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Abstract

Sections

Genomic data are ubiquitous across disciplines, from agriculture to
biodiversity, ecology, evolution and human health. However, these
datasets often contain noise or errors and are missing information that
can affect the accuracy and reliability of subsequent computational
analyses and conclusions. A key step in genomic data analysis is
filtering — removing sequencing bases, reads, genetic variants and/or
individuals from a dataset — to improve data quality for downstream
analyses. Researchers are confronted with a multitude of choices when
filtering genomic data; they must choose which filters to apply and
select appropriate thresholds. To help usher in the next generation of
genomic data filtering, we review and suggest best practices toimprove
theimplementation, reproducibility and reporting standards for filter
types and thresholds commonly applied to genomic datasets. We focus
mainly on filters for minor allele frequency, missing data per individual
or per locus, linkage disequilibrium and Hardy-Weinberg deviations.
Using simulated and empirical datasets, we illustrate the large effects
of different filtering thresholds on common population genetics
statistics, such as Tajima’s D value, population differentiation (Fs;),
nucleotide diversity (1) and effective population size (N.).
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Introduction

Rapidadvancesinbothshort-read and long-read sequencing technolo-
gieshaveresultedin the proliferation of large genomic datasets'*. All
high-throughput (‘next-generation’) sequencing methodsyield large
numbers of DNA sequences, known as reads, which have variable error
rates>®. In addition to the inherent errors introduced from sequenc-
ing, suchasbiasesintroduced duringlibrary preparation, polymerase
errors during DNA replication or inaccurate base calling, errors can
arise when sequences are aligned to a reference genome or transcrip-
tome, particularly if the reference is incomplete, highly divergent or
assembled de novo from the reads themselves’ . Therefore, investiga-
tors must perform multiple types of data filtering for quality control
(QC) prior to data analysis. Here, we define filtering as the intentional
removal of sequencing bases or reads before genetic variant calling
(pre-variant filtering) or the removal of genetic variants, genotypes
and/or individuals from a genomic dataset after variant calling (post-
variant filtering), with the explicit goal of improving data quality for
downstream analyses. Pre-variant and post-variant filtering generally
coincide with pre-VCF file and post-VCF file stages (or pre-genotyping
and post-genotyping).

Pre-variant filtering includes filtering according to read quality,
mapping quality and read depth. Filters on read quality assess the
reliability of each base call within a sequencing read; mapping
quality scores give an indication of the strength and uniqueness of
read alignmenttoasinglelocationinareference genome; and thresh-
olds for read depth (also known as coverage) define the minimum
number of reads required to cover a genomic position. Post-variant
filteringincludes minor allele frequency (MAF) and minor allele count
(MAC) filters, which remove variants based on their allele frequencies
withinapopulation, and missing datafilters, which filter out loci and/or
individuals withauser-defined proportion of missing calls. Other post-
variantfiltering approaches remove variants that substantially deviate
from Hardy-Weinberg proportions (HWP) or linkage disequilibrium (LD).

Correctly filtering genomic data is not a trivial task. Indeed, it
hasbeen aptly termed the “F-word”'*" by geneticists due to how chal-
lenging it can be to conduct and to understand effects of filtering on
downstream conclusions. Filtering is distinct from other forms of
dataprocessinginthatit centres onthe removal of data (asin filtering
out’), whereas other approaches such asimputation modify the dataset
directly without dataremoval. Filtering is anissue of paramount impor-
tance because every genomic dataset must be filtered, often repeat-
edly, and the same dataset filtered in different ways can yield entirely
different results'". Furthermore, filtering choices can be confusing
andsubjective, currently lack consistent, agreed-upon guidelines and
may result in unknown downstream consequences™.

Filteringapproaches vary widelyamong published studies, and the
filters used are often not described or are done soinadequately. When
specific filters are mentioned, the methodological details provided are
often insufficient for reproduction. Among papers that sufficiently
record filtering thresholds, the values used for a given filter can vary
several-fold", even after accounting for sequencing depthand sample
sizes. Furthermore, researchers often use default program settings,
whichis problematic given that default settings can sometimes be inap-
propriate and lead to problems, including the removal of deviations
from HWP that are important for understanding population structure®.
Tohelpinvestigatorsimprove their filtering approaches, wereview best
practicesfor filtering genomic datasets andillustrate the downstream
effects of arange of filtering decisions on both empirical and simulated
datasets. We provide practical filtering threshold recommendations

and an extensive suite of resources to facilitate better filtering. We
also stress theimportance of knowing your study system and popula-
tion genetics theory'*, both of which will help researchers to make
informed choices for setting filtering thresholds and facilitate the
interpretation of different results inevitably produced with different
filtering thresholds.

We recognize that some alignment-free methods exist that use
high-throughput sequencing data, particularly for metagenomics and
phylogenomic analyses”, and these are not considered extensively
here. Similarly, filtering for RNA sequencing data is not thoroughly
reviewed; although many concepts hold true (especially for single-
nucleotide polymorphisms (SNPs) called from RNA sequencing data),
many of the filters considered here may not apply®®*. Thus, we do
not provide extensive, specific filtering guidelines for RNA sequenc-
ing, microbiomes, environmental DNA (eDNA) and metagenomic
or metabarcoding datasets, as these guidelines are provided else-
where?*, Similarly, some analytical methods have specific filtering
requirements, such as phylogenetic reconstruction (which at larger
divergence scales often requires alignments across divergent spe-
cies)** and germline-specific medical genetics approaches (which
may use trio sequencing of parents-offspring, combine results from
multiple variant callers and use benchmarking datasets with known,
‘ground truth’ sequence variants to improve data quality)*, which are
not covered here.

Commonfilters: complexity and importance

Today, investigators have many different options for obtaining DNA,
RNA or epigenome sequencing data®**, which yield reads of different
lengths, quality and configurations (for example, single-end or paired-
end)*®. These sequences are then either aligned back to a reference
(suchas areference genome or transcriptome) or de novo assembled
and aligned to consensus sequences (that s, contigs or stacks of reads)
for subsequent genotyping or variant calling analyses®*2. Without
some form of reference-guided alignment, some downstream analyses
canbelimited asitcanbe difficult to estimate relevant parameters (for
example, runs of homozygosity* or recombination points) or deter-
mine the genomic context for loci of interest (for example, linkage or
haplotype phase)*. Lacking a quality reference genome can therefore
beachallenge for researchers working in non-model systems where de
novo alignment, alignment to alow-quality reference genome assembly
(forexample, many contigs and low N50 or L50 scores)* or alignment
toadifferent, distantly related species**®isrequired (but see ref. 47).
The errors introduced throughout these steps must be accommo-
dated, usually through filtering, to minimize downstream biases and
maximize data quality.

Many types of population genetic or statistical analyses should
be conducted only after applying specificfilters, and the results from
certain analyses can suggest the need for additional or modified fil-
tering strategies. For example, unexpected results from exploratory
methods, such as principal component analysis (PCA), can be indica-
tive of experimental or laboratory errors (for example, mislabelling),
sequencing bias, sex-linked loci, selection or other phenomena*®™,
thereby suggesting the need for further filtering steps. Thus, the pro-
cess of filtering begins immediately after sequence data collection
and may not end until all analyses are complete and researchers are
confident that their filtering choices have not systematically influenced
any conclusions. A comprehensive list of filters, their descriptions and
the typical genomic workflow stage at which they are applied can be
foundin Supplementary Table 1. Below, we discuss commonly applied
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pre-variant filters, including read/mapping quality and read depth, and
post-variant filters, including MAF or MAC, missing data and deviations
from HWP or LD.

