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SUMMARY

We introduce a pivot for exact selective inference with randomization. Not only does
our pivot lead to exact inference in Gaussian regression models, but it is also available in
closed form. We reduce this problem to inference for a bivariate truncated Gaussian vari-
able. By doing so, we give up some power that is achieved with approximate maximum
likelihood estimation in Panigrahi & Taylor (2023). Yet our pivot always produces nar-
rower confidence intervals than a closely related data-splitting procedure. We investigate
the trade-off between power and exact selective inference on simulated datasets and an HIV
drug resistance dataset.

Some key words: Data carving; Data splitting; Exact inference; Pivot; Post-selection inference; Randomization;
Selective inference.

1. INTRODUCTION

The polyhedral method of Lee et al. (2016) introduced confidence intervals for exact
selective inference in Gaussian regression models. This method provides valid inferences
for selected parameters by conditioning on the outcome of selection. A pivot is obtained
for each selected parameter from a truncated Gaussian distribution, provided the outcome
of selection can be described by linear constraints, also known as polyhedral constraints.
However, as shown by Kivaranovic & Leeb (2021), confidence intervals based on this pivot
can have infinite length in expectation.

Randomizing data at the time of selection and conditioning on the outcome of ran-
domized selection produces narrower confidence intervals than the polyhedral method.
Kivaranovic & Leeb (2024) formally established that some of these randomized procedures
guarantee intervals with bounded lengths. A stumbling block for subsequent inference, how-
ever, is the lack of a pivot in closed form after marginalizing over the added randomization
variables. For example, the pivot based on randomized response, as in Tian & Taylor (2018),
or on data carving, which involves holding out a random subsample during selection, as in
Fithian et al. (2017), cannot be directly computed.

Recent work by Panigrahi & Taylor (2023) bypassed this computational hurdle by
proposing an approximate Gaussian pivot through maximum likelihood estimation. The
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Table 1. Coverage probability and average lengths of
intervals for the MLE and our proposed method

(a) Coverage (b) Length
t MLE (%) Exact (%) MLE Exact
0.5 86.09 89.94 20.83 27.14
0.75 86.69 90.02 20.86 26.94
1 85.56 90.30 21.09 27.44

approximate pivot is obtained by solving a convex optimization problem that yields the
selection-adjusted maximum likelihood estimator and observed Fisher information matrix.
The term we use for this approach is the MLE method. Although computationally appeal-
ing, this pivot may not provide adequate coverage if the approximation is inaccurate.
Moreover, it can be difficult to determine the reliability of the approximation in practi-
cal settings. Inaccuracies can arise when the dimensions of the problem are significantly
larger than the number of available samples. To provide an example, consider the case where
n = 500 independent and identically distributed samples are generated from a Gaussian
linear regression model with p = 1000 predictors, of which 25 are true signals with mag-
nitude of (2¢logp)!/? and the rest are noise. We conduct 500 rounds of simulations with ¢
taking values 0.5, 0.75 and 1. In all three scenarios, the coverage probability of the approx-
imate pivot produced by the MLE method is below the target level 0.90, as reported in
Table 1(a).

In this paper, we offer a new pivot for selective inference with randomization. We aim
at exact selective inference in closed form, without requiring a case-by-case treatment for
different models. In exchange, we give up some power that is achieved with the approximate
Gaussian pivot in Panigrahi & Taylor (2023). This trade-off between the coverage proba-
bilities and the averaged lengths of the intervals for both methods, MLE and our proposed
method Exact, can be seen in Table 1(a) and (b). Despite sacrificing some power, our pivot
produces more reliable inferences that roughly attain the target coverage probability 0.90 in
all three scenarios.

2. BACKGROUND
2.1. Some preliminaries

We begin by defining notation that is used throughout the paper. Let [d] = {1,2,...,d}
for d € N. The symbol ¢; € R? is understood as a vector with 1 in the jth entry and 0
elsewhere. For € R? and ® € R?*9, p; = e]Tn is the jth entry of 7, ©;; = e}@ek is the
(j, k)th entry of ® and ©y;) is the jth row of ®. For a given set D, the notation | D| represents
its cardinality.

