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Abstract

Genomic data are ubiquitous across disciplines, from agriculture to 
biodiversity, ecology, evolution and human health. However, these 
datasets often contain noise or errors and are missing information that 
can affect the accuracy and reliability of subsequent computational 
analyses and conclusions. A key step in genomic data analysis is 
filtering — removing sequencing bases, reads, genetic variants and/or 
individuals from a dataset — to improve data quality for downstream 
analyses. Researchers are confronted with a multitude of choices when 
filtering genomic data; they must choose which filters to apply and 
select appropriate thresholds. To help usher in the next generation of 
genomic data filtering, we review and suggest best practices to improve 
the implementation, reproducibility and reporting standards for filter 
types and thresholds commonly applied to genomic datasets. We focus 
mainly on filters for minor allele frequency, missing data per individual 
or per locus, linkage disequilibrium and Hardy–Weinberg deviations. 
Using simulated and empirical datasets, we illustrate the large effects 
of different filtering thresholds on common population genetics 
statistics, such as Tajima’s D value, population differentiation (FST), 
nucleotide diversity (π) and effective population size (Ne).
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and an extensive suite of resources to facilitate better filtering. We 
also stress the importance of knowing your study system and popula-
tion genetics theory16–18, both of which will help researchers to make 
informed choices for setting filtering thresholds and facilitate the 
interpretation of different results inevitably produced with different 
filtering thresholds.

We recognize that some alignment-free methods exist that use 
high-throughput sequencing data, particularly for metagenomics and 
phylogenomic analyses19, and these are not considered extensively 
here. Similarly, filtering for RNA sequencing data is not thoroughly 
reviewed; although many concepts hold true (especially for single-
nucleotide polymorphisms (SNPs) called from RNA sequencing data), 
many of the filters considered here may not apply20,21. Thus, we do 
not provide extensive, specific filtering guidelines for RNA sequenc-
ing, microbiomes, environmental DNA (eDNA) and metagenomic 
or metabarcoding datasets, as these guidelines are provided else-
where22–33. Similarly, some analytical methods have specific filtering 
requirements, such as phylogenetic reconstruction (which at larger 
divergence scales often requires alignments across divergent spe-
cies)34 and germline-specific medical genetics approaches (which 
may use trio sequencing of parents–offspring, combine results from 
multiple variant callers and use benchmarking datasets with known, 
‘ground truth’ sequence variants to improve data quality)35, which are 
not covered here.

Common filters: complexity and importance
Today, investigators have many different options for obtaining DNA, 
RNA or epigenome sequencing data36,37, which yield reads of different 
lengths, quality and configurations (for example, single-end or paired-
end)38. These sequences are then either aligned back to a reference 
(such as a reference genome or transcriptome) or de novo assembled 
and aligned to consensus sequences (that is, contigs or stacks of reads) 
for subsequent genotyping or variant calling analyses39–42. Without 
some form of reference-guided alignment, some downstream analyses 
can be limited as it can be difficult to estimate relevant parameters (for 
example, runs of homozygosity43 or recombination points) or deter-
mine the genomic context for loci of interest (for example, linkage or 
haplotype phase)44. Lacking a quality reference genome can therefore 
be a challenge for researchers working in non-model systems where de 
novo alignment, alignment to a low-quality reference genome assembly 
(for example, many contigs and low N50 or L50 scores)33 or alignment 
to a different, distantly related species45,46 is required (but see ref. 47). 
The errors introduced throughout these steps must be accommo-
dated, usually through filtering, to minimize downstream biases and 
maximize data quality.

Many types of population genetic or statistical analyses should 
be conducted only after applying specific filters, and the results from 
certain analyses can suggest the need for additional or modified fil-
tering strategies. For example, unexpected results from exploratory 
methods, such as principal component analysis (PCA), can be indica-
tive of experimental or laboratory errors (for example, mislabelling), 
sequencing bias, sex-linked loci, selection or other phenomena48–51, 
thereby suggesting the need for further filtering steps. Thus, the pro-
cess of filtering begins immediately after sequence data collection 
and may not end until all analyses are complete and researchers are 
confident that their filtering choices have not systematically influenced 
any conclusions. A comprehensive list of filters, their descriptions and 
the typical genomic workflow stage at which they are applied can be 
found in Supplementary Table 1. Below, we discuss commonly applied 

Introduction
Rapid advances in both short-read and long-read sequencing technolo-
gies have resulted in the proliferation of large genomic datasets1–4. All 
high-throughput (‘next-generation’) sequencing methods yield large 
numbers of DNA sequences, known as reads, which have variable error 
rates5,6. In addition to the inherent errors introduced from sequenc-
ing, such as biases introduced during library preparation, polymerase 
errors during DNA replication or inaccurate base calling, errors can 
arise when sequences are aligned to a reference genome or transcrip-
tome, particularly if the reference is incomplete, highly divergent or 
assembled de novo from the reads themselves7–9. Therefore, investiga-
tors must perform multiple types of data filtering for quality control 
(QC) prior to data analysis. Here, we define filtering as the intentional 
removal of sequencing bases or reads before genetic variant calling 
(pre-variant filtering) or the removal of genetic variants, genotypes 
and/or individuals from a genomic dataset after variant calling (post-
variant filtering), with the explicit goal of improving data quality for 
downstream analyses. Pre-variant and post-variant filtering generally 
coincide with pre-VCF file and post-VCF file stages (or pre-genotyping 
and post-genotyping).

Pre-variant filtering includes filtering according to read quality, 
mapping quality and read depth. Filters on read quality assess the 
reliability of each base call within a sequencing read; mapping 
quality scores give an indication of the strength and uniqueness of 
read alignment to a single location in a reference genome; and thresh-
olds for read depth (also known as coverage) define the minimum 
number of reads required to cover a genomic position. Post-variant 
filtering includes minor allele frequency (MAF) and minor allele count 
(MAC) filters, which remove variants based on their allele frequencies 
within a population, and missing data filters, which filter out loci and/or 
individuals with a user-defined proportion of missing calls. Other post-
variant filtering approaches remove variants that substantially deviate 
from Hardy–Weinberg proportions (HWP) or linkage disequilibrium (LD).

Correctly filtering genomic data is not a trivial task. Indeed, it 
has been aptly termed the “F-word”10,11 by geneticists due to how chal-
lenging it can be to conduct and to understand effects of filtering on 
downstream conclusions. Filtering is distinct from other forms of 
data processing in that it centres on the removal of data (as in ‘filtering 
out’), whereas other approaches such as imputation modify the dataset 
directly without data removal. Filtering is an issue of paramount impor-
tance because every genomic dataset must be filtered, often repeat-
edly, and the same dataset filtered in different ways can yield entirely 
different results12,13. Furthermore, filtering choices can be confusing 
and subjective, currently lack consistent, agreed-upon guidelines and 
may result in unknown downstream consequences14.

Filtering approaches vary widely among published studies, and the 
filters used are often not described or are done so inadequately. When 
specific filters are mentioned, the methodological details provided are 
often insufficient for reproduction. Among papers that sufficiently 
record filtering thresholds, the values used for a given filter can vary 
several-fold15, even after accounting for sequencing depth and sample 
sizes. Furthermore, researchers often use default program settings, 
which is problematic given that default settings can sometimes be inap-
propriate and lead to problems, including the removal of deviations 
from HWP that are important for understanding population structure11. 
To help investigators improve their filtering approaches, we review best 
practices for filtering genomic datasets and illustrate the downstream 
effects of a range of filtering decisions on both empirical and simulated 
datasets. We provide practical filtering threshold recommendations 
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pre-variant filters, including read/mapping quality and read depth, and 
post-variant filters, including MAF or MAC, missing data and deviations 
from HWP or LD.

