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Abstract. Cybersecurity planning supports the selection of and implementation of security 
controls in resource-constrained settings to manage risk. Doing so requires considering 
adaptive adversaries with different levels of strategic sophistication in modeling efforts to 
support risk management. However, most models in the literature only consider rational 
or nonstrategic adversaries. Therefore, we study how to inform defensive decision making 
to mitigate the risk from boundedly rational players, with a particular focus on making 
integrated, interdependent planning decisions. To achieve this goal, we introduce a model
ing framework for selecting a portfolio of security mitigations that interdict adversarial 
attack plans that uses a structured approach for risk analysis. Our approach adapts adver
sarial risk analysis and cognitive hierarchy theory to consider a maximum-reliability path 
interdiction problem with a single defender and multiple attackers who have different 
goals and levels of strategic sophistication. Instead of enumerating all possible attacks and 
defenses, we introduce a solution technique based on integer programming and approxi
mation algorithms to iteratively solve the defender’s and attackers’ problems. A case study 
illustrates the proposed models and provides insights into defensive planning.

Funding: A. Peper and L. A. Albert were supported in part by the National Science Foundation [Grant 
2000986]. 
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1. Introduction
Cybersecurity is an important concern for governments 
and organizations throughout the world due to the grow
ing reliance on digital connectivity and the growing num
ber of threats. Cyberattacks are increasingly common, 
costing the U.S. economy $57–$109 billion in 2016 (Coun
cil of Economic Advisors 2018) and affecting systems 
throughout the economy, including in healthcare (Kruse 
et al. 2017), energy (Wang and Lu 2013), and industrial 
control (Knowles et al. 2015). Many possible security 
controls exist to mitigate these risks (Ross et al. 2021). 
Cybersecurity planning requires periodically selecting a 
portfolio of security controls (e.g., on an annual basis), 
which allows an organization to manage the risk associ
ated with vulnerabilities that have emerged. However, 
many organizations find it challenging to keep up with 

selecting and deploying security controls given that they 
operate in resource-constrained environments (Stevens 
et al. 2020).

There is a growing body of literature that applies risk 
analysis techniques to manage cybersecurity risk through 
the strategic prioritization of security controls. Some of 
these efforts model attackers as nonstrategic players using 
probability distributions and prioritize security controls 
in rank order based on their cost-effectiveness (Hubbard 
and Seiersen 2016). Increasingly, security controls are pri
oritized using a structured approach to aid in plann
ing efforts with well-defined goals and threat scenarios 
(National Institute of Standards and Technology 2018), 
where attack graphs are used to represent known vulner
abilities and visualize potential mitigations (Lallie et al. 
2020). Recent research uses integer programming (Zheng 
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et al. 2019) and robust optimization (Zheng and Albert 
2019b) to select security mitigations using a structured 
approach based on attack graphs; however, these papers 
assume attackers are either not strategic or limited to 
selecting a worst-case scenario.

A stream of papers in the literature explicitly consider 
adaptive adversaries in cybersecurity planning through 
the application of adversarial risk analysis (ARA). In these 
models, a single defender, the security planner, selects 
security controls that perform well given that adaptive 
adversaries will attempt to work around any new security 
controls that are put in place. ARA frameworks are versa
tile and have motivated defender–attacker models that 
capture a wide range of conditions and assumptions 
(Banks et al. 2020). As a result, ARA has been applied to 
many of these defender–attacker models in various secu
rity settings (Rios and Rios Insua 2012) and has been 
adapted to cybersecurity models with multiple adversar
ies with different levels of intentionality (Rios Insua et al. 
2021). A limitation of ARA approaches is that they enu
merate all possible attacks and defenses (Banks et al. 
2020), with Wang and Banks (2011) as an exception. Thus, 
ARA algorithms are intractable when it is not practical 
to enumerate cybersecurity attack and defense choices. 
Zheng and Albert (2019a) seek to overcome this challenge 
by introducing a structure that simplifies computational 
requirements based on a network interdiction model that 
delays the attack plans of multiple attackers. The structure 
introduced by the network interdiction model allows for 
the use of integer programming algorithms to solve for 
the defender and attacker strategies.

We build upon previous work by introducing an ARA 
framework that considers boundedly rational players, in
cluding a defender and multiple adversaries, to inform 
the selection of security controls that interdict adversarial 
attack plans. Although our approach is motivated by cyber
security planning, it can be used more broadly in the secu
rity context where players seek to maximize or minimize 
the probability of attack in a multilayer defense system.

1.1. Approach
In the cybersecurity planning problem we consider, a 
defender seeks to minimize the probability of a success
ful attack by multiple attackers with different levels of 
strategic sophistication over a planning horizon by 
selecting a portfolio of security controls subject to a 
budget. We adapt an ARA framework (Rios Insua et al. 

2021) to capture the strategic selection of a portfolio of 
security controls given that the defender and the attack
ers are boundedly rational. This modeling approach 
allows us to inform defensive decisions and planning 
against a range of attackers, which more accurately 
reflects the system we are modeling (Scheibehenne et al. 
2010). Because new vulnerabilities emerge on a regular 
basis, cybersecurity planning should be performed reg
ularly (e.g., annually), and the methods in this paper 
can aid in this process.

Attack modeling is an important step in cybersecurity 
planning. In vulnerability analysis, vulnerabilities can be 
characterized by various steps required to successfully 
carry out an attack (Schneier 1999), which provides a 
structured approach to represent attack scenarios. In a 
graph structure, the nodes represent attack states (e.g., 
the choice of attack type, the target of the attack, or attack 
milestones), and edges represent intermediate exploits in 
an attack. The difficulty of an adversary completing an 
exploit is captured by a conditional probability of suc
cessfully traversing an arc. A path from root to leaf corre
sponds to an attack against the system, and, therefore, 
we view an attack as a path in a graph between a source 
and sink node. Given that there are many adversaries 
who have different knowledge of the vulnerabilities and 
different capabilities, the attack graphs may have topol
ogy and parameters specific to each adversary.

An adversary’s probability of successfully carrying 
out all exploits in an attack is captured by the probability 
they traverse the network on the path they select. Secu
rity controls interact with attack graphs by decreasing 
the probability that the completion of individual exploits 
(arcs that are traversed). Security controls may encour
age adversaries to select alternative paths. The defender 
uses their private information and the paths in the attack 
graphs that they believe the attacker will choose to deter
mine their choice of security controls.

These strategic interactions motivate the application 
of the maximum-reliability path interdiction problem 
to the planning problem under consideration. Net
work interdiction models, including the maximum- 
reliability path interdiction, have been widely used to 
model attacker–defender games, usually assuming two 
players and rational decision makers (Smith and Song 
2020). Although some papers have lifted the assump
tions of shared information (e.g., Salmerón 2012) and 
shared beliefs regarding the probabilities of traversing 
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edges in the network (e.g., Morton et al. 2007), none 
have considered boundedly rational players. This paper 
seeks to fill this gap.

We adapt and apply ideas from the ARA framework 
presented by Rios Insua et al. (2021) to the maximum- 
reliability network interdiction problem to support de
cision making for cybersecurity planning. An ARA 
approach allows us to consider adversaries that are not 
rational and who may have varying levels of strategic 
sophistication, important features of the application 
under consideration. In particular, we model players 
who are boundedly rational using cognitive hierarchy 
theory (Camerer et al. 2004) and level k thinking (Stahl 
and Wilson 1995).

To illustrate the approach taken in this paper, con
sider the following example with a single defender and 
two types of adversaries. In the example, adapted from 
Bistarelli et al. (2006), adversaries attempt to steal a 
server. Figure 1 captures the attack graph under consid
eration, including the exploits, and two pathways to 
steal the server (reach the top node). There are three 
security controls (m1, m2, and m3) that are listed along 
the arcs they interdict. For illustration purposes, we 
assume the defender can select one control. The uninter
dicted traversal probabilities are listed next to each arc, 
and the interdicted traversal probability is listed in 
parentheses when the security control is in use. Without 
any security controls, the left and right pathways to the 
“steal server” node have traversal probabilities of 0.09 
and 0.102, respectively.

