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Abstract. Cybersecurity planning supports the selection of and implementation of security
controls in resource-constrained settings to manage risk. Doing so requires considering
adaptive adversaries with different levels of strategic sophistication in modeling efforts to
support risk management. However, most models in the literature only consider rational
or nonstrategic adversaries. Therefore, we study how to inform defensive decision making
to mitigate the risk from boundedly rational players, with a particular focus on making
integrated, interdependent planning decisions. To achieve this goal, we introduce a model-
ing framework for selecting a portfolio of security mitigations that interdict adversarial
attack plans that uses a structured approach for risk analysis. Our approach adapts adver-
sarial risk analysis and cognitive hierarchy theory to consider a maximum-reliability path
interdiction problem with a single defender and multiple attackers who have different
goals and levels of strategic sophistication. Instead of enumerating all possible attacks and
defenses, we introduce a solution technique based on integer programming and approxi-
mation algorithms to iteratively solve the defender’s and attackers’ problems. A case study
illustrates the proposed models and provides insights into defensive planning.
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1. Introduction

Cybersecurity is an important concern for governments
and organizations throughout the world due to the grow-
ing reliance on digital connectivity and the growing num-
ber of threats. Cyberattacks are increasingly common,
costing the U.S. economy $57-$109 billion in 2016 (Coun-
cil of Economic Advisors 2018) and affecting systems
throughout the economy, including in healthcare (Kruse
et al. 2017), energy (Wang and Lu 2013), and industrial
control (Knowles et al. 2015). Many possible security
controls exist to mitigate these risks (Ross et al. 2021).
Cybersecurity planning requires periodically selecting a
portfolio of security controls (e.g., on an annual basis),
which allows an organization to manage the risk associ-
ated with vulnerabilities that have emerged. However,
many organizations find it challenging to keep up with
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selecting and deploying security controls given that they
operate in resource-constrained environments (Stevens
etal. 2020).

There is a growing body of literature that applies risk
analysis techniques to manage cybersecurity risk through
the strategic prioritization of security controls. Some of
these efforts model attackers as nonstrategic players using
probability distributions and prioritize security controls
in rank order based on their cost-effectiveness (Hubbard
and Seiersen 2016). Increasingly, security controls are pri-
oritized using a structured approach to aid in plann-
ing efforts with well-defined goals and threat scenarios
(National Institute of Standards and Technology 2018),
where attack graphs are used to represent known vulner-
abilities and visualize potential mitigations (Lallie et al.
2020). Recent research uses integer programming (Zheng
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et al. 2019) and robust optimization (Zheng and Albert
2019b) to select security mitigations using a structured
approach based on attack graphs; however, these papers
assume attackers are either not strategic or limited to
selecting a worst-case scenario.

A stream of papers in the literature explicitly consider
adaptive adversaries in cybersecurity planning through
the application of adversarial risk analysis (ARA). In these
models, a single defender, the security planner, selects
security controls that perform well given that adaptive
adversaries will attempt to work around any new security
controls that are put in place. ARA frameworks are versa-
tile and have motivated defender—attacker models that
capture a wide range of conditions and assumptions
(Banks et al. 2020). As a result, ARA has been applied to
many of these defender-attacker models in various secu-
rity settings (Rios and Rios Insua 2012) and has been
adapted to cybersecurity models with multiple adversar-
ies with different levels of intentionality (Rios Insua et al.
2021). A limitation of ARA approaches is that they enu-
merate all possible attacks and defenses (Banks et al.
2020), with Wang and Banks (2011) as an exception. Thus,
ARA algorithms are intractable when it is not practical
to enumerate cybersecurity attack and defense choices.
Zheng and Albert (2019a) seek to overcome this challenge
by introducing a structure that simplifies computational
requirements based on a network interdiction model that
delays the attack plans of multiple attackers. The structure
introduced by the network interdiction model allows for
the use of integer programming algorithms to solve for
the defender and attacker strategies.

We build upon previous work by introducing an ARA
framework that considers boundedly rational players, in-
cluding a defender and multiple adversaries, to inform
the selection of security controls that interdict adversarial
attack plans. Although our approach is motivated by cyber-
security planning, it can be used more broadly in the secu-
rity context where players seek to maximize or minimize
the probability of attack in a multilayer defense system.

1.1. Approach

In the cybersecurity planning problem we consider, a
defender seeks to minimize the probability of a success-
ful attack by multiple attackers with different levels of
strategic sophistication over a planning horizon by
selecting a portfolio of security controls subject to a
budget. We adapt an ARA framework (Rios Insua et al.

2021) to capture the strategic selection of a portfolio of
security controls given that the defender and the attack-
ers are boundedly rational. This modeling approach
allows us to inform defensive decisions and planning
against a range of attackers, which more accurately
reflects the system we are modeling (Scheibehenne et al.
2010). Because new vulnerabilities emerge on a regular
basis, cybersecurity planning should be performed reg-
ularly (e.g., annually), and the methods in this paper
can aid in this process.

Attack modeling is an important step in cybersecurity
planning. In vulnerability analysis, vulnerabilities can be
characterized by various steps required to successfully
carry out an attack (Schneier 1999), which provides a
structured approach to represent attack scenarios. In a
graph structure, the nodes represent attack states (e.g.,
the choice of attack type, the target of the attack, or attack
milestones), and edges represent intermediate exploits in
an attack. The difficulty of an adversary completing an
exploit is captured by a conditional probability of suc-
cessfully traversing an arc. A path from root to leaf corre-
sponds to an attack against the system, and, therefore,
we view an attack as a path in a graph between a source
and sink node. Given that there are many adversaries
who have different knowledge of the vulnerabilities and
different capabilities, the attack graphs may have topol-
ogy and parameters specific to each adversary.

An adversary’s probability of successfully carrying
out all exploits in an attack is captured by the probability
they traverse the network on the path they select. Secu-
rity controls interact with attack graphs by decreasing
the probability that the completion of individual exploits
(arcs that are traversed). Security controls may encour-
age adversaries to select alternative paths. The defender
uses their private information and the paths in the attack
graphs that they believe the attacker will choose to deter-
mine their choice of security controls.

These strategic interactions motivate the application
of the maximum-reliability path interdiction problem
to the planning problem under consideration. Net-
work interdiction models, including the maximum-
reliability path interdiction, have been widely used to
model attacker—defender games, usually assuming two
players and rational decision makers (Smith and Song
2020). Although some papers have lifted the assump-
tions of shared information (e.g., Salmerén 2012) and
shared beliefs regarding the probabilities of traversing
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edges in the network (e.g., Morton et al. 2007), none
have considered boundedly rational players. This paper
seeks to fill this gap.

We adapt and apply ideas from the ARA framework
presented by Rios Insua et al. (2021) to the maximum-
reliability network interdiction problem to support de-
cision making for cybersecurity planning. An ARA
approach allows us to consider adversaries that are not
rational and who may have varying levels of strategic
sophistication, important features of the application
under consideration. In particular, we model players
who are boundedly rational using cognitive hierarchy
theory (Camerer et al. 2004) and level k thinking (Stahl
and Wilson 1995).

To illustrate the approach taken in this paper, con-
sider the following example with a single defender and
two types of adversaries. In the example, adapted from
Bistarelli et al. (2006), adversaries attempt to steal a
server. Figure 1 captures the attack graph under consid-
eration, including the exploits, and two pathways to
steal the server (reach the top node). There are three
security controls (1m;, m,, and m;) that are listed along
the arcs they interdict. For illustration purposes, we
assume the defender can select one control. The uninter-
dicted traversal probabilities are listed next to each arc,
and the interdicted traversal probability is listed in
parentheses when the security control is in use. Without
any security controls, the left and right pathways to the
“steal server” node have traversal probabilities of 0.09
and 0.102, respectively.

