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Abstract—Recent advancements in blockchain technology have
led to the development of various decentralized service platforms
for various tasks, like machine learning and wireless networks for
example. Central to the operation of these platforms is a token-
based economy, rewarding service providers with cryptocurrency
tokens for their contributions to the setup, verification, and
maintenance of a platform. However, these platforms often rely on
predetermined token supply strategies which render a platform’s
operation susceptible to market fluctuations. A more flexible
approach, one allowing for dynamic response to changes in
system demand and market conditions, is essential to mitigate
such vulnerabilities. To address these challenges, we introduce a
control-theoretic approach to stabilizing a decentralized service
platform’s token economy. Specifically, we first model these
blockchain economies as dynamical systems where token circula-
tion, pricing, and consumer demand evolve based on payments to
service providers and service costs. Then, we utilize our model to
introduce ControlPay: a novel payment controller based on model
predictive control (MPC) designed to enhance the performance of
decentralized networks while simultaneously ensuring token price
stability. Additionally, we also examine the impact of strategic
behavior in the market through a Stackelberg game to further
enhance the robustness of our payment controller. Finally, we
evaluate our methodology on real and synthetic data. Our find-
ings show that ControlPay significantly outperforms conventional
algorithmic stablecoin approaches, yielding improvements of up
to 2.4 x in simulations based on actual demand data from existing
blockchain-driven decentralized wireless networks.

[. INTRODUCTION

The functionality of blockchain based service platforms
is rapidly changing demand economies for machine learn-
ing, decentralized wireless communications, storage, delegated
computation, and electric vehicle charging networks, among
other areas. For example, Helium [1] and Pollen [2] are
two prominent decentralized wireless networks (DeWi) that
reward independent service providers to build, maintain, val-
idate, secure, and ultimately send data over 5G hotspots in a
distributed manner. Similarly, projects such as BitTensor [3],
FileCoin [4], Storj [5], and ComputeCoin [6] offer decentral-
ized machine learning, file storage, and computing services.
Underlying their operation, these networks reward suppliers
using a corresponding token (cryptocurrency) to maintain
and offer services over a decentralized platform. Likewise,
consumers can exchange US dollars (USD) for tokens enabling
the utilization of services or participation in the associated
crypto-economy if they so choose.

To regulate the token rewards to service providers, several
projects have recently considered adopting a “burn-and-mint”
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Fig. 1: A Control System for Blockchain Tokenomics. We
design a payment controller (orange), ControlPay, to optimize
the network utility J. ControlPay takes in a forecast of
consumer demand and supplier growth s;, as well as the
treasury state x;. Then, it adaptively controls token payments
ul’ and buy-backs uZ to achieve a stable token price.

token economics (tokenomics) model where a central reserve
“mints” tokens to reward suppliers while, correspondingly,
tokens are “burnt” (deleted from the circulating supply) when
consumers want to use network services. By burning tokens,
the system reduces the token supply to keep the inflation in
token prices under control. However, current approaches try
to maintain a hard peg, i.e. a fixed exchange rate between
cryptocurrencies and the USD, which may result in the deple-
tion of cryptocurrency and dollar reserves of the system as the
demand for cryptocurrency fluctuates. An ideal token economy
must be designed with adaptable mechanisms for regulating
token rewards to achieve stable token prices while preserving
the token and dollar reserves. As such, the number of tokens
should gracefully scale with the size of the infrastructure
network, which one cannot necessarily know a priori.

When treated as a mechanism design problem, one identifies
that burn-and-mint strategies will induce market equilibria
which are colloquially referred to as burn-and-mint equi-
librium (BME) [7]. We posit that a BME must be “pro-
grammable” so that blockchain-based service platforms can
maximize the total utility of all users. For example, a network
utility function (performance criterion) can be chosen to
include maintaining a steadily growing token price with low
volatility. Likewise, a designer can choose a utility function
incentivizing new suppliers/consumers to expand geographical
coverage. Moreover, the BME-based token economy could be
designed to satisfy strict performance guarantees and con-
straints, such as limiting the number of tokens minted and
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burned per day. Taking this even further, participants in the
token economy are likely rational so it is important to consider
their agency, and any impacts, in taking actions to maximize
the value of their holdings. In short, there is a need for so-
lutions deployed in infrastructure-centric blockchain networks
to address these aspects of managing token supply.