In this example, an opportunistic attacker with a low 
degree of strategic sophistication who ignores possible 
security defenses selects the right path, because it has a 
higher uninterdicted traversal probability. A defender 
who anticipates only attacks from this type of attacker 
would select m3, because this mitigation lowers the tra
versal probability of the right path the most. A slightly 
more strategic attacker would anticipate m3 being de
ployed and would then choose the left path. This would 
lead a more strategic defender to select control m2 to 
defend against attackers attempting only the left path. 
A defender who anticipates both types of attackers, 25% 
of whom are somewhat strategic and select the left path 
and 75% of whom are opportunistic and attempt the 
right path, would select mitigation m1.

This simple example based on a single attack graph 
highlights how a methodology that considers multiple, 

boundedly rational attackers can be informative for 
defensive planning decisions. In general, there are many 
attack graphs that capture various attack vectors as well 
as adversarial goals and capabilities. The security con
trols can be specific and delay a single exploit, such as 
m2 in the previous example, or many exploits if the con
trols are cross-cutting, such as deploying multifactor 
authentication or an employee training program. Singhal 
and Ou (2017) and Lallie et al. (2020) provide additional 
guidance surrounding how to model attack graphs.

1.2. Contributions
In summary, this paper makes the following contributions: 

• We formulate the security control investment prob
lem in an ARA framework as a maximum-reliability 
path interdiction game between a single defender and 
multiple attackers, all of whom are boundedly rational 

Figure 1. An Illustrative Example of a Single Attack Graph 
with Three Security Controls 
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with differing levels of strategic sophistication. The de
fender and attackers’ problems are formulated as mixed 
integer programming models.

• We introduce solution techniques based on mixed 
integer programming algorithms and approximation 
algorithms. The defender and attackers’ problems are 
solved iteratively, and the inputs to each model are 
updated after each iteration. We prove that the defen
der’s problem is equivalent to a submodular maximi
zation problem subject to a budget constraint, which 
enables the use of heuristics for identifying solutions 
that are at least 1 � 1=e of the optimal solution value.

• We apply the modeling approach to a case study. 
We identify solutions across a range of levels of strategic 
sophistication and consider the effects of the defender 
misjudging the sophistication of the attackers.

The organization of this paper is as follows. We first 
survey the literature in Section 2. In Section 3, we 
describe the ARA framework. Section 4 introduces the 
mixed integer programming models that capture the 
maximum-reliability path interdiction from the attacker 
and the defender perspectives. We introduce the app
roximation algorithms in Section 5, and we describe the 
ARA algorithm in Section 6. We present and analyze the 
case study and other computational results in Section 7. 
Section 8 contains concluding remarks.

2. Literature Review
The topics in this paper are related to several different 
areas of research, including adversarial risk analysis, 
boundedly rational thinking, security control investment, 
and maximum-reliability path interdiction. We present a 
summary of the most relevant papers in the literature.

2.1. Adversarial Risk Analysis
ARA has been widely applied to security applications 
(Rios and Rios Insua 2012). Several papers use ARA frame
work for cybersecurity, focusing on defender–attacker 
games (Wang et al. 2019), insider threat modeling (Joshi 
et al. 2020), and adversarial machine learning and data 
manipulation (Caballero et al. 2021). Rios Insua et al. 
(2021) apply the ARA framework to a cybersecurity 
resource allocation problem to inform a portfolio of defen
sive actions, including the purchase of cyber insurance, 
by including both intentional and nonintentional threats.

As with most ARA models, Rios Insua et al. (2021) 
enumerate all possible attacks and defenses. Cano et al. 

(2016) similarly apply ARA to a cybersecurity setting by 
enumerating specific attacks and defenses to determine 
an optimal security allocation to minimize disruptions 
to airport operations. To our knowledge, only Wang 
and Banks (2011) consider an ARA framework in which 
the attacks and defenses are not enumerated. They con
sider the optimal path for a convoy through a network 
where an attacker has placed several improvised explo
sive devices at nodes within the network. The defender 
seeks to minimize the routing cost. By using a network 
model, they compactly represent many possible convoy 
routes. Because Wang and Banks (2011) utilize the addi
tive nature of their cost function to efficiently solve their 
problem, it is not possible to apply their solution method 
to our problem. In contrast to the existing literature, we 
consider interdicting attack plans to support cybersecu
rity planning, and we introduce a methodology to solve 
defender and attacker problems based on integer pro
gramming and approximation algorithms, because enu
merating the attack and defense choices is intractable.

2.2. Bounded Rationality
We build on the work of Rothschild et al. (2012), who 
develop an algorithm for applying bounded rationality, 
specifically, level k thinking, within an ARA framework. 
Level k thinking begins with nonstrategic level 0 thin
kers who act without regard to other players. In com
parison with level k thinking, where a level k player 
optimizes over only the level k – 1 opponent, cognitive 
hierarchy theory assumes that a level k thinker opti
mizes over a distribution of players between level 0 and 
level k – 1 (Camerer et al. 2004). We use this method to 
model the defender because of the multiple-attacker sce
narios they face. Although the logic of level k thinking 
and cognitive hierarchy theory is theoretically subject to 
infinite regression, empirically it has been found that 
most people do not think beyond level 2 or level 3 (Lee 
and Wolpert 2012). Higher-level thinkers (k > 0) assume 
that their opponent is a level k – 1 thinker; for example, 
level 1 players optimize against level 0 players, level 2 
players optimize against level 1 players, and so on. 
Rothschild et al. (2012) create an algorithm for determin
ing the strategy of a level k opponent by using recursion 
to build belief distributions regarding the attacks or 
defenses that the player uses. Considering bounded 
rationality in the adversaries is a novel aspect of our 
paper. To the best of our knowledge, our paper is the 
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first to consider boundedly rational players when con
sidering interdependent defensive decisions as consid
ered in network interdiction.

2.3. Security Control Portfolio Selection
A stream of the literature studies how to invest in secu
rity controls given a limited budget (Fielder et al. 2016, 
Zheng and Albert 2019b). Many models consider non
strategic attacks and do not necessarily select controls 
that adequately protect against adaptive adversaries 
(Zheng et al. 2019). Nonstrategic attacks (also called 
opportunistic or nontargeted) continue to be carried out 
in roughly the same manner and with the frequency 
regardless of the defender’s security decisions. For exam
ple, models using a decision theory framework assume 
that the defender’s decision has no impact on the fre
quency of each method of attack (Cavusoglu et al. 
2008). Although some research seeks to allocate a bud
get in the presence of strategic attackers and natural dis
asters (Zhuang and Bier 2007), none of the papers in this 
area consider how to select a portfolio of security defenses 
with multiple, boundedly rational adversaries.

2.4. Maximum-Reliability Path Interdiction
Network interdiction models have been widely applied 
to infrastructure protection and resilience problems, 
where they inform how to protect critical components in 
a system to reduce worst-case vulnerability. Network 
interdiction problems are modeled as Stackelberg or 
Cournot game models of defender–attacker games, usu
ally assuming two players and rational decision makers. 
Smith and Song (2020) provide a recent survey of this 
area. A shortest path interdiction problem may be used 
to model attacks or projects where the attacker seeks to 
minimize the time required to complete an attack (trav
erse the network) and the defender seeks to maximally 
delay an attack by interdicting (lengthening) edges on 
the network (Israeli and Wood 2002). The shortest path 
interdiction problem is an equivalent formulation to 
the maximum-reliability interdiction problem (Morton 
et al. 2007). Network interdiction models have been 
extended to include imperfect and private information 
(Salmerón 2012). Several researchers have recommended 
that network interdiction models be extended to consider 
boundedly rational players (Zhang et al. 2018) and other 
more realistic features to aid in defensive planning (Albert 
et al. 2023).

A stream of papers study how to interdict attack graphs 
to inform defensive cybersecurity planning efforts. Nandi 
et al. (2016) introduce a bilevel defender–attacker model 
to help organizations select and deploy security counter
measures by interdicting attack graphs. Letchford and 
Vorobeychik (2013) introduce a different Stackelberg 
game in which a defender seeks to interdict an attack 
plan, lifting the assumption that the game is zero sum. 
Zheng and Albert (2019a) introduce a bilevel network 
interdiction model that seeks to identify a portfolio of 
security controls that maximially delay a large number of 
adversarial cyberattacks from multiple attackers under 
uncertainty.