Pre-variant filtering
Read or mapping quality. Prior to de novo assembly or alignment to a 
reference, data are usually filtered via the removal of low-quality reads 
(Supplementary Table 1). This initial filtering can have downstream 
effects, and researchers across disciplines often use different and, 
potentially, arbitrary definitions of what constitutes a low-quality read. 
For example, a wide range of read quality thresholds are used, ranging 
from a Phred-scaled base quality score of 5 (refs. 52,53) to 40 (ref. 54) 
(representing between ~32% and ~0.01% maximum allowable error 
rates). Reads that have too many bases below that quality threshold 
are subject to removal; the exact number of allowable low-quality bases 
per read also varies widely across studies. Low-quality reads can also 
be removed during the process of alignment itself, because different 
alignment algorithms can prevent sequences from mapping back to a 
reference if their quality scores are below user-defined thresholds55–58. 
Conversely, high-quality reads may also be excluded if the reference 
does not contain the sequence, they are highly repetitive (as with trans-
posable elements) or they are found in multiple genomic locations (for 
example, paralogues) (Fig. 1a,b).

To aid researchers in understanding the potential effects of these 
filtering decisions, investigators should always report the percentage 
of reads that were removed prior to alignment and the percentage of 
reads that mapped successfully and uniquely (to one location) on the 
reference. Researchers should also report the methodology used to 
remove low-quality reads (such as a read length hard filter or a soft 
filter based on a statistical model)57. Reporting these statistics can help 
reviewers to assess the quality of the data underlying the study and 
allow future investigators to determine whether alternative filtering 
strategies could address additional questions (for example, re-filtering 
to not remove reads that map to multiple locations could identify 
paralogous loci or transposable elements). Of note, even strong align-
ments of putatively high-quality reads are not always correct, as refer-
ence bias59,60, genome assembly errors61, structural variation62 such 
as copy number variants (CNVs)63,64 and challenging alignments (for 
example, transposable elements65 or PCR duplicates66) are present in 
most genomic datasets (Fig. 1).

Read depth or coverage. After initial pre-variant filtering, genomic 
workflows typically proceed with genotyping (Box 1), whereby genetic 
variants such as SNPs, insertions or deletions (indels) and struc-
tural variants are algorithmically identified with software such as 
GATK67, ANGSD68, STACKS9, ipyrad69, LUMPY70, BCFtools71 or others. 
During this process, the read depth (coverage) of each locus must 
be considered, as greater depth of coverage usually allows for more 
confidence in genotyping (and subsequently downstream inferences) 
(Fig. 1c). However, very high read depths (relative to the study-wide 
mean) can be indicative of paralogues, highly repetitive regions, CNVs, 
non-target DNA (for example, mitochondrial DNA) or technical (for 
example, PCR) duplicates (Fig. 1d and Supplementary Table 1). Variant 
calling algorithms typically mark genotypes as missing either if they are 
below or above certain read depths or if they have poor quality scores72. 
The depth and/or quality filters used at this step vary substantially 
between studies. However, filtering out loci sequenced at a low depth is 
not without risk given that calling heterozygotes requires higher depth 
than homozygotes and that stringent depth filtering can skew observed  

heterozygosities and, therefore, site-frequency spectra (SFS)73,74. Well-
developed approaches to make use of low-coverage sites and mitigate 
such biases do exist68,74, so filtering out such loci is not always necessary. 
Note that although many of the principles we cover here still apply, 
low-coverage whole-genome sequencing (WGS) data have their own 
filtering specificities39.

Post-variant filtering
Missing data. Missing data can result either from the absence of reads 
covering a locus in an individual or from upstream filtering on read 
or genotype quality, depth, mapping or other filters (Fig. 2a). Loci and/or  
individuals with more than a user-defined amount (or proportion) of 
missing data are often filtered out. An excess of missing data can indi-
cate that something went awry with sample collection or preservation, 
genomic library preparation or alignment, all of which can obscure 
patterns of potentially important variation75. The filtering choices 
used for missing data vary widely among studies, and the downstream 
consequences are rarely evaluated. The acceptable amount of missing 
data depends on the research question: for example, a lower amount 
of missing data might be allowed for some phylogenetic analyses for 
which missing data can be highly problematic and that require rela-
tively high-quality sequence data for all individuals14. By contrast, if 
maximizing the number of loci is a priority, researchers might choose 
to keep loci with more missing data and acknowledge that filtering 
threshold choices might impact the types of loci retained76.

Missing data can have serious effects on downstream biological 
conclusions. For example, missing data due to low sequencing coverage 
may hinder the detection of runs of homozygosity and, subsequently, 
downwardly bias estimates of individual inbreeding77. Recent work has 
suggested that declines in coverage across studies may have resulted 
in underestimates of inbreeding in some North American wolf popula-
tions78 (Box 1). Missing data levels can also bias estimates of genome-
wide heterozygosity in either predictable79 or unpredictable80 ways. 
Other methodologies seem to be more resistant to missing data; for 
example, one study found that the proportion of missing data did not 
seem to affect either gene flow or parentage results in a tropical plant14.

MAF and MAC. Loci (typically SNPs) for which the less frequent allele 
(that is, the minor allele) occurs below a certain frequency are also often 
filtered out (Fig. 2b). MAF filtering is often based on the assumption 
that singletons or other rare variants that occur at a frequency of less 
than ~5% in a sample-group are due to genotyping errors. MAF filter-
ing is often performed at the specific threshold of 0.05 to reflect this, 
although threshold values across published studies can vary by orders 
of magnitude. Depending on the analysis and objectives, this filter can 
be applied study-wide (for example, globally across populations) or 
separately within each sample-group.

MAC filtering is an alternative to MAF filtering wherein loci are 
removed based on the absolute count of the minor allele rather than its 
frequency, allowing for more consistent filtering across sample-groups 
of different sizes (although, arguably, producing an uneven MAF filter 
across those same samples). For example, in a sample of 30 diploid 
individuals, a MAF of 0.05 would remove SNPs where the minor allele 
occurs 3 times or fewer, whereas in a sample of 60 diploid individuals 
the same MAF of 0.05 would remove SNPs where the minor allele occurs 
6 times or fewer. By contrast, a MAC of two would remove SNPs where 
the allele occurs two times or fewer regardless of the sample size. MAC 
filters can be particularly useful when sample sizes are small or highly 
variable because a typical MAF filter (for example, 0.05) will never 
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Fig. 1 | Pre-variant filtering — challenges and potential solutions related to 
filtering before variant calling. a, Individual 1 has both sufficient read depth 
(illustrated with nine reads, although a higher depth is preferred in practice) 
and read alignment quality (‘quality scores’; grey indicates high quality, black 
indicates poor quality) to allow for successful variant calling (a single-nucleotide 
polymorphism (SNP) is highlighted with a red box). Despite this seemingly 
successful read alignment, challenges still exist: genome assembly errors (such 
as misplaced scaffolds on reference genomes), and structural variation (such as 
inversions) can cause issues for downstream analyses. Additional sequencing 
and filtering for linkage disequilibrium (LD) can resolve some of these concerns.  
b, Individual 2 has a weak alignment both across an entire read and at a single base 
pair position across all reads, both of which should be filtered out prior to variant 

calling. Weak alignments can also occur in repetitive regions of the genome or with 
short target sequences (for example, transposons); solutions include specialized 
filtering and long-read sequencing. c, Individual 3 has too few reads; this individual 
should be removed, re-sequenced or, if this coverage is expected and occurs across 
all individuals in a study, low-coverage approaches should be employed. Reference 
bias (for example, aligning to reference genomes from different species than the 
sequenced samples, including cryptic species) can also cause fewer reads to align 
than expected; solutions include removing samples or individuals and controlling 
for read depth across sample-groups. d, Individual 4 has too many reads, which can 
be caused by paralogous genes, highly repetitive regions, copy number variants 
(CNVs) or technical (for example, PCR) duplicates. These excess reads could be 
filtered out or carefully analysed to determine the underlying causes.
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remove variable loci (including singletons) in small samples (n < 10 
diploid individuals).

