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Abstract

Conservation tillage has been promoted as an effective practice to preserve soil health and enhance
agroecosystem services. Changes in tillage intensity have a profound impact on soil nitrogen

cycling, yet their influence on nitrate losses at large spatiotemporal scales remains uncertain. This
study examined the effects of tillage intensity on soil nitrate losses in the US Midwest from
1979-2018 using field data synthesis and process-based agroecosystem modeling approaches. Our
results revealed that no-tillage (NT) or reduced tillage intensity (RTI) decreased nitrate runoff but
increased nitrate leaching compared to conventional tillage. These trade-offs were largely caused by
altered water fluxes, which elevated total nitrate losses. The structural equation model suggested
that precipitation had more pronounced effects on nitrate leaching and runoff than soil properties
(i.e. texture, pH, and bulk density). Reduction in nitrate runoff under NT or RTT was negatively
correlated with precipitation, and the increased nitrate leaching was positively associated with soil
bulk density. We further explored the combined effects of NT or RTI and winter cover crops and
found that incorporating winter cover crops into NT systems effectively reduced nitrate runoff but

did not significantly affect nitrate leaching. Our findings underscore the precautions of
implementing NT or RTT to promote sustainable agriculture under changing climate conditions.
This study provides valuable insights into the complex relationship between tillage intensity and
nitrate loss pathways, contributing to informed decision-making in climate-smart agriculture.

1. Introduction

Reducing nitrogen (N) losses from agricultural sys-
tems to the surrounding environment is a longstand-
ing challenge for sustainable agriculture (Robertson
and Vitousek 2009, Houlton et al 2019). This is espe-
cially true in intensive agriculture regions, such as the
US Midwest, where N fertilizer application is crucial
for optimizing cereal crop yields. Farmers use a vari-
ety of strategies to improve N use efficiency, including
a maximum return to N approach to identify the most
profitable N rate (Sawyer et al 2006). Although these
strategies are useful, N fertilizer losses still occur,

© 2024 The Author(s). Published by IOP Publishing Ltd

including nitrate leaching into groundwater bodies
and emissions of nitrous oxide into the atmosphere
(Tian et al 2020, Yao et al 2020). As the predomin-
ant field crop, corn (Zea mays, L.) receives a substan-
tial amount of N fertilizer (100-200 kg N ha=! yr™!)
in the US Midwest, and even under optimal applic-
ation rates, a considerable percentage (15%—65%)
of the applied N is leached (Hussain et al 2019).
Nitrate leaching through subsurface flow is one of
the major N loss pathways that can reach 44% of
total N losses from the US Midwest cropland (USDA
2017). Although some loss of N is inevitable in
agricultural settings (Cameron et al 2013), excessive
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nitrate leaching can lead to groundwater contamin-
ation, aquatic eutrophication, and indirect nitrous
oxide emissions, posting significant threads to the
environments, human health, and climate stabiliza-
tion (Galloway et al 2008).

Generally, nitrate leaching from agricultural soils
is determined by the nitrate concentration in soil
solution and the drainage volume through the soil
over a given period (Cameron et al 2013). However,
it is a complex process that involves many factors,
including N fertilization management, cropping sys-
tems, tillage, soil, and climate conditions (Dinnes et al
2002, Cameron et al 2013). In recent decades, vari-
ous nitrate abatement strategies have been imple-
mented to combat excessive nitrate leaching, such
as buffers (Dinnes et al 2002), cover crops (Nouri
et al 2022), optimized fertilizer application (Eagle
et al 2017), crop residue management (Mouratiadou
et al 2020), and conservation tillage (Hess et al 2020).
However, despite a well-recognized positive relation-
ship between N fertilizer input and nitrate leaching
loss (Wang et al 2019), management-related patterns
are still inconsistent in the literature due to the com-
plex interactions of biotic and abiotic factors determ-
ining nitrate leaching (Dinnes et al 2002, Galloway
et al 2008, Cameron et al 2013).

