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CARVING MODEL-FREE INFERENCE
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Department of Statistics, University of Michigan, apsnigdha@umich.edu

Complex studies involve many steps. Selecting promising findings based
on pilot data is a first step. As more observations are collected, the investigator
must decide how to combine the new data with the pilot data to construct valid
selective inference. Carving, introduced by Fithian, Sun and Taylor (2014),
enables the reuse of pilot data during selective inference and accounts for
overoptimism from the selection process. However, currently, carving is only
justified for parametric models such as the commonly used Gaussian model.
In this paper, we develop the asymptotic theory to substantiate the use of carv-
ing beyond Gaussian models. Our results indicate that carving produces valid
and tight confidence intervals within a model-free setting, as demonstrated
through simulated and real instances.

1. Introduction. Conducting inference for a selected set of findings, also known as se-
lective inference, is a common problem in complex studies. Usually, the investigator starts
with pilot data to select a set of promising findings. As additional observations are collected,
the investigator faces the question of how to augment the new data with the existing pilot
data for drawing valid selective inference. On the one hand, a direct augmentation of the two
data sets ignores overoptimism from the selection process. For example, a recent article by
[1] highlights replicability concerns with standard inferential methods that do not account for
the selection process. On the other hand, valid selective inference, which relies only on the
new data, fails to utilize observations from the pilot data. This practice is popularly known as
data splitting.

Carving, introduced by [5], is an efficient alternative to data splitting. It permits the reuse
of pilot data by basing valid selective inference on a conditional distribution. This distribu-
tion accounts for overoptimism from the selection process by conditioning on the selection
outcome seen in the pilot data. Previous work by [9, 24, 26] gives a recipe to construct pivots
from such conditional distributions. Applying the same recipe yields us a pivot for carving,
which we call a carved pivot.

When data is generated by a Gaussian model, the carved pivot provides exactly-valid se-
lective inference. However, what happens when we drift away from Gaussian data? In model-
free settings, can we still use the carved pivot for drawing asymptotically-valid selective infer-
ence? Moreover, can we trust selective inference when rare selection outcomes are observed
in our pilot data?

This paper demonstrates that a carved pivot produces asymptotically-valid selective infer-
ence, even if our data is not from a Gaussian model. Our theory suggests that this is true for
a wide range of distributions, and that selective inference using a carved pivot remains valid
even for rare selection outcomes.

1.1. Notation. We list some basic notation for our paper. For d ∈ N, let [d] =
{1,2, . . . , d}. Let |E| be the cardinality of set E and let Ec be its complement set. Let V (j) be
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the j th component of the vector V ∈ R
d . Let V (−j) be the subvector of V after we exclude

the j th component of the original vector and let V (E) be the subvector of V that collects the
components in E ⊆ [d]. The symbol V ′ denotes the transpose of the vector V . Unless men-
tioned otherwise, ‖V ‖ is understood as the �2-norm of V . PE denotes a permutation matrix:
PEV reorders the components of V and returns the vector (V (E)′ V (Ec)′)′. For a positive def-
inite matrix M , let M1/2 be its principal square root. For any matrix M ∈ R

d1×d2 , E1 ⊆ [d1],
E2 ⊆ [d2], let ME1,E2 be the submatrix of M that contains rows and columns in the sets E1
and E2, respectively. Also, let ME1 be the submatrix of M , which collects its columns in the
set E1. We use the notation Id,d and 0d1,d2 for the identity matrix with d rows and columns
and the matrix of all zeros with d1 rows and d2 columns, respectively. We use the notation 0d

and 1d to denote a vector with all d components equal to zero and a vector with all d compo-
nents equal to one, respectively. For a positive semidefinite matrix � ∈R

d×d and x ∈R
d , let

Exp(x,�) = exp(−1
2x′�x). Let 1E represent the indicator function, where E is a fixed set.

At last, let � be the CDF of a standard Gaussian distribution with the density function φ, and
let �̄(x) = 1 − �(x) be the corresponding survival function at x.

1.2. Organization. In Section 2, we present a carved pivot that ensures exactly-valid se-
lective inference with Gaussian data. We introduce a running example in this section that
helps us develop the main ideas behind the asymptotic theory. We demonstrate in Section 3
that asymptotically-valid selective inference is dependent on the convergence of specific rela-
tive differences. In Section 4, we build the asymptotic theory for Rd -valued random variables
with the identity covariance matrix. We then extend the asymptotic theory to variables with
a general covariance matrix in Section 5. We study the empirical behavior of the carved
pivot on both synthetic and real data in Section 6. Lastly, we conclude our paper with a brief
discussion in Section 7. Proofs and supporting results are collected in the Supplementary
Material [13].

2. Exactly-valid selective inference with carving.

2.1. Our running example. Suppose that we observe a triangular array of independent
and identically distributed R

d -valued observations

(2.1) ζi,n =
(
ζ

(1)
i,n ζ

(2)
i,n · · · ζ

(d)
i,n

)′ i.i.d.∼ Pn for i ∈ [n].
Let

βn = EPn
[ζ1,n] ∈ R

d

be the unknown mean parameter. Let

� = EPn

[
(ζ1,n − βn)(ζ1,n − βn)

′]
be the d × d covariance matrix, which we assume is fixed and invertible. Define

Vn = √
nζ̄n,

where ζ̄n = 1
n

∑n
i=1 ζi,n. Additionally, let

�−j,j = CovPn

(
V (−j)

n ,V (j)
n

)
, σ 2

j = VarPn

(
V (j)

n

)
, for j ∈ [d].

Throughout, we will assume that the distribution of Vn admits a Lebesgue density.
For a fixed constant ρ ∈ (0,1), we consider a Gaussian variable

Wn ∼N
(
0d, ρ2�

)
,
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which is independent of Vn. Then, using Vn and Wn, we infer for β
(j)
n , the j th component of

βn, only if

(2.2) V (j)
n + W(j)

n > 
(j),

where 
 is a fixed vector in R
d . Borrowing the term randomization from [24], we call Wn a

randomization variable. The rule used for selection, in (2.2), is called a randomized selection
rule. As shown afterwards, there is an asymptotic correspondence between (2.2) and a similar
selection on pilot data. We use the symbol En to represent the indices of our selected means.
Let

Eobs ⊆ [d]
be the observed value of the random variable En. For brevity sake, let |Eobs| = p.

2.2. Exactly-valid selective inference with Gaussian data. Suppose that our data is drawn
from

Pn =N (βn,�).

In this case, Vn is distributed as Gaussian variable with mean vector
√

nβn and covariance
matrix �. Consider j ∈ Eobs. We obtain a conditional distribution for V

(j)
n , which accounts

for the selection process by conditioning on a subset of the selection outcome

{En = Eobs}.
We present a pivot for for β

(j)
n based on this conditional distribution.

First, we introduce some more statistics. Define

An = V
(Ec

n)
n + W

(Ec
n)

n , U(j)
n = V (−j)

n − 1

σ 2
j

�−j,jV
(j)
n .

Let Aobs be the observed value of An. To draw valid selective inference, we construct a pivot
by using the conditional distribution of V

(j)
n when conditioned on

(2.3) {En = Eobs,An = Aobs}
and the observed value of U

(j)
n .

Note that we condition on a subset of the selection outcome by further conditioning on
some additional information An. By adding extra conditioning, the conditional distribution
of V

(j)
n becomes simpler since the outcome can be described as a set of straightforward sign

constraints. Additionally, we condition on U
(j)
n to eliminate all parameters except β

(j)
n .