In this example, an opportunistic attacker with a low
degree of strategic sophistication who ignores possible
security defenses selects the right path, because it has a
higher uninterdicted traversal probability. A defender
who anticipates only attacks from this type of attacker
would select 13, because this mitigation lowers the tra-
versal probability of the right path the most. A slightly
more strategic attacker would anticipate m5 being de-
ployed and would then choose the left path. This would
lead a more strategic defender to select control m, to
defend against attackers attempting only the left path.
A defender who anticipates both types of attackers, 25%
of whom are somewhat strategic and select the left path
and 75% of whom are opportunistic and attempt the
right path, would select mitigation ;.

This simple example based on a single attack graph
highlights how a methodology that considers multiple,

Figure 1. An Illustrative Example of a Single Attack Graph
with Three Security Controls

Steal Server

Go out
Undetected

0.9 (0.72) | m, m,| 0.93 (0.74)

Break down

the Door Have the Keys

0.11 (0.08)

0.1 (0.04) 1,

Security controls

m, : Install a video surveillance equipment
m, * Install a security door

ms ¢ Install a safety lock

boundedly rational attackers can be informative for
defensive planning decisions. In general, there are many
attack graphs that capture various attack vectors as well
as adversarial goals and capabilities. The security con-
trols can be specific and delay a single exploit, such as
my in the previous example, or many exploits if the con-
trols are cross-cutting, such as deploying multifactor
authentication or an employee training program. Singhal
and Ou (2017) and Lallie et al. (2020) provide additional
guidance surrounding how to model attack graphs.

1.2. Contributions

In summary, this paper makes the following contributions:
e We formulate the security control investment prob-

lem in an ARA framework as a maximum-reliability

path interdiction game between a single defender and

multiple attackers, all of whom are boundedly rational
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with differing levels of strategic sophistication. The de-
fender and attackers’ problems are formulated as mixed
integer programming models.

e We introduce solution techniques based on mixed
integer programming algorithms and approximation
algorithms. The defender and attackers’ problems are
solved iteratively, and the inputs to each model are
updated after each iteration. We prove that the defen-
der’s problem is equivalent to a submodular maximi-
zation problem subject to a budget constraint, which
enables the use of heuristics for identifying solutions
that are at least 1 — 1/e of the optimal solution value.

e We apply the modeling approach to a case study.
We identify solutions across a range of levels of strategic
sophistication and consider the effects of the defender
misjudging the sophistication of the attackers.

The organization of this paper is as follows. We first
survey the literature in Section 2. In Section 3, we
describe the ARA framework. Section 4 introduces the
mixed integer programming models that capture the
maximum-reliability path interdiction from the attacker
and the defender perspectives. We introduce the app-
roximation algorithms in Section 5, and we describe the
ARA algorithm in Section 6. We present and analyze the
case study and other computational results in Section 7.
Section 8 contains concluding remarks.

2. Literature Review

The topics in this paper are related to several different
areas of research, including adversarial risk analysis,
boundedly rational thinking, security control investment,
and maximum-reliability path interdiction. We present a
summary of the most relevant papers in the literature.

2.1. Adversarial Risk Analysis
ARA has been widely applied to security applications
(Rios and Rios Insua 2012). Several papers use ARA frame-
work for cybersecurity, focusing on defender—attacker
games (Wang et al. 2019), insider threat modeling (Joshi
et al. 2020), and adversarial machine learning and data
manipulation (Caballero et al. 2021). Rios Insua et al
(2021) apply the ARA framework to a cybersecurity
resource allocation problem to inform a portfolio of defen-
sive actions, including the purchase of cyber insurance,
by including both intentional and nonintentional threats.
As with most ARA models, Rios Insua et al. (2021)
enumerate all possible attacks and defenses. Cano et al.

(2016) similarly apply ARA to a cybersecurity setting by
enumerating specific attacks and defenses to determine
an optimal security allocation to minimize disruptions
to airport operations. To our knowledge, only Wang
and Banks (2011) consider an ARA framework in which
the attacks and defenses are not enumerated. They con-
sider the optimal path for a convoy through a network
where an attacker has placed several improvised explo-
sive devices at nodes within the network. The defender
seeks to minimize the routing cost. By using a network
model, they compactly represent many possible convoy
routes. Because Wang and Banks (2011) utilize the addi-
tive nature of their cost function to efficiently solve their
problem, it is not possible to apply their solution method
to our problem. In contrast to the existing literature, we
consider interdicting attack plans to support cybersecu-
rity planning, and we introduce a methodology to solve
defender and attacker problems based on integer pro-
gramming and approximation algorithms, because enu-
merating the attack and defense choices is intractable.

2.2. Bounded Rationality

We build on the work of Rothschild et al. (2012), who
develop an algorithm for applying bounded rationality,
specifically, level k thinking, within an ARA framework.
Level k thinking begins with nonstrategic level 0 thin-
kers who act without regard to other players. In com-
parison with level k thinking, where a level k player
optimizes over only the level k — 1 opponent, cognitive
hierarchy theory assumes that a level k thinker opti-
mizes over a distribution of players between level 0 and
level k — 1 (Camerer et al. 2004). We use this method to
model the defender because of the multiple-attacker sce-
narios they face. Although the logic of level k thinking
and cognitive hierarchy theory is theoretically subject to
infinite regression, empirically it has been found that
most people do not think beyond level 2 or level 3 (Lee
and Wolpert 2012). Higher-level thinkers (k > 0) assume
that their opponent is a level k — 1 thinker; for example,
level 1 players optimize against level 0 players, level 2
players optimize against level 1 players, and so on.
Rothschild et al. (2012) create an algorithm for determin-
ing the strategy of a level k opponent by using recursion
to build belief distributions regarding the attacks or
defenses that the player uses. Considering bounded
rationality in the adversaries is a novel aspect of our
paper. To the best of our knowledge, our paper is the
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first to consider boundedly rational players when con-
sidering interdependent defensive decisions as consid-
ered in network interdiction.

2.3. Security Control Portfolio Selection

A stream of the literature studies how to invest in secu-
rity controls given a limited budget (Fielder et al. 2016,
Zheng and Albert 2019b). Many models consider non-
strategic attacks and do not necessarily select controls
that adequately protect against adaptive adversaries
(Zheng et al. 2019). Nonstrategic attacks (also called
opportunistic or nontargeted) continue to be carried out
in roughly the same manner and with the frequency
regardless of the defender’s security decisions. For exam-
ple, models using a decision theory framework assume
that the defender’s decision has no impact on the fre-
quency of each method of attack (Cavusoglu et al.
2008). Although some research seeks to allocate a bud-
get in the presence of strategic attackers and natural dis-
asters (Zhuang and Bier 2007), none of the papers in this
area consider how to select a portfolio of security defenses
with multiple, boundedly rational adversaries.

2.4. Maximum-Reliability Path Interdiction
Network interdiction models have been widely applied
to infrastructure protection and resilience problems,
where they inform how to protect critical components in
a system to reduce worst-case vulnerability. Network
interdiction problems are modeled as Stackelberg or
Cournot game models of defender—attacker games, usu-
ally assuming two players and rational decision makers.
Smith and Song (2020) provide a recent survey of this
area. A shortest path interdiction problem may be used
to model attacks or projects where the attacker seeks to
minimize the time required to complete an attack (trav-
erse the network) and the defender seeks to maximally
delay an attack by interdicting (lengthening) edges on
the network (Israeli and Wood 2002). The shortest path
interdiction problem is an equivalent formulation to
the maximum-reliability interdiction problem (Morton
et al. 2007). Network interdiction models have been
extended to include imperfect and private information
(Salmeron 2012). Several researchers have recommended
that network interdiction models be extended to consider
boundedly rational players (Zhang et al. 2018) and other
more realistic features to aid in defensive planning (Albert
etal. 2023).