No-tillage (NT) or reduced tillage intensity (RTI),
which involves less soil disturbance compared to con-
ventional tillage (CT), is expected to retard soil N
mineralization and reduce the potential of nitrate
leaching (Galloway et al 2008). While some stud-
ies have reported a reduction of nitrate leaching
under NT/RTI (Randall and Iragavarapu 1995, Spiess
et al 2020), other studies have documented no
effect (Al-Kaisi and Licht 2004, Trolove et al 2019),
or even an increase in nitrate leaching (Meisinger
et al 2015, Hess et al 2020). This ambiguity might
be related to soil hydrological properties affected
by different tillage operations. NT/RTI often leads
to better water infiltration and soil water content
and, therefore, higher seepage volumes (Randall and
Iragavarapu 1995, Li et al 2019). The reduced drain-
age nitrate concentration benefits can be offset by
greater volumetric water flow (Christianson and
Harmel 2015). Some studies suggested greater nitrate
leaching losses under NT, largely caused by changes
in water fluxes (Daryanto et al 2017, Li et al 2023).
Additionally, site-specific factors, including manage-
ment (e.g. crop type, tillage duration) and environ-
mental (e.g. precipitation, soil texture) factors, have
substantial impacts on the responses of nitrate leach-
ing to tillage practices (Young et al 2021). Considering
the continuous improvement of SOM accrual under
NT/RTT and resulting changes in soil structural qual-
ity and stability, along with variations in annual
rainfall, it is challenging to determine a consistently
changing trend of nitrate leaching when compar-
ing various tillage practices (Syswerda et al 2012,
Nouri et al 2020).
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In the US Midwest, reducing tillage intensity has
been widely promoted and implemented in recent
decades (Claassen et al 2018). Changes in tillage
regimes across the Midwest can profoundly affect
nitrate loss pathways. However, the corresponding
changes in nitrate loss pathways have not been well
addressed, especially at the regional scale. Due to
the complexity of soil-water-plant interactions, the
direct up-scaling of field results can be misleading.
Moreover, it is challenging to quantify and link the
reduction in nitrate leaching losses with specific prac-
tices at a regional scale with confounding soil and cli-
mate conditions. In this context, agroecosystem mod-
eling provides a cost-effective and reliable approach to
explore ‘if-then’ scenarios for designing and assessing
sustainable management practices.

Here, we applied a process-based agroecosystem
model (DLEM-Ag) to assess the effects of various till-
age intensities on nitrate losses via surface runoff and
subsurface leaching in the US Midwest. Three levels of
tillage intensity were considered in this study, i.e. NT,
RTI, and CT with a mixing efficiency of 0.1, 0.5, and
1, respectively. It should be noted that RTT includes a
broad range of mixing efficiencies. The reduced till-
age intensity level selected here represents a medium-
level tillage disturbance on average. We hypothesized
that (1) NT and RTI would decrease surface run-
off nitrate loss but increase subsurface nitrate leach-
ing, (2) NT and RTI could either increase or decrease
the total nitrate losses depending on changes in sur-
face runoff nitrate loss and subsurface nitrate leach-
ing, and (3) incorporating other conservation prac-
tices, e.g. cover crop, into the management portfolio
is essential to alleviate nitrate losses. This study offers
a broad-scale understanding of soil nitrate leaching
and runoff losses under various tillage intensities,
providing science-based insights essential for devel-
oping sustainable agriculture in the US.