Pre-variant filtering

Read or mapping quality. Prior to de novo assembly or alignmenttoa
reference, data are usually filtered via the removal of low-quality reads
(Supplementary Table 1). This initial filtering can have downstream
effects, and researchers across disciplines often use different and,
potentially, arbitrary definitions of what constitutes alow-quality read.
For example, awide range of read quality thresholds are used, ranging
from a Phred-scaled base quality score of 5 (refs. 52,53) to 40 (ref. 54)
(representing between ~-32% and ~0.01% maximum allowable error
rates). Reads that have too many bases below that quality threshold
are subject to removal; the exact number of allowable low-quality bases
per read also varies widely across studies. Low-quality reads can also
be removed during the process of alignment itself, because different
alignment algorithms can prevent sequences from mappingbacktoa
referenceif their quality scores are below user-defined thresholds™ 5.
Conversely, high-quality reads may also be excluded if the reference
doesnot containthe sequence, they are highly repetitive (as with trans-
posable elements) or they are found in multiple genomic locations (for
example, paralogues) (Fig.1a,b).

Toaid researchersin understanding the potential effects of these
filtering decisions, investigators should always report the percentage
of reads that were removed prior to alignment and the percentage of
reads that mapped successfully and uniquely (to one location) on the
reference. Researchers should also report the methodology used to
remove low-quality reads (such as a read length hard filter or a soft
filter based on astatisticalmodel)*’. Reporting these statistics can help
reviewers to assess the quality of the data underlying the study and
allow future investigators to determine whether alternative filtering
strategies could address additional questions (for example, re-filtering
to not remove reads that map to multiple locations could identify
paralogous loci or transposable elements). Of note, even strong align-
ments of putatively high-quality reads are not always correct, asrefer-
ence bias®*°, genome assembly errors®, structural variation®* such
as copy number variants (CNVs)**** and challenging alignments (for
example, transposable elements® or PCR duplicates®) are present in
most genomic datasets (Fig. 1).

Read depth or coverage. After initial pre-variant filtering, genomic
workflows typically proceed with genotyping (Box 1), whereby genetic
variants such as SNPs, insertions or deletions (indels) and struc-
tural variants are algorithmically identified with software such as
GATK®, ANGSD®3, STACKS®, ipyrad®, LUMPY”’, BCFtools” or others.
During this process, the read depth (coverage) of each locus must
be considered, as greater depth of coverage usually allows for more
confidenceingenotyping (and subsequently downstreaminferences)
(Fig. 1c). However, very high read depths (relative to the study-wide
mean) can beindicative of paralogues, highly repetitive regions, CNVs,
non-target DNA (for example, mitochondrial DNA) or technical (for
example, PCR) duplicates (Fig. 1d and Supplementary Table 1). Variant
calling algorithms typically mark genotypes as missing either if they are
below or above certain read depths or if they have poor quality scores’™.
The depth and/or quality filters used at this step vary substantially
between studies. However, filtering out loci sequenced at alow depthis
not withoutrisk given that calling heterozygotes requires higher depth
thanhomozygotes and that stringent depth filtering can skew observed

heterozygosities and, therefore, site-frequency spectra (SFS)”>7*. Well-
developed approaches to make use of low-coverage sites and mitigate
suchbiases do exist®®”, sofiltering out suchlociis not always necessary.
Note that although many of the principles we cover here still apply,
low-coverage whole-genome sequencing (WGS) data have their own
filtering specificities®.

Post-variant filtering

Missing data. Missing data canresulteither from the absence of reads
covering a locus in an individual or from upstream filtering on read
orgenotype quality, depth, mappingor otherfilters (Fig. 2a). Lociand/or
individuals with more than a user-defined amount (or proportion) of
missing data are often filtered out. An excess of missing data can indi-
cate that something went awry with sample collection or preservation,
genomic library preparation or alignment, all of which can obscure
patterns of potentially important variation”. The filtering choices
used for missing data vary widely among studies, and the downstream
consequencesarerarely evaluated. The acceptable amount of missing
data depends on the research question: for example, alower amount
of missing data might be allowed for some phylogenetic analyses for
which missing data can be highly problematic and that require rela-
tively high-quality sequence data for all individuals™. By contrast, if
maximizing the number of lociis a priority, researchers might choose
to keep loci with more missing data and acknowledge that filtering
threshold choices might impact the types of loci retained”.

Missing data can have serious effects on downstream biological
conclusions. Forexample, missing data due tolow sequencing coverage
may hinder the detection of runs of homozygosity and, subsequently,
downwardly bias estimates of individual inbreeding”’. Recent work has
suggested that declines in coverage across studies may have resulted
inunderestimates of inbreeding in some North American wolf popula-
tions”® (Box 1). Missing data levels can also bias estimates of genome-
wide heterozygosity in either predictable’ or unpredictable®® ways.
Other methodologies seem to be more resistant to missing data; for
example, one study found that the proportion of missing data did not
seemto affect either gene flow or parentage resultsinatropical plant™.

MAF and MAC. Loci (typically SNPs) for which theless frequentaallele
(thatis, the minorallele) occurs below a certain frequency are also often
filtered out (Fig. 2b). MAF filtering is often based on the assumption
that singletons or other rare variants that occur at a frequency of less
than ~5% in a sample-group are due to genotyping errors. MAF filter-
ing is often performed at the specific threshold of 0.05 to reflect this,
although threshold values across published studies can vary by orders
of magnitude. Depending onthe analysis and objectives, this filter can
be applied study-wide (for example, globally across populations) or
separately within each sample-group.

MAC filtering is an alternative to MAF filtering wherein loci are
removed based on the absolute count of the minor allele rather thanits
frequency, allowing for more consistent filtering across sample-groups
of different sizes (although, arguably, producing an uneven MAF filter
across those same samples). For example, in a sample of 30 diploid
individuals, a MAF of 0.05 would remove SNPs where the minor allele
occurs 3 times or fewer, whereas in a sample of 60 diploid individuals
the same MAF of 0.05 would remove SNPs where the minor allele occurs
6 times or fewer. By contrast, a MAC of two would remove SNPs where
theallele occurs two times or fewer regardless of the sample size. MAC
filters can be particularly useful when sample sizes are small or highly
variable because a typical MAF filter (for example, 0.05) will never
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Fig. 1| Pre-variant filtering — challenges and potential solutions related to
filtering before variant calling. a, Individual 1 has both sufficient read depth
(illustrated with nine reads, although a higher depth is preferred in practice)

and read alignment quality (‘quality scores’; grey indicates high quality, black
indicates poor quality) to allow for successful variant calling (a single-nucleotide
polymorphism (SNP) is highlighted with a red box). Despite this seemingly
successful read alignment, challenges still exist: genome assembly errors (such
as misplaced scaffolds on reference genomes), and structural variation (such as
inversions) can cause issues for downstream analyses. Additional sequencing
and filtering for linkage disequilibrium (LD) can resolve some of these concerns.
b, Individual 2 has aweak alignment both across anentire read and at a single base
pair position across all reads, both of which should be filtered out prior to variant
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calling. Weak alignments can also occur in repetitive regions of the genome or with
shorttarget sequences (for example, transposons); solutions include specialized
filtering and long-read sequencing. ¢, Individual 3 has too few reads; this individual
should be removed, re-sequenced or, if this coverage is expected and occurs across
allindividuals in astudy, low-coverage approaches should be employed. Reference
bias (for example, aligning to reference genomes from different species than the
sequenced samples, including cryptic species) can also cause fewer reads to align
than expected; solutions include removing samples or individuals and controlling
for read depth across sample-groups. d, Individual 4 has too many reads, which can
be caused by paralogous genes, highly repetitive regions, copy number variants
(CNVs) or technical (for example, PCR) duplicates. These excess reads could be
filtered out or carefully analysed to determine the underlying causes.
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remove variable loci (including singletons) in small samples (n <10
diploidindividuals).