Proposition 1 introduces this pivot for Gaussian data. To state this result, we consider the
following matrices:

R(j) =PEobs

⎡⎢⎣ 1 0
1

σ 2
j

�−j,j Id−1,d−1

⎤⎥⎦ , Q =
[

Ip,p

0d−p,p

]
, r =

(

(Eobs)

Aobs

)
.

Define F :Rd →R as

F(V ) =
∫

Exp
(
Qt − V + r,

1

ρ2 �−1
)

· 1t∈Rp+ dt,

and define

D
(
U ;√nβ(j)

n

) =
∫ ∞
−∞

φ

(
1

σj

(
v − √

nβ(j)
n

)) · F
(
R(j) (v U ′)′) dv.
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PROPOSITION 1 (Pivot). Let Pivot(j)((V
(j)
n (U

(j)
n )′)′) be equal to(

D
(
U(j)

n ;√nβ(j)
n

))−1 ·
∫ ∞
V

(j)
n

φ

(
1

σj

(
v − √

nβ(j)
n

)) · F
(
R(j)

(
v

(
U(j)

n

)′)′)
dv.

Conditional on the outcome in (2.3), Pivot(j)((V
(j)
n (U

(j)
n )′)′) is distributed as a Unif(0,1)

variable.

The pivot in Proposition 1 applies broadly to several instances of selective inference. We
provide more examples in Section 6, which includes inference after variable selection. In
each instance, we construct a pivot with a similar representation as Proposition 1.

Before proceeding further, we turn to a special case when � = Id,d . Note that the compo-
nents of βn do not have any relationship with each other. We obtain a reduced form for our
pivot in this special case.

To simplify further, we fix 
 = 0d . Our pivot turns out to be a univariate function in the
statistic V

(j)
n , that is, it is free of U

(j)
n .

COROLLARY 1 (Univariate pivot). The pivot for β
(j)
n in Proposition 1 simplifies as

Pivot(j)(V (j)
n

) =
∫∞
V

(j)
n −√

nβ
(j)
n

φ(v) · �̄(− 1
ρ
(v + √

nβ
(j)
n )) dv∫∞

−∞ φ(v) · �̄(− 1
ρ
(v + √

nβ
(j)
n )) dv

.

2.3. Contributions and related developments. Consider an array of observations from Pn

in R
d , as described earlier. Now, suppose a similar selection rule is applied only to a random

subsample of size n1(< n). This subsample plays the role of pilot data in our setup. Let
n2 = n − n1 and let

ρ2 = n2

n1

be the ratio of the number of observations in the new data to the number of observations in
the pilot data. We infer for β

(j)
n only if the corresponding Z-test statistic exceeds a threshold

τ (j) in the pilot data, that is,

V (j)
n1

> τ(j).

The selection rule on the subsample can be transformed into the randomized selection rule
in (2.2), in an asymptotic sense. To see this, we define

(2.4) W(j)
n =

√
1 + ρ2 · V (j)

n1
− V (j)

n for j ∈ [d],
and also let


(j) =
√

1 + ρ2 · τ (j).

Asymptotically, Wn is distributed as a Gaussian variable with mean 0d and covariance ρ2�

and is independent of Vn.
Specifically, when Pn = N (βn,�), we easily verify that

Wn ∼N
(
0d, ρ2�

)
,

and that Wn is independent of Vn. That is, for Gaussian data, the selection on our subsample of
size n1 coincides exactly with the randomized selection in (2.2). This example was provided
in [18] for d = 1. In this situation, we note that Proposition 1 reuses the pilot data to produce
a carved pivot for exactly-valid selective inference.
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FIG. 1. The four panels plot the ECDF of the carved pivot when data is generated according to MOD-
ELS (1)–(4). The red dashed line represents the reference y = x curve.

What happens when we drift away from Gaussian data? We begin with a simple simulation.
We draw our data from four different models with non-Gaussian errors and conduct 10,000
rounds of simulation from each model. Figure 1 depicts the empirical cumulative distribution
function (ECDF) of the carved pivot. A strong alignment with the y = x line indicates that
the carved pivot is well approximated by a Unif(0,1) variable.

Let n1 = n2 = 25, that is, ρ2 = 1. Fix � = Id,d and fix τ = 0d . Let
√

nβ(j)
n = −anβ̄ forj ∈ [d],

where an = n1/6−δ , δ = 1e−3 and β̄ = 1.5. We draw

ζi,n = βn + ei,n.

First, each component of the error vector ei,n is drawn independently from E, a distribution
supported on the real line. Then we standardize each such observation to have mean 0 and
variance 1. MODELS (1)–(4) are based on four different choices of E:

1. MODEL-(1) E = Exponential(1) with rate parameter equal to 1 and density equal to
p(x) = exp(−x) · 1x>0.

2. MODEL-(2) E = Exponentially Modified Gaussian distribution(0,1,1) with the
mean and variance of the Gaussian component equal to 0 and 1 respectively, and with the
rate parameter of the exponential component equal to 1, and density equal to

p(x) = 1√
π

exp(0.5 − x)

∫ ∞
1−x√

2

e−t2
dt

3. MODEL-(3) E = 0.8 ·N (0,0.25)+0.2 ·N (0,3), which is a mixture of two Gaussian
distributions with mixing weights 0.8 and 0.2.

4. MODEL-(4) E = Laplace(0,1) with location and scale parameters equal to 0 and 1,
respectively, and density equal to p(x) = (2)−1 exp(−|x|).
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We make a few interesting observations from Figure 1. First, our plot suggests that the
carved pivot produces valid selective inference well beyond Gaussian data. Previously, [24]
showed that randomized selection rules with heavy-tailed variables produced asymptotically-
valid selective inference. In contrast, randomization variables, based on carving, resemble
Gaussian variables in the limit. Second, our plot shows that selective inference remains valid
for rare selection outcomes that have vanishing probabilities in the limit. Prior asymptotic
work such as those conducted by [11, 24, 25] have only focused on selection outcomes with
nonvanishing probabilities. The asymptotic theory in our paper extends the use of carving
beyond Gaussian models and confirms the validity of selective inference for rare selection
outcomes observed on pilot data.

Our paper is connected with the fast-growing literature on selective inference with ran-
domization. In recent work, [8] showed that randomized rules on Gaussian variables yield
bounded confidence intervals for selective inference and [20] have utilized similar rules to
construct confidence intervals for the effects of selected genetic variants. [22] proposed re-
peated carving for more stable inference in high-dimensional settings. [28] investigated the
potential of randomization from an algorithmic stability perspective. [19] applied carving to
pool summary statistics from prior studies and constructed unbiased estimators for shared pa-
rameters. Work by [16, 18] introduced Bayesian methods to construct inference after solving
randomized variable selection algorithms. [21] utilized a Gaussian randomization variable to
split a data set into two parts. One part is utilized for selection while the other is kept aside for
inference. Differently from the previous reference, the results in our paper support the reuse
of the first part when moving away from Gaussian data.

3. Dependence on relative differences. Our main finding in this section is that asymp-
totic validity of the carved pivot can be shown to depend on the convergence of specific
relative differences. We first discuss some preliminaries.

3.1. Some preliminaries. We start from the randomized selection rule in (2.2), where (i)
Wn is distributed as a Gaussian random variable

Wn ∼N
(
0d, ρ2�

)
,

and (ii) Wn is independent of Vn. Later, we show that asymptotic guarantees with a Gaussian
randomization variable are transferable to carving under some conditions. We come back to
this topic in Section 5.