We use ¢ (x; 60, ©®) to denote the density function of a Gaussian variable with the mean
vector 6 € R? and covariance matrix © € R?*“ at x. In particular, whend = 1,0 = 0, ® =
1, we let ¢ (x) be the density of a standard normal variable and let ®(x) be its cumulative
distribution function. Denote by

1 1
[a.b] _ —(h_ _ _
TP (9,1‘})_<I>{19(b 9)} @{ﬂ(a 9)}

the truncation probability that a univariate Gaussian variable with mean 6 and variance 9>
lies in the interval [a, b], where a, b take values in the extended real set.
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Exact selective inference with randomization 3

For background on selective inference, we consider the standard setting of the lasso
regression with a fixed design matrix. Suppose that we have a vector of outcomes y ~
N(u,0%I,) € R” for an unknown mean parameter x and a matrix of p fixed features
X € R"™P”, We observe w ~ N(0,, ), a p-dimensional randomization variable that is drawn
independently of y. Consider solving

A 1 €
b = argmin = ||y — Xb|5 + = [1b]13 + A6l — w'h (1)
beRP 2 2

with regularization parameter A € R™.

The selection algorithm in (1) gives a noisy version of the lasso, which is called the ran-
domized lasso in Tian et al. (2016). A small, fixed value of € € R™ in the objective of the
randomized lasso simply ensures the existence of a solution. The variance of the Gaussian
randomization variable is a tuning parameter that is similar to the split proportion in data
splitting. It lets us control how much information we use to select a model versus how much
we use for inference. As an example, consider Q(t2) = tzlp. If we increase the value of 72,
it means that we perform a noisier model selection, which reserves more information for
inference. Later in the paper, we discuss incorporating a Gaussian randomization scheme
that is related to data splitting.

After solving (1), we seek inference for a set of post-selection parameters. Here is a
common example. Let

E={j € lp]: lsign(b)| = 1}.
Having observed the selected subset of features £ = £, we infer for
BE = (XiXe) ' Xipn e R,

which is the best linear representation of w using the selected subset of features Xg. For
brevity, let ¢ = X¢ (Xng)*lej € R” for j € [|£]]. This allows us to write each entry of g€
as

pE =" 1.
Note that ﬂjfg depends on y and w through ¢, which in turn depends on £.

2.2. Existing work

We begin by reviewing two existing methods that are closely related to our current pro-
posal. The first method offers an exact pivot for selective inference when solving the standard
version of lasso, without randomization. The second method provides an approximate pivot
after solving the randomized lasso.

Both pivots are obtained from a conditional distribution of the outcome variable after
conditioning on a proper subset of the observed event. Conditioning on {E = £} is ideal
if we wanted inference for 8. However, the ideal event is usually complicated to describe
in terms of y and w, making the conditional distribution of y given {E£ = £} less amenable
to inferences. Therefore, conditioning on a subset of the selection event that has a simpler
description is a practical solution, which can ensure valid and feasible selective inference.
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First we review the polyhedral method. Consider solving the standard lasso (Tibshirani,
1996), which involves setting ¢ = 0 and w = 0, in the objective of (1). We denote the set of
selected features as Ey. We distinguish Ej from the selected set £, which is obtained from
solving the randomized lasso.

Having observed Ey = &, fix cﬁ = Xg, (Xgngo)*lej € R" that leads to

&
B =)',

our parameters post selection. Let Sy € RIZ0! be the vector of nonzero signs. Let £ denote
the least-squares estimator when we regress y against Xg, and let

. e’
F{):(l— 0.02>y
ey ll3

be the projection of y onto the orthogonal complement of the subspace spanned by cj

Conditional on Ey = &), So = Sy and the value of iV , the polyhedral method of Lee
et al. (2016) gives an exact pivot by truncating a univariate Gaussian variable, with mean
,Bg and variance azllcj ||§, to an interval [H’ ]. The pivot takes the form

Ago
f L@ lchll) ™ = B} -1y () dx
el = B Ly (0 A

Phoyy (B (2)

where the expressions for #/_ and H, depend on &, Sy and ).