Hardy-Weinberg proportions. It is often desirable to filter out loci
based on statistically significant (for agiven a-value or Pvalue) devia-
tions from HWP. HWP are a common assumption of many downstream
analytical tools (for example, STRUCTURE)®, and removing loci that
violate HWP can help to ensure unbiased results for downstream
analyses in randomly mating populations®. Deviations from HWP
often reflect sequencing, assembly or alignment errors (such as a
heterozygote deficit caused by allelic dropout or a heterozygote
excess caused by paralogous regions)***#*%* However, loci out of
HWP can also indicate real biological phenomena, such as cryptic
population substructuring (Fig. 2¢) or balancing selection®. As a
result, it is crucial to filter HWP within sample-groups (for example,
within populations) rather than study wide (for example, globally on
all samples)® (discussed below) and to do so with a low stringency if
thelociunder selection or those that differ between populations are
ofiinterest. That said, some metrics, such as F;, can be biased upward
by the careless removal of loci that are not in HWP within popula-
tions®, which is potentially problematic if population delineations

Box 1| Filtering trade-offs

donotreflect biological realities (for example, in the case of demes).
Tools such as HDplot* or ngsParalog® might be useful in such cases
to identify and remove loci that are more likely to be out of HWP
due to paralogy rather than relying on divergence from HWP alone.
Giventhatthe f¢is fundamentally a directional measurement of HWP
divergence, removing locithat are out of HWP with either positive or
negative F,svalues (and thus either heterozygote deficits or excesses,
respectively) may help to remove loci out of HWP by paralogy or other
factors specifically.

The thresholds used for testing HWP differ from the other filters
because HWP testing is hypothesis-testing, and, as such, produces
P values upon which filtering thresholds are set. Because thousands
of loci may be tested simultaneously, corrections for multiple testing
should be considered to adjust P values and thus avoid unnecessarily
removing large numbers of quality (non-problematic) loci; however,
such corrections are seldom performed®. That said, P-value correc-
tion for HWP differs from typical testing approaches in that, from a
broader perspective, uncorrected P values are conservative in that
they will resultin the removal of more potentially problematicloci, not
fewer. Researchers who do correct for multiple tests should explicitly
report the reasoning behind the correction method they use, which

Different filtering choices result in trade-offs described here as false
positives (type | or a-errors) and false negatives (type Il or $-errors)
(see the figure). During variant calling (that is, genotyping),

an incorrectly called genotype is the null hypothesis. This
simultaneously allows for a more conservative philosophical
approach towards genotyping and allows for power (1-8) to equal
the proportion (or percentage) of correctly called genotypes retained
in a dataset. Within this framework, a false positive occurs when an
incorrectly called genotype (at a single locus) is retained and a false
negative occurs when a correctly called genotype is incorrectly
filtered out'* (see the figure). False positives occur most frequently
when filters are not stringent (for example, no minor allele frequency
(MAF) filtering is performed) and/or when read depths at a locus are
low. By contrast, false negatives are more likely when stringent filters
are used (such as a high MAF filter), because more loci are assumed
to be erroneous (and thus removed) even though many of those sites
may represent real, correctly called genotypes.

Trade-offs between the two filtering error rates are inevitable for
certain methods and questions. For example, when calculating Tajima’s
D value, many or most low-frequency variants (for example, singletons)
should often be retained (Box 2); however, this will invariably allow
more false positives (false variants) into the dataset and negatively
affect accuracy or precision. Alternatively, low-frequency sites are
often removed when performing genome-wide association studies
(GWAS) or testing for outlier Fg; loci'®***®, which creates datasets with
few false positives but may exclude real, causal variants that segregate
at low frequency. Investigators should be cognizant of filtering trade-
offs and consider solutions, such as creating two or more datasets
with different filtering thresholds, sequencing loci of interest to higher
depths and/or re-sequencing select samples.

Filtering trade-offs and challenges also arise when using
low-coverage versus high-coverage data (or both). For example,

Null hypothesis H, = Genotype is called incorrectly

Null hypothesis H,, is:

True False

o
I I3} Correct inference: Type Il error:
% % An incorrectly called A correctly called genotype
2 &= genotype is filtered out is incorrectly filtered out of
§_ S of the dataset the dataset (false negative)
g a
=
]
c
=
2 Type | error: A
o A :
2 B An incorrectly called gzgfgéﬂfegﬂzg
c 2 genotype is kept in the Y .
S [9) A genotype is kept in the
% dataset after filtering dataset after filterin
'g (false positive) 9
(=]

a range of relatively low-coverage restriction-site-associated

DNA (RAD) sequencing data (average <8x read depth) was used

to estimate the effective population size (N,), heterozygosity

and individual inbreeding in North American wolves between

1991 and 2020, during which heterozygosity and N, seemed to
decline in some populations*. However, samples were also
sequenced to a lower depth over time, causing the proportion

of missing genotypes to increase; reanalysis suggested that the
reductions in sequencing depth likely caused the lower estimates
of heterozygosity and N, rather than actual inbreeding or reduced
variation in recent decades’®. Following the reanalysis, the authors
recommended aggressive read-depth filtering of loci to retain
more individuals given that larger numbers of individuals are more
beneficial than additional loci when estimating contemporary N,
with genomic data.
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a Missing data

Within sample-group filtering
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Fig. 2| Post-variant filtering — challenges associated with four common
filters after variant discovery. a, Missing data, which can occur across loci
and individuals. Data from monarch butterflies"* are used to show that the
percentage of missing data can be high (21-100% per locus) when missing data
filtering occurs within sample-groups, but is much lower if performed jointly
across all samples (19-56%), the latter of which can obscure the differences

in data quality among populations. b, Data from a study on yellow perch'®*
showing that the number of single-nucleotide polymorphisms (SNPs) varies
threefold among populationsif a minor allele frequency (MAF) filter of 0.01
isapplied within sample-groups, which would be missed if the same filter was
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applied study-wide. ¢, Loci can deviate from Hardy-Weinberg proportions
(HWP) due to homozygote or heterozygote excesses owing to biological causes,
which filtering may obscure. For example, unintentionally combining two
divergent sample-groups will result in higher F (fixation index, individuals
versus subpopulation) and many more loci out of HWP (owing to Wahlund
effects)™. Filtering study-wide would cause the erroneous removal of loci in such
cases. d, Linkage disequilibrium (LD) thinning (that is, filtering out loci with high
LD; red points) can obscure an inversion (blue points) in three-spined stickleback
haplotypes''. Fg;, fixation index, subpopulation versus total; MAC, minor allele
count.

can vary in stringency (from Benjamini-Hochberg®® to sequential or
simple/stringent Bonferroni®’), and, ultimately, different approaches
and a-thresholds should be applied depending on the questions being
asked and the tolerance for including or excluding problematic loci'
(Box1).Foranin-depth discussion onimplementing and interpreting
tests for HWP, see refs. 16,82,90.

Linkage disequilibrium. Pruning sets of loci that are in substan-
tial LD with each other down to a single locus ensures statistical
independence among loci —a common assumption made by many
downstream methods. For example, methods based on the SFS of a
population may be biased if correlated allele frequenciesin a variant-
richregion differ from the genome-wide average, and failure toremove
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non-independent (linked) loci can bias estimates of parameters such
as the effective population size (N,)”". However, filtering out SNPs
based on LD could also strongly influence diversity estimates (such as
the number of segregating sites across genomic regions) or inadvert-
ently cause investigators to remove or overlook important structural
variants (Fig. 2d).

Studies that lack a high-quality reference should also employ LD
filters to ensureindependence of loci or contigs’?, which can be accom-
plished through pairwise correlation measures such as Pearson’s .
Alternatively, many investigators working with de novo assembled
datasets often simply extract asingle SNP from each contig to mitigate
the effects of linkage (although this assumes distinct stacks or contigs
arethemselves unlinked, which may not be true and should not be the
‘default assumption’). Corrections for multiple tests are also impor-
tant for LD filtering if P values are used as a linkage measure, but such
corrections are seldom conducted or reported®.

