
Learning Adaptive Horizon Maps Based on Error Forecast for Model

Predictive Control

Carlos Gonzalez1, Seung Hyeon Bang1, Po-han Li2, Sandeep Chinchali2, Luis Sentis1

AbstractÐ We present a model predictive control framework
that uses varying prediction horizons according to the current
forecasted uncertainties and estimated distance of the terminal
state from its desired state. Our results suggest that the space
of such optimal horizons, which we call horizon maps, is well
structured for linear systems, meaning that it can be easily
learned using tools from machine learning. Our approach is well
suited for real-time control and can scale to higher dimensional
systems. We also perform an analysis on the required quality
of the datasets used to learn the horizon maps and conclude
with results of this framework using an externally-driven,
constrained linear quadratic regulator problem.

I. INTRODUCTION

Model Predictive Control (MPC) has become ubiquitous

in the realm of robotics. It has been successfully employed

in multiple real systems, from ground and aerial vehicles

performing aggressive maneuvering tasks [1], [2], to legged

robots performing agile locomotion [3], [4]. This is in part

due to its ability to find actions based on a performance

index that takes into account its predicted future states over

a specified horizon. Using this knowledge and doing this

iteratively, it is able to correct most deviations arising from

model mismatches and uncertainties.

While its success has been prominent in real and complex

systems, it is still bound to be efficient only on systems that

meet certain conditions. For instance, when used in high-

dimensional systems, it is often used under the assumption

that the underlying system dynamics are approximately lin-

ear [5]. This assumption degrades rapidly as the system de-

viates from its linearized trajectory. In addition, errors in the

modeled noise or in other external inputs to the system will

cause the state prediction to worsen with prediction horizon.

Since the horizon is often chosen based on heuristics, it can

also limit the controller in being able to find a solution or

might waste computational time by using excessively long

horizons when they are not needed [6].

Finding a suitable horizon in real time can easily increase

the computation time of the optimization problem as it can

turn the problem into a mixed-integer program, or it can

require solving the MPC several times. Instead, if the set of

optimal horizons varies smoothly, we can learn this landscape

offline and predict values online at no computational cost. In

order to find such a suitable horizon, we define a performance

metric that trades off proximity to the desired state at the end
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Fig. 1: Forecast errors accrue with increasing horizons

in MPC. A controller plans its control actions û for the

next H steps based on a nominal model while using external

forecasts ŝ. However, the real system will evolve according

to the true model as it is perturbed by s, hence ending in

a different state xk+H . A proper horizon must be chosen

to avoid accumulating errors while approaching its desired

terminal state.

of the horizon and takes into account a forecast error model

to penalize accruing costs with larger horizons.

Several alternatives to the fixed-time MPC problem have

been previously considered. A common alternative is to solve

the standard MPC problem by keeping the number of time

steps fixed but including the duration of the time step, e.g.,

∆t, in the optimization variable [7], [5], effectively changing

the overall prediction horizon. However, this also changes

the fidelity of the approximation of the continuous-time

dynamics, especially as ∆t becomes large. Fast solutions to

the free-time LQR problem have also been proposed using

several methods, such as bilevel optimization [8], Differ-

ential Dynamic Programming [9], and move blocking [10].

However, these are derived explicitly using the classical cost

function for variable-horizon MPC consisting of quadratic

penalties in the state and control inputs, plus a linear penalty

on the time to completion. A strategy similar in spirit to the

previously mentioned ones is the Adaptive Horizon MPC

(AHMPC) [11]. The approaches that resemble ours the most

are [12], [13] and are indeed inspired by the idea of using

AHMPC in combination with techniques from reinforcement

learning and machine learning. These, however, differ from

our formulation, in that we take into account a model of

forecast errors, i.e., knowledge on how much the system is

anticipated to diverge with planning time.

Given the current state of the art, our contributions are

the following: (1) we derive an optimization formulation

that finds an optimal horizon for MPC such that it leverages

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0124-3/23/$31.00 ©2023 IEEE 8501

20
23

 6
2n

d 
IE

EE
 C

on
fe

re
nc

e 
on

 D
ec

isi
on

 a
nd

 C
on

tr
ol

 (C
DC

) |
 9

79
-8

-3
50

3-
01

24
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

OI
: 1

0.
11

09
/C

DC
49

75
3.