Hardy–Weinberg proportions. It is often desirable to filter out loci 
based on statistically significant (for a given α-value or P value) devia-
tions from HWP. HWP are a common assumption of many downstream 
analytical tools (for example, STRUCTURE)81, and removing loci that 
violate HWP can help to ensure unbiased results for downstream 
analyses in randomly mating populations82. Deviations from HWP 
often reflect sequencing, assembly or alignment errors (such as a 
heterozygote deficit caused by allelic dropout or a heterozygote 
excess caused by paralogous regions)47,60,83,84. However, loci out of 
HWP can also indicate real biological phenomena, such as cryptic 
population substructuring (Fig. 2c) or balancing selection85. As a 
result, it is crucial to filter HWP within sample-groups (for example, 
within populations) rather than study wide (for example, globally on 
all samples)86 (discussed below) and to do so with a low stringency if 
the loci under selection or those that differ between populations are 
of interest. That said, some metrics, such as FST, can be biased upward 
by the careless removal of loci that are not in HWP within popula-
tions86, which is potentially problematic if population delineations 

do not reflect biological realities (for example, in the case of demes). 
Tools such as HDplot84 or ngsParalog87 might be useful in such cases 
to identify and remove loci that are more likely to be out of HWP 
due to paralogy rather than relying on divergence from HWP alone. 
Given that the FIS is fundamentally a directional measurement of HWP 
divergence, removing loci that are out of HWP with either positive or 
negative FIS values (and thus either heterozygote deficits or excesses, 
respectively) may help to remove loci out of HWP by paralogy or other 
factors specifically.

The thresholds used for testing HWP differ from the other filters 
because HWP testing is hypothesis-testing, and, as such, produces 
P values upon which filtering thresholds are set. Because thousands 
of loci may be tested simultaneously, corrections for multiple testing 
should be considered to adjust P values and thus avoid unnecessarily 
removing large numbers of quality (non-problematic) loci; however, 
such corrections are seldom performed15. That said, P-value correc-
tion for HWP differs from typical testing approaches in that, from a 
broader perspective, uncorrected P values are conservative in that 
they will result in the removal of more potentially problematic loci, not 
fewer. Researchers who do correct for multiple tests should explicitly 
report the reasoning behind the correction method they use, which 

Box 1 | Filtering trade-offs
 

Different filtering choices result in trade-offs described here as false 
positives (type I or α-errors) and false negatives (type II or β-errors) 
(see the figure). During variant calling (that is, genotyping), 
an incorrectly called genotype is the null hypothesis. This 
simultaneously allows for a more conservative philosophical 
approach towards genotyping and allows for power β(1 )−  to equal 
the proportion (or percentage) of correctly called genotypes retained 
in a dataset. Within this framework, a false positive occurs when an 
incorrectly called genotype (at a single locus) is retained and a false 
negative occurs when a correctly called genotype is incorrectly 
filtered out142 (see the figure). False positives occur most frequently 
when filters are not stringent (for example, no minor allele frequency 
(MAF) filtering is performed) and/or when read depths at a locus are 
low. By contrast, false negatives are more likely when stringent filters 
are used (such as a high MAF filter), because more loci are assumed 
to be erroneous (and thus removed) even though many of those sites 
may represent real, correctly called genotypes.

Trade-offs between the two filtering error rates are inevitable for 
certain methods and questions. For example, when calculating Tajima’s 
D value, many or most low-frequency variants (for example, singletons) 
should often be retained (Box 2); however, this will invariably allow 
more false positives (false variants) into the dataset and negatively 
affect accuracy or precision. Alternatively, low-frequency sites are 
often removed when performing genome-wide association studies 
(GWAS) or testing for outlier FST loci103,143, which creates datasets with 
few false positives but may exclude real, causal variants that segregate 
at low frequency. Investigators should be cognizant of filtering trade-
offs and consider solutions, such as creating two or more datasets 
with different filtering thresholds, sequencing loci of interest to higher 
depths and/or re-sequencing select samples.

Filtering trade-offs and challenges also arise when using 
low-coverage versus high-coverage data (or both). For example, 

a range of relatively low-coverage restriction-site-associated 
DNA (RAD) sequencing data (average <8× read depth) was used 
to estimate the effective population size (Ne), heterozygosity 
and individual inbreeding in North American wolves between 
1991 and 2020, during which heterozygosity and Ne seemed to 
decline in some populations144. However, samples were also 
sequenced to a lower depth over time, causing the proportion 
of missing genotypes to increase; reanalysis suggested that the 
reductions in sequencing depth likely caused the lower estimates 
of heterozygosity and Ne rather than actual inbreeding or reduced 
variation in recent decades78. Following the reanalysis, the authors 
recommended aggressive read-depth filtering of loci to retain 
more individuals given that larger numbers of individuals are more 
beneficial than additional loci when estimating contemporary Ne 
with genomic data.
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can vary in stringency (from Benjamini–Hochberg88 to sequential or 
simple/stringent Bonferroni89), and, ultimately, different approaches 
and α-thresholds should be applied depending on the questions being 
asked and the tolerance for including or excluding problematic loci16 
(Box 1). For an in-depth discussion on implementing and interpreting 
tests for HWP, see refs. 16,82,90.

Linkage disequilibrium. Pruning sets of loci that are in substan-
tial LD with each other down to a single locus ensures statistical 
independence among loci — a common assumption made by many 
downstream methods. For example, methods based on the SFS of a 
population may be biased if correlated allele frequencies in a variant-
rich region differ from the genome-wide average, and failure to remove 
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Fig. 2 | Post-variant filtering — challenges associated with four common 
filters after variant discovery. a, Missing data, which can occur across loci 
and individuals. Data from monarch butterflies114 are used to show that the 
percentage of missing data can be high (21–100% per locus) when missing data 
filtering occurs within sample-groups, but is much lower if performed jointly 
across all samples (19–56%), the latter of which can obscure the differences 
in data quality among populations. b, Data from a study on yellow perch102 
showing that the number of single-nucleotide polymorphisms (SNPs) varies 
threefold among populations if a minor allele frequency (MAF) filter of 0.01 
is applied within sample-groups, which would be missed if the same filter was 

applied study-wide. c, Loci can deviate from Hardy–Weinberg proportions 
(HWP) due to homozygote or heterozygote excesses owing to biological causes, 
which filtering may obscure. For example, unintentionally combining two 
divergent sample-groups will result in higher FIS (fixation index, individuals 
versus subpopulation) and many more loci out of HWP (owing to Wahlund 
effects)39. Filtering study-wide would cause the erroneous removal of loci in such 
cases. d, Linkage disequilibrium (LD) thinning (that is, filtering out loci with high 
LD; red points) can obscure an inversion (blue points) in three-spined stickleback 
haplotypes141. FST, fixation index, subpopulation versus total; MAC, minor allele 
count.



Nature Reviews Genetics

Review article

non-independent (linked) loci can bias estimates of parameters such 
as the effective population size (Ne)91. However, filtering out SNPs 
based on LD could also strongly influence diversity estimates (such as 
the number of segregating sites across genomic regions) or inadvert-
ently cause investigators to remove or overlook important structural 
variants (Fig. 2d).

Studies that lack a high-quality reference should also employ LD 
filters to ensure independence of loci or contigs92, which can be accom-
plished through pairwise correlation measures such as Pearson’s r2.  
Alternatively, many investigators working with de novo assembled 
datasets often simply extract a single SNP from each contig to mitigate 
the effects of linkage (although this assumes distinct stacks or contigs 
are themselves unlinked, which may not be true and should not be the 
‘default assumption’). Corrections for multiple tests are also impor-
tant for LD filtering if P values are used as a linkage measure, but such 
corrections are seldom conducted or reported15.