Our fundamental observation is that token economies can
be modeled as dynamical systems, allowing us to leverage
control theory to maximize the blockchain network’s utility
function under chosen constraints. Control theory is a natural
tool since the token economy is a dynamical system where
the circulating token supply, token price, and token reserves
change as a function of our burn and mint decisions. Further-
more, a decentralized consensus mechanism has the authority
to control token regulations at the protocol level transparently.
And, by stating a system’s desiderata, one can identify a con-
trol cost function capturing key metrics supporting the long-
term performance and evolution of the blockchain system.
Hence, regulating a blockchain token economy is a model-
based control problem, solvable via optimal control theory.

Our Contributions: Overall, the contributions of this paper
are three-fold. (1) To the best of our knowledge, we are the
first to apply optimal control theory to blockchain tokenomics
and introduce a general-purpose dynamical systems model that
flexibly captures fixed-supply systems, burn-and-mint systems,
and various other network cost functions. (2) We design
ControlPay, a novel payment controller for a token economy
inspired by nonlinear model predictive control (MPC) and
game-theoretic methods that are used in high-performance,
safety-critical applications like autonomous driving [8, 9],
machine learning [10], and rocket guidance [11]. We demon-
strate that these methods perform better than common heuristic
controllers, such as proportional integral derivative (PID)
controllers used by some algorithmic stablecoins. Specifically,
we improve on PID by 2.4x on simulated time series demand
patterns and by 2.7x on real demand patterns from the Helium
DeWi Blockchain. (3) Finally, to maximize network welfare
we introduce a novel game theoretic formulation for how
owners of tokens and our controller strategically interact.

II. RELATED WORK

Prior studies on blockchains as dynamical systems [12—
14] primarily focus on miner profitability and how block
rewards influence supply and demand. Unlike these works,
our work centers on infrastructure-centric blockchain systems,
where supply and demand dynamics are governed by controller
actions and predictive models. Thus, our controller specifica-
tion is decoupled from the possibly complex trajectory of the
demand, and the strength of our controller’s predictions relates
to the strength of the forecasts used in the system.

To better understand the robustness of our methodology,
we also consider the impact of rational behavior on the part
of consumers in our system. Game theoretic analyses of
blockchain systems have a long tradition, starting with the
original Bitcoin white paper [15]. Since the discovery of the
selfish mining attack [16], game theoretic methods have been
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used to investigate rational deviations [17], mining pools [18],
and more recently transaction fee auctions in Ethereum-like
blockchains [19, 20]. Our work differs from existing literature
as we focus on the effects of rational behavior on buy-back
and pay strategies used to stabilize token prices, and not on
modeling its effects on any underlying blockchain protocol.

Before continuing, we briefly mention prior investigations
into the application of control theory to monetary policy.
For instance, some authors have exploited the linear system
dynamics of central banking to use interest rates for optimal
control of a currency’s inflation rate [21, 22]. Our work is
not directly comparable due to the difference in application.
Namely, we are concerned with a control system that follows
a pre-specified price trajectory of a token in a Blockchain
system, and to do so we exploit non-linear supply and demand
dynamics within the token economy. It is also interesting to
note that researchers have argued empirically on real-world
data [23], as well as in the abstract on simulated environments
[24], that current monetary policies can be captured by PID
controller methods. Such approaches are heuristic and reactive
(instead of predictive), and our experiments in Section VI will
show that our MPC-based approach outperforms them.

Finally, as our aim is to stabilize a token price in a
blockchain network, our work bears similarity to algorithmic
stablecoins. However, our interests are in adaptively control-
ling the circulating supply of a token to balance payments to
service providers with a pre-specified control trajectory on the
token price. Thus, our work is more related to service networks
employing burn-and-mint systems like Helium [1] and Factom
[25] than more general-purpose stable-coins like Reflexer [26]
or Terra [27]. Furthermore, most of the existing literature is
reactive through the use of heuristic methods, whereas our
work is predictive through optimal adaptive control methods.
As our focus is on infrastructure networks, our work is
applicable to DeWi [28] scenarios like Helium [1], as well
as file sharing [4] and decentralized video streaming [29].