20
23

.1
03

84
13

1

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 23,2024 at 08:47:54 UTC from IEEE Xplore.  Restrictions apply. 



reaching a target state and deviating from the optimal cost

due to forecast errors growing with the horizon, (2) we

derive an algorithm to construct optimal horizon maps that

can be used in a real-time manner with an MPC controller

with a single MPC computation, and (3) we show that our

MPC controller with learned horizons achieves comparable

performance to a long, constant-horizon MPC controller

while using an approach that scales to higher dimensional

systems.

The organization of the remainder of this paper is de-

scribed next. We formally define the problem we are inter-

ested in solving in Sec. II. In Sec. III, we detail our approach

to solve this problem through the use of optimal horizon

maps. Then, we present a set of numerical experiments and

studies on the horizon maps. Lastly, we conclude with a short

discussion and directions of future work in Sec. V.

II. PROBLEM STATEMENT

Consider the receding horizon controller scenario depicted

in Fig. 1. At the current state, xk, the controller finds an

optimal control input sequence such that it can reach a

desired target set in the following H steps while satisfying its

state and control constraints. The predicted state evolution is

based on a nominal system model, whose state at time k+H

is denoted by x̂k+H . However, due to external perturbations,

s, the real dynamics of the system may differ from the

modeled one, causing the real state to evolve differently from

the anticipated state trajectory, ending at xk+H , instead.

A discrete-time linear system that captures these modeling

discrepancies is the input-driven linear dynamical system

presented in [14],

xk+1 = Axk +Buk + Csk, (1)

where A ∈ R
n×n, B ∈ R

n×m, and C ∈ R
n×p are time-

invariant matrices that determine the next state of the system

based on the current state xk ∈ R
n, control input uk ∈ R

m,

and external timeseries sk ∈ R
p, at the current time step

k ∈ N. Note that the external input sk is unknown to the

controller and is unaffected by the controller. In the best

scenario, a forecast of this input, ŝk, can be modeled and

provided to the controller to obtain better performance.

As in the classical LQR problem, we consider a quadratic

cost performance index. Due to the time-invariant nature of

the cost and dynamics, we re-write our running cost to start

from k = 0. Hence, for a given horizon H ∈ Z
+, the next

control action is obtained from the following MPC problem:

minimize
x̂,û

H−1∑

k=0

(
x̂⊤
k Qkx̂k + û⊤

k Rkûk

)
+ x̂⊤

HQH x̂H (2a)

subject to x̂k+1 = Ax̂k +Bûk + Cŝk (2b)

x̂0 = x0 (2c)

x̂k ∈ X , ûk ∈ U (2d)

x̂H ∈ Xf , (2e)

where constraints (2b) and (2d) are enforced for all time

steps k ∈ {0, · · · , H−1}. The set of admissible and terminal

Fig. 2: Model of exponential growth of errors with

horizon. Model (4) considers errors that can be bounded,

linear, and also exponentially growing with horizon.

states are denoted by X and Xf , respectively, with Xf ⊆ X .

Similarly, the set of admissible inputs is denoted by U .

Lastly, Q ∈ S≥0 and R ∈ S>0 are positive semi-definite

and positive definite matrices penalizing state regulation and

control effort, respectively. The forecasted state and control

trajectories are contained in x̂ = [x̂⊤
0 , · · · , x̂⊤

H ]⊤ ∈
R

n(H+1) and û = [û⊤
0 , · · · , û⊤

H−1]
⊤ ∈ R

mH . We will

use bold fonts to denote concatenated vectors or matrices,

accordingly.

We wish to solve the MPC problem (2) using the horizon

H such that its terminal state is closest to our desired

equilibrium point while penalizing the marginal difference in

control cost to forecast errors. Thus, a suitable time horizon

for the MPC problem is obtained by solving the following

bilevel optimization problem:

minimize
H

x̂⊤
HPx̂H + Ve(H; ŝ− s)

subject to (x̂∗, û∗) ∈ S(H;x0),
(3)

where S(H;x0) is the set of solutions to the horizon-

parameterized MPC problem (2). P ∈ S>0 is a positive

definite matrix penalizing deviations of the terminal state

from the origin, and Ve(H, s) is an error function that

penalizes deviations from our true dynamics based on the

horizon length H and errors in the external inputs ŝ and s.