A stream of papers study how to interdict attack graphs
to inform defensive cybersecurity planning efforts. Nandi
et al. (2016) introduce a bilevel defender—attacker model
to help organizations select and deploy security counter-
measures by interdicting attack graphs. Letchford and
Vorobeychik (2013) introduce a different Stackelberg
game in which a defender seeks to interdict an attack
plan, lifting the assumption that the game is zero sum.
Zheng and Albert (2019a) introduce a bilevel network
interdiction model that seeks to identify a portfolio of
security controls that maximially delay a large number of
adversarial cyberattacks from multiple attackers under
uncertainty.

In sum, our paper adds to the literature by combining
ARA and cognitive hierarchy theory with network
interdiction modeling to inform defensive cybersecu-
rity planning.

3. Adversarial Risk Analysis Framework
In this section, we introduce the ARA framework in this
paper as well as how we model the boundedly rational
players. ARA takes the perspective of one player, the
defender in this paper, and seeks the optimal action for
that player based on the actions/reactions they believe
the other players will take.

3.1. Player Interactions in the Game

The maximum-reliability network interdiction model-
ing approach considers a one-off encounter between a
single defender and multiple attackers. This is reason-
able for cybersecurity investment decisions considered
in the case study, where planners must protect informa-
tion systems from many attacks. In our approach, attack-
ers do not know which security controls have been
selected by the defender. The attackers seek to maximize
the probability of their attacks succeeding based on per-
ceived defenses, and the defender seeks to prevent an
attack. Beliefs about the defender’s budget and security
control costs are finite and discrete.

We now describe the general form of the game that
we consider. There are a set of attackers who each
choose a method of attack and target that maximizes
their probability of success, which defines their reliabil-
ity. This is equivalent to choosing a path through the net-
work. By choosing a path, the attacker chooses the set of
edges they traverse that determines the path’s reliability.
By selecting controls, the defender reduces the reliability
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for each of the edges that the controls cover. The
defender selects a portfolio of controls to maximize the
conditional probability that an attack is prevented sub-
ject to a budget constraint.

Most of the information regarding the structure of
this network is treated as shared beliefs, whereas the
parameters of the network, such as the edge reliabilities,
are private beliefs. Specifically, we assume that the set of
nodes, edges, and possible controls are shared between
all players. This is equivalent to assuming that the
defender knows all possible threats the attackers may
consider. The approach informs defensive planning
based on known vulnerabilities, and it can be updated
to include new vulnerabilities that have been discov-
ered. Other information in the game may be private.
This includes the edge reliabilities, the effectiveness of
controls at decreasing those reliabilities, the proportion
of attacks from each attacker, the cost to institute a con-
trol, and the defender’s budget.

3.2. Boundedly Rational Players

From the defender’s perspective, the attackers may have
different levels of strategic sophistication. Therefore, a
level k defender plans for level 0,1,...,k—1 attackers.
An attacker’s strategy represents a path. The defender’s
strategy is a portfolio that consists of a set of controls
whose total cost is within the budget.

Because we are seeking an optimal defense, we find
strategies for level k defenders up to maximum level K—
the defender’s level—and strategies for level k attackers
up to maximum level K — 1. Lower level attacker and
defender strategies are recorded as the algorithm pro-
gresses, which provides a suite of portfolio options corre-
sponding to the differing defender levels of strategic
sophistication. By analyzing the various portfolios within
this suite, we can make more informed decisions about
how the defender’s posture should change when con-
fronted by more or less “sophisticated” attackers.

The basic algorithm to compute the strategies of dif-
ferent level k attackers of each type is as follows. We
elaborate upon this algorithm in detail in Section 5. We
begin with information and beliefs about the system.
We start with k = 0 and construct level 0 attacker and
defender strategies for nonstrategic players. We then
increment the value of k by one and compute a level k
defender’s optimal portfolio using the defender’s pro-
gram, OptDef, presented in Section 4.2. If the strategy

for the highest level of defender, K, has been calculated,
the algorithm terminates. Otherwise, we calculate the
level k attacker’s optimal attack path using the attacker’s
program, OptAtt, presented in Section 4.1. We repeat
this step by incrementing k by one and solving the
defender’s and attackers’ problems until the algorithm
terminates.

4. Model Formulations

In this section, we formulate a simultaneous single-
defender, multiple-attacker game based on a maximum-
reliability network interdiction problem. We do so by
introducing optimization problems from the attackers’
perspective, OptAtt, and the defender’s perspective,
OptDef. There is a single defender and a set of attackers
A. Without loss of generality, each attacker begins at the
super source node, 1, and progresses through the graph
to the super sink node, n. Each attacker chooses a path
of maximum reliability, the probability that they believe
they will successfully traverse the graph based on per-
ceived defender decisions.

Notations that reflect the defender’s and attackers’
beliefs have a D and an A subscript/superscript, respec-
tively. Beliefs that are updated based on the level of stra-
tegic sophistication have a k superscript. Notation that
captures decision variables does not explicitly include k,
D, or A. Table 1 provides a summary of the notation rele-
vant to the parameters and players beliefs as well as the
decision variables. For clarity, we use Latin characters
for variables and shared information, and we use Greek
characters for beliefs.

4.1. Attackers’ Problem
We now consider the attackers” problem. We consider a
directed acyclic graph G = (N, E) consisting of a finite
set of nodes N and directed edges E. The sets of edges
leaving and entering a node i € N are denoted by E; and
E;, respectively. Without loss of generality, we assume
that the set of nodes {1, ...,n} € N are ordered such that
o(i,j,A) for all (i,7) € E, and each level 0 attacker selects
the edge with the highest noninterdicted reliability from
each node, breaking ties randomly. Other methods could
be used to set level 0 attacker paths.

We consider the reliability of an attack path for a level
k attacker. A level k attacker A believes the level k — 1
defender has chosen the portfolio Q’Xl ={w1,...,0n}
The attacker believes that the reliability of edge (i,) € E
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Table 1. Notation

Notation Definition

Sets: Common information to defender and attackers

A Attackers

N Nodes

E Edges

Ef(E/)CE Edges that leave (enter) node i € N

M Set of controls

M; cM Subset of controls that interdict edge (i,j) € E

P(i) The set of paths from the source node to node
ieN

Level k attacker A € A decisions
Attacker variables

i Binary variable that is 1 if edge (i,j) € E is
on the attacker’s path and 0 otherwise
i Probability that the attack of attacker A € A

reaches edge (i,j) € E
= level k' (with k' > k) defender beliefs
Uk (i,j,A) Conditional probability that a level kK >k
defender believes a level k attacker
A € A attempts to traverse edge (i,j) € E;f
given that they reach node i