Effects of filtering

The effects of filtering are often unknown in genomic studies. Although
concerning, this is not particularly surprising, given that many dif-
ferent filtering approaches exist, filtering requires non-trivial time
and computational resources to perform, and many individual filters
canbe applied (potentially multiple times), with different thresholds
and at different data processing stages (Supplementary Table 1). For
example, mapping quality filters can be applied bothimmediately after
mappingand later during genotype calling. Furthermore, many types
offiltering occur during the ‘black box’ of alignment and genotyping,
leading many investigators to use default settings and not think about
the downstream consequences. Doing so may be alluring, because the
added complexity of filtering can be overwhelming, time-consuming
to properly address and, seemingly, distract from the main goals of the
study. An excellent example of this are GATK’s ‘hard filters’ on called
genotypes (for example, for strand bias or variant positions within
reads)®, which are routinely used but seldom discussed or varied from
their recommended values. However, properly considering filtering
choices and their effects is crucial because different filtering choices
canleadtovastly different downstream results such that two research-
erswho make different decisions but analyse the same original dataset
(forexample, aset of FASTQ or VCF files) could reach entirely different
biological conclusions.

To illustrate this principle, we systematically filtered ten pub-
lished empirical and three simulated datasets by changing filtering
thresholds for three key post-variant filters: MAF, missing dataand HWP
(Box 2). Although MAF filters are often applied to remove singletons or
other rarevariants, asdescribed above, these variants are critical to sev-
eral analyses including demographic history estimation and tests for
selection. Most notably, Tajima’s D value,acommonly used indicator of
both demographic history and response to selection”, is substantially
biased by a MAF filter choice, leading to widely differing biological
inferences depending on filtering stringency (Box 2). In this case,
our recommendations are straightforward: because low-frequency
alleles heavily influence Tajima’s D value®, researchers should apply
both no MAF filter and a very minor one (such as a singleton filter)
and compare the results when using the statistic. The effects of MAF and
other filters can be substantial for diversity estimators®, demographic
inference'>®, Fy; (ref.47), gene flow™, population structure estimates®®,
estimating the distribution of locus effects on phenotypes® and allele
frequency spectra®?7%, Other filtering choices therefore require
similar levels of care (Table 1).

Study-wide versus within sample-group filtering

Many filtering methods can be applied to all individuals in the study
or separately withineach sample-group, which canrepresent different
populations, geographic or temporal sampling units, or experimental
treatments. When filtering occurs across all samples (for example, all
individuals) within astudy jointly and simultaneously, we refer to this
process as study-wide filtering (or ‘global’ filtering). When filtering
occurs within each sample-group separately, we refer to this process
as within-group filtering.

The effects of within-group versus study-wide filtering can be sur-
prisingly large. For example, when applying a within-group MAF filter
of 0.01toayellow perch (Percaflavescens) WGS dataset, the number of
SNPs within each population varied by a factor of 3.3 (ranging from
670,5781t02,275,935) (Fig. 2). However, when the same 0.01 MAF filter
was applied globally, each sample-group was constrained to 714,000
SNPs', In this case, some populations in the study had radically differ-
ent SFS, likely caused by recent population expansions that resulted
in an increase of rare variants’>®. In general, study-wide filtering can
therefore lead to the removal of critically informative, globally rare
but locally common alleles; thus, filtering MAF globally (a common
practice) instead of within study groups is expected to have substan-
tial effects whenever SFS vary between sample-groups, such as when
demographic histories differ or whenlocal adaptation has occurred.

Study-wide versus within-group filtering will also affect genome-
wide association studies (GWAS), where itiscommon to perform study-
wide MAF filtering with the threshold dictated by sample size (which
can oftenbe quite large, particularly in human or agricultural work)'*>.
The implications of these standardized pipelines are often not given
much consideration, but the effects may be non-trivial. For example,
when comparing populations with different SFS, a study-wide MAF
filter can introduce ascertainment bias by removing more segregat-
ing loci from specific study groups. Human populations (and those
of other species with complex biogeographic histories) may be prone
to this bias, as populations with African ancestries tend to have more
siteswithlow-frequency alleles than those with European ancestries'*.
Using a study-wide MAF filter will therefore remove more segregating
loci from the African ancestry sample-group and could result in the
preferential detection of large-effect loci in European populations.
Although we have focused on MAF filtering here due toits near univer-
salimplementation, other filtering approaches can be similarly biased
by study-wide versus within-group filtering. For example, differences
in downstream outcomes from filtering HWP® and LD'® within-groups
versus study-wide have been documented previously.

Inlight of these findings, itis crucial to consider why results differ
when applyingfilters globally or withingroups, particularly if sample-
groups include individuals from different populations, locations or
time points®. For example, tests for HWP should always be conducted
oneach sample-group separately, because pooling genetically distinct
groups will result in an excess of homozygotes (positive F,s) across
loci genome-wide (that is, a Wahlund effect), and their removal can
mask the population structure®>'°¢ (Fig. 2). If a specific locus shows
consistentdeviation from HWP greater than the genome-wide trendin
multiple different groups, this may indicate a genotyping error (such
as allelic dropout) or alignment or genome assembly errors (that are
not necessarily caused by biological processes)®.

Of note, clearly defined putative populations are not always pre-
sent. Forcing sample-groups on data with no clearly defined biological
boundaries and then filtering on those sample-groups potentially risks
creating biases, such as the artificial creation of population structure
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Box 2 | Effects of post-variant filtering

Genomic filtering choices can have substantial effects on
downstream analyses that are not necessarily consistent across
sample collections, populations or statistical methods. We used ten
empirical datasets (Arabidopsis'*, Daphnia'®, white-tailed deer'”,
mountain goats'“®, humans'*®, deer mice™°, killer whales™', monarch
butterflies™, stoneflies'™ and yellow perch'®?) (Supplementary
Methods and Supplementary Table 2) along with three simulated
datasets (Supplementary Methods and Supplementary Table 3)

to demonstrate how filters can impact a wide range of commonly
calculated population genetic parameters. We first illustrate the
effects of varying a single filter, the minor allele frequency (MAF),
on four commonly used parameters (see the figure, panel a). We
also show how multiple filters (MAF, Hardy-Weinberg proportions
(HWP) and missing data) and the higher-order interaction between
MAF and HWP influence a single parameter (the proportion of
retained segregating sites (P,)) (see the figure, panel b). Parameter
estimates were standardized to represent relative change across
filter thresholds. A wide range of additional filtering effects and
non-standardized values are presented in Supplementary Figs. 1-4.

Changing the filtering threshold for a single filter can result in
large changes in Fg;, Fis, Ho/H, and Tajima’s D estimates. Increasing
MAF thresholds reliably increases the average F;, Ho, (per segregating
site) and Tajima’s D value*; F s, however, is impacted variably among
datasets (see the figure, panel a). Filtering with the most commonly
used MAF threshold of 0.05 can often flip the genome-wide sign of
Tajima’s D value from negative to positive, changing its interpretation
from a population expansion to a bottleneck (see the figure, panel a,
right, diamonds indicating change in sign) (Supplementary
Fig. 1). In addition to the parameters shown here, MAF filtering
can also substantially change estimates of nucleotide diversity
(), private allele counts, Watterson’s 6 and effective population
size (N,) estimates derived from linkage disequilibrium (LD)-based
approaches'” (Supplementary Fig. 2).