The optimal horizon returned by problem (3) is tailored to

a problem that uses additional information about anticipated

forecast errors. This generalization encapsulates the special

case of penalizing time to completion by using, e.g., a linear

or exponential penalty on the horizon, but also allows for

inclusion of other error models. Since this is a bilevel mixed

integer program, it is hard to solve in real time simply using

brute-force methods.

III. APPROACH

In its general form, the bilevel optimization problem (3)

can be difficult to solve analytically. In particular, the upper-

level problem is an optimization problem over a positive
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integer variable. The first cost term, x̂⊤
HPx̂⊤

H , depends on

the horizon implicitly through the solution of the lower-level

(MPC) problem, meaning that for any horizon H , a new

terminal state, x̂H will be obtained. Consequently, a new

terminal cost will be accrued. On the other hand, the second

cost term can be an explicit function of the horizon.

Assumption 1: The forecast error of the externally-driven

input grows with time according to

∥ŝ0:k − s0:k∥ ≤ aHkα (4)

with error magnitude aH ∈ R
+ and exponential rate α ∈ R

+.

The forecast error assumption (4) is shown in Fig. 2

for multiple values of α. Intuitively, this means that the

external series forecast error is either bounded (if α < 1), or

grows unbounded with time (if α ≥ 1). This assumption is

further validated using a real data set in Sec. IV. In addition,

assumption (4) also equips the upper-level cost function with

the property that, as the horizon increases, the first term

will tend to decay as the system approaches the origin,

and the second term will increase as our long-term state

forecast becomes less reliable. We show in the Appendix that

although this problem can be further simplified, it remains

a computationally complex integer program. Our proposed

algorithm results in a computationally faster approach since

it results in a function evaluation, rather than solving the

mixed integer problem. Hence, we opt to continue using the

bilevel problem description.

To further motivate the choice for the cost landscape

of problem (3), consider again the lower-level MPC prob-

lem (2). Following the derivations from [14], the analytical

solution to the input-driven LQR problem is given by

u
∗ = −K−1

κ(x0, s) (5)

with

K := blockDiag(R,H) +

H−1∑

k=0

M
⊤
k
QMk,

κ(x0, s) :=
H−1∑

k=0

M
⊤
k
Q(Ak+1x0 +Nks),

where blockDiag(R,H) corresponds to a block diagonal

matrix containing the matrix R, H times along its diagonal.

Furthermore, Mk and Nk correspond to the block matrices

of the dynamics written as a function of the control and

external input vectors, parameterized by the initial state, x0:

xk+1 = Ak+1x0 +Mku+Nks, (6)

where Mk = [AkB Ak−1B · · · B 0] ∈ R
n×mH and

Nk = [AkC Ak−1C · · · C 0] ∈ R
n×pH . Let J(û;x0, s) be

the total cost of the MPC problem, as given in (2a). Then,

as shown in [14], the cost difference accrued from using

a nominal model over the real model is quadratic in the

forecast error according to

J(û;x0, ŝ)− J(u∗;x0, s) = (̂s− s)⊤ΨΨΨ(̂s− s), (7)

where ΨΨΨ := L
⊤
KL and L :=

H−1∑

k=0

M
⊤
k
QNk.

Fig. 3: Optimal horizon for varying α’s. (Left) Optimal

cost to problem (13) for multiple α’s in the forecast predic-

tion error (4). (Right) Optimal horizon for the corresponding

α, found numerically from the plot in the left.

Using assumption (4) and control cost (7), we can solve

the bilevel optimization problem (3) by solving

minimize
H

∥x̂H∥
2
P + ∥aH(range(H, p))α∥2ΨΨΨ

subject to (x̂, û) ∈ S(H;x0),
(8)

where ∥ · ∥P denotes the P -weighted norm, e.g., ∥x∥2P :=
x⊤Px, and range(H, p) := [0 · 1⊤ 1 · 1⊤ · · · (H − 1) ·
1
⊤]⊤ ∈ R

pH and (·)α denotes the component-wise α-

exponent operator. The weighting matrix, P , of the norm in

the first cost term of (8) can be obtained from the solution

to the Discrete-time Algebraic Riccati Equation, i.e.,

P = DARE(A,B,Q,R). (9)

To sum up, (8) is an integer programming problem with

convex objective function. Hence, we later use a neural

network to approximate its optimal solution, reducing the

bilevel optimization problem (3) to problem (2) using learned

optimal horizons. For derivation details, see the Appendix.