III. THE TOKEN ECONOMY AS A DYNAMICAL SYSTEM

We now model the token economy for infrastructure net-
works as a dynamical system to capture the following: Nodes
provide services (5G base stations, machine learning inference,
etc.) to consumers, who pay the controller in dollars. The
controller, in turn, rewards nodes with tokens, a process termed
as minting. The income from consumers forms a dollar reserve,
parts of which are used to buy back tokens, thereby reducing
the circulating supply — a process referred to as burn action.
We define the system dynamics and variables in what follows.

Circulating Supply: The circulating supply of tokens S;
increases when uf tokens are paid as rewards to nodes and
decreases when tokens are bought back:

B
u
Sty1 =85+ uy —t (1
; Pt + Apy
Tokens Paid

Tokens Bought Back

Here, u? is the number of dollars the controller pays to token
owners to purchase their tokens at the price of (pf°* + Apy).
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We define p[°* as the current market price of the token, while
Ap; is the extra amount the controller pays the users over the
market price to incentivize them to part with their tokens. We
formulate a mathematical game to calculate Ap, for rational
agents in Section V.

Reserve: The controller holds two reserves, one comprising
tokens RT°% and the other dollars RYSP with quantities varying
over time steps ¢. The dollar reserve increases with the
income received from users purchasing tokens and decreases
with buybacks from the market while the token reserve RI°X
increases with buybacks and decreases with payments made
to the service providers:

RUSD _

USD
t+1 — Rt

(©))

where u® is the dollars used to buy back tokens at time t,
and Inc; denotes the income received from users purchasing
tokens. Analogous to the dollar reserve, the token reserve
changes as:

—up + Incy,

B
Tok __ pTok P Uy
Rtil =R, —u; + pitT"k A 3)

Token Price: The token price at time t is given by pi°K,

and we assume that it is market clearing. Thus, for circulating
supply S; and demand for tokens D, at time ¢, we have:

pTok _ &
t S,
Here, demand D, can be forecasted using historical data, as
shown for public Helium DeWi data in Section VL.

State and Control Variables: The state x; captures the dy-
namic quantities that are necessary to control the system.
Likewise, the control vector u; consists of how much we
adaptively pay, buyback, and our incentive price:

= [u?,
Additionally, as our method is predictive, we use forecasts
that predict future income and consumer demand. In practice,
these can come from data-driven modeling using historical
transaction data. The forecasts at time ¢ are:

T
_ USD Tok Tok
Ty = [St: R%, R™, p° ] , Ut

Apt] !

P
Uy ,

4T
Inct] ,

St = |:D ty
where D; and I/nc\t correspond to estimates of demand and
income, respectively. Now, recalling the specification of the
state vector x; above, we write the dynamics of our system
with Eq. 1-3:

2(0) + ue (1) — #%

.I‘t(l) + St(l) — ut(O)
+(0
() + strae — w0
s¢+1(0)
z141(0)

“

Tep1 = fae, ue, 8¢) =

State/Control Constraints: Now we define the feasible state
set X and control set . The state x; should be non-negative
and above a safety margin since it encodes the circulating
supply, token dollar reserves, etc. For example, we might want
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the dollar reserve above a positive safety margin, specifically
RUSD > RUSDmin 1 jkewise, we want to pay and buy back
a positive number of tokens, given by uf, u® > 0. There are
no constraints on Apy, as tokens can be offered for buyback
below market price without any guarantees of sale success.

Network Cost Function: The network cost function J en-
codes the token economy’s high level performance criterion.
To make this precise, suppose we want the price to follow
a smooth and increasing reference trajectory, denoted by
Pkt As our goal is to control the supply to match this
trajectory, a natural objective function is to minimize the
difference in Lo-norm between the observed price p/°% and
the reference price p,°* ™. Moreover, one may penalize the
difference between the enacted payments ul and buybacks
uB from a reference payment regime #; to minimize the
intervention to the economy. Putting it all together, we aim
to minimize the following network cost function J:

J (20, uo:m—1) = B (ue(0) — e (0))* |,
; Bs (ue(1) — @ (1))*

where 7 = {0,...H — 1} is the set of time steps over the
horizon H. The first entry of the right vector is the Lo-error in
following the price reference trajectory, while the second and
third correspond to penalties in Lo-norm on the chosen buy-
back and reward controls, respectively, against a reference ;.
The parameters (31, B2, B3 are a design choice to trade off how
closely the reference price is tracked and the control effort.
We note here that one could also adopt any differentiable, non-
convex cost function amenable to gradient-based optimization.

