 minutes (ECG pulse and heart, 200 x 200
stitches) to ten hours (Van Gogh, 660 x 400 stitches). The fabrication
time for single-view patterns is determined by the size and in double-
view by pattern complexity. In addition to the illusion results, we
show in Figure 20 what happens when each key feature of our fabri-
cation algorithm (i.e., �oat avoidance, path planning, and catching) is
not applied, demonstrating their importance. In Figure 21, we specif-
ically highlight a full piece that has been knit without path planning.

9 LIMITATIONS AND FUTURE WORK
Our work presents the �rst framework for users to explore the space
of illusion knitting where more than one image can be hidden. We
focus on how user-in-the-loop systems that systematically relax
constraints with automated assistance can help users express their
desired designs, and hope to inspire more work in this methodology.

In the future, the fabrication strategies we propose can be applied
in situations beyond the mixed colorwork and texture needed for
illusion knitting. Though the development of the yarn anchoring
strategy was motivated by our inability to use the back bed at will

ACM Trans. Graph., Vol. 43, No. 4, Article 152. Publication date: July 2024.

152:12 • Zhu et al.

(a) The result of using our MaxSAT
formulation to solve for a pa�ern
that satisfies the most constraints.
Notice how the areas where the
two images di�er still have a lot
of visual interference. This pa�ern
took 10 hours to knit.

(b) The result (large images) of run-
ning optimization using our dif-
ferentiable renderer and MSE loss
against the target inputs (small
pictures) to get a double-view il-
lusion design. Although the pre-
dicted result looks reasonable, this
design would have taken 30 hours
to knit.

Fig. 19. Examples of knit illusions produced by other design tools. Regardless
of the quality of these automated approaches, a human-in-the-loop tool is
still necessary so designers have recourse to correct or modify parts of the
design.

Fig. 20. Kni�ing with (top row) and without (bo�om row) each contribu-
tion. Without float avoidance (le�), floats appear on the front of the work.
Without path planning (middle), the piece systematically dropped stitches.
Without catching (right), the two pieces knit with di�erent colors are dis-
connected at the vertical edges, leading to the blue sides of the plus sign to
curl inwards.

Fig. 21. An a�empted illusion knit without path planning. Note that the
failure manifests not as mere visual artifacts on the knit object, but in the
fact that the knit is structurally not a surface at all on the right side, and
nothing is viewable.

in illusion knitting, this advancement could enable simpler intarsia
scheduling for stockinette garments since plating is simple to reason
about. Our yarn path planning strategy might also be used for
intarsia scheduling as well as more broadly when considering how
to schedule complex objects.

Our contributions also open several other avenues for future work.
First, we considered the space of illusions achieved only through
standard knits and purls on a knitting machine. More complex fab-
rication techniques expand the possibilities. For example, knitting a
color change into a purl bump can partially achieve di�erent colors
on each side of the bump. Alternatively, expert machine program-
mers might attempt to enhance the height di�erence between bump
and �at microgeometry by adding extra yarn to bumps via addi-
tional tucks, or by mimicking e-wraps, or another similar strategy.
New design tools would be essential to understanding this more
complex design space and to make design decisions that trade o� dif-
ferent aspects, e.g., physical limitations of yarns, fabrication meth-
ods, human perception, and visual complexity.

Second, there may be other techniques for machine knitting that
we could have used to further improve fabrication. For example,
we did not consider using sliders independently from their needles,
which can hold loops temporarily and could catch yarn for intar-
sia and for anchoring. This solution would call for more complex
scheduling algorithms, perhaps when the aesthetics of the knitted
piece is a larger consideration.

Our knits tend to have small areas of dropped stitches. We believe
this is due to the extra transfers incurred, each adding a chance that
loops will fall o� the needle. Investigation into reducing transfers
would be valuable for reducing the number of dropped stitches.

It is clear that illusions present interesting challenges in compu-
tational knitting and provide a rich case study for novel methods
in pattern design, program scheduling, and interaction. Our e�orts
serve as a framework for working with more general illusion knit-
ting, and we intend to continue expanding its functionality.