Fixing some more notation, let

ei,n = �−1/2(ζi,n − βn),

and let Zi,n = 1√
n

ei,n. We assume that the components of Vn in the set Eobs are stacked before
the ones in its complement set. Hereafter, we find it convenient to work with a standardized
version for Vn,

Zn = �−1/2(Vn − √
nβn),

which can be written as

(3.1) Zn =
n∑

i=1

1√
n

ei,n =
n∑

i=1

Zi,n.

Our pivot, in terms of the standardized variable, is now denoted by

(3.2) P(j)(Zn;√nβn) = Pivot(j)((R(j))−1(
�1/2Zn + √

nβn

))
.
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This is based on noting the following equality:(
V (j)

n U(j)
n

′)′ = (
R(j))−1(

�1/2Zn + √
nβn

)
.

Our next result computes the ratio between the conditional and unconditional likelihood
functions, after and before we apply the randomized selection rule. We use the symbol

LRPn
(Zn;√nβn)

to denote this ratio at βn.

REMARK 1. We stress that LRPn
(Zn;√nβn) represents how the selection process affects

the unconditional likelihood. It is worth noting that this ratio is different from a ratio of the
same likelihood function at two distinct values of βn.

In the rest of the paper, we use EPn
[Z] to denote the expectation of the standardized vari-

able Z when based on the distribution Pn. We use the more specific symbol EN [Z] to repre-
sent the expectation of Z when Z ∼N (0d, Id,d).

PROPOSITION 2 (Ratio of likelihood functions after and before selection). Let F : Rd →
R be defined according to Proposition 1. Then the ratio between the conditional likelihood
and unconditional likelihood functions is equal to

LRPn
(Zn;obs;

√
nβn) = F(�1/2Zn;obs + √

nβn)

EPn
[F(�1/2Zn + √

nβn)] ,
where Zn;obs is the observed value of Zn.

REMARK 2. Suppose that Pn = N (βn,�). Equivalently, Zn is distributed as N (0d, Id,d)

variable. In this case, we utilize the subscript N to indicate that our likelihoods are based on
Gaussian data, and the above ratio is denoted by

LRN (Zn;obs;
√

nβn) = F(�1/2Zn;obs + √
nβn)

EN [F(�1/2Zn + √
nβn)] .

Suppose Q is a real-valued measurable mapping. Through the ratio in Proposition 2, we
define

(3.3) ẼPn

[
Q(Zn)

] = EPn

[
Q(Zn) · LRPn

(Zn;√nβn)
]
.

The expectation on the left-hand side of (3.3) is taken with respect to the conditional distri-
bution of Zn, and the expectation on the right-hand side is taken with respect to the uncondi-
tional distribution of Zn. Once again, for Gaussian data, we use more specific notation with
the subscript N and define

ẼN
[
Q(Zn)

] = EN
[
Q(Zn) · LRN (Zn;√nβn)

]
.

We are now ready to formally state our main goal in the paper. Let H ∈ C
3(R,R) be an ar-

bitrary function with bounded derivatives up to the third order. Let Cn be a suitable collection
of distributions Pn that we specify later. Using our notation, we prove weak convergence of
our pivot by showing that

(3.4) lim
n

sup
Pn∈Cn

∣∣ẼPn

[
H ◦ P(j)(Zn;√nβn)

]− ẼN
[
H ◦ P(j)(Zn;√nβn)

]∣∣ = 0.

The above weak convergence statement indicates that our pivot generates asymptotically-
valid conditional inference even as we depart from Gaussian data. It is important to mention
that this statement assures the validity of selective inference across all distributions in the
collection Cn.
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3.2. Relative differences. Proposition 3 recognizes that weak convergence of our pivot
depends on the convergence of specific relative differences. Before we do so, define

(3.5)
G1(Zn;√nβn) = F

(
�1/2Zn + √

nβn

)
,

G2(Zn;√nβn) = F
(
�1/2Zn + √

nβn

) · H ◦ P(j)(Zn;√nβn).

Let supf denote the supremum of a bounded, real-valued function f .

PROPOSITION 3 (Relative differences). Suppose that

R(l)
n = (

EN
[
F
(
�1/2Zn + √

nβn

)])−1 · ∣∣EPn

[
Gl(Zn;√nβn)

]−EN
[
Gl(Zn;√nβn)

]∣∣,
for l ∈ [2]. Let sup |H| = K < ∞. Then it holds that∣∣ẼPn

[
H ◦ P(j)(Zn;√nβn)

]− ẼN
[
H ◦ P(j)(Zn;√nβn)

]∣∣ ≤ (
K · R(1)

n + R(2)
n

)
.

REMARK 3. We note that the relative differences R(l)
n involve expectations that are com-

puted with respect to the unconditional distribution of Zn.

As a result of Proposition 3, the weak convergence statement in (3.4) follows immediately
once we show that

lim
n

sup
Pn∈Cn

R(l)
n = 0 for l ∈ [2].

To close this section, we have a simplified expression for the common denominator in our
relative differences. Define

�̄ = (
Q′�−1Q

)−1
, μ̄n = �̄Q′�−1(

√
nβn − r), 
 = �−1 − �−1Q�̄Q′�−1.

PROPOSITION 4. We have

EN
[
F
(
�1/2Zn + √

nβn

)] = C0 · Exp
(√

nβn − r,
1

(1 + ρ2)
· 


)
· PN [Tn > 0p],

where Tn ∼N (μ̄n, (1 + ρ2)�̄) and C0 is a constant, which does not depend on n.

We note that PN [Tn > 0p] is the probability of our selection outcome when Pn =
N (βn,�). Put another way, Proposition 4 states how the common denominator of our relative
differences depends on this probability.

3.3. Revisiting the univariate pivot. We revisit our univariate pivot in Corollary 1. Recall
that � = Id,d and 
 = 0d . Consistent with our earlier notation, we represent the univariate
pivot using the standardized variable through

(3.6) P(j)(Z(j)
n ;√nβ(j)

n

) = Pivot(j)(Z(j)
n + √

nβ(j)
n

)
.

For this special case, we define

(3.7)

G̃1
(
Z(j)

n ;√nβ(j)
n

) = �̄

(
− 1

ρ

(
Z(j)

n + √
nβ(j)

n

))
,

G̃2
(
Z(j)

n ;√nβ(j)
n

) = �̄

(
− 1

ρ

(
Z(j)

n + √
nβ(j)

n

)) · H ◦ P(j)(Z(j)
n ;√nβ(j)

n

)
.

Letting D̃n = EN [�̄(− 1
ρ
(Z(j)

n + √
nβ

(j)
n ))], we now define the relevant relative differences

as

(3.8) R̃(l)
n = D̃−1

n · ∣∣EPn

[
G̃l

(
Z(j)

n ;√nβ(j)
n

)]−EN
[
G̃l

(
Z(j)

n ;√nβ(j)
n

)]∣∣,
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for l ∈ [2]. Note that the relative differences are determined solely by the expectations of
functions that involve the univariate variable Z(j)

n .
Suppose that sup |H| = K < ∞. Once again, we can show that∣∣ẼPn

[
H ◦ P(j)(Z(j)

n ;√nβ(j)
n

)]− ẼN
[
H ◦ P(j)(Z(j)

n ;√nβ(j)
n

)]∣∣ ≤ (
K · R̃(1)

n + R̃(2)
n

)
.