Similarly, the weight in the second cost term, ΨΨΨ, is also

determined from system matrices (A,B,C) and performance

matrices (Q,R), as well as the current horizon H . Thus, the

cost of (8) is completely determined from the problem at

hand, given knowledge of the forecast errors.

For illustration purposes, consider the classic double in-

tegrator dynamics with forecast errors growing at a rate

of ∥ŝ0:k − s0:k∥ = 0.01kα for 0.9 ≤ α ≤ 2.0. The

corresponding upper-level costs for multiple horizons, H , are

shown in Fig. 3 for multiple values of α. It can be seen that

for small horizons, the cost is high even though the prediction

errors are small. This is because the nominal state at the

end of the horizon is expected to be far from the origin.

As the horizon increases, the state is expected to approach

the origin. However, prediction errors also start growing at

different rates, according to the modeled error exponent α.

In particular, forecasted errors diverging faster (i.e., higher

values of α), result in higher costs accruing faster. This is

also seen from Fig. 3, where the corresponding minimum

horizons are shown for multiple α’s. This shows explicitly

that when the forecast error is expected to grow faster with

time, the optimal horizon to choose is a smaller one, meaning

we want to be more conservative as uncertainty about the

future grows.
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Fig. 4: Optimal horizon map. Color bar indicates H∗.

Algorithm 1 Optimal horizon map for MPC (2D)

1: Input: Grid steps ∆1, ∆2 over [x
(1)
min, x

(1)
max] ×

[x
(2)
min, x

(2)
max] ∈ X , system matrices (A,B,C), perfor-

mance matrices (Q,R), forecast error model parameters

aH and α, and maximum horizon Hmax

2: Initialize: x0 ← (x
(1)
min, x

(2)
min)

3: for i = 1, . . . , N1 do

4: for j = 1, . . . , N2 do

5: {Jh}
Hmax

h=1 ← {0}
Hmax

6: for H = 1, . . . , Hmax do

7: (x̂∗, û∗)← solve problem (2)

8: JH ← cost of problem (8) with x̂∗
H and H

9: end for

10: H∗
(i,j) ← h where min {Jh}

h=Hmax

h=1 is attained

11: x
(2)
0 ← x

(2)
min + j ·∆2

12: end for

13: x
(1)
0 ← x

(1)
min + i ·∆1

14: end for

15: Output: Optimal horizon map, H∗

A. Algorithm

Given the nature of the formulation and cost terms, we

expect this behavior to generalize to higher dimensional

systems of the same linear form. We next propose an

algorithm to reduce the burden of the computation time in

solving bilevel problem (3) in a real-time and closed-loop

manner.

Recall that problem (3) is a mixed-integer programming

problem since the optimization variable of the upper-level

problem is an integer, while the optimization variables of

the lower-level problem are continuous. Thus, this poses the

biggest challenge in allowing us to reliably solve problem (3)

fast and accurately. However, solving this problem for mul-

tiple points in a subset of the feasible state space suggests

that the set of optimal horizons might vary smoothly in the

vicinity of a given point. For the double integrator example,

the optimal horizon map over the subset [−2, 2] × [−2, 2]
is shown in Fig. 4. It can be seen that the optimal horizons

decrease monotonically as the state approaches the origin

and, in fact, get smaller towards the origin.

Fig. 5: Combined neural network and MPC controller

scheme. At each time step, the current state xk is passed to

the NN, which in turn outputs the estimated optimal horizon:

Ĥ∗. The module traj scaler adjusts the previous solu-

tion of the MPC according to the size of the new horizon.

This is then used to warm start the the solver at the current

iteration, for which Ĥ∗ is used.

To this end, we leverage offline MPC simulations to

construct a discrete optimal horizon map. We then aim to

learn a general form of this map using a Neural Network

(NN), which also allows us to obtain a pseudo-optimal

horizon in a real-time loop without qualitatively sacrificing

optimality. We first explain the procedure to construct the

optimal horizon map following Algorithm 1 assuming n = 2,

however, this readily extends to systems with n > 2. Besides

the system and performance matrices (A,B,C) and (Q,R),
and the external input error forecast model parameters aH
and α from (4), we need a grid map for which the map

is constructed. For ease of clarity, assume a map covering

[x
(1)
min, x

(1)
max]× [x

(2)
min, x

(2)
max], where the superscript indicates

the element in the state variable, i.e., (x(1), x(2)) ∈ R
2.