In sum, our paper adds to the literature by combining 
ARA and cognitive hierarchy theory with network 
interdiction modeling to inform defensive cybersecu
rity planning.

3. Adversarial Risk Analysis Framework
In this section, we introduce the ARA framework in this 
paper as well as how we model the boundedly rational 
players. ARA takes the perspective of one player, the 
defender in this paper, and seeks the optimal action for 
that player based on the actions/reactions they believe 
the other players will take.

3.1. Player Interactions in the Game
The maximum-reliability network interdiction model
ing approach considers a one-off encounter between a 
single defender and multiple attackers. This is reason
able for cybersecurity investment decisions considered 
in the case study, where planners must protect informa
tion systems from many attacks. In our approach, attack
ers do not know which security controls have been 
selected by the defender. The attackers seek to maximize 
the probability of their attacks succeeding based on per
ceived defenses, and the defender seeks to prevent an 
attack. Beliefs about the defender’s budget and security 
control costs are finite and discrete.

We now describe the general form of the game that 
we consider. There are a set of attackers who each 
choose a method of attack and target that maximizes 
their probability of success, which defines their reliabil
ity. This is equivalent to choosing a path through the net
work. By choosing a path, the attacker chooses the set of 
edges they traverse that determines the path’s reliability. 
By selecting controls, the defender reduces the reliability 
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for each of the edges that the controls cover. The 
defender selects a portfolio of controls to maximize the 
conditional probability that an attack is prevented sub
ject to a budget constraint.

Most of the information regarding the structure of 
this network is treated as shared beliefs, whereas the 
parameters of the network, such as the edge reliabilities, 
are private beliefs. Specifically, we assume that the set of 
nodes, edges, and possible controls are shared between 
all players. This is equivalent to assuming that the 
defender knows all possible threats the attackers may 
consider. The approach informs defensive planning 
based on known vulnerabilities, and it can be updated 
to include new vulnerabilities that have been discov
ered. Other information in the game may be private. 
This includes the edge reliabilities, the effectiveness of 
controls at decreasing those reliabilities, the proportion 
of attacks from each attacker, the cost to institute a con
trol, and the defender’s budget.

3.2. Boundedly Rational Players
From the defender’s perspective, the attackers may have 
different levels of strategic sophistication. Therefore, a 
level k defender plans for level 0, 1, : : : , k � 1 attackers. 
An attacker’s strategy represents a path. The defender’s 
strategy is a portfolio that consists of a set of controls 
whose total cost is within the budget.

Because we are seeking an optimal defense, we find 
strategies for level k defenders up to maximum level K— 
the defender’s level—and strategies for level k attackers 
up to maximum level K – 1. Lower level attacker and 
defender strategies are recorded as the algorithm pro
gresses, which provides a suite of portfolio options corre
sponding to the differing defender levels of strategic 
sophistication. By analyzing the various portfolios within 
this suite, we can make more informed decisions about 
how the defender’s posture should change when con
fronted by more or less “sophisticated” attackers.

The basic algorithm to compute the strategies of dif
ferent level k attackers of each type is as follows. We 
elaborate upon this algorithm in detail in Section 5. We 
begin with information and beliefs about the system. 
We start with k � 0 and construct level 0 attacker and 
defender strategies for nonstrategic players. We then 
increment the value of k by one and compute a level k 
defender’s optimal portfolio using the defender’s pro
gram, OptDef, presented in Section 4.2. If the strategy 

for the highest level of defender, K, has been calculated, 
the algorithm terminates. Otherwise, we calculate the 
level k attacker’s optimal attack path using the attacker’s 
program, OptAtt, presented in Section 4.1. We repeat 
this step by incrementing k by one and solving the 
defender’s and attackers’ problems until the algorithm 
terminates.

4. Model Formulations
In this section, we formulate a simultaneous single- 
defender, multiple-attacker game based on a maximum- 
reliability network interdiction problem. We do so by 
introducing optimization problems from the attackers’ 
perspective, OptAtt, and the defender’s perspective, 
OptDef. There is a single defender and a set of attackers 
A. Without loss of generality, each attacker begins at the 
super source node, 1, and progresses through the graph 
to the super sink node, n. Each attacker chooses a path 
of maximum reliability, the probability that they believe 
they will successfully traverse the graph based on per
ceived defender decisions.

Notations that reflect the defender’s and attackers’ 
beliefs have a D and an A subscript/superscript, respec
tively. Beliefs that are updated based on the level of stra
tegic sophistication have a k superscript. Notation that 
captures decision variables does not explicitly include k, 
D, or A. Table 1 provides a summary of the notation rele
vant to the parameters and players beliefs as well as the 
decision variables. For clarity, we use Latin characters 
for variables and shared information, and we use Greek 
characters for beliefs.

4.1. Attackers’ Problem
We now consider the attackers’ problem. We consider a 
directed acyclic graph G � (N, E) consisting of a finite 
set of nodes N and directed edges E. The sets of edges 
leaving and entering a node i ∈ N are denoted by E+

i and 
E�

i , respectively. Without loss of generality, we assume 
that the set of nodes {1, : : : , n} ∈ N are ordered such that 
δ(i, j, A) for all (i, j) ∈ E, and each level 0 attacker selects 
the edge with the highest noninterdicted reliability from 
each node, breaking ties randomly. Other methods could 
be used to set level 0 attacker paths.

We consider the reliability of an attack path for a level 
k attacker. A level k attacker A believes the level k – 1 
defender has chosen the portfolio Ωk�1

A � {ω1, : : : ,ωm}. 
The attacker believes that the reliability of edge (i, j) ∈ E 
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is δk
A(i, j|Ωk�1

A ), its reliability with portfolio Ωk�1
A . We 

assume that the values of δk
A(i, j|Ωk�1

A ) are independent 
between edges. Given Ωk�1

A , the attacker then believes 
the reliability of a fixed path p to be 

Q
(i,j)∈pδ

k
A(i, j|Ωk�1

A ). 
Each strategic attacker seeks to maximize the condi
tional probability that their attack succeeds. Using stan
dard approaches based on recursion (Ahuja et al. 1993), 
we can represent the probability of an attack reaching 

edge (i, j), captured by qjℓ, using the pair of linear inequal
ities

qjℓ ≤ ujℓ,

qjℓ ≤
X

(i, j)∈E�
j

δk
A(i, j|Ωk�1

A )qij, 

where the characteristic vector of the path chosen by the 
attacker is u ∈ {0,1}

|E | , where uij � 1 if edge (i, j) is in the 
path, and uij � 0 otherwise.

Using these expressions, we present the OptAtt for
mulation for level k attacker A ∈ A as a maximum- 
reliability path problem:

zk
A � max

X

(i,n)∈E�
n

δk
A(i, j|Ωk�1

A )qin (1) 

s:t:
X

(1, i)∈E+
1

u1i ≤ 1, (2) 

X

(i, j)∈E+
i

uij ≤
X

(j, i)∈E�
i

uji, ∀i ∈ N \ {1}, (3) 

qij ≤ uij, ∀(i, j) ∈ E, (4) 

qjℓ ≤
X

(i, j)∈E�
j

δk
A(i, j|Ωk�1

A )qij,

∀j ∈ N \ {1}, (j, ℓ) ∈ E+
j , (5) 

uij ∈ {0, 1}, ∀(i, j) ∈ E, (6) 
qij ≥ 0, ∀i ∈ N, (i, j) ∈ E: (7) 

The objective (1) for an attacker is to maximize the prob
ability that their attack succeeds. Constraints (2) and (3) 
enforce that the uij variables properly define a path. Con
straint (2) only allows the attacker to choose one attack 
path, and constraint set (3) preserves the balance of flow 
in and out of each node. Constraint sets (4) and (5) deter
mine the probability that the attack succeeds. Constraint 
set (4) allows attacks to progress only along the attack 
path. Constraint set (5) balances the flow of attack probabil
ity in and out of each node. Constraint sets (6) and (7) 
require variables to take on binary and nonnegative values, 
respectively. OptAtt is a canonical form maximum- 
reliability path problem, which can be solved for each 
attacker as a shortest path problem with Dijkstra’s algo
rithm after a negative logarithm transform of the edge 
reliabilities (Morton et al. 2007).