Varying filtering thresholds across multiple filters also results in
substantial changes to a single parameter, which we illustrate for the
estimated number of segregating sites (see the figure). MAF filters,
which are perhaps the most widely used, can have a particularly
strong effect that, although constant in direction, can widely vary in
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(continued from previous page)

magnitude depending, primarily, upon the shape of the underlying
site-frequency spectra (SFS) across populations (Supplementary

Fig. 6). HWP and missing data filtering (here “Required % genotyped”
such that any loci or individuals with less than the noted percentage
of called genotypes were removed) also impact different datasets in
different ways — datasets where more loci are out of HWP lose more
segregating sites with higher filters for HWP, as do those with
more missing data. Filtering effects were generally not different
across dataset types (reduced-representation versus whole-genome),
although restriction site-associated DNA (RAD) datasets were
generally more strongly impacted by higher HWP filters for most
statistics (Supplementary Fig. 3). Higher-order interactions between
filters may also be important — there are substantial changes in the
average impact of filtering for HWP on the proportion of retained
segregating sites depending on the MAF filter used (see the figure,
panel b, right) — and are deserving of more study. In the examples
provided here, researchers could come to different conclusions
about demographic history (Tajima’s D value), selection (Tajima’s

D value, HWP) and genetic diversity (H,, proportion of segregating

by forcing ‘populations’ to conform to HWP®®. In cases where sample-
group delineations do not accurately represent biological realities,
a suitable approach might be to first identify population structure
through PCA or another agnostic clustering approach, and then assess
the impact of both within-group and study-wide filtering.

sites) based on the initial filtering thresholds selected and their
higher-order interactions (which are commonly ignored).

The demographic context and genomic architecture of the
study system (including model species) can also affect filtering.
Populations that have undergone recent population expansions, for
example, will lose far more rare alleles during MAF filtering than will
those that have undergone population bottlenecks (Supplementary
Fig. 6). This is the case with the monarch and yellow perch datasets,
which correspondingly have the largest increases in Fg; with higher
MAF filters (see the figure) (Supplementary Figs. 1and 2). Genomic
architecture also affects filtering impacts: for example, the removal
of regions of elevated F¢; caused by selection occurring in areas with
reduced recombination rates will have a larger effect on genome-
wide principal component analysis (PCA) results than filtering
elsewhere (Supplementary Fig. 7). Many parameters such as Fg;, Fis
and LD could also be influenced by function; genotypes adjacent
to conserved exons, introns, centromeres, telomeres or sex-linked
loci may all respond differently to filtering thresholds. WGS,
whole-genome sequencing.

Solutions and best practices

Filteringis a powerful tool that should be applied thoughtfully, early
and often throughout genomic dataset construction alongside tests
for unintentional or unanticipated issues with a dataset (for exam-
ple, experimental, sample collection, labelling library preparation

Table 1| Recommended initial filtering thresholds for producing low-stringency and high-stringency filtered datasets

Obijective Individual missing Loci missing MAC or MAF LD HWP
data; <X% missing data; <X% missing
loci® individuals
Population structure 50%; 5% 50%; 5% >0.05 No; yes 1x10°%;
0.01
Demography 25%; 5% 50%; 5% No filter Yes 1x10°;
0.01
Selection 75%; 25% 75%; 25% >1 >0.05 No None;
1x10™
Genetic diversity 50%; 5% 50%; 15% >1 >0.05 No, usually None;
1x10™
Phylogenetic reconstruction 20%; 5% 50%; 10% >1 >0.05 Yes 0.001; 0.01
GWAS 50%; 10% 50%; 10% MAF only >0.05, lower with largen  No, but correct P values None;
1x10°®
Mutation detection Parents: 0%; Parents: 0%; No filter No filter None; 1x107® -
offspring: 100% offspring: 100%
Metagenomics or eDNA - - >4 MAC only Context-dependent -
Relatedness or pedigree <95%, provided 20%; 5% >2 >0.05 No, although Cls can be 0.001; 0.01

sufficient remaining
loci for power

construction

affected

The thresholds proposed are suggestions and should not supplant existing knowledge of the study system or design (Box 3). These values represent relatively extreme values to examine
effects, whereas moderate values may be preferable for final analysis. Justifications for these suggestions are provided in Supplementary Table 4. Columns represent the objective of the study;
where individuals with missing data at more than X% loci are removed; where loci missing data in more than X% of individuals are removed; the MAC or MAF filtering threshold below which

loci are removed (use MAC or MAF, not both together); whether loci should be removed to prevent excessive non-independent pairs; and where loci with a P value below the threshold are
removed. Cl, confidence interval; eDNA, environmental DNA; GWAS, genome-wide association studies; HWP, Hardy-Weinberg proportions; LD, linkage disequilibrium; MAC, minor allele count;
MAF, minor allele frequency. *Some datasets may need a less strict filter if most individuals are removed. °For site-frequency-spectra-based estimators such as Tajima’s D value, singletons

could be retained for one filtering extreme.
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Fig. 3 | Flow chart to facilitate thoughtful, systematic and reproducible
filtering for representative studies and questions using genomic DNA.
Typical filtering workflows proceed through raw sequence quality control
(QQC) filtering, alignment, mapped-read filtering and variant discovery.

After variant discovery, investigators must decide whether to apply filters
study-wide or within sample-groups and whether to filter by locus or
individuals first. Regardless of the study objectives, multiple datasets
should be constructed to examine the effects of various filtering decisions.
Suggested filtering thresholds per locus and for individual filtering are
provided for each question and objective (Table 1and Supplementary Table 4).
Researchers should use a reproducible workflow to help them more easily
repeat steps during analysis and the review process. Reproducible workflows
can aid laboratories or research groups if more data will be produced in the
future (for example, by students or postdoctoral researchers) as well as

researchers in other laboratories. Data should be carefully archived before
and after filtering, and all filtering methods and results carefully reported.
See Supplementary Table 1for acomplete list of filters, Tables 2 and 3 for a
simplified example of how to report filtering results, Box 4 for afiltering and
reporting checklist, and the pre-variant and post-variant filtering R notebooks
for examples of reproducible workflows (Supplementary Notebook 1and 2).
CNV, copy number variation; eDNA, environmental DNA; F, fixation index,
individuals versus subpopulation; Fg;, fixation index, subpopulation versus
total; GWAS, genome-wide association studies; H,, expected heterozygosity;
H,, observed heterozygosity; HWP, Hardy-Weinberg proportions; LD, linkage
disequilibrium; MAC, minor allele count; MAF, minor allele frequency; NA,
not applicable; N,, effective population size; N,,, number of migrants; PCA,
principal component analysis; SNP, single-nucleotide polymorphism; TE,
transposable element.

errors, batch-effect sequencing and genome assembly errors) and
to detect interesting biological phenomena (for example, natural
selection, structural variants and Wahlund effects). Even in highly
studied species, such as humans, a carefully considered and multi-
faceted approach to filtering is important because novel structural
and genetic variants can occur within every population'”, and failing
to account for these variants may curtail power to identify causal
associations or even lead to incorrect inferences’”. To assist investi-
gators in matching research questions with methods and filters, we
have created adetailed flow chart describing the filtering process for
a general genomics workflow that can be applied across disciplines
and study systems (Fig. 3).

Quantification of filtering effects

Because different filtering choices can result in different downstream
inferences, we recommend that distinctly filtered versions of the same
dataset should be used to quantify the effects of filtering and to address
specific research questions. A minimum of two datasets should be
created —one with low filtering stringency (for example, allowing more
missing data, a low, permissive MAF threshold and few loci removed
duetodeviations from HWP and LD); and one with high filtering strin-
gency (for example, many loci or individuals removed due to missing
data and a higher, restrictive MAF threshold). Creating two datasets
using relatively broad filtering values (for example, low and high strin-
gency) allows researchers to test whether distinct filtering thresholds
affect analyses and downstream conclusions; if the effects are small,
no further filtering may be needed.