We use two facts here. First, the pivot is a function of the univariate variable Z(j)
n . Second,

the likelihood ratio, in Proposition 2, is proportional to∏
j∈Eobs

LRPn

(
Z(j)

n;obs;
√

nβ(j)
n

)
,

where

LRPn

(
Z(j)

n;obs;
√

nβ(j)
n

) =
{
EPn

[
�̄

(
− 1

ρ

(
Z(j)

n + √
nβ(j)

n

))]}−1
�̄

(
− 1

ρ

(
Z(j)

n;obs + √
nβ(j)

n

))
.

It is important to note that this ratio depends on β
(j)
n only through the univariate variable

Z(j)
n . For Gaussian data, the specific ratio is given by

LRN
(
Z(j)

n;obs;
√

nβ(j)
n

) = �̄(− 1
ρ
(Z(j)

n;obs + √
nβ

(j)
n ))

EN [�̄(− 1
ρ
(Z(j)

n + √
nβ

(j)
n ))]

.

The steps in the proof of Proposition 3 directly lead us to the bound in (3.8) based on our
relative differences.

At last, we note that the common denominator in our relative differences is equal to

EN

[
�̄

(
− 1

ρ

(
Z(j)

n + √
nβ(j)

n

))] = PN [j ∈ Eobs] = �̄

(
−

√
nβ

(j)
n√

(1 + ρ2)

)
,

which is the probability of the selection outcome on Gaussian data.

4. Weak convergence of univariate pivot. To better understand the behavior of the
multivariate pivot for a general �, we first analyze the simpler univariate pivot.

4.1. Main results. In this section, we state our main results in Theorem 1 and Theo-
rem 2. These results establish that our univariate pivot yields asymptotically-valid selective
inference for two types of selection outcomes, namely bounded outcomes and rare outcomes.
We describe both types of outcomes below.

Suppose that the components of our mean vector are bounded, that is,

(4.1)
∣∣√nβ(j)

n

∣∣ < R for each n ∈N and j ∈ [d].
Consider the limiting case when Pn = N (βn, Id,d). Recall that the probability of the selection
outcome on Gaussian data is equal to

PN [j ∈ Eobs] = �̄

(
−

√
nβ

(j)
n√

(1 + ρ2)

)
.

Clearly, this probability is bounded away from 0 whenever the mean satisfies (4.1). This
selection outcome is referred to as a bounded outcome.

From now on, fix j ∈ Eobs and consider the relative differences R̃(l)
n in (3.8).
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ASSUMPTION 1. Consider a collection of distributions Pb,n such that the mean of each
distribution Pn in this collection satisfies (4.1). Assume that Pb,n has uniformly bounded
third moments in the following sense:

sup
n

sup
Pn∈Pb,n

EPn

[∣∣e(j)
1,n

∣∣3] < ∞,

where e1,n is the standardized variable, which was defined in (3.1).

THEOREM 1 (Weak convergence of under bounded outcomes). Under Assumption 1, we
have

lim
n

sup
Pn∈Pb,n

R̃(l)
n = 0 for l ∈ [2],

and as a result,

lim
n

sup
Pn∈Pb,n

∣∣ẼPn

[
H ◦ P(j)(Z(j)

n ;√nβ(j)
n

)]− ẼN
[
H ◦ P(j)(Z(j)

n ;√nβ(j)
n

)]∣∣ = 0.

Now suppose we consider the case where the mean of our distribution Pn grows with
increasing sample size and

lim
n

√
nβ(j)

n = −∞ for all j ∈ [d].
As the sample size grows bigger, the probability of the selection outcome on Gaussian data
approaches 0. This selection outcome is referred to as a rare outcome.

From now on, we focus on a subset of these parameters that result in large deviation-type
probabilities. Fix β̄ > 0. Suppose that each component of the mean vector is parameterized
as

(4.2)
√

nβ(j)
n = −anβ̄,

where an → ∞ as n → ∞ and an = o(n1/2). Using the Mills ratio for Gaussian tail proba-
bilities, it is easy to see that the probability of the rare outcome vanishes to 0 as

PN [j ∈ Eobs] = �̄

(
−

√
nβ

(j)
n√

(1 + ρ2)

)
= C0(anβ̄)−1 · φ

(
anβ̄√
1 + ρ2

)
.

ASSUMPTION 2. Consider a collection of distributions Pr,n that have means parameter-
ized as per (4.2). Assume that the collection Pr,n has uniformly bounded exponential mo-
ments as follows:

sup
n

sup
Pn∈Pr,n

EPn

[
exp

(
χ
∣∣e(j)

1,n

∣∣)] < ∞

for some χ ∈ R
+.

Let � : K → R be a continuous, bounded function. Under the moment condition in As-
sumption 2, the variable Zn obeys Varadhan’s principle of large deviations in the following
sense:

1

a2
n

logEPn

[
exp

(
−a2

n�

(
1

an

Zn

))
· 1 1

an
Zn∈K

]
= r�,n − inf

z∈K

{
1

2
z2 + �(z)

}
,

where r�,n = o(1). For example, please see [4].
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ASSUMPTION 3. Consider � ≡ �t for t ∈ {0,1} where �1(z) = 1
ρ2 (z− β̄)2 and �0(z) =

0. Fix K ≡Kt for t ∈ {0,1} where K1 = [−c0, c0] for c0 > 0, and K0 = Kc
1. We assume that

sup
n

sup
Pn∈Pr,n

sup
t∈{0,1}

a2
nr�t ,n < ∞.

The conditions in Assumptions 2 and 3 imply that

EPn

[
exp

(
−a2

n�t

(
1

an

Zn

))
· 1

a−1
n Zn∈Kt

]
≤ K0 exp

(
−a2

n inf
z∈Kt

{
1

2
z2 + �t(z)

})
,

where K0 is a constant. As a result, we obtain the rate of decay for large-deviations type
probabilities and exponentially vanishing moments.

THEOREM 2 (Weak convergence under rare outcomes). Suppose that the conditions in
Assumptions 2 and 3 are met. Then we have

lim
n

sup
Pn∈Pr,n

R̃(l)
n = 0 for l ∈ [2],

and

lim
n

sup
Pn∈Pr,n

∣∣ẼPn

[
H ◦ P(j)(Z(j)

n ;√nβ(j)
n

)]− ẼN
[
H ◦ P(j)(Z(j)

n ;√nβ(j)
n

)]∣∣ = 0.

Relative to the conditions in Assumption 1, we impose stronger moment conditions to
handle rare outcomes. In return, we can guarantee asymptotically-valid inference through
our pivot, even when we condition on rare outcomes with large deviation-type probabilities.

REMARK 4. We exclude the uninteresting case when√
nβ(j)

n → ∞.

This is because selection does not have an impact in large samples and standard inferences
do not require an adjustment for selection.

4.2. Main tool for weak convergence theory. We present the Stein bound for Gaussian
approximations, which is the primary tool in our asymptotic theory. We then provide a brief
outline of how it applies to our problem.

Fixing some more notation, we denote by

Zn[−i] = Zn − Zi,n = ∑
k∈[n]\i

Zk,n

the ith leave-one out variable. This variable is obtained by dropping Zi,n from the sum defined
in (3.1). Let Z(j)

n [−i] be the j th entry of this ith leave-one out variable. Consider a real-
valued mapping g that is Lebesgue-almost surely differentiable and satisfies EN [|g(Z)|] < ∞
for Z ∼ N (0,1). Define

(4.3) Sg(z) := exp
(

1

2
z2
)

·
∫ z

−∞
{
g(t) −EN

(
g(Z)

)} · Exp(t,1) dt,

which is also called the Stein function for g. For i ∈ [n], we let

Mi (t) = EPn

[
Z

(j)
i,n

(
1[t,∞)

(
Z

(j)
i,n

)
1[0,∞)(t) − 1(−∞,t]

(
Z

(j)
i,n

)
1(−∞,0)(t)

)]
.