After solving OptAtt for each attacker, we use the 
solution to construct the defender’s beliefs about the 
paths that each attacker A ∈ A will take. Recall that a 

Table 1. Notation

Notation Definition

Sets: Common information to defender and attackers
A Attackers
N Nodes
E Edges
E+

i (E�
i ) ⊆ E Edges that leave (enter) node i ∈ N

M Set of controls
Mij ⊆ M Subset of controls that interdict edge (i, j) ∈ E
P(i) The set of paths from the source node to node 

i ∈ N

Level k attacker A ∈ A decisions
Attacker variables

uij Binary variable that is 1 if edge (i, j) ∈ E is
on the attacker′s path and 0 otherwise

�

qij Probability that the attack of attacker A ∈ A 

reaches edge (i, j) ∈ E
⇒ level k′ (with k′ > k) defender beliefs
ψk′

D(i, j, A) Conditional probability that a level k′ > k 
defender believes a level k attacker

A ∈ A attempts to traverse edge (i, j) ∈ E+
i 

given that they reach node i

Defender D beliefs
δD(i, j, A) Reliability of uninterdicted edge (i, j) ∈ E for 

attacker A ∈ A

δ̃D(i, j, A) Reliability of interdicted edge (i, j) ∈ E for 
attacker A ∈ A

θD(A) Conditional probability that attacker A 
attempts an attack

βD Defender’s budget
κD(m) Cost of control m ∈ M

Level k defender decisions
Defender variables

wm Binary variable that is 1 if control m ∈ M
is chosen and 0 otherwise

�

xij Binary variable that is 1, if edge (i, j) ∈ E
is covered 0 otherwise

�

yij(A) Probability that attacker A ∈ A reaches 
uninterdicted edge (i, j) ∈ E

ỹij(A) Probability attacker A ∈ A reaches interdicted 
edge (i, j) ∈ E

⇒ level k + 1 attacker beliefs
Ωk

A � {ω1, : : : ,ωm} Portfolio selected by a level k defender
δk+1

A (i, j|Ωk
A) Reliability of edge (i, j) ∈ E under portfolio Ωk

A 
for a level k + 1 attacker
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defender of level k′ defends against a set of attackers A 

that may have different levels of sophistication k, with 
0 ≤ k < k′. A solution to OptAtt for a level k attacker 
A ∈ A can therefore be used to inform the beliefs of the 
level k′ defenders, with k + 1 ≤ k′ ≤ K. To do so, we 
derive the paths that a level k attacker A takes from the 
OptAtt solution variables uij, which are converted to 
inform a level k′ defender’s belief parameters. A level k′

defender believes the conditional probability attacker A 
chooses edge (i, j) ∈ E after reaching node i is

ψk′

D(i, j, A) � uij, ∀(i, j) ∈ E: (8) 

Although we do not explicitly model the level k in the 
attacker variables in OptAtt, the level of the attacker is 
implicitly retained when setting the values of ψk′

D(i, j, A).

4.2. Defender’s Problem
We now consider the defender’s problem. The defender 
maximizes the probability that an attack is prevented by 
selecting controls from set M. Each control m ∈ M has cost 
κD(m) subject to defender budget βD. Control m interdicts 
a set of edges, decreasing the reliability of all edges in the 
set. The subset Mij ⊆ M contains all controls that interdict 
edge (i, j). This approach is slightly different than that of 
the canonical maximum-reliability interdiction problem, 
where the defender directly interdicts edges on the net
work. We treat the budget and costs as beliefs, because 
the attacker may not know their values. We assume a 
level 0 defender does not choose any controls.

The defender believes that the conditional probability 
that attacker A ∈ A attempts an attack is θD(A). This is 
assumed to be determined exogenously, possibly from 
expert opinion or a risk assessment. The defender faces 
multiple attackers with different levels k′ with 0 ≤ k′

≤ k � 1, which are captured in the values of ψk
D(i, j, A). 

Each attack follows a fixed path p with a given probabil
ity that depends on the defender’s level. The defender has 
belief probabilities δ̃D(i, j, A) and δD(i, j, A) that reflect the 
reliability of edge (i, j) for attacker A if the edge is or is not 
interdicted, respectively. We assume that the realizations 
of these belief probabilities are independent of each other. 
We further assume that the probabilities δD(i, j, A) and 
δ̃D(i, j, A) are independent between edges.

To derive the OptDef formulation, note that a level k 
defender’s portfolio interdicts a set of edges S ⊆ E. Fur
thermore, let P(i) be the set of paths leading from the 

source node 1 to node i > 1. Then, the conditional proba
bility of a successful attack is
X

A∈A

θD(A)
X

p∈P(n)

ψk
D(p, A)

Y

(i, j)∈p\S
δD(i, j, A)

Y

(i, j)∈p∩S
δ̃D(i, j, A):

(9) 

The maximum probability path from any node i ∈ N to 
the sink node n does not depend on the path used to 
reach i. Therefore, we can rewrite (9) as

X

A∈A

θD(A)
X

p∈P(n)

Y

(i, j)∈p
ψk

D(i, j, A)

(δD(i, j, A)(1 � xij) + δ̃D(i, j, A)xij): (10) 

The defender believes that the probability that attacker 
A attempts to traverse edge (j, ℓ) ∈ E is yij(A) if the edge 
is not interdicted or ỹjℓ(A) if it is interdicted, which are 
decision variables in the defender’s model. We define 
yjℓ(A) and ỹjℓ(A) recursively as

yjℓ(A) � (1 � xjℓ)ψ
k
D(j, ℓ, A)

X

(i, j)∈E�
j

(δD(i, j, A)yij(A)

+ δ̃D(i, j, A)ỹij(A)),

ỹjℓ(A) � xjℓψ
k
D(j, ℓ, A)

X

(i, j)∈E�
j

(δD(i, j, A)yij(A)

+ δ̃D(i, j, A)ỹij(A)):

Gathering these equations, we introduce the OptDef for
mulation:

zk
D � 1 � min

X

A∈A

θD(A)
X

(i, n)∈E�
n

(δD(i, n, A)yin(A)

+ δ̃D(i, n, A)ỹin(A)) (11) 
s:t: y1i(A) + ỹ1i(A) ≥ ψk

D(1, i, A),
∀A ∈ A, (1, i) ∈ E+

1 , (12) 
yjℓ(A) + ỹjℓ(A) ≥ ψk

D(j, ℓ, A)
X

(i, j)∈E�
j

(δD(i, j, A)yij(A)

+ δ̃D(i, j, A)ỹij(A)),

∀A ∈ A, j ∈ N \ {1, n}, (j, ℓ) ∈ E+
j , (13) 

ỹij(A) ≤
X

m∈Mij

wm, ∀A ∈ A, (i, j) ∈ E, (14) 

X

m∈M
κD(m)wm ≤ βD, (15) 

yij(A), ỹij(A) ≥ 0, ∀A ∈ A, (i, j) ∈ E, (16) 
wm ∈ {0, 1}, ∀m ∈ M: (17) 
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A level k defender maximizes the conditional probability 
that an attack is prevented (11), which is equivalent to 
minimizing the conditional probability that an attack suc
ceeds, and which occurs when an attacker traverses the 
network. Constraint set (12) enforces that each attacker 
attempts an attack. Constraint set (13) serves as a flow bal
ance equation, determining the probability that an attack 
from each attacker reaches each edge. Specifically, this is 
the probability of an attack reaching the edge’s starting 
node multiplied by the conditional probability of the 
attack then progressing on that edge. Constraint set (14) 
allows edges to be interdicted only if a control is chosen 
that interdicts that edge. Constraint (15) allows the de
fender to choose only as many controls as their bud
get allows. The last two sets of constraints, (16) and (17), 
ensure that the appropriate variables are nonnegative and 
binary.