Defender D beliefs

op(i,j,A) Reliability of uninterdicted edge (i,j) € E for
attacker A€ A

SD(Z', i,A) Reliability of interdicted edge (i,j) € E for
attacker A e A

Op(A) Conditional probability that attacker A
attempts an attack

Bp Defender’s budget

xp(m) Cost of control m e M

Level k defender decisions
Defender variables

Wy, {B'mary variable that is 1 if control m € M
is chosen and 0 otherwise

Xij {Binary variable that is 1, if edge (i,f) € E
is covered 0 otherwise

vii(A) Probability that attacker A € A reaches
uninterdicted edge (i,j) € E

7,4(A) Probability attacker A € A reaches interdicted
edge (i,j) € E

= level k + 1 attacker beliefs
Q’j‘ ={w1,...,wn} Portfolio selected by a level k defender
62” (i, leﬁ) Reliability of edge (i,j) € E under portfolio Q]fq
for a level k + 1 attacker

is 6];‘(1', jlﬂz_l), its reliability with portfolio Q’;fl. We
assume that the values of 6% (7, j|Q%!) are independent
between edges. Given (%!, the attacker then believes
the reliability of a fixed path p to be H(i/j)epéﬁ(i, J1Q5T.
Each strategic attacker seeks to maximize the condi-
tional probability that their attack succeeds. Using stan-
dard approaches based on recursion (Ahuja et al. 1993),
we can represent the probability of an attack reaching

edge (i, j), captured by gj¢, using the pair of linear inequal-
ities
qje < Uje,

ges Y Ol g
(i,j)eE;

where the characteristic vector of the path chosen by the
attacker is u € {0,1}/¥!, where u; = 1if edge (i, j) is in the
path, and u;; = 0 otherwise.

Using these expressions, we present the OptAtt for-
mulation for level k attacker A€ A as a maximum-
reliability path problem:

z5 = max Z 6Z(i,j|Q§1)6]in )]
(i,n)eE,
st Y uy<l, )
(1,1)eE;
Z U < Z Ui, vieN\{1}, ()
(i,)eE} G,)eEs
Qij < ”ij/ V(ll]) € E, (4)
ge< Y OG5y,
(i, j)eE;
Vie N\{1},(,¢) €Er, ()
M,’]‘ € {0/1}/ V(l/]) € E/ (6)
i =0, VieN,(i,j)eE. (7)

The objective (1) for an attacker is to maximize the prob-
ability that their attack succeeds. Constraints (2) and (3)
enforce that the u;; variables properly define a path. Con-
straint (2) only allows the attacker to choose one attack
path, and constraint set (3) preserves the balance of flow
in and out of each node. Constraint sets (4) and (5) deter-
mine the probability that the attack succeeds. Constraint
set (4) allows attacks to progress only along the attack
path. Constraint set (5) balances the flow of attack probabil-
ity in and out of each node. Constraint sets (6) and (7)
require variables to take on binary and nonnegative values,
respectively. OptAtt is a canonical form maximum-
reliability path problem, which can be solved for each
attacker as a shortest path problem with Dijkstra’s algo-
rithm after a negative logarithm transform of the edge
reliabilities (Morton et al. 2007).

After solving OptAtt for each attacker, we use the
solution to construct the defender’s beliefs about the
paths that each attacker A € A will take. Recall that a
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defender of level k” defends against a set of attackers A
that may have different levels of sophistication k, with
0<k<k. A solution to OptAtt for a level k attacker
A € A can therefore be used to inform the beliefs of the
level k' defenders, with k+1 <k’ <K. To do so, we
derive the paths that a level k attacker A takes from the
OptAtt solution variables u;, which are converted to
inform a level k¥’ defender’s belief parameters. A level k’
defender believes the conditional probability attacker A
chooses edge (i, /) € E after reaching node i is

WG, A) = uy, V(ij)€E. 8)

Although we do not explicitly model the level k in the
attacker variables in OptAtt, the level of the attacker is
implicitly retained when setting the values of ¥/% (i, ], A).

4.2. Defender’s Problem

We now consider the defender’s problem. The defender
maximizes the probability that an attack is prevented by
selecting controls from set M. Each control m € M has cost
xp(m) subject to defender budget fp. Control m interdicts
a set of edges, decreasing the reliability of all edges in the
set. The subset M;; C M contains all controls that interdict
edge (i, j). This approach is slightly different than that of
the canonical maximum-reliability interdiction problem,
where the defender directly interdicts edges on the net-
work. We treat the budget and costs as beliefs, because
the attacker may not know their values. We assume a
level 0 defender does not choose any controls.

The defender believes that the conditional probability
that attacker A € A attempts an attack is Op(A). This is
assumed to be determined exogenously, possibly from
expert opinion or a risk assessment. The defender faces
multiple attackers with different levels k’ with 0 <k
<k—1, which are captured in the values of y%(i,j, A).
Each attack follows a fixed path p with a given probabil-
ity that depends on the defender’s level. The defender has
belief probabilities op(i, j,A)and 6p(i, ], A) that reflect the
reliability of edge (i, j) for attacker A if the edge is or is not
interdicted, respectively. We assume that the realizations
of these belief probabilities are independent of each other.
We further assume that the probabilities op(i,j, A) and
5p(i,j, A) are independent between edges.

To derive the OptDef formulation, note that a level k
defender’s portfolio interdicts a set of edges S C E. Fur-
thermore, let P(i) be the set of paths leading from the

source node 1 to node i > 1. Then, the conditional proba-
bility of a successful attack is

S0 Y vhpA) [ o0Gia) T 8p6jA).
AeA peP(n) (i,j)ep\s (i, j)epns

©)
The maximum probability path from any node i € N to

the sink node n does not depend on the path used to
reach i. Therefore, we can rewrite (9) as

> o) Y [ vhi A
AeA peP(n)(i, j)ep
(6D(Z/]/A)(1 - xij) + SD(Z/]/A)xl]) (10)
The defender believes that the probability that attacker
A attempts to traverse edge (j, £) € E is y;;(A) if the edge
is not interdicted or g].[(A) if it is interdicted, which are

decision variables in the defender’s model. We define
yje(A) and i jf(A) recursively as

yie(A) = (1= x0)yk (i, €, A) Z (0p(i,j, A)yi(A)
(i, j)€E;
+80(i,], A7, (A)),
(A = %0053, 6, A) D (000, A)yi(A)
(i,j)eE;
Gathering these equations, we introduce the OptDef for-
mulation:

zy=1-minY _6p(A) > (Opli,n,A)yi(A)

AeA (i,n)€E,
+ SD(i/ n, A)yln(A)) (11)
s.t. y1i(A) + 75,(A) = ¥ (1,4, A),
VAe A (1,i) e Ef, (12)

YielA) + 5,(A) = 5, 6,4) > (60, j, A)yy(A)
(i, ))eE;

+ SD(i/j/ A)]?U(A))/
VAe A, je N\{1,n},(,¢) €E, (13)
F(A) < > wa, VA€ A (i,j)€eE, (14)

meM;
Z KD(m)wm < ﬁD’ (15)
meM
yI](A)/ 91](A) > 0/ VA € A/ (Z/]) € El (16)
wy, € {0,1}, vmeM. (17)
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A level k defender maximizes the conditional probability
that an attack is prevented (11), which is equivalent to
minimizing the conditional probability that an attack suc-
ceeds, and which occurs when an attacker traverses the
network. Constraint set (12) enforces that each attacker
attempts an attack. Constraint set (13) serves as a flow bal-
ance equation, determining the probability that an attack
from each attacker reaches each edge. Specifically, this is
the probability of an attack reaching the edge’s starting
node multiplied by the conditional probability of the
attack then progressing on that edge. Constraint set (14)
allows edges to be interdicted only if a control is chosen
that interdicts that edge. Constraint (15) allows the de-
fender to choose only as many controls as their bud-
get allows. The last two sets of constraints, (16) and (17),
ensure that the appropriate variables are nonnegative and
binary.