2. Methods

2.1. Modeling approach

We adopted a process-based agroecosystem model,
the agricultural module of the Dynamic Land
Ecosystem Model (DLEM-Ag) (Ren et al 2012, Huang
et al 2021), to assess the effects of tillage on nitrate
leaching and runofflosses from the US Midwest corn-
soybean croplands (see supplementary, sections 1.1
and 1.2, for more details). The DLEM-Ag can sim-
ulate the daily crop growth and exchanges of trace
gases (CO,, CHy, and N,O) between agroecosystems
and the atmosphere and quantify fluxes and storage
of carbon, water, and nitrogen as affected by multiple
factors such as climate, atmospheric CO,, N depos-
ition, tropospheric ozone, land use and land cover
change, and agriculture management practices (e.g.
fertilizer use, harvest, irrigation, and tillage) (Tian
etal 2010, Renetal 2011,2012,2016). This model has
been extensively used to study crop production, SOC,
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N dynamics, and exchanges of trace gases between the
agroecosystems and the atmosphere (Tian et al 2010,
Ren et al 2011, 2012, 2016). We have validated the
DLEM-Ag’s performance in simulating crop yield,
gross and net primary productivity, evapotranspir-
ation, SOC content, CO; fluxes and tillage impacts
on them in the US Midwest in our previous works
(Huang et al 2020, 2021, 2022). This study imple-
mented additional model validation by comparing
model estimates with measured nitrate leaching and
subsurface drainage volume at three sites, under con-
tinuous corn and corn-soybean rotations, in the US
Midwest region (see supplementary, section 1.3, for
more details. Table S1 and figures S1 and S2).

We set up a series of simulation experiments by
implementing different scenarios of tillage practices
across the study region during 1979-2018 to evalu-
ate the impacts of tillage practices on nitrate leach-
ing and runoff losses (see supplementary, section 1.5,
for more details). The baseline scenario was driven
by historical tillage information and other input data
across the US Midwest. Three alternative tillage scen-
ario simulations were designed assuming a specific
tillage practice (i.e. CT, NT, and RTI) was applied
to croplands across the basin over the study period.
The model input data includes daily climate condi-
tions (maximum, minimum, and mean air temper-
ature, precipitation, shortwave solar radiation, and
relative humidity), annual atmospheric CO, concen-
tration and N deposition, cropland distribution, and
major agricultural management practices (such as
crop-specific N fertilizer use, irrigation, and tillage
practices) at a resolution of 4 x 4 km. More details
regarding input data can be found in supplementary
information, section 1.4.

We designed site-level simulation experiments to
test the combined effects of a winter cover crop
(i.e. cereal rye) and tillage applications on nitrate
leaching and runoff losses, including three tillage
scenarios with and without a cover crop. Relevant res-
ults are present in figures 4, S7 and S8.

2.2. Statistical analysis

We used a piecewise structural equation model (SEM)
to infer the relative importance of precipitation and
soil properties (i.e. bulk density, pH, and texture) on
nitrate leaching and runoff. Compared with the tradi-
tional variance covariance-based SEM, the piecewise
SEM could (1) piece multiple separate linear models
together to a single causal network, (2) use Shipley’s
test of directed separation to test whether any paths
are missing from the model and (3) use Fisher’s C
as the goodness-of-fit statistic. Analogous to tradi-
tional SEM, a nonsignificant P value (P > 0.05) indic-
ates a well-fit model. We selected five models for the
piecewise SEM, with each model representing dif-
ferent tillage scenarios (i.e. CT, RTI, and NT) and
the differences between NT and CT, and between
RTT and CT. We fitted the component models of the
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piecewise SEM as linear models. Considering that
precipitation and soil pH are highly correlated, and
there is also a high correlation among each soil text
content (figure S5), we selected precipitation, soil
clay content, and bulk density as model predictors
using Shipley’s test of directed separation. We repor-
ted the standardized coefficient for each path from
each component model. The overall fit of the piece-
wise SEM was evaluated using Fisher’s C statistic and
the x? value. Piecewise SEMs were conducted using
the piecewise SEM package (version 2.3.0) (Lefcheck
and Freckleton 2016) in R.