Next, we turn to selective inference with the randomized lasso. The approximate MLE
method of Panigrahi & Taylor (2023) uses the likelihood of y when conditioned on {G = G},
where G = 0 5 IIb]l1 is the subgradient of the ¢ penalty at the randomized lasso solution.
Similar to the polyhedral method, the conditioning event is a proper subset of the ideal
event {E£ =&},

Let 5% and I¢ denote the MLE and the observed Fisher information matrix in this
conditional likelihood. An approximate Gaussian pivot for ,Bf is given by

7y1.\/ILE(ﬂ]"€) = _1( bt - B )}

| a7

Equivalently, confidence intervals for each component of 8¢ are calculated by centring them
around the jth entry of the MLE, with the variance estimated by the corresponding diagonal
entry of the observed Fisher information matrix. However, the seemingly simple Gaussian
pivot involves computing the exact conditional likelihood function, which cannot be done
in closed form, hence making it difficult to compute the two estimators. To overcome this,
the approximate MLE method derives approximate values for b€ and I¢, which rely on a
consistent approximation to the exact conditional likelihood.

2.3. Toy example

We can now informally present the central idea of our paper using a toy example with two
features, i.e., p = 2. We solve (1) with € = 0 and w ~ N(05, Q) € R?, where Q = 2 X" X.
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Exact selective inference with randomization 5

Say that we select the full model, i.e., £ = {1, 2}, and that we focus on the first component
of the two-dimensional post-selection parameter

1T
,315 =c .

Let B¢ be the least-squares estimator when regressing y against Xg and let Bf be its first
component.

Introducing some additional notation, let O € R? denote the nonzero randomized lasso
solution in this example. Let S = sign(O) be the corresponding sign vector, and let S be the
observed value of S. Recall that the existing MLE method makes inferences after condition-
ing on the event {G = G}. Since G = S in this example, it is easy to see that this conditioning
event can be described as

{—diag(S)0 < 0,}. 3)

While the previously mentioned MLE method obtains an approximate Gaussian pivot with
this conditioning event, we can simplify the event by conditioning on some additional infor-
mation that reduces the conditioning event to an interval on the real line. This is the central
idea behind constructing an exact pivot in closed form.

In this specific toy example, we condition on

eT(XTX) e,

A=0,— L2 27 =
2T T(XTY) e

I

in addition to conditioning on the value of G. Because

B 1 T o1 0
_{eRXTXw4e5XrX) “}01+(A)’

the initial conditioning event in (3) simplifies to
l<o <1}

after conditioning on 4, where [I!, I! +11s a fixed interval. Consequently, we can obtain an
exact pivot in closed form by computmg the joint bivariate distribution of ,31 and O; when
truncated to the region R x [I!, I 1. We explain our choice for additional conditioning and
derive a bivariate truncated Gaus51an distribution in the next section.

To conclude, the difference between our method and the polyhedral method is shown
in Fig. 1. For drawing selective inference, the polyhedral method truncates the Gaussian
distribution of ,315 to the interval [H!, H_lF], while our method truncates the joint bivariate
distribution of ,éf and O to R x [Il,[}r].

2.4. Connections with other work

Several papers have demonstrated the effectiveness of the conditional approach for selec-
tive inference across various problems, as evidenced by Lee & Taylor (2014), Yang et al.
(2016), Suzumura et al. (2017), Charkhi & Claeskens (2018), Hyun et al. (2018), Zhao &
Panigrahi (2019), Chen & Bien (2020), Duy et al. (2020), Tanizaki et al. (2020) and Gao
et al. (2024). A significant focus of the current research in this field is on enhancing the
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Fig. 1. Comparison with the polyhedral method.

power of earlier approaches. Before we discuss these improvements, it is worth noting that
two other approaches to selective inference have been studied in parallel.