Bi] " [(@er1(3) — T41(3))?
5

IV. PAYMENT CONTROLLER

We now present our proposed payment controller, Control-
Pay, to control the token economy described in Section III.
Our controller is a model predictive control (MPC) based ap-
proach that starts by acquiring a stochastic forecast of income,
denoted as s;, reflecting consumer demand. Then, given the
current state xo and forecast Sy.zy—1, we can propagate the
known dynamics f(x¢,uq,s;) according to Eq. 4. Since we
have forecasts of node and consumer growth for H steps in the
future, we naturally have a finite horizon control problem of H
steps. Our goal is to optimize the performance metric, which
is to minimize the aggregate network cost J. More formally,
our ControlPay solves the following problem in each time step
to obtain the optimal sequence of controls ug.z_;:

minimize J(zo,u0.m—1), (6)
UO:H—1
subject to 41 = f(xe, ut, St), YVteT,
Tyl € X, VteT,
ug €U, Ve T.

After obtaining the optimal sequence of controls ug,.;;_;, we
implement the first control wf, observe the next state i,
and re-plan based on the observation. This re-planning helps
mitigate forecast uncertainty in the system [30]. In order
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to solve Eq. 6, non-convex optimization methods such as
Sequential Convex Programming (SCP) [31, 32] can be used.

V. STRATEGIC PRICING: A GAME THEORETIC ANALYSIS

In our control theoretic formulation, we assume that token
owners will sell their tokens to the reserve when it offers to
buy back tokens with an incentive price of Ap;. However,
as shown in Fig. 2, strategic token owners might only sell a
fraction of their tokens for immediate revenue and retain the
rest for their future expected value. As such, ControlPay must
offer a sufficiently high incentive Ap; to token owners to sell
their tokens so that the circulating token supply is regulated
to avoid inflation. Our key insight is that strategic pricing can
be formulated as a two-player Stackelberg game (see [33]).

Market Dynamics: The market dynamics arise from the
selfish behavior of rational consumers. At each time step, we
have a sequential game between the reserve’s controller (player
1) and all token-owning nodes (player 2). The controller
optimizes the program (6) and the consumers seek to maximize
the value of their token holdings over the time horizon. For
simplicity, we assume this interaction is a game of complete
information. For example, token owners are aware of the
controller’s strategy, which is encoded in smart contracts
distributed across the blockchain. Likewise, each player also
perfectly observes the token price and supply.

The controller moves first by posting a price (pfX + Apy).
Then, the consumers respond by selling an «; fraction of
their collective holdings, where «; is chosen to maximize
the value of the consumers’ holdings (utility U;) at time
step ¢. In each time step, agents are also planning over
the time horizon H, thus the decision variable is a vector
oy = [Ozt,aHl, s 7Oét+H]T such that lTat = 1 and
oy > 0. We will denote a; for a vector and «; for scalars.

The utility U; for a token-owner can be any concave
function over the time horizon H. A token-owner’s utility at
time ¢ is a function of present prices, their beliefs about future
prices, their holdings, and the supply. A natural formulation
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for the utility U of the token-owners is the sum of the earnings
received today and the earnings they speculate can be earned
in the future over the time horizon H. We describe this utility
as a function of the game strategies as well as other parameters
of the environment:
H
Ur= oy Si(pi™* + Apy) + Z a5y SiE(pi%)
j=1

)

Current earnings from selling
a-fraction of supply.

Future expected earnings from
holding 1 — ai-fraction of supply.

Here, v is a discount factor that attenuates the expected
future earnings from not selling in the current time step.
Additionally, the randomness in the expectation is due to
forecasting noise, as our control methods are not randomized.

The controller strategy is given by the incentive price Apy,
which they post above the market. Therefore, given Ap, the
token owners’ optimal strategy is to choose a; such that:

maximize U(a, Apy),
(27

®)

subject to 1" oy = 1,
[0 77 Z 0.

Moreover, by using Program (8), the controller can compute
the token-owner’s strategy for any incentive price Ap;. This
means that we can transition the control problem (6) into the
setting with incentives by equating the number of tokens the
controller buys back to the number of tokens the nodes agree
to sell in each time step:

B
Ur

pr* + Apy
where o, values are computed as a function of incentive price
through the program (8). This means that, in practice, the
controller can account for selfish behavior to identify good
incentive prices. We now formalize how the controller plays
strategically by identifying the optimal incentive price Apy.