3. Results

3.1. Average nitrate leaching and runoff across the
US Midwest

Simulated baseline nitrate losses through surface run-
off and subsurface leaching during 1979-2018 using
the DLEM-Ag are illustrated in figure 1. Tillage man-
agement across the Midwest in the baseline simula-
tion was configured as the proportion of three till-
age types (i.e. CT, NT and RTI) at the grid level
over the study period (see supplementary, section 1.4,
for more details). The spatial patterns of surface and
subsurface water flow corresponded well to the spa-
tial precipitation pattern—greater surface and sub-
surface flow occurred in higher precipitation regions
(figure S3). In the US Midwest region, the subsur-
face and surface flow prevailed in the east and west of
the 750 mm isopleth line, respectively. The estimated
regional average flow of surface and subsurface was
126 mm and 169 mm, respectively, in line with the
estimates of 110-151 mm for runoff and 98-297 mm
for baseflow as reported from surveys and model
predictions for the region (Srinivasan et al 2010,
Panagopoulos et al 2015, USDA Natural Resources
Conservation Service (NRCS) 2017). The estimated
regional average nitrate losses through leaching and
runoff were 1.93 g N m~2 and 1.45 g N m 2, respect-
ively, which falls in the range of 0.58-5.84 g N m~2
for leaching losses (Kim et al 2021) and 0.87-
2.27 ¢ N m~2 for runoff losses reported by previous
studies (Panagopoulos et al 2015, USDA 2017).

3.2. Impacts of tillage on water and nitrate fluxes

Three alternative tillage scenarios were compared
with the baseline simulation to quantify the changes
in water and nitrate fluxes. In the CT and RTT scen-
arios, the regional-averaged annual subsurface drain-
age was lower (with a median rate of —26 mm yr~!
and —2 mm yr—!, respectively), and the regional-
averaged annual surface runoff was higher (with a
median rate of 6 mm yr~! and 2 mm yr~!, respect-
ively) compared to the baseline. However, for the NT
scenario, more regional-averaged annual subsurface
drainage (25 mm yr~!) and less regional-averaged
annual surface runoff (—13 mm yr~!) occurred
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Figure 1. Baseline estimation of surface runoff (a), subsurface drainage (b), and nitrate losses through surface runoff (c) and

compared to the baseline (figure 2(a)). The cor-
responding changes in nitrate losses through run-
off and drainage showed a similar pattern to the
changes in water fluxes under each alternative till-
age scenario (figure 2(b)). The change in regional-
averaged annual nitrate leaching was —0.21 g N m~2,
0.08 g N m~2,0.43 ¢ N m~2 under the CT, RTI, and
NT scenarios, respectively. The change in regional-
averaged annual nitrate runoff loss was 0.05 g N m ™2,
—0.01 g N m~2, —0.16 g N m~?, respectively. We
found the NT scenario led to the largest increase in
the total nitrate losses, primarily due to the exacer-
bation of nitrate leaching loss. Compared to the CT
scenario, the NT scenario increased subsurface drain-
age and nitrate leaching by 36.5% and 32.9%, respect-
ively, and decreased surface runoff and nitrate runoff
loss by 14.7% and 15.1%, respectively, on average in
the Midwest.

3.3. Major effects of precipitation on nitrate losses

Annual precipitation was highly correlated with
annual nitrate leaching under all three tillage scen-
arios in major cropland areas of the Midwest (figure
S4). Precipitation also showed strong positive correl-
ations with nitrate leaching and runoff at the regional