10 CONCLUSION
We developed a theoretical understanding of illusion knitting by
leveraging the key insight that both the microgeometry that under-
pins illusions and the principles behind illusions can be expressed
as constraints. Combined with practices from artists in the craft, we
built a human-in-the-loop design framework, focused around tiles,
for creating illusion knitting patterns that reduce illusion design
to familiar image editing tasks. To fabricate these complex designs
combining colorwork and texture, we introduced novel machine
knitting scheduling techniques. We further developed completely
new kinds of illusion designs and so establish a foundation for the
community to further explore illusion knitting.

ACKNOWLEDGMENTS
We would like to thank Raymond Guo, Kaiyang Wu, and Jimmy
Cheong for their contributions to the MaxSAT formulation. We also
thank Kevin Mu for helping with rendering several of the �gures.
Finally, we thank the anonymous reviewers for their thoughtful and
thorough feedback that has improved the paper immensely. This
work was funded by NSF 2017927 and NSF 2319181.

ACM Trans. Graph., Vol. 43, No. 4, Article 152. Publication date: July 2024.

Computational Illusion Kni�ing • 152:13

REFERENCES
Lubna Abu Rmaileh and Alan Brunton. 2023. Meso-Facets for Goniochromatic 3D

Printing. ACM Trans. Graph. 42, 4, Article 66 (jul 2023), 12 pages. https://doi.org/
10.1145/3592137

Lea Albaugh, Scott Hudson, and Lining Yao. 2019. Digital Fabrication of Soft Actuated
Objects by Machine Knitting. In Extended Abstracts of the 2019 CHI Conference on
Human Factors in Computing Systems. ACM, Glasgow Scotland Uk, 1–4. https:
//doi.org/10.1145/3290607.3313270

Lea Albaugh, Scott E Hudson, and Lining Yao. 2023. Physically Situated Tools for
Exploring a Grain Space in Computational Machine Knitting. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems. ACM, Hamburg
Germany, 1–14. https://doi.org/10.1145/3544548.3581434

Lea Albaugh, James McCann, Scott E. Hudson, and Lining Yao. 2021. Engineering
Multifunctional Spacer Fabrics Through Machine Knitting. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems. ACM, Yokohama Japan,
1–12. https://doi.org/10.1145/3411764.3445564

Marc Alexa and Wojciech Matusik. 2011. Images from Self-Occlusion. In Proceedings of
the International Symposium on Computational Aesthetics in Graphics, Visualization,
and Imaging (Vancouver, British Columbia, Canada) (CAe ’11). Association for
Computing Machinery, New York, NY, USA, 17–24. https://doi.org/10.1145/2030441.
2030445

Marc Alexa and Wojciech Matusik. 2012. Irregular pit placement for dithering images
by self-occlusion. Computers & Graphics 36, 6 (2012), 635–641.

Amit Bermano, Ilya Baran, Marc Alexa, and Wojciech Matusk. 2012. ShadowPix:
Multiple Images from Self Shadowing. Computer Graphics Forum 31, 2pt3 (May
2012), 593–602. https://doi.org/10.1111/j.1467-8659.2012.03038.x

Teresa Harmon. 2011. A Guide to Illusion Knitting: It’s not magic, it’s just fun! CreateS-
pace Independent Publishing Platform, US.

Megan Hofmann, Lea Albaugh, Tongyan Wang, Jennifer Manko�, and Scott E Hudson.
2023. KnitScript: A Domain-Speci�c Scripting Language for AdvancedMachine Knit-
ting. In Proceedings of the 36th Annual ACM Symposium on User Interface Software
and Technology (<conf-loc>, <city>San Francisco</city>, <state>CA</state>, <coun-
try>USA</country>, </conf-loc>) (UIST ’23). Association for Computing Machinery,
New York, NY, USA, Article 21, 21 pages. https://doi.org/10.1145/3586183.3606789

Megan Hofmann, Jennifer Manko�, and Scott E. Hudson. 2020. KnitGIST: A Program-
ming Synthesis Toolkit for Generating Functional Machine-Knitting Textures. In Pro-
ceedings of the 33rd Annual ACM Symposium on User Interface Software and Technol-
ogy. ACM, Virtual Event USA, 1234–1247. https://doi.org/10.1145/3379337.3415590