A solution to the level k defender’s problem informs
the level k + 1 attackers’ beliefs regarding the defender’s
edge reliabilities. In particular, QY is defined as the set
{meM : w, =1}, and for each (i,j) € E,

. op(i,j,A) if x;=0,
040, j1C2y) =

~ (18)
6D(i,j,A) if .’X,'i]‘ =1.

5. Approximation of the
Defender’s Problem

It may be computationally difficult to find an optimal
solution to OptDef for large-scale problem instances.
However, we show that there exists an approximation
algorithm that provides a solution with a 1 — 1 /e perfor-
mance guarantee. To do so, we show that OptDef is
equivalent to a nonnegative, submodular maximization
problem with a knapsack constraint. A heuristic can find
solutions that are at least (1 — 1/e) of the optimal solution
in polynomial time for this problem (Sviridenko 2004). A
similar result exists for the related problem of maximizing
a submodular function subject to a cardinality constraint
(Nemhauser et al. 1978). Later, in Section 7, we show that
this approximation algorithm often identifies solutions
whose values are extremely close to the optimal solution
value in practice. This approximation algorithm may be
used to decrease the time required to find an optimal
solution to OptDef by providing a warm start for the
mixed integer programming solver.

We adapt the heuristic from Khuller et al. (1999) to
OptDef. We begin by selecting the maximum value set

of controls, S; € M, with |S1| <2. Next, we enumerate
all sets of controls with a cardinality of three, Sy, that sat-
isfy the budgetary constraint, that is, we have > ¢
kp(m) < |, for each set of controls S; € S, with |S,| = 3.
Then, we greedily complete each of these sets until the
budget or available controls are exhausted; that is, for a
submodular function f on a set M, we add an element
m*e M\S, if it satisfies the budget constraint (i.e.,
kp(m*) + 3,5, kp(m) < B that satisfies

(S20{m) —f(52)

Kp(im) '
Then, S, « S, U m*, and the process is repeated until no
new elements can be selected. Let the maximum value
set completed this way be S;. If f(S1) > f(S3), then the
algorithm returns S;. Otherwise, it returns Ss.

Theorem 1 demonstrates that the conditional proba-
bility of a successful attack, the complement of the Opt-
Def objective function value, is a supermodular function
given a set of interdicted edges.

Theorem 1. Let S be a set of interdicted edges (i,f) € E, and let

0<6p(i,j,A) <pli,j,A), V(i,j) €E,A€ A.

m" € arg ma
mEM\Sz

19)

Then, for any path p € P and attacker A € A,
g6SpA) = [ opGjA) T] op06.jA)
(i,j)ep\S (i,j)epns
is a nonincreasing, supermodular function in S.
Proof. We begin by showing that g(S,p, A) is nonincreas-
ing in S. First, note that 0 < g(S,p, A) <1, because g(S,p,A)

is a product of numbers whose values are between zero and
one. For sets of edges 51 C S, C E, we have

gSup A= ] ooGjA) ] oo6jA)
(i/j)ep\sz (i/f)eﬂﬂsz
— 6D(l/]rA)5D(l/]rA)
G, peprisas 00 (0, A)op (i ], A)
II onGja) ] opGjA)
(i,/)ep\S2 (i,j)epnSy
op(i,j, A .
% H 6D(l/]/A)
(i, epn(:\81) OP ) i, feps,
H 5p(i,j, A)

(i,)epnS:

=( I1 Mj’f&)g(sl,m). (20)

(i/j)epﬂ(SZ\Sl) 6D(ZI]/
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Because 0< SD(i,j,A) <opli,j,A), V(i,j)eE, (20) shows
that g(S,p,A) is nonincreasing in S.
We now prove that g(S, p, A) is supermodular by show-
ing for all (i1, 1), (i2,j2) € E that
8(S,p, A) +g(SU{(i1, j1), (i2,)2)}, p, A)

—8(5 ) {(ilrjl)}rp/A) —8(5 ) {(injZ)}/prA) > 0. (21)
We use (20) to algebraically simplify the left-hand side of
(21):

8(S,p, A) +8(S U{(ir, 1), (iz, j2)}, p, A)
=88 U{(i, 1)} p,A) — g(S U {2, 2)} p, A)
5p(ir, j1,A)op(i2, j2, A)  Oplit, j1, A)
= S/ rA 1 + PR P - P
85 )< op(i1, j1,A)0p(ia, jo, A)  Oplit,j1,A)
SD(iz,jz,A)>

a opliz, 2, A)

_ B 5D(i2,j2,A)) (
=8P A (1 op(iz, j2, A) !

- SD(illjl/A)>
opli1, j1,A))
(22)
Because 0 < dp(i,j,A) < 6p(i,j,A), V(i,j) € E, we have the
following three inequalities:

g(S/prA) = O/

_M >0
opliz, o, A) —

_SD(ilrjer) >0
op(i,j1,A) —

Combining these three inequalities with (22) yields (21).
Therefore, ¢(S,p,A) is a nonincreasing supermodular
function. O

The consequence of Theorem 1 is that the OptDef
objective function is a nonnegative, submodular func-
tion. Next, we prove that OptDef is a nonnegative, sub-
modular maximization problem subject to a knapsack
constraint.

Theorem 2. OptDef is a nonnegative, submodular maximiza-
tion problem subject to a knapsack constraint.

Proof. We begin by reformulating (10), which is equiva-
lent to the complement of the OptDef objective function
the objective (11) and Constraints (12) and (13). Then the
probability that an attack is prevented, using the defini-
tion of g(S,p, A) from Theorem 1, is

1-Y 6o(A) Y sSp.A) [T vpjd),  (@23)

AcA peP(n) (i,))ep

where S is the set of edges interdicted by the defender’s
portfolio. Note that [ [; ., {5 (i,j,A) is a constant in this
formulation. The nonnegative weighted sum of super-
modular functions is also supermodular, yielding a
function in (23) that is submodular after multiplying by
-1 and subtracting the term from one. The resulting
value is between zero and one, because it represents a
probability.

The remaining constraints of OptDef, Constraints (14)
and (15), simply define a knapsack constraint on the set
of controls. Because S is nondecreasing in the controls,
this is equivalent to a knapsack constraint on S. Hence,
we have the desired result. O

There are two implications of Theorem 2. The first is
that the algorithm introduced earlier in this section from
Khuller et al. (1999) identifies solutions with a guaran-
teed 1 —1/e approximation ratio. The second implica-
tion is that a more computationally efficient greedy
algorithm (also introduced by Khuller et al. 1999) can be
used to identify solutions with an approximation ratio of
1 —1/+/e. The greedy algorithm starts with an empty set
of controls and greedily completes this set according to
(19) until the budget or available controls are exhausted.
Then it compares this greedily chosen set with the maxi-
mum value single-element set and chooses the one with
the higher objective function value.