A solution to the level k defender’s problem informs 
the level k + 1 attackers’ beliefs regarding the defender’s 
edge reliabilities. In particular, Ωk

A is defined as the set 
{m ∈ M : wm � 1}, and for each (i, j) ∈ E,

δA(i, j|Ωk
A) �

δD(i, j, A) if xij � 0,

δ̃D(i, j, A) if xij � 1:

(

(18) 

5. Approximation of the 
Defender’s Problem

It may be computationally difficult to find an optimal 
solution to OptDef for large-scale problem instances. 
However, we show that there exists an approximation 
algorithm that provides a solution with a 1 � 1=e perfor
mance guarantee. To do so, we show that OptDef is 
equivalent to a nonnegative, submodular maximization 
problem with a knapsack constraint. A heuristic can find 
solutions that are at least (1 � 1=e) of the optimal solution 
in polynomial time for this problem (Sviridenko 2004). A 
similar result exists for the related problem of maximizing 
a submodular function subject to a cardinality constraint 
(Nemhauser et al. 1978). Later, in Section 7, we show that 
this approximation algorithm often identifies solutions 
whose values are extremely close to the optimal solution 
value in practice. This approximation algorithm may be 
used to decrease the time required to find an optimal 
solution to OptDef by providing a warm start for the 
mixed integer programming solver.

We adapt the heuristic from Khuller et al. (1999) to 
OptDef. We begin by selecting the maximum value set 

of controls, S1 ⊂ M, with |S1 | ≤ 2. Next, we enumerate 
all sets of controls with a cardinality of three, S2, that sat
isfy the budgetary constraint, that is, we have 

P
m∈S2 

κD(m) ≤ βD for each set of controls S2 ∈ S2 with |S2 | � 3. 
Then, we greedily complete each of these sets until the 
budget or available controls are exhausted; that is, for a 
submodular function f on a set M, we add an element 
m∗ ∈ M \ S2 if it satisfies the budget constraint (i.e., 
κD(m∗) +

P
m∈S2
κD(m) ≤ βD) that satisfies

m∗ ∈ arg max
m∈M\S2

f (S2 ∪ {m}) � f (S2)

κD(m)
: (19) 

Then, S2 ← S2 ∪ m∗, and the process is repeated until no 
new elements can be selected. Let the maximum value 
set completed this way be S3. If f (S1) ≥ f (S3), then the 
algorithm returns S1: Otherwise, it returns S3:

Theorem 1 demonstrates that the conditional proba
bility of a successful attack, the complement of the Opt
Def objective function value, is a supermodular function 
given a set of interdicted edges.
Theorem 1. Let S be a set of interdicted edges (i, j) ∈ E, and let

0 ≤ δ̃D(i, j, A) ≤ δD(i, j, A), ∀(i, j) ∈ E, A ∈ A:

Then, for any path p ∈ P and attacker A ∈ A,

g(S, p, A) �
Y

(i, j)∈p\S
δD(i, j, A)

Y

(i, j)∈p∩S
δ̃D(i, j, A)

is a nonincreasing, supermodular function in S.

Proof. We begin by showing that g(S, p, A) is nonincreas
ing in S. First, note that 0 ≤ g(S, p, A) ≤ 1, because g(S, p, A)

is a product of numbers whose values are between zero and 
one. For sets of edges S1 ⊆ S2 ⊆ E, we have

g(S2, p, A) �
Y

(i, j)∈p\S2

δD(i, j, A)
Y

(i, j)∈p∩S2

δ̃D(i, j, A)

�
Y

(i, j)∈p∩(S2\S1)

δD(i, j, A)δ̃D(i, j, A)

δD(i, j, A)δ̃D(i, j, A)
Y

(i, j)∈p\S2

δD(i, j, A)
Y

(i, j)∈p∩S2

δ̃D(i, j, A)

�
Y

(i, j)∈p∩(S2\S1)

δ̃D(i, j, A)

δD(i, j, A)

Y

(i, j)∈p\S1

δD(i, j, A)

Y

(i, j)∈p∩S1

δ̃D(i, j, A)

�
Y

(i, j)∈p∩(S2\S1)

δ̃D(i, j, A)

δD(i, j, A)

0

@

1

Ag(S1, p, A): (20) 
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Because 0 ≤ δ̃D(i, j, A) ≤ δD(i, j, A), ∀(i, j) ∈ E, (20) shows 
that g(S, p, A) is nonincreasing in S.

We now prove that g(S, p, A) is supermodular by show
ing for all (i1, j1), (i2, j2) ∈ E that

g(S, p, A) + g(S ∪ {(i1, j1), (i2, j2)}, p, A)

� g(S ∪ {(i1, j1)}, p, A) � g(S ∪ {(i2, j2)}, p, A) ≥ 0: (21) 

We use (20) to algebraically simplify the left-hand side of 
(21):

g(S, p, A) + g(S ∪ {(i1, j1), (i2, j2)}, p, A)

� g(S ∪ {(i1, j1)}, p, A) � g(S ∪ {(i2, j2)}, p, A)

� g(S, p, A) 1 +
δ̃D(i1, j1, A)δ̃D(i2, j2, A)

δD(i1, j1, A)δD(i2, j2, A)
�
δ̃D(i1, j1, A)

δD(i1, j1, A)

�

�
δ̃D(i2, j2, A)

δD(i2, j2, A)

�

� g(S, p, A) 1 �
δ̃D(i2, j2, A)

δD(i2, j2, A)

� �

1 �
δ̃D(i1, j1, A)

δD(i1, j1, A)

� �

:

(22) 

Because 0 ≤ δ̃D(i, j, A) ≤ δD(i, j, A), ∀(i, j) ∈ E, we have the 
following three inequalities:

g(S, p, A) ≥ 0,

1 �
δ̃D(i2, j2, A)

δD(i2, j2, A)
≥ 0,

1 �
δ̃D(i1, j1, A)

δD(i1, j1, A)
≥ 0:

Combining these three inequalities with (22) yields (21). 
Therefore, g(S, p, A) is a nonincreasing supermodular 
function. w

The consequence of Theorem 1 is that the OptDef 
objective function is a nonnegative, submodular func
tion. Next, we prove that OptDef is a nonnegative, sub
modular maximization problem subject to a knapsack 
constraint.

Theorem 2. OptDef is a nonnegative, submodular maximiza
tion problem subject to a knapsack constraint.

Proof. We begin by reformulating (10), which is equiva
lent to the complement of the OptDef objective function 
the objective (11) and Constraints (12) and (13). Then the 
probability that an attack is prevented, using the defini
tion of g(S, p, A) from Theorem 1, is

1 �
X

A∈A

θD(A)
X

p∈P(n)

g(S, p, A)
Y

(i, j)∈p
ψD(i, j, A), (23) 

where S is the set of edges interdicted by the defender’s 
portfolio. Note that 

Q
(i,j)∈pψD(i, j, A) is a constant in this 

formulation. The nonnegative weighted sum of super
modular functions is also supermodular, yielding a 
function in (23) that is submodular after multiplying by 
–1 and subtracting the term from one. The resulting 
value is between zero and one, because it represents a 
probability.

The remaining constraints of OptDef, Constraints (14) 
and (15), simply define a knapsack constraint on the set 
of controls. Because S is nondecreasing in the controls, 
this is equivalent to a knapsack constraint on S. Hence, 
we have the desired result. w

There are two implications of Theorem 2. The first is 
that the algorithm introduced earlier in this section from 
Khuller et al. (1999) identifies solutions with a guaran
teed 1 � 1=e approximation ratio. The second implica
tion is that a more computationally efficient greedy 
algorithm (also introduced by Khuller et al. 1999) can be 
used to identify solutions with an approximation ratio of 
1 � 1=

ffiffi
e

√
. The greedy algorithm starts with an empty set 

of controls and greedily completes this set according to 
(19) until the budget or available controls are exhausted. 
Then it compares this greedily chosen set with the maxi
mum value single-element set and chooses the one with 
the higher objective function value.