Effects of filtering
The effects of filtering are often unknown in genomic studies. Although 
concerning, this is not particularly surprising, given that many dif-
ferent filtering approaches exist, filtering requires non-trivial time 
and computational resources to perform, and many individual filters 
can be applied (potentially multiple times), with different thresholds 
and at different data processing stages (Supplementary Table 1). For 
example, mapping quality filters can be applied both immediately after 
mapping and later during genotype calling. Furthermore, many types 
of filtering occur during the ‘black box’ of alignment and genotyping, 
leading many investigators to use default settings and not think about 
the downstream consequences. Doing so may be alluring, because the 
added complexity of filtering can be overwhelming, time-consuming 
to properly address and, seemingly, distract from the main goals of the 
study. An excellent example of this are GATK’s ‘hard filters’ on called 
genotypes (for example, for strand bias or variant positions within 
reads)67, which are routinely used but seldom discussed or varied from 
their recommended values. However, properly considering filtering 
choices and their effects is crucial because different filtering choices 
can lead to vastly different downstream results such that two research-
ers who make different decisions but analyse the same original dataset 
(for example, a set of FASTQ or VCF files) could reach entirely different 
biological conclusions.

To illustrate this principle, we systematically filtered ten pub-
lished empirical and three simulated datasets by changing filtering 
thresholds for three key post-variant filters: MAF, missing data and HWP 
(Box 2). Although MAF filters are often applied to remove singletons or 
other rare variants, as described above, these variants are critical to sev-
eral analyses including demographic history estimation and tests for 
selection. Most notably, Tajima’s D value, a commonly used indicator of 
both demographic history and response to selection93, is substantially 
biased by a MAF filter choice, leading to widely differing biological 
inferences depending on filtering stringency (Box 2). In this case, 
our recommendations are straightforward: because low-frequency 
alleles heavily influence Tajima’s D value94, researchers should apply 
both no MAF filter and a very minor one (such as a singleton filter)  
and compare the results when using the statistic. The effects of MAF and 
other filters can be substantial for diversity estimators95, demographic 
inference12,96, FST (ref. 47), gene flow14, population structure estimates97,98, 
estimating the distribution of locus effects on phenotypes98 and allele 
frequency spectra47,99–101. Other filtering choices therefore require 
similar levels of care (Table 1).

Study-wide versus within sample-group filtering
Many filtering methods can be applied to all individuals in the study 
or separately within each sample-group, which can represent different 
populations, geographic or temporal sampling units, or experimental 
treatments. When filtering occurs across all samples (for example, all 
individuals) within a study jointly and simultaneously, we refer to this 
process as study-wide filtering (or ‘global’ filtering). When filtering 
occurs within each sample-group separately, we refer to this process 
as within-group filtering.

The effects of within-group versus study-wide filtering can be sur-
prisingly large. For example, when applying a within-group MAF filter 
of 0.01 to a yellow perch (Perca flavescens) WGS dataset, the number of  
SNPs within each population varied by a factor of 3.3 (ranging from 
670,578 to 2,275,935) (Fig. 2). However, when the same 0.01 MAF filter 
was applied globally, each sample-group was constrained to 714,000 
SNPs102. In this case, some populations in the study had radically differ-
ent SFS, likely caused by recent population expansions that resulted 
in an increase of rare variants93,94. In general, study-wide filtering can 
therefore lead to the removal of critically informative, globally rare 
but locally common alleles; thus, filtering MAF globally (a common 
practice) instead of within study groups is expected to have substan-
tial effects whenever SFS vary between sample-groups, such as when 
demographic histories differ or when local adaptation has occurred.

Study-wide versus within-group filtering will also affect genome-
wide association studies (GWAS), where it is common to perform study-
wide MAF filtering with the threshold dictated by sample size (which 
can often be quite large, particularly in human or agricultural work)103. 
The implications of these standardized pipelines are often not given 
much consideration, but the effects may be non-trivial. For example, 
when comparing populations with different SFS, a study-wide MAF 
filter can introduce ascertainment bias by removing more segregat-
ing loci from specific study groups. Human populations (and those 
of other species with complex biogeographic histories) may be prone 
to this bias, as populations with African ancestries tend to have more 
sites with low-frequency alleles than those with European ancestries104. 
Using a study-wide MAF filter will therefore remove more segregating 
loci from the African ancestry sample-group and could result in the 
preferential detection of large-effect loci in European populations. 
Although we have focused on MAF filtering here due to its near univer-
sal implementation, other filtering approaches can be similarly biased 
by study-wide versus within-group filtering. For example, differences 
in downstream outcomes from filtering HWP86 and LD105 within-groups 
versus study-wide have been documented previously.

In light of these findings, it is crucial to consider why results differ 
when applying filters globally or within groups, particularly if sample-
groups include individuals from different populations, locations or 
time points39. For example, tests for HWP should always be conducted 
on each sample-group separately, because pooling genetically distinct 
groups will result in an excess of homozygotes (positive FIS) across 
loci genome-wide (that is, a Wahlund effect), and their removal can 
mask the population structure82,106 (Fig. 2). If a specific locus shows 
consistent deviation from HWP greater than the genome-wide trend in 
multiple different groups, this may indicate a genotyping error (such 
as allelic dropout) or alignment or genome assembly errors (that are 
not necessarily caused by biological processes)90.

Of note, clearly defined putative populations are not always pre-
sent. Forcing sample-groups on data with no clearly defined biological 
boundaries and then filtering on those sample-groups potentially risks 
creating biases, such as the artificial creation of population structure 

https://gatk.broadinstitute.org/hc/en-us
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Box 2 | Effects of post-variant filtering
 

Genomic filtering choices can have substantial effects on 
downstream analyses that are not necessarily consistent across 
sample collections, populations or statistical methods. We used ten 
empirical datasets (Arabidopsis145, Daphnia146, white-tailed deer147, 
mountain goats148, humans149, deer mice150, killer whales151, monarch 
butterflies114, stoneflies152 and yellow perch102) (Supplementary 
Methods and Supplementary Table 2) along with three simulated 
datasets (Supplementary Methods and Supplementary Table 3) 
to demonstrate how filters can impact a wide range of commonly 
calculated population genetic parameters. We first illustrate the 
effects of varying a single filter, the minor allele frequency (MAF), 
on four commonly used parameters (see the figure, panel a). We 
also show how multiple filters (MAF, Hardy–Weinberg proportions 
(HWP) and missing data) and the higher-order interaction between 
MAF and HWP influence a single parameter (the proportion of 
retained segregating sites (Pseg)) (see the figure, panel b). Parameter 
estimates were standardized to represent relative change across  
filter thresholds. A wide range of additional filtering effects and  
non-standardized values are presented in Supplementary Figs. 1–4.

Changing the filtering threshold for a single filter can result in 
large changes in FST, FIS, HO/He and Tajima’s D estimates. Increasing 
MAF thresholds reliably increases the average FST, HO (per segregating 
site) and Tajima’s D value47,94; FIS, however, is impacted variably among 
datasets (see the figure, panel a). Filtering with the most commonly 
used MAF threshold of 0.05 can often flip the genome-wide sign of 
Tajima’s D value from negative to positive, changing its interpretation 
from a population expansion to a bottleneck (see the figure, panel a,  
right, diamonds indicating change in sign) (Supplementary 
Fig. 1). In addition to the parameters shown here, MAF filtering 
can also substantially change estimates of nucleotide diversity 
(π), private allele counts, Watterson’s θ and effective population 
size (Ne) estimates derived from linkage disequilibrium (LD)-based 
approaches120 (Supplementary Fig. 2).

Varying filtering thresholds across multiple filters also results in 
substantial changes to a single parameter, which we illustrate for the 
estimated number of segregating sites (see the figure). MAF filters, 
which are perhaps the most widely used, can have a particularly 
strong effect that, although constant in direction, can widely vary in 
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by forcing ‘populations’ to conform to HWP86. In cases where sample-
group delineations do not accurately represent biological realities, 
a suitable approach might be to first identify population structure 
through PCA or another agnostic clustering approach, and then assess 
the impact of both within-group and study-wide filtering.