6. Iterative ARA Algorithm
We formally introduce an iterative algorithm for solving
OptAtt and OptDef for the attacker and defender pro-
blems across all values of k:
1. Initialization: Provide data.
e Some sets and beliefs given in Table 1 must
be provided, including the level (K) of defender,
set of attackers (A), sets of nodes (N) and edges
(E), set of controls (M), reliabilities of edges
©p(i,j,A), dpli,j,A) V(i,j) €E, A € A), defender
budget (Bp), costs of controls (kp(m) Vm € M),
and distribution of attackers (6p(A) VA € A).
2. Identify level 0 attacker and defender solutions.
e We assume a level 0 attacker A takes a greed-
ily formed path p as described in Section 4.1.
This yields ¢¥(i,j,A)=1 if (i,j)ep and Y5,
j,A)=0 if (i,j) ¢ p for all defenders k' >0 who
believe that attacker A is at level 0.
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e We assume a level 0 defender does not choose
any controls, so that the level 0 defender’s solution
is QY =0 with 6}(,j1Q%) =0p(i,j,A) for each
attacker A € A.
3. Fork=1,2,...,K-1:
e Solve OptAtt using Dijkstra’s algorithm: For
each level k attacker A, we solve OptAtt, given
by (1)-(7), to obtain the attack path p using
Dijkstra’s algorithm as described in Section
4.1. Use the values of u;; to set z,bg(i,j,A), (i,j) e
E for each k < k' < K using (8).
e Solve OptDef for a level k defender. We sug-
gest two ways to do this:
— Solve OptDef to optimality using the
mixed integer programming formulation
given by (11)—(17).
— Identify approximate solutions using the
approximation algorithm or the greedy al-
gorithm presented in Section 5 to identify
solutions within (1 —1/e) or (1 —1/+/e) of
the optimal solution value, respectively.

Given a solution to OptDef, let Qﬁ\ = {m € M|w,, =1}.
Then set the values of 6’;1” (i,j |Qﬁ) for all level k + 1
attackers A € A using (18).

4. Solve OptDef a final time to obtain the solution
for a level K defender.

To illustrate the algorithm, we revisit the example intro-
duced in Section 1.1. Again, we assume the defenders
budget allows them to select only a single control. Next,
we iterate through the algorithm to find the OptDef solu-
tions with level 14 defenders, respectively. For each level
k defender from k = 1 to k = 4, for the sake of simplicity,
we assume the defender is defending against a uniform
distribution of the attackers of levels less than k. We report

Table 2. Example OptAtt and OptDef Solutions for
Attackers and Defenders of Varying Levels

Attacker Defender
OptAtt OptDef
attack attack
Path success Mitigation success
K selected probability selected probability
0 Right 0.102 N/A N/A
1 Right 0.102 ms 0.074
2 Left 0.09 ms 0.074
3 Right 0.102 my 0.078
4 — — 1y 0.069

the attack success probability for both models to directly
compare the OptAtt and OptDef solutions in Table 2.

We first consider level 0 attackers, who choose the
right path using a greedy tactic, with an attack success
probability of 0.102. A level 0 defender selects no con-
trols. A level 1 attacker optimizes against the level 0
defender and again chooses the right path for an attack
success probability of 0.102, because this is the maximum-
reliability path with all uninterdicted edges.

We continue to consider each level of attacker and
defender up to the desired defender level. Next, we
solve OptDef for a level 1 defender, who optimizes
against level 0 attackers. The level 1 defender chooses
the control that most decreases the reliability of the level
0 attackers” path, which is control m;. This attains an
OptDef attack success probability of 0.074. The level 2
attacker then selects the left path, yielding an attack suc-
cess probability of 0.09. A level 2 defender optimizes
against both level 0 and level 1 attackers, who both take the
right path, and again selects m;, giving an attack success
probability of 0.074. Given this, a level 3 attacker takes the
right path with an attack success probability of 0.102.

Next, we consider a level 3 defender, who defends
against level 0-2 attackers, two of whom take the right
path and one of whom takes the left path. A level 3
defender selects m; for an OptDef attack success proba-
bility of 0.078. The level 4 defender defends against all
level 0-3 attackers, two of whom traverse the left path
and two of whom traverse the right path. In this case, 1,
becomes the optimal control choice. This achieves a final
OptDef attack success probability of 0.069. In this example
we see the defender change their control decisions based
on what paths they believe the attackers would take.

Note that the ARA algorithm results in a series of
solutions to OptDef that correspond to level 0,1, ..., K
defenders. Therefore, our approach provides decision
makers with a suite of solutions instead of a single,
“good” solution, which could be advantageous for
defensive planning.

7. Computational Results

In this section, we provide computational results for the
models and algorithms based on the information secu-
rity investment case study introduced by DuBois (2020).
In the case study, we generate random data according to
a specific parameterized structure that we are able to
adjust to leverage control over the size and complexity
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of the problem. We describe how this structure is cre-
ated as well as the parameters used. Later, we vary the
size of the problem instances to assess the performance
of the approximation algorithm.

In the case study, each problem instance is given by a
network that is organized into a source node, a sink
node, and ¢ “layers” of nodes. Each layer of nodes is a
set of nodes such that nodes in a layer connect only to
nodes in the next layer. For simplicity, we assume that
each layer contains the same number of nodes, which
results in a structure with many interconnections and
paths. Figure 2 illustrates an example of the network
under consideration with two layers of three nodes
each. A path through the network includes one node
from each layer. The source node is connected by nonin-
terdictable edges to each node in the first set, with reli-
abilities of one. Three edges leave each node in sets
1,...,0 —1tonodesinsets2,...,¢, respectively.

We first assign edges such that each node has both an
entering and leaving edge, before randomly assigning
the remaining edges. We then assign reliabilities to each
of these edges randomly, and each reliability is treated
as a constant once it is generated. The uninterdicted reli-
abilities are uniformly assigned a value between zero
and one, that is, 0(i,j) ~ U(0, 1]. The interdicted reliabil-
ities are a random (0, 1) proportion of the uninterdicted
value, that is, 5(i, 7) ~ U(0,1] - 6(i,§). Finally, noninterdic-
tible edges connect each node in layer ¢ to the sink node,

with reliabilities of U(0.5,1]. We choose a number of pos-
sible controls and a budget for the defender, and then ran-
domly determine costs for each of these controls using a
uniform distribution over some specified cost range. This
cost is exactly one for a cardinality budget constraint, and
the costs follow a U[0.5,1.5] distribution for a knapsack
constraint to maintain an average cost of 1.0 per control in
both situations. Each control is then randomly assigned a
subset of these edges to interdict. To do so, we first spe-
cify a parameter, a, that gives the average proportion of
edges covered by any control. If we have a cardinality
budget constraint, for each control, we loop through
the edges and assign each to the control with a proba-
bility of a. If we have a knapsack constraint, we alter
the probability of assigning each edge to a control by
considering the cost. Let A, be the value attained by
subtracting the average cost from the cost of the control
m and then dividing by the range of possible costs. In
our case, with costs generated from the range [0.5,1.5],
this is equivalent to A, = xp(m)—1. Then we assign
edges to control m with a probability of a(l + axA,),
where a, represents the amount of effect cost has on
mitigation quality.

For our case study, we generated a problem instance
for a graph with £ = 5 layers and five nodes per layer. To
better visualize the trade-offs between controls, a cardi-
nality constraint was used for the defender’s budget,
where the defender can choose 4 of 10 controls. Each

Figure 2. Simple Example of Synthetic Network Structure with Two Layers

Source Layer 1
0.9 (0.5)

1(1) //2\ 0.8 (0.7)
B4

0.3 (0.1)

0.67 (0.5)

Layer 2 Sink

0.8 (0.8)

1y |
Clw 0.8 (0.45)

0.4 (0.35)

0.7 (0.6)

1@ =f4\
4

0.75 (0.75) =K 8>
—

0.95 (0.95) |

Note. Example edge reliabilities are shown along each edge for when the edge is not interdicted (interdicted), 6;(7, j, A6 i(i,],A)).
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Table 3. Table of Portfolios Selected by the Defender for
Differing Levels of k

Controls

Level of

defender my; my, my my ms Mg M; Mg Mg My
0 O,
1 - Vv v S = = = = — v
2 - v v S = = = = — v
3 - - vV S = = = — v
4 - - v S = = = — v
5 - - v /S = - =/ —
6 - - v /S = - =/ —
7 - Vv v/ - /S = - -/ —
8 - Vv /S - /S = - = / —
9 - - v v S = = =/ =
10 _ - v v S = = = /S =

control was randomly generated to cover approximately
15% of the edges (a = 0.15). Although a realistic value of
the defender’s level is 4, we set a maximum defender
level of K = 10 to study a range of defensive solutions.
Each defender level k < K assumes a uniform distribu-
tion of attacker levels over 0 <k’ < k. We refer to DuBois
(2020) for additional experiments that consider alterna-
tive distributions over the attacker levels.