Vivian Hoxbro. 2004. Shadow Knitting. Interweave, Loveland, Colo.
Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. 2008. Knitting a 3D Model. Com-

puter Graphics Forum 27, 7 (Oct. 2008), 1737–1743. https://doi.org/10.1111/j.1467-
8659.2008.01318.x

Benjamin Jones, Yuxuan Mei, Haisen Zhao, Taylor Gotfrid, Jennifer Manko�, and
Adriana Schulz. 2022. Computational Design of Knit Templates. ACM Transactions
on Graphics 41, 2 (April 2022), 1–16. https://doi.org/10.1145/3488006

Alexandre Kaspar, Kui Wu, Yiyue Luo, Liane Makatura, and Wojciech Matusik. 2021.
Knit sketching: from cut & sew patterns to machine-knit garments. ACM Transac-
tions on Graphics 40, 4 (Aug. 2021), 1–15. https://doi.org/10.1145/3476576.3476614

Jenny Lin and James McCann. 2021. An Artin Braid Group Representation of Knitting
Machine State with Applications to Validation and Optimization of Fabrication
Plans. In 2021 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, Xi’an, China, 1147–1153. https://doi.org/10.1109/ICRA48506.2021.9562113

Jenny Lin, Vidya Narayanan, Yuka Ikarashi, Jonathan Ragan-Kelley, Gilbert Bernstein,
and JamesMcCann. 2023. Semantics and Scheduling forMachine Knitting Compilers.
ACM Trans. Graph. 42, 4 (Aug. 2023), 17. https://doi.org/10.1145/3592449 In Press.

Jenny Lin, Vidya Narayanan, and James McCann. 2018. E�cient transfer planning for
�at knitting. In Proceedings of the 2nd ACM Symposium on Computational Fabrication.
ACM, Cambridge Massachusetts, 1–7. https://doi.org/10.1145/3213512.3213515

Zishun Liu, Xingjian Han, Yuchen Zhang, Xiangjia Chen, Yu-Kun Lai, Eugeni L.
Doubrovski, Emily Whiting, and Charlie C. L. Wang. 2021. Knitting 4D garments
with elasticity controlled for body motion. ACM Transactions on Graphics 40, 4 (Aug.
2021), 1–16. https://doi.org/10.1145/3450626.3459868

Yiyue Luo, Kui Wu, TomÃ¡s Palacios, and Wojciech Matusik. 2021. KnitUI: Fabricating
Interactive and Sensing Textiles with Machine Knitting. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems. ACM, Yokohama Japan,
1–12. https://doi.org/10.1145/3411764.3445780

Yiyue Luo, Kui Wu, Andrew Spielberg, Michael Foshey, Daniela Rus, TomÃ¡s Palacios,
and Wojciech Matusik. 2022. Digital Fabrication of Pneumatic Actuators with
Integrated Sensing by Machine Knitting. In CHI Conference on Human Factors in
Computing Systems. ACM, New Orleans LA USA, 1–13. https://doi.org/10.1145/
3491102.3517577

James McCann, Lea Albaugh, Vidya Narayanan, April Grow,Wojciech Matusik, Jennifer
Manko�, and Jessica Hodgins. 2016. A compiler for 3D machine knitting. ACM
Transactions on Graphics 35, 4 (July 2016), 1–11. https://doi.org/10.1145/2897824.
2925940

Niloy J. Mitra and Mark Pauly (Eds.). 2009. Shadow art. ACM Transactions on Graphics
28, 5 (2009), 1–7. https://doi.org/10.1145/1661412.1618502

Rahul Mitra, Liane Makatura, Emily Whiting, and Edward Chien. 2023. Helix-Free
Stripes for Knit Graph Design. In ACM SIGGRAPH 2023 Conference Proceedings. 1–9.

Georges Nader, Yu Han Quek, Pei Zhi Chia, Oliver Weeger, and Sai-Kit Yeung. 2021.
KnitKit: a �exible system for machine knitting of customizable textiles. ACM
Transactions on Graphics 40, 4 (Aug. 2021), 1–16. https://doi.org/10.1145/3450626.
3459790

Sadako Nakamura, Ryo Tsugawa, Keiko Kitao, and et al. 1982. ↵✏⌫!+#(:D�
⌫⌅ ¨ø.>⇠#✏[Hidden Picture Knit : The Magic of Gentle Needle Knitting].
Nihon Vogue, Tokyo.