Vr=t---t+H, ©)

= arsrv

A. A Stackelberg Game for Strategic Pricing

Since the controller first posts a price Ap; and the nodes
respond with the fraction «; of the holdings they wish to sell,
we naturally have a leader-follower (Stackelberg) game. As
mentioned above, we use (9) to constrain the tokens bought
back by ai. Then, recalling that the node’s strategy is given
by (8), the controller’s optimization problem is:

minimize J(zo,u0.m—1), (10)
UO:H—1
subject to T4l = f(l’t, Ut , 515)7 YVt € T,
xt€X7ut€U, VtGT,
u = oSy (pf* + Apy), vVteT,

o = arg rr;axUt(at,Apt)’
t

’1Tat:1, atZO.‘

Notice that the Stackelberg game can be cast as a bi-level
optimization problem [34, 35], which is a nested optimization
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problem where an outer optimization problem involves a
decision variable that is, in turn, the solution to a second
inner problem. In our setting, the outer problem is the
controller’s non-convex control problem (6), which outputs
Ap; and requires o as input. Here, o is the solution to
the inner utility maximization problem of the nodes. One
observes that the inner utility maximization problem is convex
and Slater’s constraint qualification condition holds. Thus, the
Karush-Kuhn-Tucker (KKT) conditions are sufficient for the
optimality of the inner problem.

Since we have a Stackelberg Game, the horizon is finite,
and a subgame perfect equilibrium can be found via backward
induction [33]. First, the best response function of the nodes
is calculated. Then, the controller picks an action maximizing
its utility, anticipating the follower’s best response. Then, it
is clear that our method finds a subgame perfect equilibrium
since the KKT conditions of the inner problem give a cer-
tificate of optimal play on the nodes part. Encoding them as
extra constraints on the part of the controller simply gives an
explicit route for backward induction in this game.

B. The Price of Incentives

When transitioning into a setting with strategic behavior,
there will be a difference in network costs. Namely, the
network cost in a perfect world, being where token owners
willingly depart from their holdings at the controller’s posted
price, will be less than that incurred by a more robust controller
that is accounting for strategic behavior. We quantify this
as the ratio between the two costs, which we call the price
of incentives. This is, suppose we are given an initial state
xq, sequence of forecasts sg.;—1, and control methodology
(e.g. MPC). Then, let ug.;7—1 be the controls selected by this
methodology in the absence of strategic behavior, whereas
ug}([("_tiAp *) are those selected in solving the Stackelberg game
with token owner utility U;(ay, Ap;). Then, the price of
incentives for the instance (zg, so.g—1, U(ay, Apg)) and the
chosen control methodology is:

J (20, uo:rr—1)
Ut(atyApt)) !

J (w0, up "]

Note that the price of incentives will largely depend on the
risk aversion of the token owners, as parameterized by their
discount factors. We present the above with respect to fixed
methods and game instances, and leave a finer characterization
relating discount factor values to the price of incentives for
worst-case instances and arbitrary control methodologies for
future work. That said, in our experiments, we compute the
price of incentives incurred by our methods to understand the
impact of strategic behavior on our controller, ControlPay.

an

VI. EXPERIMENTS

The goal of our evaluation is to show that (i) using Con-
trolPay enables us to achieve a more stable token price that
approximates the target price trajectory, and (ii) we can reduce
the network cost using our predictive controller instead of
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a reactive PID controller. We now describe our benchmark
algorithms and evaluation metrics.

A. Evaluation Metrics and Benchmark Algorithms

We compare reserve controllers on the following metrics:
Stable Token Price: The token price, volatility, and the
mean squared error (MSE) from a reference price trajectory.
Network Cost Function: A weighted sum of the tracking
error (MSE between the token price and the reference price),
and control effort.

We report these metrics for various realistic scenarios where
(1) the supply of nodes out-paces the consumer demand, (ii)
the supply and demand roughly match, and (iii) the supply lags
the consumer demand. Our experiments compare the following
schemes:

ControlPay: Our proposed solution method, ControlPay,
implements a predictive, optimal control scheme based
on model predictive control (MPC) methods proposed in
Section III.

Proportional Integral Derivative (PID): A traditional
control method penalizing the deviation between current
and desired states, with adjustments based on proportional,
integral, and derivative terms.