Lemma 1 provides a bound to measure the difference between the expectations of a Gaus-
sian variable and its non-Gaussian counterpart. For related literature, we point out to [3]. In
this paper, we use the symbol Dkf (x0) to denote the kth derivative of a differentiable function
f at x0 and simply use Df (x0) to denote the first derivative of f at x0.
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LEMMA 1 (Univariate Stein bound). We have∣∣EPn

[
g
(
Z(j)

n

)]−EN
[
g
(
Z(j)

n

)]∣∣ ≤ SBPn
(g),

where

SBPn
(g) = n ·

∫ ∞
−∞

sup
α∈[0,1]

EPn

[(
|t | + 1√

n

∣∣e(j)
1,n

∣∣)

×
∣∣∣∣D2Sg

(
αt + (1 − α)

1√
n

e(j)
1,n +Z(j)

n [−1]
)∣∣∣∣]M1(t) dt.

Equipped with the above bound, we review the relative differences defined in (3.8). We
use the Stein bound to write the following inequality:

R̃(l)
n ≤ (D̃n)

−1 · SBPn
(G̃l)

for l ∈ [2].
First, we consider bounded outcomes. The probability of a bounded outcome, which is also

the common denominator of our relative differences D̃n, is bounded away from 0. To prove
weak convergence of our pivot, we need to prove that the univariate Stein bound SBPn

(G̃l)

uniformly converges to 0 as n tends to infinity.
When dealing with rare outcomes, the uniform convergence of the Stein bound is not

enough to guarantee weak convergence of our pivot. This is because the probability of the
selection outcome also converges to 0 at an exponentially fast rate. To ensure weak conver-
gence of our pivot, it is necessary for the related Stein bound to converge at a faster rate than
the probability of the selection outcome. As a result, proving the asymptotic validity of our
pivot requires stronger conditions compared to bounded outcomes.

For both types of outcomes mentioned, we investigate the large-sample behavior of the
commensurate Stein bound to prove Theorems 1 and 2. Detailed proofs are deferred to the
Supplementary Material.

5. Weak convergence of multivariate pivot. We turn to the multivariate pivot in Propo-
sition 1. Throughout the section, we will use C1,C2, . . . to denote constants that are free of n.

5.1. Main results. In line with the preceding section, we develop our theory for bounded
and rare outcomes.

We start by considering mean parameters, which satisfy

(5.1) ‖√nβn − r‖ ≤ R.

Suppose that Pn = N (βn,�). Recall that the probability of the selection outcome is equal to

PN [Tn > 0p],
where Tn is a Gaussian variable as stated in Proposition 4. It is easy to see that the probability
of the selection outcome is bounded away from 0, which gives rise to bounded outcomes.

ASSUMPTION 4. We consider a collection of distributions Pb,n with bounded mean pa-
rameters as stated in (5.1). Suppose that the collection Pb,n has uniformly bounded moments
as follows:

sup
n

sup
Pn∈Pb,n

EPn

[‖e1,n‖6] < ∞.
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Let R(l)
n be defined according to Proposition 3. Theorem 3 assures that our pivot generates

asymptotically-valid selective inference for bounded outcomes.

THEOREM 3 (Weak convergence under bounded outcomes). Under Assumption 4, we
have

lim
n

sup
Pn∈Pb,n

R(l)
n = 0 for l ∈ [2],

and as a result,

lim
n

sup
Pn∈Pb,n

∣∣ẼPn

[
H ◦ P(j)(Zn;√nβn)

]− ẼN
[
H ◦ P(j)(Zn;√nβn)

]∣∣ = 0.

Now we turn to rare outcomes. Fix β̄ ∈ R
d such that �̄Q′�−1β̄ /∈ (−∞,0]d . Let the mean

for our generating distribution Pn be parameterized as

(5.2)
√

nβn − r = −anβ̄,

where an → ∞ as n → ∞ and an = o(n1/6).
For each βn, we consider the matching parameter

μ̄n = �̄Q′�−1(
√

nβn − r).

Based on our parameterization, note that we can write

μ̄n = −anμ̄,

where μ̄ = �̄Q′�−1β̄ . Formalized next, we first see that the probability of the selection
outcome vanishes to zero at an exponentially fast rate.

PROPOSITION 5 (Probability of a rare outcome). Consider the optimization problem

t� = arg min
t≥μ̄

t ′�̄−1t.

Then there exists a unique (nonempty) set I ⊆ [d] such that the following assertions are
simultaneously true:

(i) t
(I)
� = μ̄(I) �= 0|I|;

(ii) for J = Ic, t
(J )
� = �̄J ,I�̄−1

I,Iμ̄(I) ≥ μ̄(J ) whenever J �= ∅;

(iii) (�̄−1
I,Iμ̄(I))(j) > 0 for all j ∈ I and t ′��̄−1t� = (μ̄(I))′�̄−1

I,Iμ̄(I) > 0.

Further, we have

PN [Tn > 0p] = C3

(an)|I| · Exp
(
anμ̄

(I),
1

(1 + ρ2)
(�̄I,I)−1

)
for sufficiently large n.

REMARK 5. The proof for the above result closely follows Proposition 2.1 and Corol-
lary 4.1 in [7]. Therefore, we omit further details of the proof here.

As a corollary, we observe the following.

COROLLARY 2. Let � = �−1Q�̄I�̄−1
I,I�̄′

IQ′�−1. It holds that the common denomi-
nator of our relative differences is equal to

EN
[
F
(
�1/2Zn + √

nβn

)] = C4

(an)|I| · Exp
(√

nβn − r,
1

(1 + ρ2)
· (
 + �)

)
.
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The proof of Corollary 2 follows directly from the claims in Propositions 4 and 5.
Below, we state the assumptions to guarantee weak convergence of the multivariate pivot

under rare outcomes.

ASSUMPTION 5. Consider a collection of distributions Pr,n such that the mean grows
with n as per (5.2). Assume that the collection Pr,n has a uniformly bounded exponential
moment near the origin as follows:

sup
n

sup
Pn∈Pr,n

EPn

[
exp

(
χ‖e1,n‖)] < ∞

for some χ ∈ R
+.

Let � : K → R be a continuous and bounded function. Under Assumption 5, Varadhan’s
principle of large deviations for Zn implies that

1

a2
n

logEPn

[
exp

(
−a2

n�

(
1

an

Zn

))
· 1 1

an
Zn∈K

]
= r�,n − inf

z∈K

{
1

2
z′z + �(z)

}
,

where r�,n = o(1).

ASSUMPTION 6. Consider � ≡ �t where �t(z) = 1
1−t+ρ2 (

√
t�1/2z − β̄)′(
 +

�)(
√

t�1/2z − β̄) for t ∈ (0,1] and �0(z) = 0. Fix K ≡ Kt where Kt = [−c0 · 1d, c0 · 1d ]
for c0 > 0 and t ∈ (0,1], and K0 = Kc

1. We impose the condition that

sup
n

sup
Pn∈Pr,n

sup
t∈[0,1]

a2
nr�t ,n < ∞.

ASSUMPTION 7. Additionally, we assume that

sup
n

sup
Pn∈Pr,n

EPn
[F(�1/2Zn + √

nβn) · 1Zn∈Kn]
EN [F(�1/2Zn + √

nβn) · 1Zn∈Kn]
< ∞

whenever

lim
n

EN [F(�1/2Zn + √
nβn) · 1Zn∈Kn]

EN [F(�1/2Zn + √
nβn)] = 0.