The first is the simultaneous inference approach, which has been investigated by Berk
et al. (2013) and Bachoc et al. (2020). This approach is not customized to a particular selec-
tion method, but the downside is that the confidence intervals are relatively long and may
not permit easy calculations in some instances. The second approach is data splitting. This
method allows for valid selective inference when the available data can be split into two inde-
pendent sets. One set is used as training data for the selection process, while the other set is
held out as validation data for selective inference. Combined with the bootstrap in regres-
sion models, Rinaldo et al. (2019) conducted selective inference by splitting the sample space.
Recently, new forms of data splitting have been introduced by Leiner et al. (2023), Neufeld
et al. (2023) and Rasines & Young (2023), which split each observation into two parts to
construct a training set for selection and a validation set for selective inference. However,
these variants of data splitting lose power by discarding data used in selection. In our sim-
ulations, we confirm that inverting our pivot results in narrower confidence intervals than
two such forms of data splitting.

There are two main branches of the conditional approach that have improved power and
overcome the limitations of the polyhedral approach. The first branch of work involves
choosing a minimal conditioning set that can be achieved in some special settings. For ex-
ample, Liu et al. (2018) conditioned on strictly less information than the polyhedral method
when inference is based on a full linear model y ~ N (X8, o21,). In the saturated model
y ~ N(u,0%l,), Le Duy & Takeuchi (2022) applied parametric programming to avoid
conditioning on the signs of the lasso coefficients and Carrington & Fearnhead (2024) con-
ditioned on less information to provide inference for detected changepoints. The second
branch of work utilizes randomization variables at the time of selection to remedy a loss
in power. Some of these randomized procedures can be viewed as a more efficient alter-
native to data splitting and appear as data carving in existing literature (Fithian et al.,
2017; Schultheiss et al., 2021; Panigrahi, 2023). Randomization variables have been used to
deliver powerful Bayesian inference after model selection in papers by Panigrahi et al. (2021,
2023a,b). Our work falls into the latter category, where we provide a principled approach
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Exact selective inference with randomization 7

to choose a conditioning event and construct a pivot thereof that can work with different
Gaussian regression models after selection.

It is not a new idea to find a conditioning event that can lead to a bivariate truncated
distribution. In Kivaranovic & Leeb (2024), one such construction is noted, where noise is
added to a Gaussian response as proposed by Tian & Taylor (2018). This work achieved
an exact pivot by conditioning on the projection of the noisy response onto the orthogonal
complement of the subspace spanned by the direction vector of interest. However, in our
paper, we have employed a different randomization scheme, which involves adding noise
to the optimization objective. As demonstrated by Huang et al. (2023), this scheme has
the potential to be applied to a broad range of M-estimation problems, not just the least-
squares estimation problem. For example, while adding Gaussian noise to a binary response
in logistic regression might not be meaningful, adding noise to the loglikelihood case would
create a noisy estimation problem. Although our primary focus in this paper is on exact
selective inference, our pivot is likely to generalize and provide asymptotic inference in a
more comprehensive context. The concluding discussion in our paper includes a remark
on this.

3. EXACT SELECTIVE INFERENCE WITH THE LASSO
3.1. Conditioning event

We continue using the randomized lasso to explain our approach in the general Gaussian
regression setting.

Defining some notation, we denote by O € RI¢! the active nonzero lasso solution, and by
S = sign(0) the associated sign vector. Throughout, we assume that the active components
of the lasso solution are stacked before its inactive components. The p-dimensional sub-
gradient of the ¢; penalty at the randomized lasso solution is denoted by G = (5), where
U e RP~I€l collects the components of the subgradient subvector in £¢. To represent the
realized values of the variables O, S and U, we use the symbols O, S and U/, respectively.