6. Iterative ARA Algorithm
We formally introduce an iterative algorithm for solving 
OptAtt and OptDef for the attacker and defender pro
blems across all values of k: 

1. Initialization: Provide data.
• Some sets and beliefs given in Table 1 must 
be provided, including the level (K) of defender, 
set of attackers (A), sets of nodes (N) and edges 
(E), set of controls (M), reliabilities of edges 
(δD(i, j, A), δ̃D(i, j, A) ∀(i, j) ∈ E, A ∈ A), defender 
budget (βD), costs of controls (κD(m) ∀m ∈ M), 
and distribution of attackers (θD(A) ∀A ∈ A).

2. Identify level 0 attacker and defender solutions.
• We assume a level 0 attacker A takes a greed
ily formed path p as described in Section 4.1. 
This yields ψk′

D(i, j, A) � 1 if (i, j) ∈ p and ψk′

D(i, 
j, A) � 0 if (i, j) ∉ p for all defenders k′ > 0 who 
believe that attacker A is at level 0.
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• We assume a level 0 defender does not choose 
any controls, so that the level 0 defender’s solution 
is Ω0

A � ∅ with δ1
A(i, j|Ω0

A) � δD(i, j, A) for each 
attacker A ∈ A.

3. For k � 1, 2, : : : , K � 1: 
• Solve OptAtt using Dijkstra’s algorithm: For 
each level k attacker A, we solve OptAtt, given 
by (1)–(7), to obtain the attack path p using 
Dijkstra’s algorithm as described in Section 
4.1. Use the values of uij to set ψk′

D(i, j, A), (i, j) ∈

E for each k < k′ ≤ K using (8).
• Solve OptDef for a level k defender. We sug
gest two ways to do this: 

— Solve OptDef to optimality using the 
mixed integer programming formulation 
given by (11)–(17).
— Identify approximate solutions using the 
approximation algorithm or the greedy al
gorithm presented in Section 5 to identify 
solutions within (1 � 1=e) or (1 � 1=

ffiffi
e

√
) of 

the optimal solution value, respectively.

Given a solution to OptDef, let Ωk
A � {m ∈ M|wm � 1}. 

Then set the values of δk+1
A (i, j|Ωk

A) for all level k + 1 
attackers A ∈ A using (18).

4. Solve OptDef a final time to obtain the solution 
for a level K defender.

To illustrate the algorithm, we revisit the example intro
duced in Section 1.1. Again, we assume the defenders 
budget allows them to select only a single control. Next, 
we iterate through the algorithm to find the OptDef solu
tions with level 1–4 defenders, respectively. For each level 
k defender from k � 1 to k � 4, for the sake of simplicity, 
we assume the defender is defending against a uniform 
distribution of the attackers of levels less than k. We report 

the attack success probability for both models to directly 
compare the OptAtt and OptDef solutions in Table 2.

We first consider level 0 attackers, who choose the 
right path using a greedy tactic, with an attack success 
probability of 0.102. A level 0 defender selects no con
trols. A level 1 attacker optimizes against the level 0 
defender and again chooses the right path for an attack 
success probability of 0.102, because this is the maximum- 
reliability path with all uninterdicted edges.

We continue to consider each level of attacker and 
defender up to the desired defender level. Next, we 
solve OptDef for a level 1 defender, who optimizes 
against level 0 attackers. The level 1 defender chooses 
the control that most decreases the reliability of the level 
0 attackers’ path, which is control m3. This attains an 
OptDef attack success probability of 0.074. The level 2 
attacker then selects the left path, yielding an attack suc
cess probability of 0.09. A level 2 defender optimizes 
against both level 0 and level 1 attackers, who both take the 
right path, and again selects m3, giving an attack success 
probability of 0.074. Given this, a level 3 attacker takes the 
right path with an attack success probability of 0.102.

Next, we consider a level 3 defender, who defends 
against level 0–2 attackers, two of whom take the right 
path and one of whom takes the left path. A level 3 
defender selects m1 for an OptDef attack success proba
bility of 0.078. The level 4 defender defends against all 
level 0–3 attackers, two of whom traverse the left path 
and two of whom traverse the right path. In this case, m2 
becomes the optimal control choice. This achieves a final 
OptDef attack success probability of 0.069. In this example 
we see the defender change their control decisions based 
on what paths they believe the attackers would take.

Note that the ARA algorithm results in a series of 
solutions to OptDef that correspond to level 0, 1, : : : , K 
defenders. Therefore, our approach provides decision 
makers with a suite of solutions instead of a single, 
“good” solution, which could be advantageous for 
defensive planning.

7. Computational Results
In this section, we provide computational results for the 
models and algorithms based on the information secu
rity investment case study introduced by DuBois (2020). 
In the case study, we generate random data according to 
a specific parameterized structure that we are able to 
adjust to leverage control over the size and complexity 

Table 2. Example OptAtt and OptDef Solutions for 
Attackers and Defenders of Varying Levels

K

Attacker Defender

Path 
selected

OptAtt 
attack 

success 
probability

Mitigation 
selected

OptDef 
attack 

success 
probability

0 Right 0.102 N/A N/A
1 Right 0.102 m3 0.074
2 Left 0.09 m3 0.074
3 Right 0.102 m1 0.078
4 — — m2 0.069
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of the problem. We describe how this structure is cre
ated as well as the parameters used. Later, we vary the 
size of the problem instances to assess the performance 
of the approximation algorithm.

In the case study, each problem instance is given by a 
network that is organized into a source node, a sink 
node, and ℓ “layers” of nodes. Each layer of nodes is a 
set of nodes such that nodes in a layer connect only to 
nodes in the next layer. For simplicity, we assume that 
each layer contains the same number of nodes, which 
results in a structure with many interconnections and 
paths. Figure 2 illustrates an example of the network 
under consideration with two layers of three nodes 
each. A path through the network includes one node 
from each layer. The source node is connected by nonin
terdictable edges to each node in the first set, with reli
abilities of one. Three edges leave each node in sets 
1, : : : ,ℓ� 1 to nodes in sets 2, : : : ,ℓ, respectively.

We first assign edges such that each node has both an 
entering and leaving edge, before randomly assigning 
the remaining edges. We then assign reliabilities to each 
of these edges randomly, and each reliability is treated 
as a constant once it is generated. The uninterdicted reli
abilities are uniformly assigned a value between zero 
and one, that is, δ(i, j) ~ U(0, 1]. The interdicted reliabil
ities are a random (0, 1) proportion of the uninterdicted 
value, that is, δ̃(i, j) ~ U(0, 1] · δ(i, j). Finally, noninterdic
tible edges connect each node in layer ℓ to the sink node, 

with reliabilities of U(0:5, 1]. We choose a number of pos
sible controls and a budget for the defender, and then ran
domly determine costs for each of these controls using a 
uniform distribution over some specified cost range. This 
cost is exactly one for a cardinality budget constraint, and 
the costs follow a U[0:5, 1:5] distribution for a knapsack 
constraint to maintain an average cost of 1.0 per control in 
both situations. Each control is then randomly assigned a 
subset of these edges to interdict. To do so, we first spe
cify a parameter, α, that gives the average proportion of 
edges covered by any control. If we have a cardinality 
budget constraint, for each control, we loop through 
the edges and assign each to the control with a proba
bility of α. If we have a knapsack constraint, we alter 
the probability of assigning each edge to a control by 
considering the cost. Let ∆m be the value attained by 
subtracting the average cost from the cost of the control 
m and then dividing by the range of possible costs. In 
our case, with costs generated from the range [0:5, 1:5], 
this is equivalent to ∆m � κD(m) � 1. Then we assign 
edges to control m with a probability of α(1 + α2∆m), 
where α2 represents the amount of effect cost has on 
mitigation quality.

For our case study, we generated a problem instance 
for a graph with ℓ � 5 layers and five nodes per layer. To 
better visualize the trade-offs between controls, a cardi
nality constraint was used for the defender’s budget, 
where the defender can choose 4 of 10 controls. Each 

Figure 2. Simple Example of Synthetic Network Structure with Two Layers 

Note. Example edge reliabilities are shown along each edge for when the edge is not interdicted (interdicted), δij(i, j, A)(δ̃ ij(i, j, A)).
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control was randomly generated to cover approximately 
15% of the edges (α � 0:15). Although a realistic value of 
the defender’s level is 4, we set a maximum defender 
level of K � 10 to study a range of defensive solutions. 
Each defender level k ≤ K assumes a uniform distribu
tion of attacker levels over 0 ≤ k′ < k. We refer to DuBois 
(2020) for additional experiments that consider alterna
tive distributions over the attacker levels.