No Control: The worst case where the economy has no
control and simply uses an income clearing strategy where
the income, buybacks, and payments are equal.

B. Experiment Design

First, we evaluate our control system on synthetic node
supply and consumer demand/income growth data. To cre-
ate synthetic data, we start with a random starting point
for demand/income Dy, Incy and iteratively add increments
drawn from the normal distributions A(0, 0.01 - D?) and
N(0, 0.01 - Inc?) respectively. In all experiments, we have a
noisy forecast §; of demand and income growth for a horizon
of H future steps. Following the experiments with the syn-
thetic data, we extend our evaluation to real-world scenarios
using demand data from the Helium DeWi network. Since
Helium growth patterns are smooth, we use a classical Auto-
Regressive Integrated Moving Average (ARIMA) forecasting
model to predict network growth H = 20 days in advance.

We run 20 experiments-10 with synthetic data and 10 with
real-world data with different target price trajectories. We
use various patterns, covering from sigmoidal growth, where
supply rapidly rises during the middle of network adoption but
slowly tapers off, to logarithmic growth, where the demand
steadily grows over time. In each experiment, the initial token
price p{°* is randomly chosen away from the reference and
shows that the controller can dynamically regulate the system.
All of our experiments are coded in Python, run in a few
minutes on a standard laptop, and use the Gurobi Optimization
package [36].

Does ControlPay reduce network cost?

We now evaluate our ultimate performance metric, the
network cost, across a wide variety of growth patterns and
initial conditions. Specifically, we used 3 growth patterns
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Fig. 3: ControlPay outperforms the PID controller when
forecast error is low. (Left) Our ControlPay scheme achieves
a lower total cost than the PID and the No Control benchmarks
by exerting control effort to actively track the price trajectory.
(Right) Both PID and ControlPay significantly outperform the
No Control scheme. ControlPay significantly outperforms PID
when the forecast error is low. As the estimation error in-
creases, ControlPay starts to degrade in performance, whereas
PID remains invariant. This difference is due to the predictive
nature of ControlPay versus the reactive nature of PID.

with Gaussian noise (sigmoidal, logarithmic, exponential) and
many scenarios where demand outstrips supply and vice versa.
Fig. 3 shows the overall network cost, tracking error, and
control effort for all 3 benchmarks. ControlPay achieves 2.4 x
lower network cost than the PID heuristic. As shown in Fig.
3, the key reason for this difference is that PID is largely
reactive — it proportionally responds to the current error and
integrates the cumulative error but does not forecast the future
system state accurately to optimize performance. In stark
contrast, ControlPay explicitly solves an optimization problem
to minimize the network cost.

How do ControlPay and PID compare given increasing
forecast errors?

Fig. 3 (right) shows the total network costs for all 3 bench-
marks across the Normalized Mean Squared Error (NMSE)
of the forecast prediction. To show that, we add zero mean
Gaussian noise to the forecast and plot the total cost for
benchmarks. The plot shows that ControlPay achieves a lower
total cost than the PID method when the forecast error is
relatively small. As the estimation error increases, ControlPay
begins to incur worse performance due to errors in forecasts
propagating into future time steps. On the other hand, the
performance of PID heuristics remains invariant across varying
forecast errors due to its reactive nature. This exemplifies
a tradeoff, being that ControlPay significantly outperforms
the PID when forecasts are accurate. Therefore, our method
reduces the problem of stabilizing a token economy to that of
securing accurate forecasting data.

Does our Stackelberg game solution maximize each
player’s objective function?

Fig. 4 (left) illustrates the token-owning nodes’ utility Uy
(player 2) and network cost function J (player 1). We see that
our bi-level optimization approach finds an optimal fraction
of = 0.25 of tokens to sell back, since the token owners’
utility is maximized and network cost is minimized. Further-
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higher incentive price Ap; to encourage token sales, thereby
increasing the price of incentives.
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more, the bi-level optimization outperforms naive strategies
of holding all tokens with o, = 0 and selling back all tokens
with a; = 1, in terms of maximizing the token owners’ utility
U;. When our controller uses this equilibrium as a constraint
(using Eq. 9), it becomes robust to strategic behavior arising
from speculative behavior. As expected, the network cost J
(blue boxplots) decreases as «; increases since the controller
can buy back more tokens than it wishes. Likewise, the node
utility (orange) is low when they hold all their tokens (coi; = 0)
since the price drops because the controller can not remove
tokens from circulation through buybacks.