Denote the distance between two points along the first

direction by ∆1 and along the second direction by ∆2. Then,

we start our algorithm from one corner of the grid map,

as indicated in line 2. We then start the iteration process

along the N1 grid points along the first direction and along

the N2 grid points along the second direction. In line 5,

we reset the sequence of cost for the current initial state,

x0, to zero. Then, we populate this sequence of costs for

multiple horizons by first solving the MPC problem (2),

then recording the upper-level cost incurred by this optimal

solution, as shown in lines 6-9. This results in costs such

as the ones shown in Fig. 3, for a fixed α. After iterating

through all horizons, we store the horizon resulting in the

minimum cost in the optimal horizon map, H∗
(i,j), where

the sub-indices indicate the corresponding coordinates in the

grid. In line 11, we simply move ªupº on the grid and use

this new value as our next initial state. Similarly, in line 13,

we move to the ªrightº. This algorithm outputs the optimal

horizon map shown in Fig. 4.

We wish to obtain a pseudo-optimal horizon, Ĥ∗, even

for states x that do not belong to the grid created through

Algorithm 1. Instead of interpolating in between optimal

horizons around the nearest grid point, we treat the horizon

map as a multiclass classification problem. Thus, we train

an NN to learn a mapping from the current state to the
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Fig. 6: Adapting the horizon allows the controller to use long horizons only when needed without degrading

performance. The MPC with the learned horizons (green) will have performance closer to a longer constant horizon

(blue) one while being able to smoothly transition to lower horizons when needed. Choosing a short horizon (orange) from

the beginning will result in poor performance.

corresponding estimated optimal horizon,

Ĥ∗ = ϕ(x0;θ) (10)

where θ denotes the NN model parameters and ϕ : Rn 7−→ N

represents a regressor function. This approach allows us to

scale this same algorithm to higher dimensional systems.

Lastly, since the horizon of the MPC can vary from one

control loop to the next, the size of the state and control

optimization variables will also change. We wish to reuse

our solution from time k to warm-start the solver at time

k+1. To address this, we create a module (traj scaler)

that ªstretchesº or ªcompressesº the MPC solution from the

previous time step (prev soln) by scaling the trajectories

and linearly interpolating in between points. The proposed

combined architecture is shown in Fig. 5.

IV. NUMERICAL EXPERIMENTS

We now present our varying-horizon MPC controller and

compare its performance against the constant horizon case.

We then compare the optimal horizon map in three scenarios,

namely when α < 1, when α = 1, and when α > 1,

and motivate scenarios where these modeling parameters

are practical assumptions. We then perform a comparative

analysis on the learned horizon map to determine the impact

of the grid refinement at the time of training. In these studies,

we consider the externally driven double integrator with

external input matrix C = [0.1, − 0.3]⊤, cost matrices

Qk = diag(100, 100) and Rk = 50 ∀ k ∈ [0, H−1], terminal

cost matrix QH = P as given by (9), and aH = 0.01.

A. Performance Against Constant-Horizon MPC

Simulations of the input-driven double integrator are

shown in Fig. 6. The initial state is selected randomly within

the trained space of [−2, 2] × [−2, 2]. An external series

perturbs the state at a rate of α = 1.0. The controller starts

off with a horizon of H = 42 and as it traverses the state

space while approaching the origin, it chooses a shorter

and shorter horizon, until it settles at H = 12 steps. The

gain in computation time is clearly shown in Fig. 9, where

we show the computation times for the constant horizons

H = 40 and H = 10, along with the adaptive horizon

case. The performance of the controller is not compromised,

and evidently, the optimization problem reduces drastically in

size even in this simple example as the optimization variable

û reduces with the horizon, H , from 42 to 12 within the first

few seconds. In Fig. 6, the short constant horizon of H = 10
is chosen for comparison as the simulation steps in between

MPC updates for all cases is chosen to be of 10 time steps.

B. Optimal Horizons for Different Forecast Error Models

We first look at the effect of different error forecast models

in the optimal horizon map to reason how these models

impact the controller’s horizon choice. To this end, we let the

control space be U = R and perform our offline construction

of the horizon map according to Algorithm 1.