scale (figure S5). The SEM demonstrated that pre-
cipitation was the most significant factor influencing
nitrate leaching (8 = 0.81 ~ 0.88, standardized coef-
ficient) and runoff (5 = 0.73 ~ 0.92, figures 3(a)-
(c)) regardless of tillage scenarios. Precipitation also
negatively impacted NT- and RTI-induced changes
in nitrate runoff, with the § values of —0.62 and
—0.48, respectively (figures 3(d) and (e)). There was
a weaker relationship between precipitation and NT-
and RTI-induced changes in nitrate leaching. In con-
trast, soil clay content negatively correlated with
nitrate losses in all three tillage scenarios, with a
stronger effect on nitrate runoff (§ = —0.37 ~ —0.33)
than that on nitrate leaching (5 = —0.23 ~ —0.19).
As for the differences between NT/RTI and CT,
clay content showed positive and negative effects on
nitrate runoff (8 = 0.34 ~ 0.36) and nitrate leach-
ing (8 = —0.31 ~ —0.18), respectively (figures 3(d)
and (e)). Soil bulk density presented a weaker pos-
itive correlation with nitrate leaching and runoff;
however, bulk density positively affected the differ-
ences in nitrate leaching between NT/RTI and CT
(8 = 0.48 ~ 0.49) and negatively affected the dif-
ferences in nitrate runoff between NT/RTI and CT
(B=—028 ~ —0.21).
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Figure 2. Regional average changes in annual water fluxes (a) and nitrate loss (b) between each tillage scenario (CT, RTI, and NT)
and the baseline during the study period. The black mid-lines of boxes represent the median responses during the period, the
hinges of boxes indicate the first and third quartiles, and the whiskers extend both to the minimum and maximum values within
1.5 times the interquartile range of the distribution.
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Figure 3. Piecewise structural equation models (SEM) of precipitation and soil (i.e. clay content and bulk density) as predictors of
nitrate leaching (NO3_eaching)> Tunoff (NOj3_runofr) and total losses (NOj_ora1). Standardized path estimates are provided next to
each path with line thickness scaled based on the magnitude of the estimate. Black and red arrows indicate positive and negative
relationships (P < 0.05), respectively. (a) CT, (b) RTL, (c) NT, (d) RTI vs. CT (the differences between RTI and NT scenarios), and
(e) NT vs. CT.
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Figure 4. Annual nitrate losses through drainage and runoff, as well as the total losses under different simulation scenarios at the
site level during 1979-2018 (CC: cover crop; NT: no-tillage; RTT: reduced tillage intensity; CT: conventional tillage). The black
mid-lines of boxes represent the median responses during the period, the hinges of boxes indicate the first and third quartiles, and
the whiskers extend both to the minimum and maximum values within 1.5 times the interquartile range of the distribution.
Different letters indicate that differences in the means between treatments were significant (ANOVA test, P < 0.05).

3.4. Reduction in nitrate losses caused by cover
crop

We conducted scenario simulations at an Iowa site
(table S1) as an example to explore the combined
effects of cover crop (i.e. cereal rye) and tillage (i.e.
CT, RTIL, and NT) on nitrate losses. The results
showed that adding cover crops into the cropping sys-
tem significantly reduced nitrate runoff in the NT
scenario, with annual nitrate runoff changing from
1.95 ¢ N m%to 1.43 g N m~?2 (figure 4). Nitrate
leaching and total nitrate losses were not significantly
affected by cover crops, although a decreasing trend
caused by cover crops was observed in all tillage scen-
arios (figures 4 and S7).

4. Discussion

Previous meta-analysis studies showed that NT res-
ults in greater nitrate leaching (11.1%, 95% CI [1.3%,
21.9%]) but less nitrate runoff (43.9%, 95% CI
[25.6%, 57.7%]) than the tilled cropping systems
(figure 5). Our simulated results in the US Midwest
aligned with these findings that NT increased nitrate
leaching and reduced nitrate runoff (figure 2(b)).
Overall, the NT scenario led to a ~32.5% increase
in nitrate leaching and a ~15.2% decrease in nitrate
runoff compared to the CT scenario in the Midwest
during the simulation period. The meta-analyses that
were based on globally collected observational data
do not accurately represent the diverse soil and cli-
mate conditions across the Midwest. Nitrate leach-
ing accounts for the largest N loss pathways in the

6

Midwest (USDA 2017), and an increase in drainage
can result in more nitrate leaching. Our SEM also
demonstrated that nitrate leaching contributed more
to the total nitrate losses compared to nitrate runoff in
the Midwest. In addition, meta-analysis studies have
revealed that nitrate concentration in leachate and
runoff water tended to be lower and higher, respect-
ively, under NT than under CT systems (figure 5).
These results suggested that NT increased drainage
volume, reduced runoff volume, and changes in soil
water fluxes play a key role in determining nitrate
leaching and runoft (Cameron et al 2013).