We solve the case study using the algorithm in Section 
6, where for each level of defender we solve OptDef to 
optimality using Gurobi 9.1.1. This computation was 
performed on a computer with an Intel(R) Core(TM) 
i7-8650U central processing unit (CPU) at 1.90 GHz with 

a 2.11 GHz processor and 16 GB of random access mem
ory, and took 1.36 seconds to run the full algorithm.

The ARA algorithm solves the defender’s problem 11 
total times across all levels of k, thereby generating vari
ous potential defender solutions before arriving at the 
final solution for the level K � 10 defender. Table 3
reports the portfolio of controls chosen by each defender 
level k from 0 to 10. Note that by assumption, the level 0 
defender chooses no controls. Table 3 indicates that 
some controls are not chosen in any of the defender’s 
solutions, such as m1, m6, m7, and m8. Other controls 
work together to provide better protection against dif
ferent or more of a variety of paths the attackers may 
take (e.g., controls m2, m3, and m4). Controls m5 are m9 
are chosen by defenders whose levels are at least 3 and 
5, respectively, indicating that some controls only be
come attractive by more strategic defenders (who believe 
they face more strategic attackers).

Next, we examine the attack success probability, the 
average probability of a successful attack and the com
plement to the OptDef objective function value. We 
report the attack success probability for defenders with 
levels 0–9 given a uniform distribution of level 0–9 
attackers. Figure 3 reports the attack success probability 
from both the defender’s and attackers’ points of view. 
First, it reports the attack success probability corre
sponding to OptDef (the dotted line), which captures 
the attack success probability based on the defender’s 

Table 3. Table of Portfolios Selected by the Defender for 
Differing Levels of k

Level of 
defender

Controls

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

0 — — — — — — — — — —
1 — ✓ ✓ ✓ — — — — — ✓

2 — ✓ ✓ ✓ — — — — — ✓

3 — ✓ — ✓ ✓ — — — — ✓

4 — ✓ — ✓ ✓ — — — — ✓

5 — ✓ — ✓ ✓ — — — ✓ —
6 — ✓ — ✓ ✓ — — — ✓ —
7 — ✓ ✓ — ✓ — — — ✓ —
8 — ✓ ✓ — ✓ — — — ✓ —
9 — — ✓ ✓ ✓ — — — ✓ —
10 — — ✓ ✓ ✓ — — — ✓ —

Figure 3. Two Lines Showing the Average Attack Success of Attackers Levels 0–9 Against Levels k < 10 Defenders and the Opt
Def Value for Level k < 10 Defenders (Attack Success of a Uniform Distribution of Attackers Levels 0 to k) 
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belief regarding the attackers. Second, it reports the 
actual, retrospective attack success probability for the 
same set of attackers based on their actual levels of stra
tegic sophistication (the solid line). These values differ 
because defenders with levels lower than 10 are incapa
ble of perceiving level 9 (or higher) attackers’ true levels 
of strategic sophistication.

Figure 3(a) illustrates the results across a single prob
lem instance, and Figure 3(b) illustrates the results aver
aged over 100 problem instances of the same size as the 
example problem. The attack success probability associ
ated with OptDef is increasing in k in both figures. This 
occurs because more strategic defenders select controls 
for more strategic attackers who are better able to evade 
defenses. We observe that the actual attack success 
probability is higher than that associated with OptDef, 
because defenders with levels k < 10 believe that some 
attackers are less strategic than they are in actuality, 
resulting in an inaccurate believed attack success proba
bility. Both lines converge to the same point when the 
defender’s beliefs match reality, which in our example 
occurs when the defender is at level k � 10. Figure 3(a)
indicates that the actual attack success probability 
does not always decrease with k for any particular 
problem instance. This effect is due to attackers with 
higher levels of k. Because the defender does not accu
rately assume the distribution of attackers, it is possi
ble that attackers can find more reliable paths against 
a sophisticated defender.

Figure 3(b) illustrates the attack success probability 
associated with OptDef and for the actual values aver
aged across 100 randomly generated problem instances 
of the same size. The overall trends in Figure 3(b) are 
similar to those in Figure 3(a), with Figure 3(b) showing 
that the average actual attack success probability mono
tonically decreases with k. This suggests that the solu
tions provided by OptDef, on average, provide better 
defenses for more strategic defenders.

Next, we consider the effects of the defender’s portfolio 
of controls and how it performs against attackers with dif
ferent levels of strategic sophistication. As before, we con
sider defenders of levels 0 through 9. We study how two 
subsets of attackers perform against these defenders: low 
level (levels 0–4) and high level (levels 5–9). We also 
report all attackers (levels 0–9) for comparison. Note that 
the case with level 0–9 attackers matches that considered 
in Figure 3. In each case, the attackers’ actual levels follow 
a discrete uniform distribution as before. Each defender 
assumes that the levels of the attackers are uniformly dis
tributed across all levels k lower than that of the defender. 
The level 5 defender believes they are defending against 
low-level 0–4 attackers, and a level 10 defender believes 
they are defending against level 0–9 attackers. The defen
der’s beliefs matches the actual attacker levels in both of 
these cases; however, there is a mismatch between the 
defender’s beliefs and the actual levels of the attackers in 
all other cases, where the defender either overestimates or 
underestimates the attackers’ levels to varying degrees.

Figure 4. Attacker Success Probabilities Against Defenders of Levels 0 through 9 for Three Uniform Distributions of Attackers: 
Low Level (0–4), High Level (5–9), and Both (0–9) 

DuBois, Peper, and Albert: Interdicting Attack Plans: Adversarial Risk Analysis 
Decision Analysis, 2023, vol. 20, no.3, pp. 202–219, © 2023 INFORMS 215 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

28
.1

04
.4

6.
20

6]
 o

n 
23

 S
ep

te
m

be
r 2

02
4,

 a
t 0

6:
15

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Figure 4 illustrates the actual attack success probabil
ity for the defender across the three groups of attackers, 
with Figure 4(a) illustrating the actual attack success 
probability for the example problem and Figure 4(b)
illustrating the actual attack success probability aver
aged across 100 problem instances. In both figures, 
higher level attackers tend to be more successful than 
lower level attackers across all defender levels, which is 
expected. We observe that that higher level defenders 
tend to achieve a lower attack success probability when 
facing level 0–4 attackers, which suggests that defenses 
may be more effective against less strategic attackers, 
even when the defender overestimates the attackers’ 
levels (which occurs for level 6–9 defenders).

In contrast, level 5–9 attackers often achieve high 
attack success probabilities. In Figure 4(a), the attack 
success probability of level 5–9 attackers is highest 
against level 7 and 8 defenders. This is surprising and 
occurs because the attackers whose levels are higher 
than the defender’s can find paths that the defender 
does not defend well. This indicates that the defenses 
chosen by more sophisticated defenders may sometimes 
perform worse against sophisticated attackers than the 
defenses chosen by less sophisticated defenders.

Figure 4(b) presents results averaged across 100 ran
domly generated problem instances. Overall, we see a 
decreasing trend in the attack success probability across 
all level 0–9 attackers and low-level 0–4 attackers as the 
defender’s level increases. The decreasing attack success 
probability is more pronounced for level 0–4 attackers. 
This occurs because the defender increasingly assumes 
a more accurate distribution of the attackers as the 
defender level increases to 5. After level 5, the defender 
continues to defend well across level 0–4 attackers and 
mostly improves against level 5–9 attackers. The actual 
attack success probability against the high-level 5–9 
attackers does not monotonically decrease with the defen
der’s level (i.e., it increases between defender levels 2 to 5). 
This is counterintuitive, and results from the defender’s 
beliefs. A level k � 5 defender, for example, assumes they 
face level 0–4 attackers and therefore optimizes def
enses for less strategic attackers. As the defender’s level 
increases to k � 9, the defender becomes more effective 
against the most strategic attackers. Overall, this exam
ple suggests that is better for the defender to over
estimate the level of the attackers rather than to 
underestimate the level of the attackers.