At the randomized lasso solution, observe that

w=Py+ Q0+ RU+T,

where

X7 XIXe +elg O p—18 AS
P=—|2¢|, . €] , R = | lelr—le] , T — , (4
[Xch] ¢ [ XgXe Mp—e) 0pie) @

and we have assumed that the active components are stacked before the inactive ones in our
matrices.

As demonstrated in the previous section, we first identify a conditioning event that will
guide us to a pivot for exact selective inference. Extending the method by Panigrahi & Taylor
(2023), we condition on {G = G}, which can be described as {LO < M, U =U} for L =
—diag(S), M = 0|g|.

To reduce our conditioning event to an interval and obtain a closed-form pivot, we condi-
tion on some more information. Proposition 1 below states this event, which is equivalent to
truncating a linear combination of O to a fixed interval. To present this result, we introduce
a few matrices that rely on the covariance of the randomization variables and the matrices
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8 SNIGDHA PANIGRAHI, KEVIN FRY AND JONATHAN TAYLOR
defined in (4). Let

1

o=@'e'o”, P=—S5pd
/113
. . . 1 .
I — oTQ -l p ¢ RIEI - O
F Q € s Q] ro®rj r,

forj e [|€]].

PROPOSITION 1. Define the variables
= (g — 0P 0 e REL
Forj € [|€]], it holds that
(G=0, A" =Ay=(I </ 0<F.U=u, 4" =7,
where

—— (M — L{;A")},  F, = min k= L{g A"
keS', [k]QI

and
S] {k L[k]G)rj < O}, Si = {k: L[Tk]®rj > 0}.

From the previous result, we observe that the conditioning event involves extra informa-
tion in the form of 4", representing linear combinations of the active lasso coefficients. We
motivate our choice of conditioning event later. In the next section, we obtain a pivot for
,ijg by conditioning on the event in Proposition 1.

3.2. Pivot

Let ,35 be the least-squares estimator obtained by regressing y on Xg¢. Specifically, let
,35 (¢)Ty denote the jth entry of €. Define [V as the projection of y onto the orthogonal
complement of the subspace spanned by ¢/.

Note that

CJ T
n = - 26‘] ,bL+,ij_/»L
/113

When inferring for ¢/ i, the projection PLM includes nuisance parameters. To eliminate
these parameters, we follow a similar approach as Lee et al. (2016) and condition on IV.
This allows us to obtain a conditional density that involves only our parameter of interest,
,35 We can then use its cumulative distribution function to obtain a pivot.

To state our main result, we introduce the functions

AU =—P'Q '\ Py+RU+T), AU =-00"Q ' (Py+ RU+T).

$20Z Jequisldag gz uo Jesn Aleiqi] |ooyos ssauisng uebiyoily 1o AusisAlun Aq ¥/66£9//6 1 09BSEABWOIG/S60 | 0 | /10P/2[o1Ee-80UBAPE/1SWOIG /W09 dnoolwapeoe//:sdiy Wol) papeojumod



Exact selective inference with randomization 9

THEOREM 1. Define the random variable

ik ¢{<x—w5 ¢y /o7y - TPIE-L i (x), 97} dx

Pl (B)) = — ,
Exact \I"j /—oo H{(x — )Jﬂjg — é‘j)/o’j} . TP[IJ—’I+]{9j(x), 19]'} dx

where the constants ¥/, o/, M, ¢/ and the univariate function 6/ are computed as

-1
oh:=r"er, ()= { +PQ P — )2} ’

12
a?(le/l5

W = znc/uz( oIV, =) AUy — A ),

6/(x) = /" AT, U) — (97)2x.
Conditioned on the event in Proposition 1, ’Péxact(ﬁ-g ) is distributed as a Un(0, 1) variable.

Inverting the pivot in Theorem 1 gives a confidence interval for ,B‘g At a predetermined
significance level «, a two-sided confidence interval for ﬁg is equal to

(L, Ul) = {b eR:PL..(b) e [ - 5]}

A few comments are in order here.