We solve the case study using the algorithm in Section
6, where for each level of defender we solve OptDef to
optimality using Gurobi 9.1.1. This computation was
performed on a computer with an Intel(R) Core(TM)
i7-8650U central processing unit (CPU) at 1.90 GHz with

a 2.11 GHz processor and 16 GB of random access mem-
ory, and took 1.36 seconds to run the full algorithm.

The ARA algorithm solves the defender’s problem 11
total times across all levels of k, thereby generating vari-
ous potential defender solutions before arriving at the
final solution for the level K = 10 defender. Table 3
reports the portfolio of controls chosen by each defender
level k from 0 to 10. Note that by assumption, the level 0
defender chooses no controls. Table 3 indicates that
some controls are not chosen in any of the defender’s
solutions, such as m;, mg, my, and mg. Other controls
work together to provide better protection against dif-
ferent or more of a variety of paths the attackers may
take (e.g., controls m1,, m3, and my). Controls ms are iy
are chosen by defenders whose levels are at least 3 and
5, respectively, indicating that some controls only be-
come attractive by more strategic defenders (who believe
they face more strategic attackers).

Next, we examine the attack success probability, the
average probability of a successful attack and the com-
plement to the OptDef objective function value. We
report the attack success probability for defenders with
levels 09 given a uniform distribution of level 0-9
attackers. Figure 3 reports the attack success probability
from both the defender’s and attackers’ points of view.
First, it reports the attack success probability corre-
sponding to OptDef (the dotted line), which captures
the attack success probability based on the defender’s

Figure 3. Two Lines Showing the Average Attack Success of Attackers Levels 0-9 Against Levels k < 10 Defenders and the Opt-
Def Value for Level k < 10 Defenders (Attack Success of a Uniform Distribution of Attackers Levels 0 to k)
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belief regarding the attackers. Second, it reports the
actual, retrospective attack success probability for the
same set of attackers based on their actual levels of stra-
tegic sophistication (the solid line). These values differ
because defenders with levels lower than 10 are incapa-
ble of perceiving level 9 (or higher) attackers’ true levels
of strategic sophistication.

Figure 3(a) illustrates the results across a single prob-
lem instance, and Figure 3(b) illustrates the results aver-
aged over 100 problem instances of the same size as the
example problem. The attack success probability associ-
ated with OptDef is increasing in k in both figures. This
occurs because more strategic defenders select controls
for more strategic attackers who are better able to evade
defenses. We observe that the actual attack success
probability is higher than that associated with OptDef,
because defenders with levels k < 10 believe that some
attackers are less strategic than they are in actuality,
resulting in an inaccurate believed attack success proba-
bility. Both lines converge to the same point when the
defender’s beliefs match reality, which in our example
occurs when the defender is at level k = 10. Figure 3(a)
indicates that the actual attack success probability
does not always decrease with k for any particular
problem instance. This effect is due to attackers with
higher levels of k. Because the defender does not accu-
rately assume the distribution of attackers, it is possi-
ble that attackers can find more reliable paths against
a sophisticated defender.

Figure 3(b) illustrates the attack success probability
associated with OptDef and for the actual values aver-
aged across 100 randomly generated problem instances
of the same size. The overall trends in Figure 3(b) are
similar to those in Figure 3(a), with Figure 3(b) showing
that the average actual attack success probability mono-
tonically decreases with k. This suggests that the solu-
tions provided by OptDef, on average, provide better
defenses for more strategic defenders.

Next, we consider the effects of the defender’s portfolio
of controls and how it performs against attackers with dif-
ferent levels of strategic sophistication. As before, we con-
sider defenders of levels 0 through 9. We study how two
subsets of attackers perform against these defenders: low
level (levels 0-4) and high level (levels 5-9). We also
report all attackers (levels 0-9) for comparison. Note that
the case with level 0-9 attackers matches that considered
in Figure 3. In each case, the attackers” actual levels follow
a discrete uniform distribution as before. Each defender
assumes that the levels of the attackers are uniformly dis-
tributed across all levels k lower than that of the defender.
The level 5 defender believes they are defending against
low-level 04 attackers, and a level 10 defender believes
they are defending against level 0-9 attackers. The defen-
der’s beliefs matches the actual attacker levels in both of
these cases; however, there is a mismatch between the
defender’s beliefs and the actual levels of the attackers in
all other cases, where the defender either overestimates or
underestimates the attackers’ levels to varying degrees.

Figure 4. Attacker Success Probabilities Against Defenders of Levels 0 through 9 for Three Uniform Distributions of Attackers:

Low Level (0—4), High Level (5-9), and Both (0-9)
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Figure 4 illustrates the actual attack success probabil-
ity for the defender across the three groups of attackers,
with Figure 4(a) illustrating the actual attack success
probability for the example problem and Figure 4(b)
illustrating the actual attack success probability aver-
aged across 100 problem instances. In both figures,
higher level attackers tend to be more successful than
lower level attackers across all defender levels, which is
expected. We observe that that higher level defenders
tend to achieve a lower attack success probability when
facing level 04 attackers, which suggests that defenses
may be more effective against less strategic attackers,
even when the defender overestimates the attackers’
levels (which occurs for level 6-9 defenders).

In contrast, level 59 attackers often achieve high
attack success probabilities. In Figure 4(a), the attack
success probability of level 5-9 attackers is highest
against level 7 and 8 defenders. This is surprising and
occurs because the attackers whose levels are higher
than the defender’s can find paths that the defender
does not defend well. This indicates that the defenses
chosen by more sophisticated defenders may sometimes
perform worse against sophisticated attackers than the
defenses chosen by less sophisticated defenders.

Figure 4(b) presents results averaged across 100 ran-
domly generated problem instances. Overall, we see a
decreasing trend in the attack success probability across
all level 0-9 attackers and low-level 04 attackers as the
defender’s level increases. The decreasing attack success
probability is more pronounced for level 0—4 attackers.
This occurs because the defender increasingly assumes
a more accurate distribution of the attackers as the
defender level increases to 5. After level 5, the defender
continues to defend well across level 0—4 attackers and
mostly improves against level 5-9 attackers. The actual
attack success probability against the high-level 5-9
attackers does not monotonically decrease with the defen-
der’s level (i.e., it increases between defender levels 2 to 5).
This is counterintuitive, and results from the defender’s
beliefs. A level k = 5 defender, for example, assumes they
face level 0—4 attackers and therefore optimizes def-
enses for less strategic attackers. As the defender’s level
increases to k = 9, the defender becomes more effective
against the most strategic attackers. Overall, this exam-
ple suggests that is better for the defender to over-
estimate the level of the attackers rather than to
underestimate the level of the attackers.