Solutions and best practices
Filtering is a powerful tool that should be applied thoughtfully, early 
and often throughout genomic dataset construction alongside tests 
for unintentional or unanticipated issues with a dataset (for exam-
ple, experimental, sample collection, labelling library preparation 

magnitude depending, primarily, upon the shape of the underlying 
site-frequency spectra (SFS) across populations (Supplementary 
Fig. 6). HWP and missing data filtering (here “Required % genotyped” 
such that any loci or individuals with less than the noted percentage 
of called genotypes were removed) also impact different datasets in  
different ways — datasets where more loci are out of HWP lose more 
segregating sites with higher filters for HWP, as do those with  
more missing data. Filtering effects were generally not different 
across dataset types (reduced-representation versus whole-genome), 
although restriction site-associated DNA (RAD) datasets were 
generally more strongly impacted by higher HWP filters for most 
statistics (Supplementary Fig. 3). Higher-order interactions between 
filters may also be important — there are substantial changes in the 
average impact of filtering for HWP on the proportion of retained 
segregating sites depending on the MAF filter used (see the figure, 
panel b, right) — and are deserving of more study. In the examples 
provided here, researchers could come to different conclusions 
about demographic history (Tajima’s D value), selection (Tajima’s 
D value, HWP) and genetic diversity (HO, proportion of segregating 

sites) based on the initial filtering thresholds selected and their 
higher-order interactions (which are commonly ignored).

The demographic context and genomic architecture of the 
study system (including model species) can also affect filtering. 
Populations that have undergone recent population expansions, for 
example, will lose far more rare alleles during MAF filtering than will 
those that have undergone population bottlenecks (Supplementary 
Fig. 6). This is the case with the monarch and yellow perch datasets, 
which correspondingly have the largest increases in FST with higher 
MAF filters (see the figure) (Supplementary Figs. 1 and 2). Genomic 
architecture also affects filtering impacts: for example, the removal 
of regions of elevated FST caused by selection occurring in areas with 
reduced recombination rates will have a larger effect on genome-
wide principal component analysis (PCA) results than filtering 
elsewhere (Supplementary Fig. 7). Many parameters such as FST, FIS 
and LD could also be influenced by function; genotypes adjacent 
to conserved exons, introns, centromeres, telomeres or sex-linked 
loci may all respond differently to filtering thresholds. WGS, 
whole-genome sequencing.

(continued from previous page)

Table 1 | Recommended initial filtering thresholds for producing low-stringency and high-stringency filtered datasets

Objective Individual missing 
data; <X% missing 
locia

Loci missing 
data; <X% missing 
individuals

MAC or MAF LD HWP

Population structure 50%; 5% 50%; 5% >1 >0.05 No; yes 1 × 10–6; 
0.01

Demography 25%; 5% 50%; 5% 1 No filterb Yes 1 × 10–6; 
0.01

Selection 75%; 25% 75%; 25% >1 >0.05 No None;  
1 × 10–4

Genetic diversity 50%; 5% 50%; 15% >1 >0.05 No, usually None;  
1 × 10–4

Phylogenetic reconstruction 20%; 5% 50%; 10% >1 >0.05 Yes 0.001; 0.01

GWAS 50%; 10% 50%; 10% MAF only >0.05, lower with large n No, but correct P values None;  
1 × 10–6

Mutation detection Parents: 0%;  
offspring: 100%

Parents: 0%; 
offspring: 100%

No filter No filter None; 1 × 10–6 –

Metagenomics or eDNA – – >4 MAC only Context-dependent –

Relatedness or pedigree 
construction

<95%, provided 
sufficient remaining 
loci for power

20%; 5% >2 >0.05 No, although CIs can be 
affected

0.001; 0.01

The thresholds proposed are suggestions and should not supplant existing knowledge of the study system or design (Box 3). These values represent relatively extreme values to examine 
effects, whereas moderate values may be preferable for final analysis. Justifications for these suggestions are provided in Supplementary Table 4. Columns represent the objective of the study; 
where individuals with missing data at more than X% loci are removed; where loci missing data in more than X% of individuals are removed; the MAC or MAF filtering threshold below which 
loci are removed (use MAC or MAF, not both together); whether loci should be removed to prevent excessive non-independent pairs; and where loci with a P value below the threshold are 
removed. CI, confidence interval; eDNA, environmental DNA; GWAS, genome-wide association studies; HWP, Hardy–Weinberg proportions; LD, linkage disequilibrium; MAC, minor allele count; 
MAF, minor allele frequency. aSome datasets may need a less strict filter if most individuals are removed. bFor site-frequency-spectra-based estimators such as Tajima’s D value, singletons 
could be retained for one filtering extreme.
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errors, batch-effect sequencing and genome assembly errors) and 
to detect interesting biological phenomena (for example, natural 
selection, structural variants and Wahlund effects). Even in highly 
studied species, such as humans, a carefully considered and multi-
faceted approach to filtering is important because novel structural 
and genetic variants can occur within every population107, and failing 
to account for these variants may curtail power to identify causal 
associations or even lead to incorrect inferences72. To assist investi-
gators in matching research questions with methods and filters, we 
have created a detailed flow chart describing the filtering process for 
a general genomics workflow that can be applied across disciplines 
and study systems (Fig. 3).

Quantification of filtering effects
Because different filtering choices can result in different downstream 
inferences, we recommend that distinctly filtered versions of the same 
dataset should be used to quantify the effects of filtering and to address 
specific research questions. A minimum of two datasets should be 
created — one with low filtering stringency (for example, allowing more 
missing data, a low, permissive MAF threshold and few loci removed 
due to deviations from HWP and LD); and one with high filtering strin-
gency (for example, many loci or individuals removed due to missing 
data and a higher, restrictive MAF threshold). Creating two datasets 
using relatively broad filtering values (for example, low and high strin-
gency) allows researchers to test whether distinct filtering thresholds 
affect analyses and downstream conclusions; if the effects are small, 
no further filtering may be needed.

Investigators should also remember that different questions or 
approaches may require different sets of filters, reflecting the specifi-
cities of the study (Box 3). For example, researchers should consider 
using low-stringency MAF filters for several demographic inferences 
(for example, Tajima’s D value, SFS) but relatively stringent MAF fil-
ters for delineating populations97, planning genomically informed 
breeding strategies108 or estimating parentage or individual related-
ness109–111. Studies interested in transposable elements may want to 
vary alignment thresholds (uniquely versus multiply mapped reads) 
but keep other filters stringent to strike a balance between sensitivity 
and accuracy112,113.

After the initial filtered datasets are created, investigators should 
proceed with their parameter estimation, statistical analyses and mod-
elling with these datasets in parallel to answer their key questions 
of interest. Investigators should report the effects of their filters on 
downstream analyses and think critically to ensure that the filtered 

datasets used to answer specific questions are appropriate and do not 
themselves create a significant source of bias. Some stand-out papers 
exist that already use and report the effects of different filters14,97,114,115, 
although they are in the minority. Note that we are not the first to sug-
gest comparing outcomes from different filtering strategies12,14,47, and 
we suspect that this recommendation will become more common, 
and more commonly followed, over time.

The concept of using multiple, distinctly filtered datasets 
requires a fundamental shift in the way genomics data are analysed: 

Fig. 3 | Flow chart to facilitate thoughtful, systematic and reproducible 
filtering for representative studies and questions using genomic DNA. 
Typical filtering workflows proceed through raw sequence quality control 
(QC) filtering, alignment, mapped-read filtering and variant discovery. 
After variant discovery, investigators must decide whether to apply filters 
study-wide or within sample-groups and whether to filter by locus or 
individuals first. Regardless of the study objectives, multiple datasets 
should be constructed to examine the effects of various filtering decisions. 
Suggested filtering thresholds per locus and for individual filtering are 
provided for each question and objective (Table 1 and Supplementary Table 4). 
Researchers should use a reproducible workflow to help them more easily 
repeat steps during analysis and the review process. Reproducible workflows 
can aid laboratories or research groups if more data will be produced in the 
future (for example, by students or postdoctoral researchers) as well as 

researchers in other laboratories. Data should be carefully archived before 
and after filtering, and all filtering methods and results carefully reported. 
See Supplementary Table 1 for a complete list of filters, Tables 2 and 3 for a 
simplified example of how to report filtering results, Box 4 for a filtering and 
reporting checklist, and the pre-variant and post-variant filtering R notebooks 
for examples of reproducible workflows (Supplementary Notebook 1 and 2). 
CNV, copy number variation; eDNA, environmental DNA; FIS, fixation index, 
individuals versus subpopulation; FST, fixation index, subpopulation versus 
total; GWAS, genome-wide association studies; He, expected heterozygosity; 
Ho, observed heterozygosity; HWP, Hardy–Weinberg proportions; LD, linkage 
disequilibrium; MAC, minor allele count; MAF, minor allele frequency; NA, 
not applicable; Ne, effective population size; Nm, number of migrants; PCA, 
principal component analysis; SNP, single-nucleotide polymorphism; TE, 
transposable element.