Remark 1. The choice of the simple model y ~ N (u,02I,) € R” was made for ease of
presentation. However, our pivot can also be applied to other Gaussian regression models,
such as the model of Fithian et al. (2017) where y ~ N (X¢Be, 021,) or the full model of
Liu et al. (2018) where y ~ N (X8, 0%1,). The only difference would be in the definition of
¢ for each model, which depends on the post-selection parameters chosen for inference.

Remark 2. Liu et al. (2018) noted that the ideal conditioning event could vary across
different models. In some special situations, such as when inferring for the selected regression
parameters in a full model y ~ N (X8, o2l,), conditioning on less information than the
polyhedral method is possible. However, in our method, the conditioning event based on the
outcome of the randomized selection algorithm is the same for different regression models.
Therefore, the construct of our pivot is consistent regardless of our modelling preferences.
In our empirical experiments, we demonstrate the performance of our pivot in the selected
and full models.

The construct of our pivot broadly applies to other common examples of selective infer-
ence. In the Supplementary Material we show how inference after a marginal screening of
correlations, or after selective reporting with bootstrapped data, can be easily carried out
with our pivot.

3.3. Pivot motivated by data carving

We instantiate our pivot using a Gaussian randomization scheme that can be seen related
to the data-carving proposal of Fithian et al. (2017). Data carving is similar to data splitting
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in that it involves using a subset of the data for selection, but differs from data splitting in
that it uses the entire dataset for inference instead of relying solely on the held-out portion.

Suppose that we apply the lasso method to a subsample of size n; drawn from a dataset
that contains n independent and identically distributed pairs of observations (y;, x;) € RP*1.
Then, the lasso on the subsample is asymptotically equivalent to solving a randomized lasso
with

w ~ N(0,, T*E[x1x]]), (5)

where 2 = o2(n — ny)/ny. This result is formally stated in Panigrahi et al. (2021). We
provide some additional details in the Supplementary Material to offer insights into this
connection. This motivates us to solve

. . . 1 2 T
mlllgelnglze 3y = Xbll5 + 1Bl —w'b (6)

with w drawn from a Gaussian distribution with mean 0, and covariance 2 X7 X, which is
the sample analog of the covariance matrix in (5). Recall that this was also the randomiza-
tion scheme in our toy example.

Using this particular form of Gaussian randomization, we can observe that the value of #/
is directly proportional to ¢; € RI€!. This means that our conditioning event is equivalent to
truncating the jth active lasso coefficient O; to an interval on the real line, which is depicted
in Fig. 1. As a result, our pivot in Theorem 1 simplifies as follows.

COROLLARY 1. Suppose that Q is defined according to (5). Then,

f ¢l 1)~ (x = )} - TP L) (x), 97} dx

Pl B5) =
P el (- BE - TPUE i (x), 97y dx
where
9)? =
@ 22| d113
and ¢/ : R — R is equal to
& (x) = ”1 Hz{xe T(XzXe)~lS — x}.

Upon revisiting our toy example, we recall that the polyhedral method truncates the
Gaussian distribution of B¢ to the interval [H’, Hﬂr] for j € {1,2}. In contrast, our new
pivot replaces the indicator function 1[ o ](x) with the Gaussian probability

-y
TPU-E6/ (), 97}
in the integrand of (2).

Remark 3. Of course, solving (6) is not exactly the same as applying the lasso on a sub-
sample of size nj. If selection is carried out on a randomly selected subsample then our
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Exact selective inference with randomization 11

pivot would provide asymptotic selective inference rather than exact, due to the asymptotic
equivalence between the Gaussian randomization and selection on the subsample. Since
our current focus is on providing exact guarantees for selective inference, we defer a formal
proof of this to future work.