Investigators should also remember that different questions or
approaches mayrequire different sets of filters, reflecting the specifi-
cities of the study (Box 3). For example, researchers should consider
using low-stringency MAF filters for several demographic inferences
(for example, Tajima’s D value, SFS) but relatively stringent MAF fil-
ters for delineating populations®”, planning genomically informed
breeding strategies'®® or estimating parentage or individual related-
ness'*™, Studies interested in transposable elements may want to
vary alignment thresholds (uniquely versus multiply mapped reads)
butkeep other filters stringent to strike a balance between sensitivity
and accuracy"*'",

After theinitial filtered datasets are created, investigators should
proceed withtheir parameter estimation, statistical analyses and mod-
elling with these datasets in parallel to answer their key questions
of interest. Investigators should report the effects of their filters on
downstream analyses and think critically to ensure that the filtered

datasets used to answer specific questions are appropriate and do not
themselves create asignificant source of bias. Some stand-out papers
exist thatalready use and report the effects of different filters' 14115,
although they arein the minority. Note that we are not the first to sug-
gest comparing outcomes from different filtering strategies''**, and
we suspect that this recommendation will become more common,
and more commonly followed, over time.

The concept of using multiple, distinctly filtered datasets
requires a fundamental shift in the way genomics data are analysed:

Box 3 | The importance of study system
knowledge

We recommend that researchers have a thorough understanding
of both their study system and population-genetics theory before
planning filtering strategies and interpreting results'. Critically,
knowing a species’ ecology, demography and pre-existing
genetic results can provide important a priori expectations for
analytical results and suggest sources of filtering (or other)
errors. At every step, researchers should ask themselves whether,
given their knowledge of their study species, theory and model
assumptions, their results and filtering choices make sense.

For example, little geographical structuring might be expected
in species with high gene flow, such as many migratory birds
or organisms with highly dispersive early life-history stages (for
example, many plants, arthropods and marine organisms), and
thus the detection of relatively strong population subdivision
(or high F¢; values) could be an artefact of data filtering®>”.
Similarly, knowing a species’ mating system, degree of population
isolation and dispersal propensity can help to determine whether,
for example, high inbreeding and/or low effective population size
(Ne) estimates are biological or produced artificially by filtering
choices (Box 1). Strong genetic signals of recent population
bottlenecks in populations known to have undergone demographic
expansions might also suggest filtering issues (Box 2). Discussions
with local biologists, Indigenous peoples'™® and regional and federal
agencies can also greatly assist with identifying spurious results.
A solid understanding of a species’ biology is also useful for model
species, where known recombination rates, genomic organization™*
and different histories of captive breeding'™® can help to predict and
interpret filtering results.
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Glossary

Alignment

The mapping of sequencing reads and/or
contigs to either each other (pairwise/
multiple alignment) or to a reference.
Alignments can vary in the strength of
the evidence that supports them. Most
alignment tools will return map quality
(mapQ) scores, the derivation and
meaning of which varies by program.
Filtering thresholds based on this score
must consider the specific aligner used.

Base quality score

The value in a logarithmic, Phred

scale given to each base on a sequencing
read that indicates a quantitative

degree of confidence in the nucleotide
called from the sequencing instrument.

Genome-wide association
studies

(GWAS). Tests for statistical
relationships between a phenotype
(including disease) and the allelic/
genotypic state of an (ideally) large
cohort of individuals across the entire
set of sequenced loci.

Genotyping

Also referred to as genotype or variant
calling. Calling allelic states at a locus
(forexample, A/A, A/Cor C/Cata
biallelic single-nucleotide polymorphism
(SNP) in a diploid organism) or loci from
sequence data. Genotyping algorithms
often consist of multiple steps during
which filtering can occur.

Contigs

Contiguous sequences of DNA
assembled from many overlapping
sequence reads, representing a
fragment of a chromosome.

De novo assembly

The reference-free alignment of
sequencing reads into overlapping
stacks or contigs for subsequent use
in variant discovery and genotyping.

Fis

A measure of inbreeding; the degree
of subpopulation divergence from
Hardy-Weinberg proportions — the
correlation between alleles at specific
loci withinindividuals relative to the
subpopulation.

Fer

A measure of population differentiation;
the proportion of the total genetic
variance due to differences in allele
frequencies between subpopulations.

Genetic variants

Differences in DNA sequence

compared with a reference sequence

or other individuals within a population.
The term includes short variants
(single-nucleotide polymorphisms (SNPs)
orinsertions and deletions) and structural
variants (chromosomal inversions

and copy number variations (CNVs)).
Inthe context of this Review, used
interchangeably with locus’.

Haplotype phase

The complete sequence of variants
that occur in a region along a single
chromatid.

Hardy-Weinberg proportions
(HWP). The expected frequencies of the
genotypes at a given locus under Hardy-
Weinberg equilibrium. Filtering on HWP
is often executed via an exact test, with
loci that deviate significantly from HWP
removed from subsequent analyses.

Imputation

The filling in of missing data for

specific genotypes and/or loci by
leveraging linkage disequilibrium

(LD) between missing genotypes

and genotypes called at other loci or
samples. Imputation can use reference
panels of well-described haplotypes to
improve performance when available,
usually in well-studied model organisms.

Linkage disequilibrium

(LD). The non-random association

of alleles at different loci withina
population or sample-group. This
association can either be caused

by physical linkage, when alleles are
co-inherited due to non-independent
assortment caused by close physical
proximity, or occur across chromosomes
when inbreeding, paralogy, genetic
drift or other factors make certain
alleles at different loci more likely to
co-oceur.

Low-coverage whole-genome
sequencing

Whole-genome sequencing (WGS)
with small numbers of reads covering
most genomic loci (low coverage);
the number of reads constituting low
coverage varies widely depending

on the discipline, methodology and
research question. Low-coverage
WGS often requires genotype
likelihood-based methods.

Mapping quality

The score given to a read or other DNA
sequence indicating the uniqueness
of the alignment to a reference
seguence; mapping quality score
interpretations vary across alignment
programs.

Minor allele count

(MAC). The number of gene copies or
individuals carrying the minor (that is,
least frequent) allele at a locus.

Minor allele frequency

(MAF). The proportion (frequency) of
the least common allele at a locus
across a study or sample-group; in this
Review, we refer to filtering out loci with
MAFs below a given threshold as MAF
filtering.

Missing data

Missing genotype calls at a specific
locus or individual. Missing data can be
caused by many factors, such as the
absence of a sufficient number of reads
covering a locus to call a genotype

in an individual with any degree of
confidence.

N50 or L50 scores

In a genome assembly after sorting
contigs or scaffolds by length,

either the length of the contig/
scaffold that reaches 50% of the
cumulative genome length (N50)

or the number of contigs needed to
reach 50% of the cumulative genome
length (L50); used to evaluate the
assembly quality.

Paralogues

Duplicated genomic regions that have
arisen via either the duplication of that
specific region or the duplication of the
entire genome. A type of homologue
(lociidentical by descent) distinct

from orthologues, which arise due to
speciation events.

PCR duplicates

Technical duplicates resulting in
spurious, usually identical read copies
caused by repeatedly sequencing
the same piece of template DNA
multiple times.

Population structure

Also known as population subdivision.
Non-independence among individuals
in a study area/region caused by
spatial, temporal, behavioural or

other forms of reproductive isolation.
Population structure is characterized
by divergent allele frequencies

across loci.

Read depth
The number of reads that cover a given
or fixed genomic position. Also referred
to as coverage'.

Reference bias

The propensity for reads containing
the non-reference allele (the allele not
in the reference genome) to have lower
mapping quality scores or map to the
wrong location compared with those
containing the allele present in the
reference genome.

Runs of homozygosity
Contiguous homozygous regions

of the genome caused by the
inheritance of identical haplotypes
from both parents (for example,
identical by descent). Useful for
estimating inbreeding and population
demographics.
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Glossary (continued)

Sample-group

A group of samples that are not
independent due to natural causes
(such as geographic or temporal
separation) and/or experimental
treatments.

Single-nucleotide
polymorphisms

(SNPs). Genetic variants where the
allelic state of the population varies at a
single base pair.