Box 3 | The importance of study system 
knowledge
 

We recommend that researchers have a thorough understanding 
of both their study system and population-genetics theory before 
planning filtering strategies and interpreting results16. Critically, 
knowing a species’ ecology, demography and pre-existing 
genetic results can provide important a priori expectations for 
analytical results and suggest sources of filtering (or other) 
errors. At every step, researchers should ask themselves whether, 
given their knowledge of their study species, theory and model 
assumptions, their results and filtering choices make sense.

For example, little geographical structuring might be expected 
in species with high gene flow, such as many migratory birds 
or organisms with highly dispersive early life-history stages (for 
example, many plants, arthropods and marine organisms), and 
thus the detection of relatively strong population subdivision 
(or high FST values) could be an artefact of data filtering60,74. 
Similarly, knowing a species’ mating system, degree of population 
isolation and dispersal propensity can help to determine whether, 
for example, high inbreeding and/or low effective population size 
(Ne) estimates are biological or produced artificially by filtering 
choices (Box 1). Strong genetic signals of recent population 
bottlenecks in populations known to have undergone demographic 
expansions might also suggest filtering issues (Box 2). Discussions 
with local biologists, Indigenous peoples153 and regional and federal 
agencies can also greatly assist with identifying spurious results. 
A solid understanding of a species’ biology is also useful for model 
species, where known recombination rates, genomic organization154 
and different histories of captive breeding155 can help to predict and 
interpret filtering results.
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Glossary

Alignment
The mapping of sequencing reads and/or 
contigs to either each other (pairwise/
multiple alignment) or to a reference. 
Alignments can vary in the strength of 
the evidence that supports them. Most 
alignment tools will return map quality 
(mapQ) scores, the derivation and 
meaning of which varies by program. 
Filtering thresholds based on this score 
must consider the specific aligner used.

Base quality score
The value in a logarithmic, Phred 
scale given to each base on a sequencing 
read that indicates a quantitative 
degree of confidence in the nucleotide 
called from the sequencing instrument.

Contigs
Contiguous sequences of DNA 
assembled from many overlapping 
sequence reads, representing a 
fragment of a chromosome.

De novo assembly
The reference-free alignment of 
sequencing reads into overlapping 
stacks or contigs for subsequent use 
in variant discovery and genotyping.

FIS

A measure of inbreeding; the degree 
of subpopulation divergence from 
Hardy–Weinberg proportions — the 
correlation between alleles at specific 
loci within individuals relative to the 
subpopulation.

FST

A measure of population differentiation; 
the proportion of the total genetic 
variance due to differences in allele 
frequencies between subpopulations.

Genetic variants
Differences in DNA sequence 
compared with a reference sequence 
or other individuals within a population. 
The term includes short variants 
(single-nucleotide polymorphisms (SNPs) 
or insertions and deletions) and structural 
variants (chromosomal inversions 
and copy number variations (CNVs)). 
In the context of this Review, used 
interchangeably with ‘locus’.

Genome-wide association 
studies
(GWAS). Tests for statistical 
relationships between a phenotype 
(including disease) and the allelic/
genotypic state of an (ideally) large 
cohort of individuals across the entire 
set of sequenced loci.

Genotyping
Also referred to as genotype or variant 
calling. Calling allelic states at a locus 
(for example, A/A, A/C or C/C at a 
biallelic single-nucleotide polymorphism 
(SNP) in a diploid organism) or loci from 
sequence data. Genotyping algorithms 
often consist of multiple steps during 
which filtering can occur.

Haplotype phase
The complete sequence of variants 
that occur in a region along a single 
chromatid.

Hardy–Weinberg proportions
(HWP). The expected frequencies of the 
genotypes at a given locus under Hardy–
Weinberg equilibrium. Filtering on HWP 
is often executed via an exact test, with 
loci that deviate significantly from HWP 
removed from subsequent analyses.

Imputation
The filling in of missing data for 
specific genotypes and/or loci by 
leveraging linkage disequilibrium 
(LD) between missing genotypes 
and genotypes called at other loci or 
samples. Imputation can use reference 
panels of well-described haplotypes to 
improve performance when available, 
usually in well-studied model organisms.

Linkage disequilibrium
(LD). The non-random association 
of alleles at different loci within a 
population or sample-group. This 
association can either be caused 
by physical linkage, when alleles are  
co-inherited due to non-independent 
assortment caused by close physical 
proximity, or occur across chromosomes 
when inbreeding, paralogy, genetic 
drift or other factors make certain 
alleles at different loci more likely to  
co-occur.

Low-coverage whole-genome 
sequencing
Whole-genome sequencing (WGS) 
with small numbers of reads covering 
most genomic loci (low coverage); 
the number of reads constituting low 
coverage varies widely depending 
on the discipline, methodology and 
research question. Low-coverage 
WGS often requires genotype 
likelihood-based methods.

Mapping quality
The score given to a read or other DNA 
sequence indicating the uniqueness 
of the alignment to a reference 
sequence; mapping quality score 
interpretations vary across alignment 
programs.

Minor allele count
(MAC). The number of gene copies or 
individuals carrying the minor (that is, 
least frequent) allele at a locus.

Minor allele frequency
(MAF). The proportion (frequency) of 
the least common allele at a locus 
across a study or sample-group; in this 
Review, we refer to filtering out loci with 
MAFs below a given threshold as MAF 
filtering.

Missing data
Missing genotype calls at a specific 
locus or individual. Missing data can be 
caused by many factors, such as the 
absence of a sufficient number of reads 
covering a locus to call a genotype 
in an individual with any degree of 
confidence.

N50 or L50 scores
In a genome assembly after sorting 
contigs or scaffolds by length, 
either the length of the contig/
scaffold that reaches 50% of the 
cumulative genome length (N50) 
or the number of contigs needed to 
reach 50% of the cumulative genome 
length (L50); used to evaluate the 
assembly quality.

Paralogues
Duplicated genomic regions that have 
arisen via either the duplication of that 
specific region or the duplication of the 
entire genome. A type of homologue 
(loci identical by descent) distinct 
from orthologues, which arise due to 
speciation events.

PCR duplicates
Technical duplicates resulting in 
spurious, usually identical read copies 
caused by repeatedly sequencing 
the same piece of template DNA 
multiple times.

Population structure
Also known as population subdivision. 
Non-independence among individuals 
in a study area/region caused by 
spatial, temporal, behavioural or 
other forms of reproductive isolation. 
Population structure is characterized 
by divergent allele frequencies 
across loci.

Read depth
The number of reads that cover a given 
or fixed genomic position. Also referred 
to as ‘coverage’.

Reference bias
The propensity for reads containing 
the non-reference allele (the allele not 
in the reference genome) to have lower 
mapping quality scores or map to the 
wrong location compared with those 
containing the allele present in the 
reference genome.

Runs of homozygosity
Contiguous homozygous regions 
of the genome caused by the 
inheritance of identical haplotypes 
from both parents (for example, 
identical by descent). Useful for 
estimating inbreeding and population 
demographics.
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investigators must realize that no single ‘best’ filtering strategy or 
filtered dataset exists. No filtering method will remove all errors, but 
re-filtering with different thresholds can provide higher certainty that 
there is no substantial bias or error from filtering (Box 1). We provide 
recommendations for initial filtering thresholds for many types of 
questions and analyses in Table 1. These thresholds can and should be 
modified given the characteristics (such as sample sizes and general 
quality) of the data at-hand.