In particular, we note the following.

REMARK 6. Similar to our univariate analysis, the conditions in Assumptions 5 and 6
provide a uniform bound on a set of large-deviations type probabilities and exponentially
vanishing moments. The condition in Assumption 7 controls the probability of selection out-
comes that are rarer than the observed outcome on Gaussian data by imposing the restriction
that these probabilities decay at an equal or faster rate than the limiting Gaussian counterpart
More specifically, this condition allows us to establish convergence of our relative differences
on a set of high probability while controlling their behavior on the complement set.

Theorem 4 proves that our pivot offers asymptotically-valid selective inference, even when
rare outcomes are observed.

THEOREM 4 (Weak convergence under rare outcomes). Suppose that the conditions in
Assumptions 5, 6 and 7 are met. Then we have that

lim
n

sup
Pn∈Pr,n

R(l)
n = 0,



2332 S. PANIGRAHI

and that

lim
n

sup
Pn∈Pr,n

∣∣ẼPn

[
H ◦ P(j)(Zn;√nβn)

]− ẼN
[
H ◦ P(j)(Zn;√nβn)

]∣∣ = 0

for l ∈ [2].
5.2. Main tool for weak convergence theory. To prove our main results in Theorem 3 and

Theorem 4, we use a multivariate version of the Stein bound.
Lemma 2 presents this bound for a Lebesgue almost surely three times differentiable

mapping g : Rd → R, which is adopted from [2]. Suppose that EN [|g(Z)|] < ∞. Let
Z ∼ N(0d, Id,d). The Stein bound is defined through partial derivatives of

Sg(z) =
∫ 1

0

1

2t

(
EN

[
g(

√
tz + √

1 − tZ)
]−EN

[
g(Z)

])
dt,

also called the Stein function for g. Before stating the bound, recall that

Zn[−i] =Zn − Zi,n

denotes the ith leave-one out variable. Let

Dkf (x0)[i1, i2, . . . , ik] = ∂kf (x0)

∂x(i1)∂x(i2) . . . ∂x(ik)

denote the kth order partial derivative of f at x0, for i1, i2, . . . , ik ∈ [d], and let e�
i,n be an

independent copy of ei,n, for i ∈ [d].
LEMMA 2 (Multivariate Stein bound). We have that∣∣EPn

[
g(Zn)

]−EN
[
g(Zn)

]∣∣ ≤ SBPn
(g),

where

SBPn
(g) = C1√

n

∑
λ,γ∈{0}∪[3]:λ+γ≤3

∑
j,k,l

EPn

[
‖e1,n‖λ

∥∥e�
1,n

∥∥γ sup
α,κ∈[0,1]

∣∣∣∣D3Sg

(
Zn[−1]

+ α√
n

e1,n + κ√
n

e�
1,n

)
[j, k, l]

∣∣∣∣].
As before, we revisit our relative differences and use the Stein bound to note that

R(l)
n ≤ (

EN
[
F
(
�1/2Zn + √

nβn

)])−1 · SBPn
(Gl).

In order to establish the weak convergence of our pivot, we analyze how the Stein bound
behaves in large samples, similar to what we did for the univariate pivot. However, unlike the
univariate theory, the multivariate version of the Stein bound involves higher-order derivatives
of the Stein function. As a result, we investigate higher-order smoothness properties of our
multivariate pivot. Proofs for Theorem 3 and Theorem 4 are collected in the Supplementary
Material.

5.3. Transfer of asymptotic guarantees to the carved pivot. Having established weak
convergence of our pivot for randomized rules with Gaussian variables, we come back to
the selection described in (2.4).

Following the same convention as before, we evaluate the the likelihood ratio after and
before we apply the selection rule on the pilot samples. At (v′ w′)′, let the joint density for
Vn and Wn factorize as

pn(v,w) = pn(v) · p̄n

(
w|v),
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where pn is the marginal density for Vn and p̄n(·|v) is the conditional density of Wn given
Vn = v. Let F̄n :Rd →R assume the value

F̄n(v) =
∫

p̄n

(
Qt − v + r|v) · 1t∈Rp+ dt.

PROPOSITION 6. Under the randomized selection rule in (2.4), the ratio of the condi-
tional and unconditional likelihood functions is

LRPn
(Zn;obs;

√
nβn) = F̄n(�

1/2Zn;obs + √
nβn)

EPn
[F̄n(�1/2Zn + √

nβn)] .

Define

EPn

[
Q(Zn)

] = EPn

[
Q(Zn) · LRPn

(Zn;√nβn)
]
.

The expectation on the left-hand side is taken with respect to the conditional law after se-
lection on pilot data and is expressed as an unconditional expectation on the right-hand side
through the above-stated likelihood ratio.

Consider a collection of distributions Cn. The weak convergence of our pivot follows by
proving

(5.3) lim
n

sup
Pn∈Cn

∣∣EPn

[
H ◦ P(j)(Zn;√nβn)

]− ẼN
[
H ◦ P(j)(Zn;√nβn)

]∣∣ = 0

for any H ∈ C
3(R,R) with bounded derivatives up to the third order. We replaced the first

term in (3.4) with a conditional expectation given the selection outcome observed in the pilot
data.

Our next result establishes that asymptotically-valid selective inference with Gaussian ran-
domized rules transfers to the carved pivot. This result holds as long as the probability of the
selection outcome converges to its counterpart with Gaussian randomization.

PROPOSITION 7 (Transfer of asymptotic guarantees). Suppose that the conditional weak
convergence statement in (3.4) holds over a collection of distributions in Cn. Assume that

lim
n

sup
Pn∈Cn

EPn
[|F̄n(�

1/2Zn + √
nβn) − F(�1/2Zn + √

nβn)|]
EPn

[F(�1/2Zn + √
nβn)] = 0.

Then the convergence result of (5.3) holds.

6. Empirical analysis. We illustrate how our theory translates to practice in various
instances of selective inference.

EXAMPLE 6.1. Selectively inferring for a difference in means. We selectively infer for
a difference in means through the two-sample test statistic. In alignment with the running
example in our paper, we use the following scheme to draw n independent and identically
distributed observations with identity covariance. For d = 2, we draw

ζi,n = βn + ei,n for i ∈ [n].
Each component of ei,n is drawn independently as

e(j)
i,n

i.i.d.∼ E

and standardized such that

E
[
e(j)
i,n

] = 0; E
[(

e(j)
i,n

)2] = 1.
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TABLE 1
Comparison of inference between carving and data splitting

Gaussian Model-1 Model-2 Model-3 Model-4

ρ2 = 1/2 Cov Len Cov Len Cov Len Cov Len Cov Len

β̄ = 2
Carve 89% 0.73 94% 0.74 88% 0.72 90% 0.67 90.5% 0.68
Split 89.5% 0.95 95% 0.95 87% 0.95 91.5% 0.95 90% 0.95

β̄ = 1
Carve 91.5% 0.72 88.5% 0.72 92% 0.74 88% 0.72 90.5% 0.72
Split 88% 0.95 90% 0.95 93% 0.96 91% 0.95 91% 0.95

β̄ = 0
Carve 90% 0.59 90% 0.58 87% 0.59 88.5% 0.60 91.5% 0.58
Split 91.5% 0.95 90% 0.95 87.5% 0.95 91% 0.95 91% 0.95

Note that the distribution E is based on five different models, which include Models (1)–(4)
described in Section 2 and the baseline Gaussian model. We provide selective inference for
β̄n = β

(1)
n − β

(2)
n whenever the two-sample statistic

Vn1 =
√

n1√
2

(
ζ̄ (1)
n1

− ζ̄ (2)
n1

)
,

exceeds a prefixed threshold of significance. We investigate the performance of our carved
pivot for β̄n.