Singletons

Alleles that appear only oncein a
sample of individuals. Sometimes
alternatively defined as an allele

Site-frequency spectra

(SFS). The distributions of allele
frequencies across loci within a study
or sample-group. Can be either an
‘unfolded’ or ‘polarized’ derived allele
frequency spectrum which describes
the frequency distribution of derived
alleles or a ‘folded’ or ‘unpolarized
minor allele frequency (MAF) spectrum
which describes the frequency
distribution of the minor alleles.

Also known as the allele frequency
distribution.

Structural variation
Genetic variation in the order, number
and/or arrangement of loci.

Study-wide filtering

Applying afiltering threshold ‘globally’
(simultaneously across all samples

in the entire dataset) rather than
separately within each sample-group.

VCF file

Afile in the variant call format, which

contains genotype calls (or likelihoods,

posteriors) alongside a flexible
suite of metadata such as filtering
and processing history and quality
information.

Wahlund effect

A reduction in observed
heterozygosity (Ho) relative to the
expected heterozygosity (H,) under
Hardy-Weinberg proportions (HWP) (that
is, Ho<H,) at many/most loci caused by
the underlying population structure.
When multiple (sub)populations are
included in a sample, any differences
in allele frequency between (sub)
populations will cause there to be
considerably more homozygous
individuals at those loci than would

be expected under HWP (causing

an elevated Fg, the fixation index in
individuals relative to a subpopulation).

sequenced in only one individual
(which may be homozygous for
that allele).

Within-group filtering

Applying afiltering threshold within each
sample-group separately rather than
across all individuals simultaneously

(for example, study wide or globally).

investigators must realize that no single ‘best’ filtering strategy or
filtered dataset exists. No filtering method will remove all errors, but
re-filtering with different thresholds can provide higher certainty that
there is no substantial bias or error from filtering (Box 1). We provide
recommendations for initial filtering thresholds for many types of
questionsand analysesin Table 1. These thresholds can and should be
modified given the characteristics (such as sample sizes and general
quality) of the data at-hand.

Best practices for pre-variant calling workflows
Most genomic workflows differ depending onthe research questionand
datatypes (Fig. 3). The documentation of filtering decisionsis therefore
paramount for reproducibility. As afirst step prior to any analysis, we rec-
ommend that raw databe immediately archived (privately or publicly)
inindependent, non-local repositories created for genomics data (for
example, the NCBIShort-Read Archive, the European Variation Archive
orthe DNA DataBank of Japan Sequence Read Archive); other genomics
datamanagement best practices are reviewed elsewhere*'”. Given that
filtering, by definition, requires manipulating data, the importance of
archiving raw data cannot be understated. To this point, we refer the
reader to ref. 118 for information on dataset and study organization.
After archiving, reads should befiltered for general QC (base qual-
ity, adapter removal, poly-G tails, sequencing artefacts) (Supplemen-
tary Table 1) and trimmed when appropriate and useful™?°. For most
workflows, the alignment of reads to areference or de novo assembly
is the next step (Fig. 3). Depending on the goals of the study, it may be
useful to create multiple datasets with different filters and/or filtering
thresholds at this stage for downstream analysis'*'?', This practice is
particularly relevant to de novo reference assembly, as assembly deci-
sions can result in very different references and, thus, very different
filtering and analytical outcomes. For example, the m and M STACKS
parameters and theirimpact on de novo reference construction have
been well studied**>1?>'%3,

After alignment, the data should be filtered for technical (for
example, PCR) duplicates. Although removing PCR duplicates has
beensuggested to be of little consequence'*'>, thisis unlikely true for
every study, such as those with low-coverage data'®**'*, The remain-
ing reads should then be filtered for mapping and read quality, and
researchers should ensure that they record and report the number of
reads that passed these pre-variant filters (Table 2). We have provided
anRnotebook (Supplementary Notebook 1) that uses asmall example
dataset towalk through an entire pre-variant filtering workflow — from
raw reads to called genotypes — using various commonly imple-
mented tools and provides an example of how to easily change, and
importantly record, filtering parameters with minimal effort.

Best practices for post-variant calling workflows

Following pre-variant filtering, the next steps are to call variants, filter
theresulting dataset to remove potentially problematicloci (for MAF,
HWP, LD and paralogues) and, then remove poorly sequenced indi-
viduals (and/or samples with other quality or analytical concerns)
(Fig. 3). Note that the order in which filters are applied isimportant —
it may be beneficial to reverse the last two steps and filter across
individuals first (and loci second) in instances where retaining as
many loci as possible is needed or where data quality varies widely
among individuals®. An iterative approach, where individuals and
loci are first removed with low-stringency filters and then subjected
to additional rounds of filtering stringencies may also improve
data quality by removing individuals who reduce overall call rates in
high-quality loci and vice versa®. Similarly, if a MAF filter is used to
remove loci after variant discovery followed by the removal of indi-
viduals with too much missing data, a second round of MAF filter-
ing could be considered to remove loci that now fall below the MAF
threshold. As with pre-variant filters, the percentage of reads, sites
and individuals retained at each post-variant filtering step should be
reported (Table 3 and Box 4).
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Table 2 | Example of pre-variant filtering reporting standards

Filteringstep Results to report Values

Sample Number of individuals or samples n=250 individuals
selectionand  collected
sequencing

Number of samples initially sequenced n=210 individuals

Sequence QC  Number of individuals who were n=200 individuals

successfully sequenced?®

Total number of reads prior to any 1.5x10° reads

filtering
Number of reads remaining after 0.8x108 reads
filtering for read quality®
Mapped-read  Number of reads that mapped 6.8x10" reads
filtering
Number of reads remaining after 51x10’ reads
filtering for mapping quality
Number of reads remaining after 4.8x10’ reads
filtering for improperly paired reads
Number of reads remaining after 8x10° reads

filtering for PCR duplicates®

All accompanying code and filtering steps should be reported in the pre-variant notebook;
see Fig. 3 for a detailed flow chart and Supplementary Notebook 1 for the accompanying
pre-variant notebook. The sequence of filtering events can affect downstream results, so
rows should be arranged chronologically. Readers will be able to determine which filtering
steps had the largest effects on dataset size from the table alone. Notice in this heuristic
example that alignment (number of reads that mapped) and filtering for PCR duplicates had
large effects. “The parameters and parameter values used to characterize ‘success’ should
be clearly described. Samples filtered out at this stage typically include those with large
deviations from the average number of reads per individual and/or a large percentage of
reads with low base quality scores. PAny additional filters used during sequence quality
control (QC), such as filtering for poly-G tails or adapter mismatches, should be given
their own row. “Any additional filters used during filtering of mapped reads should be
given their own row.

As data analysis proceeds, we suggest that re-filtering should
be part of most genomics workflows. For example, PCA — or more
sophisticated, related approaches'”— can reveal individuals who were
mislabelled, misclassified into an incorrect sample-group, contami-
nated during sample preparation or closely related (for example, full
siblings)?**°, Such underlying causes should be carefully investigated,
and problematic samples reported, and possibly removed, prior to
the re-calculation of downstream statistics. Similarly, the decision
to conduct new analyses (for example, Tajima’s D value, transposable
element annotation, parentage analysis) that were not initially consid-
ered may alsorequirere-filtering of data. Lastly, many genomic datasets
may contain batch effects — non-biological differences between sam-
plesthatarise fromindependent sequencing runs — and these effects
should be explored and explicitly accounted for when filtering samples
that were sequenced in different batches™.

After analyses are completed, the resulting data should again be
archived and/orrecorded, includingall relevant metadata and the exact
filtering decisions. Given that recreating distinctly filtered datasets
requires a considerable amount of resources (and may actually be
impossible given limited data, computational limitations, improper
archival, unmet dependencies or limited access to old or out-of-date
software), we strongly recommend that post-project archivesinclude
all filtered genotypic/variant data in the form of carefully annotated
VCF files that include detailed filtering descriptions in the header'*.