Vidya Narayanan, Lea Albaugh, Jessica Hodgins, Stelian Coros, and James Mccann.
2018. Automatic Machine Knitting of 3D Meshes. ACM Transactions on Graphics 37,
3 (June 2018), 1–15. https://doi.org/10.1145/3186265

Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann. 2019. Visual knitting
machine programming. ACM Transactions on Graphics 38, 4 (Aug. 2019), 1–13.
https://doi.org/10.1145/3306346.3322995

orochi. 2006. ↵✏⌫!+#(⌃1�⌧S˘Ì$⌧KVersion 1.1 [Hidden Picture
Knit⌃Pattern Making Tool]. https://orochiknit.com/archive/kt001.html

Marios Papas, Wojciech Jarosz, Wenzel Jakob, Szymon Rusinkiewicz, Wojciech Ma-
tusik, and Tim Weyrich. 2011. Goal-based Caustics. Computer Graphics Fo-
rum 30, 2 (2011), 503–511. https://doi.org/10.1111/j.1467-8659.2011.01876.x
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.01876.x

Hao Peng, Lin Lu, Lin Liu, Andrei Sharf, and Baoquan Chen. 2019. Fabricating QR
codes on 3D objects using self-shadows. Computer-Aided Design 114 (2019), 91–100.

Thiago Pereira, Carolina LA Paes Leme, Steve Marschner, and Szymon Rusinkiewicz.
2017. Printing anisotropic appearance with magnetic �akes. ACM Transactions on
Graphics (TOG) 36, 4 (2017), 1–10.

Maxine Perroni-Scharf and Szymon Rusinkiewicz. 2023. Constructing Printable Sur-
faces with View-Dependent Appearance. In Special Interest Group on Computer
Graphics and Interactive Techniques Conference Conference Proceedings (SIGGRAPH
’23 Conference Proceedings). ACM, New York, NY, USA, 10. In Press.

Mariana Popescu, Matthias Rippmann, Tom Van Mele, and Philippe Block. 2018. Auto-
mated Generation of Knit Patterns for Non-developable Surfaces. In Humanizing
Digital Reality: Design Modelling Symposium Paris 2017, Klaas De Rycke, Christoph
Gengnagel, Olivier Baverel, Jane Burry, Caitlin Mueller, Minh Man Nguyen, Philippe
Rahm, and Mette Ramsgaard Thomsen (Eds.). Springer, Singapore, 271–284. https:
//doi.org/10.1007/978-981-10-6611-5_24

Christian Regg, Szymon Rusinkiewicz, Wojciech Matusik, and Markus Gross. 2010.
Computational highlight holography. ACM Transactions on Graphics (TOG) 29, 6
(2010), 1–12.

Kaisei Sakurai, Yoshinori Dobashi, Kei Iwasaki, and Tomoyuki Nishita. 2018. Fabricating
re�ectors for displaying multiple images. ACM Transactions on Graphics (TOG) 37,
4 (2018), 1–10.

Yuliy Schwartzburg, Romain Testuz, Andrea Tagliasacchi, and Mark Pauly. 2014. High-
contrast computational caustic design. ACM Transactions on Graphics 33, 4 (July
2014), 74:1–74:11. https://doi.org/10.1145/2601097.2601200

Pengfei Shen, Ruizeng Li, Beibei Wang, and Ligang Liu. 2023. Scratch-based Re�ection
Art via Di�erentiable Rendering. ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2023) 42, 4 (2023), 1–12.

Xavier Snelgrove, Thiago Pereira, Wojciech Matusik, and Marc Alexa. 2013. Parallax
Walls: Light �elds from occlusion on height �elds. Computers & graphics 37, 8 (2013),
974–982.

Debbie Stoller. 2004. Stitch ’n Bitch: The Knitter’s Handbook. Workman Publishing
Company, New York.

Tim Weyrich, Pieter Peers, Wojciech Matusik, and Szymon Rusinkiewicz. 2009. Fabri-
cating microgeometry for custom surface re�ectance. ACM Transactions on Graph-
ics (TOG) 28, 3 (2009), 1–6.