The resulting optimal horizon maps for the forecast error

model (4) with α ∈ {0.8, 1.0, 1.2} are shown in Fig. 7. The

area where the horizon is large, e.g., where H > 35 gets

smaller with higher α-exponents, meaning that due to higher

uncertainties at higher horizons, the controller chooses to

plan over shorter horizons.

Next we discuss some practical examples representative

of the model (4) for varying α-exponents. The case α < 1
corresponds to a bounded error with increasing horizon

where, in addition, small errors result over small horizons.

This is common in applications such as networked control,

where predictions of future events need to be made in

advance and, thus rely on timeseries models. Consider the

Uber data set containing pick up locations in NYC [15].

Using a state-of-the-art timeseries forecaster, TSAI [16], we

train a forecast model ŝ for the aforementioned system using

multiple modeled horizons, similar to how it is done in [17].

It can be shown that the errors in such model have small

deviations over short horizons but increase with the horizon,

yet become bounded, as seen in Fig. 10. The case of α = 1
corresponds to a linear penalty with horizon. This is practical
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samples, while the middle column shows the output of the NNs with (top row) coarse dataset (21 × 21 samples), (middle

row) the medium size dataset (51× 51 samples), and (bottom row) the fine dataset (101× 101 samples). The right column

shows the prediction errors for the corresponding NNs.

in scenarios where it is desired to penalize long computation

times and has been similarly used in previous works [9].

The last case, corresponding to α > 1 can be reminiscent

of situations where a linear model is assumed to control a

nonlinear system.

C. Horizon Map Grid Size Used in Learned Map

To analyze the effect of different grid discretizations of

X when pre-training the network that predicts the optimal

horizon of MPC, we created three different datasets obtained

by using: a coarse grid, a medium-sized grid, and a fine

grid. These are equidistantly sampled to have 21× 21, 51×
51, and 101 × 101 data points in X = [−2, 2] × [−2, 2].
These are clustered along with their corresponding optimal

MPC horizon H∗ into a collection of training datasets, D =
{Di}nt

i=1, where

Di ≜ {xi
0, (H

∗)i} (11)

and nt denotes the number of data points, e.g., 441 for the

coarse, 2, 601 for the medium, and 10, 201 for the fine grids.
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Fig. 9: Adapting the horizon speeds up the computation

time. The computation time of the adaptive horizon con-

troller decreases with the horizon H , resulting in a safer real-

time execution. The dashed lines indicate average values.
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Fig. 10: Example of real data motivating applicability of

our forecast error model assumption. Errors in forecasted

taxi demand using Uber dataset [15] trained using [16] show-

ing that both the mean forecast errors follow the proposed

exponential model bounded by (4).

We then trained three NN models (one per grid size) to

approximate H∗ and denote the learned horizon Ĥ∗. Each

NN is composed of a 3-layer neural network where the

hidden layers consist of 64 neurons with a tanh activation

function. The outputs of the trained NNs were then compared

with the ground truth dataset D by numerically analyzing

their errors of H∗, as shown in Fig. 8. As expected, the

NN trained with more data points (finer grid discretization)

shows the best approximation to the optimal horizon H∗, but

it is noteworthy that the NN trained with smaller data points

(medium and coarse grid discretization) also predicts fairly

accurately in the state space X .

V. CONCLUSIONS AND DISCUSSION

In this work, we have introduced a framework to find and

use optimal horizons for an MPC setting by considering a

model of the forecast errors and the modeled linear system

dynamics and LQR performance matrices Q and R. We

provided an algorithm that generalizes the sampled space

of optimal horizons to higher dimensions by training an NN

to approximate and generalize this map. We have shown the

performance of our approach used online in a linear system

with externally driven inputs, showing how performance

is preserved while relying on varying (and often shorter)

horizons. We present a study on how these horizon maps

change with varying forecast error models and the effect of

the dimension of the training dataset in the learned horizon

map.

In this study, we focused on accuracy rather than speed

while generating the training data set, hence have left as

future work exploring data efficient methods in learning the

optimal horizon map. Similarly, we plan to additional use

cases in applications related to locomotion and navigation of

complex systems.

APPENDIX

We consider here a simplified formulation of the bilevel

optimization problem (3) and show that even this case

remains a challenging problem to solve analytically. Consider

timeseries prediction errors satisfying inequality (4). We seek

to find the final horizon H that penalizes both the marginal

difference in control cost to forecast errors and deviations of

the predicted terminal state from its desired terminal state.