We strongly suggest that authors and journals require supple-
mentary tables that describe the final datasets, the specific filters
and thresholds employed, the names of the final VCF files and the
specific analyses for which each distinctly filtered dataset was used.
We provide examples of these in Tables 2 and 3. Researchers should
also explain whether they corrected for multiple testing along with
a (brief) justification for the correction method used (for example,
Bonferroni, false discovery rate (FDR))". If reasonable, we also suggest

Table 3 | Representative table demonstrating post-variant reporting standards for different objectives

Filtering step Population structure (dataset1) GWAS-stringent (dataset 2) GWAS-relaxed (dataset 3) Demography (dataset 4)
Minimum genotype quality 40 50 40 40

Minimum genotype coverage 10x 20x% 15% 10x

Maximum genotype coverage 30x 30x 50x 30x%

Study-wide or within Study-wide Study-wide Within sample-group Within sample-group

sample-group

Maximum missing per

15% (190/200 individuals

5% (180/200 individuals

10% (188/200 individuals

15% (190/200 individuals

individual retained) retained) retained) retained)
Maximum missing per locus® 15% 5% 10% 5%
MAF/MAC MAF=0.05 MAF=0.05 MAF=0.01 MAC=2
LD No filter used No filter used No filter used r”=0.25

Hardy-Weinberg deviations

P<0.05; Bonferroni®

P<0.05; Bonferroni®

No filter used

P<0.05; no FDR correction

Results® Fig. 1b,c Figs.2and 3 Supplementary Fig. 1 Fig. 4
VCF md5sum 8d3d627940ee2a77 3dcccbf8d3fb869c3cf 0b0681ad8b5bdab39e 1f131fdc2ee6444elb
b4770db1fd710459 5de291c0fe893 7b76afc190d4c8 94071195alacd2

Allaccompanying code and filtering steps should be reported in the post-variant notebook; see Fig. 3 for a detailed flow chart and see Supplementary Notebook 2 for an example post-
variant notebook. The sequence of filtering events can affect downstream results, so rows should be arranged chronologically. All filters should be recorded as a separate row, even if

a particular filter is not mentioned or default values are used for that type of filter. Depending on the objectives of the study, different numbers of datasets may need to be created. In

this example, we assume a targeted read depth of 20x coverage per individual and 200 sequenced individuals (following from Table 1). FDR, false discovery rate; GWAS, genome-wide
association studies; LD, linkage disequilibrium; MAC, minor allele count; MAF, minor allele frequency. *Missing data should be examined both study-wide and within sample-groups;
different sample-groups may contain different amounts of missing data. "Hardy-Weinberg filters should only be applied within each sample-group, not study-wide; corrections for multiple
comparisons should be reported. °Figure numbers indicate figures or supplementary material in the hypothetical paper for which this table is used to report filtering across datasets.
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Box 4 | Filtering checklist

Throughout dataset assembly (from raw sequencing reads to
genotypes), researchers should take care to explore the effects
of alternative filtering strategies on downstream analyses and aid

in reproducibility. To aid with this, the example checklist (see the
table) should be consulted before and during a research project and
checked-off prior to submitting a manuscript for peer review.

Analysis step Reporting step
[] Data archival
[] Decide on filtered datasets given a priori study questions, knowledge of [] Create filter recording and reporting tables (Tables 2 and 3)
the system and population-genetics theory (Fig. 3 and Box 3)
[] Filter on raw sequences, for example, read quality or poly-G tails (Table 2) [ ] Report exact filters used for filtering on raw sequences
[] Report total number of reads in study
[] Report total number of reads filtered out by filter type
[] Perform sequence alignment [] Report alignment parameters
[] Report total number of reads that aligned successfully
[] Report total number of reads that mapped uniquely
[] Report total number of reads that were filtered out
[] Perform filtering on successfully mapped reads [] Filter on mapping quality, PCR duplicates, discordant read pairs
(some variant callers will do so automatically if these are marked)
[] Report number of reads retained and filtered at each step
[] Variant discovery
[] Begin or continue creation of multiple datasets [] Decide on study-wide versus within sample-group filters
[] Decide on filter values to employ and order of filters
[] Locus filtering (see text for when individual filtering should go first) [] Filter for MAF, HWP, paralogues, coverage
[] Report the number of SNPs remaining after these steps to
understand which steps remove the most loci
[] Individual filtering [] Missing data; mislabelling or contamination
[] Data analysis and parameter estimation [] Report effects of filters on parameters and questions of interest
(Tables 2 and 3)
D Perform re-filtering and/or re-sequencing if necessary
[] Final filter recording Report reads, loci, individuals lost at each step
[] Archive all filtered datasets as VCF files

HWP, Hardy-Weinberg proportions; MAF, minor allele frequency; SNP, single-nucleotide polymorphism.

that the downstream statistical effects of different filtering thresholds
bereported (eitherin the main or supplementary text) toimprove the
scientific community’s understanding of filtering impacts. Lastly, we
suggest that coding notebooks or scripts containing the exact soft-
ware employed, the specific commands used in that software, and the
flags and parameter values chosen should be submitted alongside
the reporting tables. We provide an example notebook containing a
post-variant filtering workflow in Supplementary Notebook 2.

The benefits of re-filtering and reproducible research

Thorough examination of filtering (and re-filtering) will necessitate extra
time, computational resources and work from researchers. However,
changingandtesting workflows (thatis, re-filtering) isgenerally necessary

toachievehigh-quality, reproducibleresearchand abetter understanding
and quantification of filtering effects. Following reproducible research
guidelines may help; reproducible research s reproducible not just for
other researchers but also for the primary investigators themselves
and their future students and laboratory members. A reproduction-
friendly pipeline that runs a suite of analyses given a dataset and a set
of filtering parameters is also easy to re-run a second time with a new
(re-filtered) dataset™ (Fig. 3). Indeed, reproduction-friendly pipelines
showanadditional benefit: they minimize the time needed tore-runfilter-
ingstepsand, thus,ensurethattestingseveralfilterthresholdsisarelatively
painless process. For examples of studies with well-documented meth-
ods and easily accessible data that would be relatively straightforward
toreproduce with new filters and thresholds, see refs. 97,134,135.
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Journal reviewers should be reasonable when asking authors to
reanalyse their data with different filtering parameters. If authors
have adequately justified their filtering choices and demonstrated
that filters are unlikely to have biased their findings by running and
quantifying the effects of several filtering thresholds, the application
of additional filters is likely not necessary.

Conclusions and future directions
Advancements ingenomic sequencing technologies,improvementsin
reference quality”*™*® and the burgeoning field of pangenomics"*'*
willincrease the accuracy and power of genomic data analyses. None-
theless, filtering will remain a central part of all genomic analyses for
decades to come because no genomic dataset will ever be error-free.
Investigators should strive to filter with afocus on reproducibility and
aimtomatchthe filters they employ to their study species (for example,
demography, life history) and the questions they intend to answer.
Filtering effects can be unpredictable and there is no single best
strategy for filtering all genomic datasets. Critically, we highlight
that different filtering thresholds can create different downstream
results and conclusions for the same dataset. Most computational
analyses should therefore be re-run on multiple datasets produced
by re-filtering using different filters and thresholds to facilitate the
quantification of filtering effects on results and to improve certainty
in the conclusions drawn from analyses. As more papers quantify
filtering effects, the scientific community will better understand the
effects of filtering choices on downstreaminferences, which will help
to usherinthe nextgeneration of datafiltering and improve genomics
applications across disciplines from ecology and evolution to human
health, agriculture and the conservation of biodiversity.

Data availability
Information on the empirical and simulated data used for the analyses
shownin this review is available in the Supplementary Information.

Code availability
The simulation code is available on GitHub at: https://github.com/
ChristieLab/filtering_simulation_paper.

Published online: 14 June 2024
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