WoollyThoughts. 2023. Information. http://www.illusionknitting.woollythoughts.
com/information.html

Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel. 2018. Stitch
meshing. ACM Transactions on Graphics 37, 4 (Aug. 2018), 1–14. https://doi.org/10.
1145/3197517.3201360

Kui Wu, Hannah Swan, and Cem Yuksel. 2019. Knittable Stitch Meshes. ACM Transac-
tions on Graphics 38, 1 (Feb. 2019), 1–13. https://doi.org/10.1145/3292481

Cem Yuksel, Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2012. Stitch
meshes for modeling knitted clothing with yarn-level detail. ACM Transactions on
Graphics 31, 4 (Aug. 2012), 1–12. https://doi.org/10.1145/2185520.2185533

Jiani Zeng, Honghao Deng, Yunyi Zhu, Michael Wessely, Axel Kilian, and Stefanie
Mueller. 2021. Lenticular Objects: 3D Printed Objects with Lenticular Lens Surfaces
That CanChange Their AppearanceDepending on the Viewpoint. In The 34th Annual
ACM Symposium on User Interface Software and Technology (Virtual Event, USA)
(UIST ’21). Association for Computing Machinery, New York, NY, USA, 1184–1196.
https://doi.org/10.1145/3472749.3474815

ACM Trans. Graph., Vol. 43, No. 4, Article 152. Publication date: July 2024.

https://doi.org/10.1145/3592137
https://doi.org/10.1145/3592137
https://doi.org/10.1145/3290607.3313270
https://doi.org/10.1145/3290607.3313270
https://doi.org/10.1145/3544548.3581434
https://doi.org/10.1145/3411764.3445564
https://doi.org/10.1145/2030441.2030445
https://doi.org/10.1145/2030441.2030445
https://doi.org/10.1111/j.1467-8659.2012.03038.x
https://doi.org/10.1145/3586183.3606789
https://doi.org/10.1145/3379337.3415590
https://doi.org/10.1111/j.1467-8659.2008.01318.x
https://doi.org/10.1111/j.1467-8659.2008.01318.x
https://doi.org/10.1145/3488006
https://doi.org/10.1145/3476576.3476614
https://doi.org/10.1109/ICRA48506.2021.9562113
https://doi.org/10.1145/3592449
https://doi.org/10.1145/3213512.3213515
https://doi.org/10.1145/3450626.3459868
https://doi.org/10.1145/3411764.3445780
https://doi.org/10.1145/3491102.3517577
https://doi.org/10.1145/3491102.3517577
https://doi.org/10.1145/2897824.2925940
https://doi.org/10.1145/2897824.2925940
https://doi.org/10.1145/1661412.1618502
https://doi.org/10.1145/3450626.3459790
https://doi.org/10.1145/3450626.3459790
https://doi.org/10.1145/3186265
https://doi.org/10.1145/3306346.3322995
https://orochiknit.com/archive/kt001.html
https://doi.org/10.1111/j.1467-8659.2011.01876.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.01876.x
https://doi.org/10.1007/978-981-10-6611-5_24
https://doi.org/10.1007/978-981-10-6611-5_24
https://doi.org/10.1145/2601097.2601200
http://www.illusionknitting.woollythoughts.com/information.html
http://www.illusionknitting.woollythoughts.com/information.html
https://doi.org/10.1145/3197517.3201360
https://doi.org/10.1145/3197517.3201360
https://doi.org/10.1145/3292481
https://doi.org/10.1145/2185520.2185533
https://doi.org/10.1145/3472749.3474815

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Overview
	4.1 Insights from Knit Microgeometry
	4.2 Defining a Design Space

	5 Foundations of illusion knitting
	6 Design Framework
	6.1 Developing Tiles
	6.2 Implementing the Image Editing Illusion Design System
	6.3 Workflow Example

	7 Fabrication
	7.1 Machine Knitting Background
	7.2 Colorwork Background
	7.3 Combined Colourwork Strategy

	8 Evaluation
	8.1 Automating Single-view Illusions
	8.2 Beyond Single-view Illusions
	8.3 Comparison with Other Design Methods
	8.4 Fabrication

	9 Limitations and Future Work
	10 Conclusion
	Acknowledgments
	References