Best practices for pre-variant calling workflows
Most genomic workflows differ depending on the research question and 
data types (Fig. 3). The documentation of filtering decisions is therefore 
paramount for reproducibility. As a first step prior to any analysis, we rec-
ommend that raw data be immediately archived (privately or publicly) 
in independent, non-local repositories created for genomics data (for 
example, the NCBI Short-Read Archive, the European Variation Archive 
or the DNA DataBank of Japan Sequence Read Archive); other genomics 
data management best practices are reviewed elsewhere116,117. Given that 
filtering, by definition, requires manipulating data, the importance of 
archiving raw data cannot be understated. To this point, we refer the 
reader to ref. 118 for information on dataset and study organization.

After archiving, reads should be filtered for general QC (base qual-
ity, adapter removal, poly-G tails, sequencing artefacts) (Supplemen-
tary Table 1) and trimmed when appropriate and useful119,120. For most 
workflows, the alignment of reads to a reference or de novo assembly 
is the next step (Fig. 3). Depending on the goals of the study, it may be 
useful to create multiple datasets with different filters and/or filtering 
thresholds at this stage for downstream analysis114,121. This practice is 
particularly relevant to de novo reference assembly, as assembly deci-
sions can result in very different references and, thus, very different 
filtering and analytical outcomes. For example, the m and M STACKS 
parameters and their impact on de novo reference construction have 
been well studied41,42,122,123.

After alignment, the data should be filtered for technical (for 
example, PCR) duplicates. Although removing PCR duplicates has 
been suggested to be of little consequence124,125, this is unlikely true for 
every study, such as those with low-coverage data10,66,126. The remain-
ing reads should then be filtered for mapping and read quality, and 
researchers should ensure that they record and report the number of 
reads that passed these pre-variant filters (Table 2). We have provided 
an R notebook (Supplementary Notebook 1) that uses a small example 
dataset to walk through an entire pre-variant filtering workflow — from 
raw reads to called genotypes — using various commonly imple-
mented tools and provides an example of how to easily change, and 
importantly record, filtering parameters with minimal effort.

Best practices for post-variant calling workflows
Following pre-variant filtering, the next steps are to call variants, filter 
the resulting dataset to remove potentially problematic loci (for MAF, 
HWP, LD and paralogues) and, then remove poorly sequenced indi-
viduals (and/or samples with other quality or analytical concerns) 
(Fig. 3). Note that the order in which filters are applied is important —  
it may be beneficial to reverse the last two steps and filter across 
individuals first (and loci second) in instances where retaining as 
many loci as possible is needed or where data quality varies widely 
among individuals8. An iterative approach, where individuals and 
loci are first removed with low-stringency filters and then subjected 
to additional rounds of filtering stringencies may also improve 
data quality by removing individuals who reduce overall call rates in 
high-quality loci and vice versa8. Similarly, if a MAF filter is used to 
remove loci after variant discovery followed by the removal of indi-
viduals with too much missing data, a second round of MAF filter-
ing could be considered to remove loci that now fall below the MAF 
threshold. As with pre-variant filters, the percentage of reads, sites 
and individuals retained at each post-variant filtering step should be  
reported (Table 3 and Box 4).

Sample-group
A group of samples that are not 
independent due to natural causes 
(such as geographic or temporal 
separation) and/or experimental 
treatments.

Single-nucleotide 
polymorphisms
(SNPs). Genetic variants where the 
allelic state of the population varies at a 
single base pair.

Singletons
Alleles that appear only once in a 
sample of individuals. Sometimes 
alternatively defined as an allele 
sequenced in only one individual 
(which may be homozygous for 
that allele).

Site-frequency spectra
(SFS). The distributions of allele 
frequencies across loci within a study 
or sample-group. Can be either an 
‘unfolded’ or ‘polarized’ derived allele 
frequency spectrum which describes 
the frequency distribution of derived 
alleles or a ‘folded’ or ‘unpolarized’ 
minor allele frequency (MAF) spectrum 
which describes the frequency 
distribution of the minor alleles. 
Also known as the allele frequency 
distribution.

Structural variation
Genetic variation in the order, number 
and/or arrangement of loci.

Study-wide filtering
Applying a filtering threshold ‘globally’ 
(simultaneously across all samples 
in the entire dataset) rather than 
separately within each sample-group.

VCF file
A file in the variant call format, which 
contains genotype calls (or likelihoods, 
posteriors) alongside a flexible 
suite of metadata such as filtering 
and processing history and quality 
information.

Wahlund effect
A reduction in observed 
heterozygosity (HO) relative to the 
expected heterozygosity (He) under 
Hardy–Weinberg proportions (HWP) (that 
is, HO < He) at many/most loci caused by 
the underlying population structure. 
When multiple (sub)populations are 
included in a sample, any differences 
in allele frequency between (sub)
populations will cause there to be 
considerably more homozygous 
individuals at those loci than would 
be expected under HWP (causing 
an elevated FIS, the fixation index in 
individuals relative to a subpopulation).

Within-group filtering
Applying a filtering threshold within each 
sample-group separately rather than 
across all individuals simultaneously 
(for example, study wide or globally).

Glossary (continued)
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As data analysis proceeds, we suggest that re-filtering should 
be part of most genomics workflows. For example, PCA — or more 
sophisticated, related approaches127— can reveal individuals who were 
mislabelled, misclassified into an incorrect sample-group, contami-
nated during sample preparation or closely related (for example, full 
siblings)128–130. Such underlying causes should be carefully investigated, 
and problematic samples reported, and possibly removed, prior to 
the re-calculation of downstream statistics. Similarly, the decision  
to conduct new analyses (for example, Tajima’s D value, transposable 
element annotation, parentage analysis) that were not initially consid-
ered may also require re-filtering of data. Lastly, many genomic datasets 
may contain batch effects — non-biological differences between sam-
ples that arise from independent sequencing runs — and these effects 
should be explored and explicitly accounted for when filtering samples 
that were sequenced in different batches131.

After analyses are completed, the resulting data should again be 
archived and/or recorded, including all relevant metadata and the exact 
filtering decisions. Given that recreating distinctly filtered datasets 
requires a considerable amount of resources (and may actually be 
impossible given limited data, computational limitations, improper 
archival, unmet dependencies or limited access to old or out-of-date 
software), we strongly recommend that post-project archives include 
all filtered genotypic/variant data in the form of carefully annotated 
VCF files that include detailed filtering descriptions in the header132.

We strongly suggest that authors and journals require supple-
mentary tables that describe the final datasets, the specific filters 
and thresholds employed, the names of the final VCF files and the 
specific analyses for which each distinctly filtered dataset was used. 
We provide examples of these in Tables 2 and 3. Researchers should 
also explain whether they corrected for multiple testing along with 
a (brief) justification for the correction method used (for example, 
Bonferroni, false discovery rate (FDR))15. If reasonable, we also suggest 

Table 3 | Representative table demonstrating post-variant reporting standards for different objectives

Filtering step Population structure (dataset 1) GWAS-stringent (dataset 2) GWAS-relaxed (dataset 3) Demography (dataset 4)

Minimum genotype quality 40 50 40 40

Minimum genotype coverage 10× 20× 15× 10×

Maximum genotype coverage 30× 30× 50× 30×

Study-wide or within 
sample-group

Study-wide Study-wide Within sample-group Within sample-group

Maximum missing per 
individual

15% (190/200 individuals 
retained)

5% (180/200 individuals 
retained)

10% (188/200 individuals 
retained)

15% (190/200 individuals 
retained)

Maximum missing per locusa 15% 5% 10% 5%

MAF/MAC MAF = 0.05 MAF = 0.05 MAF = 0.01 MAC = 2

LD No filter used No filter used No filter used r2 >  = 0.25

Hardy–Weinberg deviations P < 0.05; Bonferronib P < 0.05; Bonferronib No filter used P < 0.05; no FDR correction