Water is the carrier and driving force for nitrate
leaching and runoff (Wang and Li 2019). The pre-
cipitation amount is closely related to and explains
the largest variations in nitrate leaching in rainfed
agricultural areas (Tamagno et al 2022). Our simu-
lations showed that annual precipitation was posit-
ively associated with both nitrate runoff and leach-
ing regardless of the tillage regime in the study region
(figures 3 and S4). However, changes in tillage intens-
ity can alter the partition of water fluxes among dif-
ferent pathways, and therefore affect nitrate runoff
and leaching (Daryanto et al 2017, Huang et al 2021).
The reduction in runoff under NT/RTT can be attrib-
uted to surface crop residue retention, which pro-
tects soil from raindrop impacts on surface sealing
(Kumar et al 2012) and acts as a physical barrier pre-
venting horizontal water movement (Sun et al 2015).
Crop residue coverage can intercept a certain amount
of water, which lowers evaporation and allows more
infiltration (Baumhardt and Lascano 2022, Kozak
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of experiments used.

et al 2007). With less soil disturbance, NT/RTI can
increase macro-aggregation (Grandy and Robertson
2007). Macropores may develop from decaying roots
and soil fauna (Blanco-Canqui and Ruis 2018) and
facilitate soil preferential flow and infiltration. The
higher drainage volumes under NT/RTT vs. CT had
been broadly realized in the Midwest region (Randall
and Iragavarapu 1995, Syswerda et al 2012, Hess et al
2018) and globally (Meisinger et al 2015, Spiess et al
2020, Zhang et al 2020). Other modeling studies have
also captured the increase in drainage volume with
decreasing tillage intensity (Jiang et al 2014, Hess et al
2020, Pan et al 2023).

It should be noted that the infiltration processes
are of paramount importance in sub-humid/humid
climates like the US Midwest, where the mean
annual precipitation exceeds crop potential evapo-
transpiration (Baumhardt and Lascano 2022). In the
Midwest, the principal and more pronounced path-
way for N losses is through subsurface water flows,
as opposed to N loss through surface runoff (USDA
2017). Therefore, more N loss could be expected
due to increased subsurface water flow even if sur-
face runoff decreased. Our simulation results con-
firmed the hypothesis that NT/RTT led to an overall
increase in nitrate losses in the Midwest due to the
increased nitrate leaching outweighing the decreased
nitrate runoff. Similarly, using the SPARROW model,

Roland et al (2022) showed a similar trend of nitrate
losses influenced by reducing tillage intensity in the
Midwest. They observed that a 50% increase in con-
servation tillage implementation resulted in an over-
all increase in N losses; in contrast, a decrease in the
adoption rate of conservation tillage led to a decrease
in N loss. However, they did not compare changes
between these two nitrate loss pathways. In contrast,
in paddy rice systems where surface runoft is the main
problem, Jiang et al (2014) reported an overall lower
nitrate loss under conservation tillage compared with
CT due to the decreased nitrate runoff exceeding the
increased nitrate leaching.