For our simulations, the difference of means is parameterized according to
√

nβ̄n = −anβ̄

for an = n1/6−δ and δ = 1e−3. We fix n = 50. We set our split proportion value at

ρ2 = n − n1

n1
= 1/2,

that is, two-thirds of our data is used to decide whether to pursue inference in the second
stage. We vary β̄ in the set {2,1,0}. For comparison, we consider asymptotic intervals based
on the widely used data splitting. The latter procedure simply uses the n2 samples that were
held out for inference.

We compare the 90%-confidence intervals from inverting the carved pivot with the 90%-
confidence intervals from data splitting and summarize our findings in Table 1. Our method
is noted as “Carve” and data splitting is noted as “Split.” The cells in this table report the
empirical coverage rate “Cov” of the asymptotic confidence intervals and their lengths “Len”
when averaged over all our simulations. The first column in the table notes the performance
of the exact confidence intervals under the baseline Gaussian model.

As expected, both procedures approximately achieve the target coverage rate. However,
carving produces tighter intervals than data splitting across all models and all values of β̄ .

EXAMPLE 6.2. Selectively inferring for the p largest effects. We consider selective in-
ference for the effects of the p largest mean statistics in our pilot data [6]. Let [Vn1](p) be the
pth largest mean statistic using the components of Vn1 . We note that our selection rule in this
example can be written as

(6.1)
V (j)

n1
> [Vn1](p+1) for j ∈ En,

V (j)
n1

≤ [Vn1](p+1) for j ∈ Ec
n.
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TABLE 2
Comparison of inference between carving and data splitting

Gaussian Model-1 Model-2 Model-3 Model-4

ρ2 = 1/2 Cov Len Cov Len Cov Len Cov Len Cov Len

β̄ = −2.5
Carve 93% 0.60 88% 0.64 91.5% 0.62 91% 0.61 87% 0.59
Split 90% 0.95 90.5% 0.95 91.5% 0.95 93.5% 0.95 90.5% 0.95

β̄ = −1.5
Carve 92% 0.68 89% 0.69 90% 0.68 87.5% 0.66 90% 0.66
Split 91.5% 0.95 93% 0.95 92.5% 0.95 90.5% 0.95 92.5% 0.95

β̄ = 0
Carve 91% 0.55 87.5% 0.56 87.5% 0.52 87% 0.56 90.5% 0.55
Split 92% 0.95 88.5% 0.95 88% 0.95 90% 0.95 88.5% 0.95

Suppose that Pn = N (βn,�). Lemma 8 gives a carved pivot after conditioning on the
event

{En = Eobs,An = Aobs},
where

Aobs =
((√

1 + ρ2[Vn1](p+1) · 1p

)′ (
V

(Ec
n)

n + W
(Ec

n)
n

)′)′ =
(
A′

1,n A′
2,n

)′
.

To state the pivot, define the matrices

R(j) = PEobs

⎡⎢⎣ 1 0
1

σ 2
j

�−j,j Id−1,d−1

⎤⎥⎦ , Q =
[

Ip,p

0d−p,p

]
, r = Aobs.

PROPOSITION 8. Let Pivot(j)(V
(j)
n ,U

(j)
n ) assume the value(

D
(
U(j)

n ;√nβ(j)
n

))−1 ·
∫ ∞
V

(j)
n

φ

(
1

σj

(
v − √

nβ(j)
n

)) · F
(
R(j)

(
v

(
U(j)

n

)′)′)
dv.

Then it holds that Pivot(j)(V
(j)
n ,U

(j)
n ) is distributed as a Unif(0,1) conditional on {En =

Eobs,An = Aobs}.

Clearly, this pivot has the same representation as our running example.
Using the generating scheme from the preceding example, we selectively infer for the

effect that corresponds to the larger sample mean. A similar comparison between carving and
data splitting unfolds in Table 2 for different models.

EXAMPLE 6.3. We turn to inference for the selected regression coefficients after solv-
ing the LASSO. Let yn and Xn denote our response vector and our design matrix with d

predictors, respectively.
To begin, we derive a pivot using a randomized rule with Gaussian variables. Consider

solving

(6.2) minimize
β∈Rd

1

2
√

n
‖yn − Xnβ‖2

2 + λ‖β‖1 − W ′
nβ,
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where Wn is a Gaussian randomization variable. This problem has been termed as the ran-
domized LASSO in [23].

After observing the selected set of variables En = Eobs, a common model for inference is
the selected model

yn ∼N
(
Xn,Eobsβn,σ

2I
)
.

Define

β̂(Eobs)
n = ((

X(Eobs)
n

)′
X(Eobs)

n

)−1(
X(Eobs)

n

)′
yn,

the refitted least squares estimator, which is obtained by regressing our response against the
selected variables. Based on the least squares estimator and the selected set of variables, let

(6.3)

(
V (Eobs)

n

V
(Ec

obs)
n

)
=

⎛⎜⎝
√

nβ̂(Eobs)
n

1√
n

(
X

(Ec
obs)

n

)′(
yn − X(Eobs)

n β̂(Eobs)
n

)
⎞⎟⎠ ,

and let

V (j)
n = e′

j

√
nβ̂(Eobs)

n ,

which is the j th regression coefficient in the selected set.
Fixing some more notation, let (

β̂n,λ

0d−p

)
denote the coefficients of the LASSO solution, where β̂n,λ collects its nonzero coefficients.

Let S
(En)
n collect the signs of the nonzero LASSO coefficients. Let G(Ec

n)
n collect the com-

ponents of the subgradient from the LASSO penalty present in the inactive set Ec
n at the

solution. Define

An =
(
A′

1,n A′
2,n

)′ =
(
λ · (S(En)

n

)′ (
G(Ec

n)
n

)′)′
,

which we note is equal to subgradient of the LASSO penalty at the solution. Finally, let
Tn = diag(S

(En)
n )β̂n,λ collect the magnitudes of the nonzero LASSO coefficients.

Based on these notation, fix the following matrices:

Pn =

⎡⎢⎢⎣
1

n

(
X(Eobs)

n

)′
X(Eobs)

n 0p,d−p

1

n

(
X

(Ec
obs)

n

)′
X(Eobs)

n Id−p,d−p

⎤⎥⎥⎦ , Qn =

⎡⎢⎢⎣
1

n

(
X(Eobs)

n

)′
X(Eobs)

n

1

n

(
X

(Ec
obs)

n

)′
X(Eobs)

n

⎤⎥⎥⎦diag
(
S(Eobs)

n

)
.

Let P = EPn
[Pn] and Q = EPn

[Qn], and also let σ 2
j = σ 2 · �(Eobs)

j,j where

�(Eobs) =
(
EPn

[
1

n

(
X(Eobs)

n

)′
X(Eobs)

n

])−1
.

Suppose that the randomization variable Wn in (6.2) is drawn from the Gaussian distribu-
tion N (0d, ρ2�), independently of data, where

� = σ 2 ·EPn

[
1

n
X′

nXn

]
.

For now, we assume that:
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(i) the variables in (6.3) are distributed as Gaussian variables, where V
(Eobs)
n has mean√

nβn and covariance

σ 2 ·
(
EPn

[
1

n

(
X(Eobs)

n

)′
X(Eobs)

n

])−1
= σ 2 · �(Eobs),

and V
(Eobs)
n is independent of V

(Ec
obs)

n .
(ii) the magnitudes of the nonzero LASSO coefficients satisfy(

W(Eobs)
n

′
W

(Ec
obs)

n

′)′ = QTn +
(
A′

1,n A′
2,n

)′ − P
(
V (Eobs)

n

′
V

(Ec
obs)

n

′)′
.