To further analyze the effects of the defender misjud-
ging the sophistication of the attackers, we consider a
defender of level k = 10 who uniformly overestimates or
underestimates the attackers’ levels by a certain offset.
As before, we consider a uniform distribution of attack-
ers whose true levels are 0 through 9. Positive offsets
correspond to the defender overestimating the attackers’
levels, and negative offsets correspond to underestimat-
ing the attackers’ levels. When overestimating, the def-
ender cannot perceive attackers of a higher level than
them, and thus they assume any such attackers are one
level below them in OptDef. Likewise, when underesti-
mating, the defender always assumes the attackers have
a level of at least 0. A defender with an offset of —3, for
example, only perceives level 0 through 6 attackers after
capping the perceived attacker levels below at 0.

Figure 5 depicts the actual attack success probability
averaged across 100 problem instances as a function of
the offset. We observe that both over- and underestimat-
ing the distribution of the attackers leads to higher attack
success probabilities in comparison with the case when
the defender perceives the true attacker levels (shown by
the offset of zero), with underestimating the attackers
being slightly worse than overestimating. This observa-
tion is consistent with Figure 4. This suggests that it is
ideal for the defender to “get it right” and correctly model
attackers, and that there is a benefit to erring on the side
of planning for sophisticated attackers.

We next assess the quality of the solutions identified by
the greedy algorithm (see Section 5), which is guaranteed

Figure 5. Attack Success of a Uniform Distribution of Attack-
ers Against Level 10 Defenders Who Believe All Attackers’
Levels Are Offset by the Amount Given on the x-Axis
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Table 4. Solution Times for Various Instances of the Defender’s Problem Subject to a Knapsack Constraint and the Relative

Accuracy of the Greedy Algorithm

Layers ¢ Nodes per layer, [N;| Edges |E| Controls |M| Budget OptDef time (s) Greedy time (s) Gap z;/z},
5 15 930 10 5 3.07 0.078 0.983
5 15 930 20 10 2.62 0.236 0.998
10 10 920 10 5 247 0.237 0.999
10 10 920 20 10 2.26 0.277 0.999
10 15 2,055 12 6 19.9 0.998 0.997
10 15 2,055 24 12 6.99 1.07 0.999
10 20 3,640 14 7 49.7 2.25 0.998
10 20 3,640 30 15 19.1 3.24 1.000
10 25 5,675 16 8 66.2 2.12 0.999
10 25 5,675 34 17 63.7 6.13 1.000
15 5 360 10 5 0.724 0.075 0.999
15 5 360 20 10 1.16 0.337 1.000
15 10 1,420 12 6 8.40 0.328 0.997
15 10 1,420 24 12 7.16 1.13 1.000
15 15 3,180 14 7 24.0 1.13 0.993
15 15 3,180 30 15 22.2 2.48 1.000
15 20 3,000 16 8 221 1.15 1.000
15 20 3,000 34 17 18.8 3.75 1.000
15 20 5,640 16 8 68.1 2.36 1.000
15 20 5,640 34 17 60.3 8.27 1.000
15 25 4,000 18 9 36.7 2.22 0.999
15 25 4,000 40 20 41.6 9.74 1.000
15 25 8,800 18 9 157.6 4.15 1.000
15 25 8,800 40 20 159.1 17.8 1.000
20 10 1,920 14 7 12.0 0.717 1.000
20 10 1,920 30 15 10.3 2.81 1.000
20 15 4,000 16 8 38.7 1.33 1.000
20 15 4,000 34 17 34.2 6.66 1.000
20 15 4,305 16 8 44.8 1.62 1.000
20 15 4,305 34 17 41.8 6.17 1.000
20 20 4,000 18 9 12.1 0.637 1.000
20 20 4,000 40 20 32.2 7.56 1.000
20 20 7,640 18 9 124.6 3.54 1.000
20 20 7,640 40 20 107.3 13.8 1.000
20 25 5,000 20 10 22.7 1.09 1.000
20 25 5,000 44 22 47.6 11.9 1.000
20 25 11,925 20 10 95.1 2.83 1.000
20 25 11,925 44 22 238.3 28.6 1.000
25 10 2,420 16 8 5.96 0.459 1.000
25 10 2,420 34 17 15.0 3.29 1.000

to identify solutions whose objective function values
are at least 1—1/+/e of the optimal OptDef solution
values. We consider randomly generated instances for
a level 10 defender, each using a knapsack constraint
for the budget. We compare the greedy and exact algo-
rithms on the same problem instances with a level 10
defender as follows by first using the greedy algorithm
to identify near-optimal OptDef solutions for defenders
of levels 1-9. Then, we use either an exact algorithm or
the greedy algorithm for the level 10 defender’s prob-
lem instance.

We randomly generated 40 problem instances with
varying sizes to evaluate the solution quality of the
greedy algorithm. Table 4 reports the parameters used to
generate each problem instance as well as the CPU times
associated with the exact (OptDef) and greedy algo-
rithms. The CPU time (in seconds) to solve OptDef to
optimality includes the setup time of writing the variables
and constraints, as well as the solver time. Likewise, the
time to implement the greedy algorithm includes the time
to read the inputs and execute the algorithm. Table 4
reports the ratio of the greedy solution value (z;,) and the
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optimal solution value to OptDef (z},). The results indicate
that the greedy solution is within 1.7% of the optimal
solution values across all problem instances, and the
greedy algorithm identifies the optimal solution in 28 of
the 40 problem instances. Gurobi takes considerably lon-
ger to load and solve the problem instances than the
greedy algorithm for larger problem instances, which
provides an incentive for the greedy algorithm’s use.

8. Conclusion

In this paper, we introduce new models and algorithms
for identifying a portfolio of security controls to deploy
when considering multiple adaptive adversaries of vary-
ing levels of strategic sophistication. To inform these
investments, our approach extends an ARA framework
to consider a maximum-reliability path interdiction prob-
lem with a single defender and multiple attackers. All
players are assumed to be boundedly rational, and we
allow for uncertainty regarding system and player infor-
mation. We present mixed integer programming formula-
tions of the attacker and defender problems, and we
introduce an ARA algorithm to iteratively solve the mod-
els. We also introduce an approximation algorithm that
identifies near-optimal solutions to the defender’s prob-
lem with a guaranteed 1 — 1/e approximation ratio.

The solutions provide insight into investments that
construct a layered security defense and that perform
well against many adversaries, including some adver-
saries who are not strategic. One practical benefit of the
proposed methodology is that it yields a suite of invest-
ment solutions, instead of a single solution, which can
aid decision makers. Another benefit of the modeling
approach is that it allows for the consideration of non-
strategic attackers, which could be used to model risks
arises from nature, although we did not specifically con-
sider the impact of natural disasters (Zhuang and Bier
2007). New vulnerabilities appear regularly, and, there-
fore, organizations should proactively perform risk ass-
essments to inform defensive investments and decision
making on a regular basis. The approach introduced in
this paper seeks to help with these decisions.

We illustrate the models and solution techniques on a
case study. The framework indicates that the defensive
strategies change along with the defender’s level of stra-
tegic sophistication as well as those of the attackers. The
results identify security controls that are effective across
a range of adversarial assumptions. The solutions tend

to defend better against less strategic attackers than more
strategic defenders. Additionally, the results suggest that
it may be better for the defender to overestimate rather
than underestimate the strategic sophistication of the
attackers.

There are several avenues for future research. First, the
ARA approach with boundedly rational players can be
extended to include other network interdiction models
aside from the maximume-reliability path interdiction prob-
lem. Second, model extensions could accommodate attack-
ers with less knowledge of the network than the defender,
possibly by eliminating portions of the network that the
attacker does not know about when solving the attackers’
formulation. Third, the ARA approach could be extended
to balance the goal of security with system performance
depending on the application under consideration.
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