3.4. Choice of conditioning

We return to our conditioning event in Proposition 1.
Denote by

(LL9, U29) (7)

the confidence interval for B¢ if we had based inference on the conditional distribution of
B¢, given the event {G = G} as done by the MLE method. In principle, we can fix any
arbitrary vector n € RI¢! and further condition on

1
AT =1 - Onn')o. 8
< n'On nn) ®

By writing

our conditioning event simplifies to an interval as

(G=G, A"=A"={LO <M, U=U, A" = A"
={I"<n'0<I!,U=U, A" = A"},

where 1" and I’/ now depend on L, M, ® and A",

If we follow the same steps as before then we can obtain an exact pivot for ﬁf by using
a truncated distribution that is supported on R x [I”, IZ]. If we let n = #/, it leads to the
conditioning event in Proposition 1 and to the proposed pivot.

Now we address choosing 1, which determines the additional conditioning information.
Consider a situation when selection has no impact, i.e., the truncated distribution is no
different from the usual distribution with no further adjustment for selection. Our specific
choice n = #/ is motivated from the fact that no extra price is paid by conditioning on A"
in the situation described above. In other words, the confidence intervals produced by our
pivot

(L, Ul): je &)

narrow down to the intervals in (7) as selection has a diminishing impact. We formalize this
fact in the following proposition.

PROPOSITION 2. Let A" be defined according to (8). Then, we have
var(Bf | U =U, A = A P =gy = var(BE | U =U, IV = g)

= maximumvar(ﬁ]‘? | U=U, A" = A", [V = g).
n
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12 SNIGDHA PANIGRAHI, KEVIN FRY AND JONATHAN TAYLOR

There might be other ways to choose the direction 1. One such option is to choose 7 in a
way that minimizes the variance of the bivariate truncated distribution that arises when we
condition on {G = G, A" = A"}. While this approach seems ideal, it is not straightforward
as the resulting optimization is not convex in n and may not be easily solvable.

Another option is to condition on all active lasso coefficients, except for the jth one, when
inferring the effect of the jth selected variable. However, this choice will not generalize well to
other models post selection. For example, if we add a new variable X* to the selected model
and fit it using the features £ U {X™*}, it is unclear what to condition on when inferring for
the effect of X™ in this selected model.

In contrast, our approach to choosing n is simple yet principled, which applies broadly to
Gaussian linear models with our form of additive randomization introduced at the selection
step.

4. SIMULATIONS
4.1. Settings and modelling strategies

To evaluate how well our pivot performs, we use data generated from a sparse Gaussian
model given by

y:XE*ﬁE*—I—G. (9)

Here, € € R" is a vector of independent and identically distributed Gaussian errors with
mean 0 and variance o2 and E* C [p] is a sparse support set for g € R”.

We construct the feature matrix X by drawing n = 500 samples from a (p =
200)-dimensional Gaussian distribution N (0,, ) with ¥; = 0.9"=JI. Then, we simulate
y from the model in (9) with noise level 0> = 3 and |E*| = 5.

We design two main settings to study how our method compares with previously proposed
procedures in selective inference. In our first setting, we vary the proportion of data used
for model selection, referred to as split proportion in our findings. We compare methods
that use roughly the same amount of information for feature selection as data splitting at
a prespecified value of split proportion. We elaborate on this further when we describe the
different methods under study. In the second setting, we vary the signal strength of the
nonzero entries of B to investigate how different methods compare under varying signal
regimes. Specifically, we set the magnitude of the nonzero entries for 8 as (2f logp)!/2. We
vary the fraction f in the set {0.50, 1, 1.5, 2, 3}, and number the corresponding settings as
signal regimes 1-5 in our plots.

In each setting, we consider two common modelling strategies.

1. Full Model: we model our response using the full set of features. In other words, we
model our response as

y~N(XB,0°L,).

We estimate the noise level in our data by using residuals based on a regression of y
against all p features.