Later we show that the variables Vn have an asymptotic Gaussian distribution with the prop-
erties listed in (i), and the equality in (ii) holds only up to an op(1) remainder term.

Proposition 9 gives a pivot that yields exactly-valid selective inference under the above-
stated randomized rule and assumptions.

PROPOSITION 9. Let Pivot(j)(V
(j)
n ,U

(j)
n ) assume the value(

D
(
U(j)

n ;√nβ(j)
n

))−1 ·
∫ ∞
V

(j)
n

φ

(
1

σj

(
v − √

nβ(j)
n

)) · F
(

PR(j)
(
v

(
U(j)

n

)′)′)
dv,

where

D
(
U ;√nβ(j)

n

) =
∫ ∞
−∞

φ

(
1

σj

(
v − √

nβ(j)
n

)) · F
(
PR(j) (v U ′)′) dv.

Conditional on {En = Eobs,An = Aobs}, Pivot(j)(V
(j)
n ,U

(j)
n ) is distributed as a Unif(0,1)

variable.

Suppose that our data contains n independent and identically distributed observations. We
solve the LASSO problem on a randomly drawn subsample of size n1:

(6.4) minimize
β∈Rp

(1 + ρ2)

2
√

n
‖yn1 − Xn1β‖2

2 + λ‖β‖1.

We define

Wn = ∂

∂β

{
1

2
√

n
‖yn − Xnβ‖2

2 − (1 + ρ2)

2
√

n
‖yn1 − Xn1β‖2

2

}∣∣∣∣
β̂λ

.

According to previous work by [11, 18], the LASSO optimization problem can be rewritten
as (6.2). The randomization variable Wn is distributed asymptotically as N (0d, ρ2�), where
ρ2 = n2

n1
. Furthermore, it is asymptotically independent of Vn. It is also worth noting that the

variables Vn follow an asymptotic Gaussian distribution with the properties listed in (i). See,
for example, Proposition 4.1 in [18], which gives the joint distribution of Wn and Vn.

Furthermore, we can verify that(
W(Eobs)

n

′
W

(Ec
obs)

n

′)′ + On = QTn +
(
A′

1,n A′
2,n

)′ − P
(
V (Eobs)

n

′
V

(Ec
obs)

n

′)′
,

where On = op(1). In what follows, we ignore the op(1) remainder term without a loss of
generality. We can always work with the variable

W̃n = Wn + On,

which has the same asymptotic distribution as Wn.
The theory in our paper confirms that the pivot in Proposition 9 enables us to draw

asymptotically-valid inference for the selected regression coefficients. Below, we provide
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TABLE 3
Comparison of inference between carving and data splitting

Gaussian Model-1 Model-2 Model-3 Model-4

ρ2 = 1 Cov Len Cov Len Cov Len Cov Len Cov Len

snr = 0.10
Carve 88.15% 0.43 88.05% 0.42 89.59% 0.42 90.39% 0.42 90.73% 0.43
Split 88.56% 0.52 88.15% 0.50 90.24% 0.50 88.75% 0.50 88.75% 0.50

snr = 0.15
Carve 88.61% 0.43 88.28% 0.42 88.56% 0.42 89.06% 0.44 87.69% 0.42
Split 89.27% 0.50 90.26% 0.51 89.78% 0.50 89.00% 0.53 85.51% 0.50

snr = 0.20
Carve 91.22% 0.43 88.53% 0.42 89.18% 0.43 92.88% 0.43 89.94% 0.42
Split 88.65% 0.51 88.15% 0.50 90.54% 0.52 88.72% 0.51 89.97% 0.51

empirical evidence to support our theory by demonstrating the performance of our pivot in
both synthetic and real data experiments.

Synthetic data. Fix n = 100 and d = 50. In each round of our simulations, we draw an
n×d design matrix X such that the rows xi ∼ N (0d,�) and �j,k = 0.40|j−k|. We then draw
our response according to the model

yi = x′
iβ + σ · ei,n,

by generating the model errors ei,n in an i.i.d. fashion from Models (1)–(4) and the baseline
Gaussian model. We let β ∈ R

d be a sparse vector with s = 5 signals, all of the same strength
and positioned randomly in the d-length vector. Each signal is assigned a positive sign with
probability 0.5. We fix σ 2 = 1, ρ2 = 1 and vary β such that the signal-to-noise ratio snr =
1
σ 2 β ′�β takes values in the set

{0.10,0.15,0.20}.
In this example, the function F and our pivot no longer have a closed-form expression. To

alleviate this computational barrier, we use a Laplace-type probabilistic approximation pro-
posed by [14] to compute F. Inverting the approximate pivot yields asymptotic confidence
intervals based on our carved pivot. The cells in Table 3 compare the 90%-confidence inter-
vals based on carving and data splitting. We note that our asymptotic intervals not only cover
the selected regression parameters at the desired level, but also provide tighter bounds than
data splitting. Furthermore, selective inference is valid even at lower values of signal-to-noise
ratio, where rare outcomes are more likely.

Real data. We apply our carved pivot on real data. Our data comes from 441 patients in
the publicly available The Cancer Genome Atlas (TCGA) database [27]. Carving is applied
to infer for the selected associations between gene expression values and log-transformed
survival times for Gliomas, a common type of brain tumor. We include 2500 predictors with
the highest variability in the observed samples and solve the LASSO on a randomly drawn
subsample of the full data. The �1 penalty tuning parameter is fixed at a theoretical value that
was sugggested by [12].

We obtain confidence intervals for the selected regression coefficients by inverting the
carved pivot. Figure 2 shows the distribution of lengths of the confidence intervals based on
carving and data splitting. On the x-axis, we vary the ratio 1/(1 +ρ2). The plot demonstrates
the advantages of conducting selective inference with the carved pivot, which reuses data
from selection steps. Interval estimates for both procedures grow wider when fewer hold-
out samples are available for inference. However, the benefits of carving only become more
pronounced as more data is used at the selection step.
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FIG. 2. Distribution of lengths of interval estimates for the selected regression coefficients.

7. Conclusion. Our paper presents an asymptotic framework for carving as we move
away from Gaussian data. We consider two data sets: one for selection and the other reserved
for inference. This situation often occurs when researchers select promising findings from
pilot data. Later on, when new data is available, the goal is to make inferences based on the
selected findings.

Carving helps to adjust for overoptimism resulting from selection, and also allows for
efficient reuse of pilot data for inference. We show that pivots formed by conditioning on
the selection outcome in the pilot data provide valid asymptotic inference. Our theory also
supports the use of pivots based on Gaussian randomized selection rules. Recent studies, such
as [15, 19, 21, 22], have explored the potential of randomized selection rules for improved
inference, in theory and various applications.

Although we have mainly focused on conditional pivots based on the standard recipe in this
paper, there is still room for further research in this area. In the future, we plan to investigate
other types of pivots that have been developed for conditional inference. Two examples are
the approximate Gaussian pivot by [17], which uses the maximum likelihood estimator, and
the pivots proposed by [10] in the full model with less conditioning than the earlier work
by [9]. However, for such pivots, new theoretical results are needed to study the rate of weak
convergence and to examine whether asymptotically-valid selective inference still holds when
self-normalized statistics are used to form the pivots.
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