The former one can be expressed as a penalty on the terminal

state, while the latter can be expressed as a penalty on the

control cost sensitivity due to forecast errors. In other words,

this can be expressed by

J = x̂⊤
HPx̂H + (s− ŝ)⊤Ψ(s− ŝ) (12)

with Ψ as defined in [18] and s := [s⊤1 , s
⊤
2 , · · · , s

⊤
H ]⊤ ∈

R
pH . The bilevel optimization problem is:

minimize
H

x̂⊤
HPx̂H + (s− ŝ)⊤Ψ(s− ŝ)

subject to (x̂k, ûk) ∈ P1,
(13)

where P1 is the solution to the low-level MPC problem

minimize
x̂,û

H−1∑

k=0

(
x̂⊤
k Qx̂k + û⊤

k Rûk

)
+ x̂⊤

HQx̂H

subject to x̂k+1 = Ax̂k +Bûk + Cŝk,

(14)

with the constraint being satisfied for all k ∈ {0, · · · , H−1}.
Problem P1 constitutes a simplification of problem (2),

which can be formulated, for instance, by implementing

the hard constraints as weighted quadratic soft constraints.

Following [14], the forecasted linear dynamics can be written

as a function of the initial state, the control input vector, and

the forecasted external series, i.e.,

x̂k+1 = Ak+1x0 +Mkû+Nkŝ (15)

with Mk = [AkB Ak−1B · · · B], Nk =
[AkC Ak−1C · · · C], û = [û0 û1 · · · ûk−1], and

ŝ = [ŝ0 ŝ1 · · · ŝk−1]. With this, we can write the solution
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to (2) as û
⋆ = −K−1

κ(x0, ŝ), with K and κ(x0, ŝ) as

defined in [14]. Substituting û
⋆ into the dynamics, we get

x̂H = AHx0 +Mkû
⋆ +Nkŝ (16)

= AHx0 −MH−1K
−1

κ(x0, ŝ) +NH−1 + ŝ (17)

=
(
AH−1 −MH−1K

−1
κ1

)
x0

+
(
NH−1 −MH−1K

−1
κ2

)
ŝ, (18)

where we have re-written

κ(x0, s) =

H−1∑

k=0

M
⊤
k
QAk+1

︸ ︷︷ ︸

κ1

x0 +

H−1∑

k=0

M
⊤
k
QNk

︸ ︷︷ ︸

κ2

ŝ. (19)

Similarly, the marginal difference in control cost can be

written using (4) as

(s− ŝ)⊤Ψ(s− ŝ) = a2H∥ (range(H, p))
α
∥2Ψ, (20)

where range(H, p) ∈ R
pH is a vector composed of vectors

of size p of integers starting from 0 and increasing up to H .

Thus, the bilevel problem (13) reduces to

minimize
H

∥x̂H∥
2
P + a2H∥ (range(H, p))

α
∥2Ψ

subject to x̂H = f(H;x0, ŝ),
(21)

with

f(H;x0, ŝ) =
(
AH−1 −MN−1K

−1
κ1

)
x0

+
(
NH−1 −MH−1K

−1
κ2

)
ŝ

which, in turn, reduces to the unconstrained optimization

problem

minimize
H

∥
(
AH−1 −MH−1K

−1
κ1

)
x0

+
(
NH−1 −MH−1K

−1
κ2

)
ŝ∥2P

+ a2H∥ (range(H, p))
α
∥2Ψ. (22)

Let us analyze the convexity of (22). The first term is

weighted by Ψ, which is positive semi-definite. The terms

inside the P -weighted norm contain the optimization variable

H in either the matrix exponent (e.g., AH−1, or the number

of times A is multiplied) or in the matrix dimensions (e.g.,

MH−1 ∈ R
n×mH ). The second term is weighted by P ,

which is positive definite (since we chose P according to

(9)), and the function in the norm is concave for 0 ≤
α < 1 and convex for α ≥ 1 as seen from Fig. 2. Thus,

the unconstrained cost is the sum of two convex functions

for α ≥ 1. When 0 < α < 1, the Ψ-weighted norm

monotonically approaches a constant, thus resulting in a

function that decays to zero and a function that is always

positive and approaches a constant, leading to a quasi-convex

function.
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