Resultsc Fig. 1b,c Figs. 2 and 3 Supplementary Fig. 1 Fig. 4

VCF md5sum 8d3d627940ee2a77 
b4770db1fd710459

3dcccbf8d3fb869c3cf 
5de291c0fe893

0b0681ad8b5bdab39e 
7b76afc190d4c8

1f131fdc2ee6444e1b 
94071195a1acd2

All accompanying code and filtering steps should be reported in the post-variant notebook; see Fig. 3 for a detailed flow chart and see Supplementary Notebook 2 for an example post-
variant notebook. The sequence of filtering events can affect downstream results, so rows should be arranged chronologically. All filters should be recorded as a separate row, even if 
a particular filter is not mentioned or default values are used for that type of filter. Depending on the objectives of the study, different numbers of datasets may need to be created. In 
this example, we assume a targeted read depth of 20× coverage per individual and 200 sequenced individuals (following from Table 1). FDR, false discovery rate; GWAS, genome-wide 
association studies; LD, linkage disequilibrium; MAC, minor allele count; MAF, minor allele frequency. aMissing data should be examined both study-wide and within sample-groups; 
different sample-groups may contain different amounts of missing data. bHardy–Weinberg filters should only be applied within each sample-group, not study-wide; corrections for multiple 
comparisons should be reported. cFigure numbers indicate figures or supplementary material in the hypothetical paper for which this table is used to report filtering across datasets.

Table 2 | Example of pre-variant filtering reporting standards

Filtering step Results to report Values

Sample 
selection and 
sequencing

Number of individuals or samples 
collected

n = 250 individuals

Number of samples initially sequenced n = 210 individuals

Sequence QC Number of individuals who were 
successfully sequenceda

n = 200 individuals

Total number of reads prior to any 
filtering

1.5 × 108 reads

Number of reads remaining after 
filtering for read qualityb

0.8 × 108 reads

Mapped-read 
filtering

Number of reads that mapped 6.8 × 107 reads

Number of reads remaining after 
filtering for mapping quality

5.1 × 107 reads

Number of reads remaining after 
filtering for improperly paired reads

4.8 × 107 reads

Number of reads remaining after 
filtering for PCR duplicatesc

8 × 106 reads

All accompanying code and filtering steps should be reported in the pre-variant notebook; 
see Fig. 3 for a detailed flow chart and Supplementary Notebook 1 for the accompanying 
pre-variant notebook. The sequence of filtering events can affect downstream results, so 
rows should be arranged chronologically. Readers will be able to determine which filtering 
steps had the largest effects on dataset size from the table alone. Notice in this heuristic 
example that alignment (number of reads that mapped) and filtering for PCR duplicates had 
large effects. aThe parameters and parameter values used to characterize ‘success’ should 
be clearly described. Samples filtered out at this stage typically include those with large 
deviations from the average number of reads per individual and/or a large percentage of 
reads with low base quality scores. bAny additional filters used during sequence quality 
control (QC), such as filtering for poly-G tails or adapter mismatches, should be given  
their own row. cAny additional filters used during filtering of mapped reads should be  
given their own row.
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that the downstream statistical effects of different filtering thresholds 
be reported (either in the main or supplementary text) to improve the 
scientific community’s understanding of filtering impacts. Lastly, we 
suggest that coding notebooks or scripts containing the exact soft-
ware employed, the specific commands used in that software, and the  
flags and parameter values chosen should be submitted alongside 
the reporting tables. We provide an example notebook containing a 
post-variant filtering workflow in Supplementary Notebook 2.

The benefits of re-filtering and reproducible research
Thorough examination of filtering (and re-filtering) will necessitate extra 
time, computational resources and work from researchers. However, 
changing and testing workflows (that is, re-filtering) is generally necessary 

to achieve high-quality, reproducible research and a better understanding 
and quantification of filtering effects. Following reproducible research 
guidelines may help; reproducible research is reproducible not just for 
other researchers but also for the primary investigators themselves 
and their future students and laboratory members. A reproduction-
friendly pipeline that runs a suite of analyses given a dataset and a set 
of filtering parameters is also easy to re-run a second time with a new  
(re-filtered) dataset133 (Fig. 3). Indeed, reproduction-friendly pipelines 
show an additional benefit: they minimize the time needed to re-run filter-
ing steps and, thus, ensure that testing several filter thresholds is a relatively 
painless process. For examples of studies with well-documented meth-
ods and easily accessible data that would be relatively straightforward  
to reproduce with new filters and thresholds, see refs. 97,134,135.

Box 4 | Filtering checklist
 

Throughout dataset assembly (from raw sequencing reads to 
genotypes), researchers should take care to explore the effects 
of alternative filtering strategies on downstream analyses and aid 

in reproducibility. To aid with this, the example checklist (see the 
table) should be consulted before and during a research project and 
checked-off prior to submitting a manuscript for peer review.

Analysis step Reporting step

Data archival

Decide on filtered datasets given a priori study questions, knowledge of 
the system and population-genetics theory (Fig. 3 and Box 3)

Create filter recording and reporting tables (Tables 2 and 3)

Filter on raw sequences, for example, read quality or poly-G tails (Table 2) Report exact filters used for filtering on raw sequences

Report total number of reads in study

Report total number of reads filtered out by filter type

Perform sequence alignment Report alignment parameters

Report total number of reads that aligned successfully

Report total number of reads that mapped uniquely

Report total number of reads that were filtered out

Perform filtering on successfully mapped reads Filter on mapping quality, PCR duplicates, discordant read pairs 
(some variant callers will do so automatically if these are marked)

Report number of reads retained and filtered at each step

Variant discovery

Begin or continue creation of multiple datasets Decide on study-wide versus within sample-group filters

Decide on filter values to employ and order of filters

Locus filtering (see text for when individual filtering should go first) Filter for MAF, HWP, paralogues, coverage

Report the number of SNPs remaining after these steps to 
understand which steps remove the most loci

Individual filtering Missing data; mislabelling or contamination

Data analysis and parameter estimation Report effects of filters on parameters and questions of interest 
(Tables 2 and 3)

Perform re-filtering and/or re-sequencing if necessary

Final filter recording Report reads, loci, individuals lost at each step

Archive all filtered datasets as VCF files

HWP, Hardy–Weinberg proportions; MAF, minor allele frequency; SNP, single-nucleotide polymorphism.
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Journal reviewers should be reasonable when asking authors to 
reanalyse their data with different filtering parameters. If authors 
have adequately justified their filtering choices and demonstrated 
that filters are unlikely to have biased their findings by running and 
quantifying the effects of several filtering thresholds, the application 
of additional filters is likely not necessary.

Conclusions and future directions
Advancements in genomic sequencing technologies, improvements in 
reference quality136–138 and the burgeoning field of pangenomics139,140 
will increase the accuracy and power of genomic data analyses. None-
theless, filtering will remain a central part of all genomic analyses for 
decades to come because no genomic dataset will ever be error-free. 
Investigators should strive to filter with a focus on reproducibility and 
aim to match the filters they employ to their study species (for example, 
demography, life history) and the questions they intend to answer.

Filtering effects can be unpredictable and there is no single best 
strategy for filtering all genomic datasets. Critically, we highlight 
that different filtering thresholds can create different downstream 
results and conclusions for the same dataset. Most computational 
analyses should therefore be re-run on multiple datasets produced 
by re-filtering using different filters and thresholds to facilitate the 
quantification of filtering effects on results and to improve certainty 
in the conclusions drawn from analyses. As more papers quantify 
filtering effects, the scientific community will better understand the 
effects of filtering choices on downstream inferences, which will help 
to usher in the next generation of data filtering and improve genomics 
applications across disciplines from ecology and evolution to human 
health, agriculture and the conservation of biodiversity.

Data availability
Information on the empirical and simulated data used for the analyses 
shown in this review is available in the Supplementary Information.

Code availability
The simulation code is available on GitHub at: https://github.com/
ChristieLab/filtering_simulation_paper.
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