The effects of reducing tillage intensity on nitrate
leaching and runoff vary widely depending on cli-
mate, soil, and management practices (Daryanto et al
2017, Spiess et al 2020 Baumhardt and Lascano 2022).
Our simulations showed that when averaged across
dry and wet years, respectively, NT/RTI tended to
increase the total nitrate losses more in dry years or
relatively dry areas than during wet years or relatively
wet areas, although the gaps in both nitrate leach-
ing and runoff between NT/RTT and CT were ampli-
fied with higher precipitation amount in the Midwest
(figure S6). Our results agreed with the findings that
compared to CT, NT/RTI increases nitrate leaching
more in dry years than that in wet years (Daryanto
et al 2017). A rainfall simulation experiment in
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the Midwest reported that rainfall intensification
increased nitrate leaching more in CT than in NT,
likely due to greater rates of deep percolation under
CT and rapid macropore flow bypassing nitrate in
soil matrix under NT (Hess et al 2020). However,
Miranda-Vélez et al (2022) suggested that only a
fraction of soil nitrate can be bypassed by macro-
pore flow in NT soils due to the slow diffusion of
nitrate from macropores to soil matrix. The SEM
results agreed with the argument that precipitation
influences nitrate leaching more strongly compared
to soil or management factors (Shahhosseini et al
2019, Tamagno et al 2022). But precipitation had a
weak correlation with NT/RTI-induced increase in
nitrate leaching. However, NT/RTI-induced decrease
in nitrate runoff would be more pronounced with
increasing precipitation (figures 3 (d) and (e)).
Considering that precipitation rate and intensity are
anticipated to increase in this region (Feng et al 2016),
the trade-offs between decreased nitrate runoff and
increased nitrate leaching associated with NT/RTI
will present a key challenge for mitigation practices.

Soil texture is an important factor that affects soil
water flow and nitrate leaching (van Es et al 2020). It
has been reported that NT is more effective in redu-
cing nitrate leaching in coarse-textured soils than in
fine-textured soils (Daryanto et al 2017), likely due
to increased soil organic matter and, consequently,
improved water retention and nutrient use efficiency,
particularly in coarse-textured soils with low water-
holding capacity. Our study agreed with this finding
as the SEM showed that higher clay content was asso-
ciated with a small increase in nitrate leaching caused
by NT/RTI in the Midwest. In addition, NT/RTI-
induced increase in nitrate leaching was found to be
more significant with the increase in soil bulk dens-
ity, suggesting that reducing tillage intensity might
alleviate soil penetration resistance. Blanco-Canqui
and Ruis (2018) revealed that soil bulk density, pen-
etration resistance, and wet aggregate stability under
medium-textured soils could be most responsive to
tillage because organic matter interacts more favor-
ably with medium-textured soils than soils domin-
ated with clay or sand particles.

Winter cover crops, specifically non-legume spe-
cies like cereal rye, have been widely recognized to
reduce nitrate leaching from cropland (Teixeira et al
2016, Thapa et al 2018). It is suggested that cover
crops control nitrate leaching mainly via N uptake
rather than flow regulation and exhibit a higher
potential for reducing nitrate leaching in the presence
of CT compared to RTI and NT (Nouri et al 2022).
However, our simulations at the Iowa site showed that
cover crop had insignificant effects on nitrate leaching
regardless of tillage scenarios but reduced nitrate run-
off under NT. In addition, the simulated drainage and
runoff volume were similar between cover crop treat-
ments (figure S8). In other studies, similar drainage
volumes were also observed among cover crop and
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tillage treatments in Iowa (Waring et al 2020, O’Brien
et al 2022). These studies found that the reduction
in nitrate leaching due to cover crops was primarily
due to a decrease in nitrate concentration in drainage
water. As shown in the simulated results, the contrast-
ing changing trend of drainage volume and nitrate
leaching load suggested that cover crop may lower
nitrate concentration in the leachate.

This study explored the long-term effects of redu-
cing tillage intensity on nitrate losses. While the over-
all model performance is satisfactory, it is worth
acknowledging several limitations when interpreting
the results of this study. The lack of spatially explicit
tillage information at the grid level and simplifica-
tion of tillage types may introduce some uncertain-
ties in the simulation results. For example, we recon-
structed historical tillage maps based on data from
the Conservation Technology Information Center’s
(CTIC) National Crop Residue Management Survey
(1989-2004) and Operational Tillage Information
System (2005-2018) at the 8-digit hydrologic unit
watershed. The tillage information of missing years
during the study period was assumed to be the same
as the nearest year. As tillage is generally rotational
(Kurkalova and Tran 2017), this approach may not
accurately characterize tillage dynamics, especially
when CTIC did not report data in some even years
during 1989-2004.