To further analyze the effects of the defender misjud
ging the sophistication of the attackers, we consider a 
defender of level k � 10 who uniformly overestimates or 
underestimates the attackers’ levels by a certain offset. 
As before, we consider a uniform distribution of attack
ers whose true levels are 0 through 9. Positive offsets 
correspond to the defender overestimating the attackers’ 
levels, and negative offsets correspond to underestimat
ing the attackers’ levels. When overestimating, the def
ender cannot perceive attackers of a higher level than 
them, and thus they assume any such attackers are one 
level below them in OptDef. Likewise, when underesti
mating, the defender always assumes the attackers have 
a level of at least 0. A defender with an offset of �3, for 
example, only perceives level 0 through 6 attackers after 
capping the perceived attacker levels below at 0.

Figure 5 depicts the actual attack success probability 
averaged across 100 problem instances as a function of 
the offset. We observe that both over- and underestimat
ing the distribution of the attackers leads to higher attack 
success probabilities in comparison with the case when 
the defender perceives the true attacker levels (shown by 
the offset of zero), with underestimating the attackers 
being slightly worse than overestimating. This observa
tion is consistent with Figure 4. This suggests that it is 
ideal for the defender to “get it right” and correctly model 
attackers, and that there is a benefit to erring on the side 
of planning for sophisticated attackers.

We next assess the quality of the solutions identified by 
the greedy algorithm (see Section 5), which is guaranteed 

Figure 5. Attack Success of a Uniform Distribution of Attack
ers Against Level 10 Defenders Who Believe All Attackers’ 
Levels Are Offset by the Amount Given on the x-Axis 
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to identify solutions whose objective function values 
are at least 1 � 1=

ffiffi
e

√
of the optimal OptDef solution 

values. We consider randomly generated instances for 
a level 10 defender, each using a knapsack constraint 
for the budget. We compare the greedy and exact algo
rithms on the same problem instances with a level 10 
defender as follows by first using the greedy algorithm 
to identify near-optimal OptDef solutions for defenders 
of levels 1–9. Then, we use either an exact algorithm or 
the greedy algorithm for the level 10 defender’s prob
lem instance.

We randomly generated 40 problem instances with 
varying sizes to evaluate the solution quality of the 
greedy algorithm. Table 4 reports the parameters used to 
generate each problem instance as well as the CPU times 
associated with the exact (OptDef) and greedy algo
rithms. The CPU time (in seconds) to solve OptDef to 
optimality includes the setup time of writing the variables 
and constraints, as well as the solver time. Likewise, the 
time to implement the greedy algorithm includes the time 
to read the inputs and execute the algorithm. Table 4
reports the ratio of the greedy solution value (zh) and the 

Table 4. Solution Times for Various Instances of the Defender’s Problem Subject to a Knapsack Constraint and the Relative 
Accuracy of the Greedy Algorithm

Layers ℓ Nodes per layer, |Nℓ | Edges |E| Controls |M| Budget β OptDef time (s) Greedy time (s) Gap zh=z∗
D

5 15 930 10 5 3.07 0.078 0.983
5 15 930 20 10 2.62 0.236 0.998
10 10 920 10 5 2.47 0.237 0.999
10 10 920 20 10 2.26 0.277 0.999
10 15 2,055 12 6 19.9 0.998 0.997
10 15 2,055 24 12 6.99 1.07 0.999
10 20 3,640 14 7 49.7 2.25 0.998
10 20 3,640 30 15 19.1 3.24 1.000
10 25 5,675 16 8 66.2 2.12 0.999
10 25 5,675 34 17 63.7 6.13 1.000
15 5 360 10 5 0.724 0.075 0.999
15 5 360 20 10 1.16 0.337 1.000
15 10 1,420 12 6 8.40 0.328 0.997
15 10 1,420 24 12 7.16 1.13 1.000
15 15 3,180 14 7 24.0 1.13 0.993
15 15 3,180 30 15 22.2 2.48 1.000
15 20 3,000 16 8 22.1 1.15 1.000
15 20 3,000 34 17 18.8 3.75 1.000
15 20 5,640 16 8 68.1 2.36 1.000
15 20 5,640 34 17 60.3 8.27 1.000
15 25 4,000 18 9 36.7 2.22 0.999
15 25 4,000 40 20 41.6 9.74 1.000
15 25 8,800 18 9 157.6 4.15 1.000
15 25 8,800 40 20 159.1 17.8 1.000
20 10 1,920 14 7 12.0 0.717 1.000
20 10 1,920 30 15 10.3 2.81 1.000
20 15 4,000 16 8 38.7 1.33 1.000
20 15 4,000 34 17 34.2 6.66 1.000
20 15 4,305 16 8 44.8 1.62 1.000
20 15 4,305 34 17 41.8 6.17 1.000
20 20 4,000 18 9 12.1 0.637 1.000
20 20 4,000 40 20 32.2 7.56 1.000
20 20 7,640 18 9 124.6 3.54 1.000
20 20 7,640 40 20 107.3 13.8 1.000
20 25 5,000 20 10 22.7 1.09 1.000
20 25 5,000 44 22 47.6 11.9 1.000
20 25 11,925 20 10 95.1 2.83 1.000
20 25 11,925 44 22 238.3 28.6 1.000
25 10 2,420 16 8 5.96 0.459 1.000
25 10 2,420 34 17 15.0 3.29 1.000
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optimal solution value to OptDef (z∗
D). The results indicate 

that the greedy solution is within 1.7% of the optimal 
solution values across all problem instances, and the 
greedy algorithm identifies the optimal solution in 28 of 
the 40 problem instances. Gurobi takes considerably lon
ger to load and solve the problem instances than the 
greedy algorithm for larger problem instances, which 
provides an incentive for the greedy algorithm’s use.

8. Conclusion
In this paper, we introduce new models and algorithms 
for identifying a portfolio of security controls to deploy 
when considering multiple adaptive adversaries of vary
ing levels of strategic sophistication. To inform these 
investments, our approach extends an ARA framework 
to consider a maximum-reliability path interdiction prob
lem with a single defender and multiple attackers. All 
players are assumed to be boundedly rational, and we 
allow for uncertainty regarding system and player infor
mation. We present mixed integer programming formula
tions of the attacker and defender problems, and we 
introduce an ARA algorithm to iteratively solve the mod
els. We also introduce an approximation algorithm that 
identifies near-optimal solutions to the defender’s prob
lem with a guaranteed 1 � 1=e approximation ratio.

The solutions provide insight into investments that 
construct a layered security defense and that perform 
well against many adversaries, including some adver
saries who are not strategic. One practical benefit of the 
proposed methodology is that it yields a suite of invest
ment solutions, instead of a single solution, which can 
aid decision makers. Another benefit of the modeling 
approach is that it allows for the consideration of non
strategic attackers, which could be used to model risks 
arises from nature, although we did not specifically con
sider the impact of natural disasters (Zhuang and Bier 
2007). New vulnerabilities appear regularly, and, there
fore, organizations should proactively perform risk ass
essments to inform defensive investments and decision 
making on a regular basis. The approach introduced in 
this paper seeks to help with these decisions.

We illustrate the models and solution techniques on a 
case study. The framework indicates that the defensive 
strategies change along with the defender’s level of stra
tegic sophistication as well as those of the attackers. The 
results identify security controls that are effective across 
a range of adversarial assumptions. The solutions tend 

to defend better against less strategic attackers than more 
strategic defenders. Additionally, the results suggest that 
it may be better for the defender to overestimate rather 
than underestimate the strategic sophistication of the 
attackers.

There are several avenues for future research. First, the 
ARA approach with boundedly rational players can be 
extended to include other network interdiction models 
aside from the maximum-reliability path interdiction prob
lem. Second, model extensions could accommodate attack
ers with less knowledge of the network than the defender, 
possibly by eliminating portions of the network that the 
attacker does not know about when solving the attackers’ 
formulation. Third, the ARA approach could be extended 
to balance the goal of security with system performance 
depending on the application under consideration.
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