What impact does strategic behavior have on network cost?

Fig. 4 (right) demonstrates the ratio between optimal net-
work cost J and network cost with utility maximizer players,
which is the price of incentives. We compare this ratio for
different agent preferences by changing the discount factor ~.
In effect, as the discount factor y increases, the players become
less risk-averse. For low to mid values of the discount factor
v, we see essentially no discrepancy between the network
cost when strategic behavior is accounted for and ignored.
However, it is not surprising to see an increase in the price of
incentives once token owners increase their perceived value of
possible future earnings. This is because, in this case, token
owners are most hesitant to sell their holdings, and so more
control effort must be exerted to track the price trajectory.

Note, prior studies use the overwhelming presence of min-
ing pools in proof-of-work blockchains to argue that token
owners are naturally risk-averse [37] in real-world systems.
Hence, as the price of incentives remains low for low dis-
count factor values corresponding to higher risk aversion, this
suggests that adopting our Stackelberg game formulation in
the real world would not incur noticeable extra network costs.

Does ControlPay yield a stable token price growth?

Fig. 5 shows two example trajectories of our system, where
the left two columns are computed with real Helium data,
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Fig. 5: ControlPay outperforms benchmarks in simulations with both Helium and synthetic data. The two left columns
show trajectories using real Helium data, demonstrating that our ControlPay scheme (green) accurately follows the reference
(purple), while reactive PID (blue) is highly oscillatory. The right columns validate our approach’s adaptability using synthetic
data, showing how ControlPay adjusts to a decreasing price trajectory. Unlike PID, ControlPay avoids overshooting, maintaining

price stability even as demand shifts.

whereas the right two are with synthetic data. Our key result
is found in the top left chart for the token price. Specifically,
for the Helium data our ControlPay scheme (green) is able to
track the reference (purple) extremely well, while the heuristic
PID captures the general trend but is highly oscillatory since
it is reactive. Crucially, the price plummets without control
since the system pays too many tokens, causing inflation.
However, our ControlPay scheme adaptively curtails token
payments to reduce the circulating supply and avoid inflation
(middle). Importantly, the income-clearing strategy given by
No-Control (red) immediately pays out the exact same number
of tokens it buys back from the market. Thus, the net change
in the circulating token supply (and hence reserve) is zero, as
indicated by the horizontal red lines for the token plots.

The right two columns confirm the generality of our ap-
proach — we can just as easily follow a smoothly decreasing
price trajectory corresponding to a desire for a token price
to become more affordable to incentivize increasing user
adoption of a platform’s services, for example. Crucially, the
initial token price (column 3, row 1) is low and far from the
reference for all schemes, but our ControlPay method (green)
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quickly rises to track the reference unlike PID (blue), which
overshoots. Interestingly, we also see that the price without
control is generally too low but shows an increasing trend over
time since the income and demand governing this mechanism
gradually increase over time. Finally, we see that ControlPay
slowly increases adaptive payments after time step 11 to make
the price decrease.

Limitations:

Our trace-driven simulations are limited by offline, historical
Helium DeWi data. However, the growth of nodes and con-
sumers might deviate from historical patterns if we actually
implemented our proposed controller in the network. In future
work, we plan to answer such “what-if”’ questions using recent
advances in counterfactual analysis [38—40].

VII. CONCLUSION AND FUTURE WORK

Our central thesis is that blockchain tokenomics should
be programmable and dynamically adapt to changes in node
growth and consumer demand. In particular, our key contribu-
tion is to model a token economy as a controlled dynamical
system, which allows us to leverage model predictive control
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(MPC) to design an adaptable payment controller, ControlPay,
that meets the system architect’s selection of a suitable net-
work cost function. Additionally, we integrated a Stackelberg
game approach to account for strategic behavior among token-
owners, offering a control system that adjusts to disturbances
caused by rational action-making on the part of the token-
owners. Our empirical analysis underscores the superiority
of our MPC based policy over the traditional PID heuristics
and the efficacy of our Stackelberg game model in ensuring
robustness against strategic token-owner actions.

We believe our work is timely as several blockchain projects
are working with burn-and-mint strategies, and our framework
enables us to improve those systems. In future work, we will
work on integrating learning-based control methods to utilize
the abundance of existing measurements and data to better
adapt to changing market dynamics.
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