Other data sources, such as USDA’s ARMS, col-
lect data on only one or two targeted crops in a
given year, with each crop typically surveyed about
every 4 years. It has been reported that the CTIC data
showed lower growth in conservation tillage in the US
than the ARMS did during the early 2000s (Horowitz
et al 2010). The NRI-CEAP Cropland Survey data
covers all crops in a survey year but is available only
for a limited geographic area. Therefore, collaborat-
ive community efforts are needed to further develop
and refine spatiotemporally explicit tillage datasets to
improve the accuracy of model simulations. It should
be noted that our assumption that long-term con-
tinuous tillage with one tillage method in the three
ideal simulation scenarios may not reflect real-world
practices. For instance, long-term continuous NT is
very challenging and may not be an agronomic and
environmental panacea in all circumstances (Blanco-
Canqui and Wortman 2020). Some studies advoc-
ated strategic tillage like occasional tillage in NT sys-
tems, which could alleviate soil stratification and slow
evolution of weed resistance in continuous NT sys-
tems (Renton and Flower 2015, Wang et al 2023).
Nevertheless, a wide variety of factors could affect
farmers’ decision on the adopting a tillage method,
such as their perspective on soil health, risk, and
profitability (Ogiereiakhi and Woodward 2022). This
study only considered the ideal conditions and sought
to explore the possible environmental consequences
under these conditions. As more detailed informa-
tion about tillage and rotation practices is available,
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further simulations can better address the complexit-
ies of real-world farming decisions.

Our model might slightly overestimate the effects
of reducing tillage intensity on nitrate leaching. For
example, it does not consider the bypass effect caused
by macropore flows, which could be more pro-
nounced under conservation tillage (Miranda-Vélez
et al 2022). However, this bypass effect has not been
well understood and remains controversial in the
literature. Future experiments and observations are
urgently needed to address this knowledge gap. In
addition, the model assumes nitrate losses through
water are solely determined by water flux and nitrate
concentration in the soil matrix, without account-
ing for variations in nitrate concentrations between
runoff and drainage water. This simplification might
introduce uncertainties in estimating nitrate losses.
Beyond the estimated effects on nitrate losses via
water fluxes, it is important to acknowledge that
NT/RTI may have further environmental effects not
explored in this study. For example, a recent study
showed that NT might reduce N,O emissions in the
Kentucky region with a humid climate and well-
aerated soils (Huang et al 2022). A thorough under-
standing of tillage intensity effects on the N cycle is
urgently needed to maximize its potential benefits on
agroecosystems in the context of climate change.

The combined implementation of multiple prac-
tices could result in complex effects on mitigating
nitrate losses. While the interaction between NT/RTI
and cover crop in relation to nitrate leaching was
not significant, both practices independently contrib-
ute to reducing nitrate runoff. The hypothesis that
combining NT/RTI with the cover crop can offset
the potential disadvantage of NT/RTI alone in terms
of increased nitrate leaching was not fully suppor-
ted. Some uncertainties could be associated with the
single-site simulations. In addition, the investigation
of cover crop effects on nitrate leaching was limited
to one crop type, i.e. cereal rye, in this study, but
our objective was to assess the nitrate leaching mitig-
ation potential of a more diverse group of cover crops
recognized for N scavenging capacity, and under dif-
ferent tillage scenarios. However, cover crop types
substantially affect soil structure, hydraulic proper-
ties, and soil nitrate contents (Koudahe et al 2022).
Therefore, the combined effect of NT/RTI and cover
crops could yield multifaceted outcomes. It should be
noted that weed resistance may persist or grow with
reducing tillage intensity (Renton and Flower 2015,
Maheswari 2021), which could bring other envir-
onmental consequences. Future studies should aim
to provide more comprehensive data and address
the knowledge gap regarding the interactions among
multiple management practices in order to better
understanding their combined effects on reducing
nitrate losses and promoting environmental health.
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