In each round of simulation, we select a sparse set of features £ = £. We then
consider inference for the selected coefficients in the full model. To be precise, our
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parameters, after selection, are
BE = (Bj:je &) e REL

The vector B¢ contains entries of B that are present in the selected set £.
Selected Model: we model our response using the selected set of features £. That is,
we use the model

y ~ N (XeBe,01).

In this case, we estimate the noise level by using the residuals based on a regression of
our response against the selected features.
We infer for the partial regression coefficients in the selected model

B = (XFXe) ' XEXpBE+ € RIE,

which are obtained by projecting the true mean Xg+ g+ onto the subspace spanned by
the selected features.

In both models, we adopt a plug-in approach to estimate the noise variance. We comment
on this approach below.

Remark 4. The work by Tian & Taylor (2018) supports the use of a plug-in estimator for
o as long as it is a consistent estimator of the true noise variance before selection. While
we use the parametric form of the fitted model to obtain a plug-in estimator, the plug-in
approach can be more general in principle. For example, one can estimate the noise vari-
ance by using nonparametric function estimation methods, which separates the task of error
estimation from the precise parametric modelling of our response.

Our reported findings are based on 500 rounds of simulations for each pair of setting and
modelling strategy.

4.2. Methods

We compare the following methods.

1.

2.

Exact: our proposed method to conduct exact selective inference with Gaussian
randomization after solving (1).

MLE: the approximate maximum likelihood method reviewed in § 2; this method con-
ducts selective inference with an approximate Gaussian pivot after selecting features
through (1).

. Polyhedral+: this method, introduced by Liu et al. (2018), applies the standard

lasso algorithm for selecting features and then conducts inference for the selected
coefficients in the Full Model by conditioning on strictly less information than the
polyhedral method of Lee et al. (2016).

Split: this method is based on data splitting; we divide the training data into two inde-
pendent parts, using n; samples for model selection with the standard lasso algorithm,
which is followed by using the remaining samples for valid selective inference.

. UV: this method uses the UV decomposition proposed by Rasines & Young (2023),

where selection and inference are conducted on two independent datasets; for a ran-
domization variable w ~ N(0,, ozfln), selection is conducted with the U-estimator
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14 SNIGDHA PANIGRAHI, KEVIN FRY AND JONATHAN TAYLOR

Y + w as the train response and selective inference is conducted for the selected
parameters using the V-estimator ¥ — w/f as the test response.

The two methods Exact and MLE are constructed under the Gaussian randomization
scheme that was discussed in § 3.4. Specifically, we fix the randomization covariance as Q =
2 XX with

.o (n—mnp)
2_52
n

T

b

where & is the estimated noise level in our model. Both these methods are compared to
data splitting that uses n; samples for feature selection. To implement the UV method, we
replace o by its estimated value under our model and to ensure fair comparisons, we set
f = (n— ny)/n; in our analysis. We report comparisons of our method with the UV method
across different signal regimes.

Remark 5. In our simulations, we choose not to use the polyhedral method from Lee et al.
(2016). This is because, on average across 500 simulations, the interval lengths it produces
are much longer than the other four methods we are using. In fact, the polyhedral method
returns infinitely long interval estimates in every setting, which is consistent with the findings
of Kivaranovic & Leeb (2021).

Remark 6. When considering the Full Model, we include a summary of the performance
of the Polyhedral+ method, as well as the Exact and MLE methods. The benefits of utiliz-
ing the entire dataset rather than dividing it into samples are significantly noticeable when
applying the Full Model. Therefore, we exclude the split-based methods from our summary
plots since they produce considerably longer intervals, on average, compared to the other
methods.

For the Selected Model, we compare the four randomized methods used in our simula-
tions. The Polyhedral+ method is designed to provide selective inference only under the Full
Model and does not apply to the Selected Model.

4.3. Findings
First, we evaluate the accuracy of feature selection by using

true positives
F1 score =

true positives + (false positives + false negatives) /2

in our two main settings.

In Fig. 2(a), we vary the split proportion p = nj/n at a fixed strength of signals while
keeping the signal strength fixed. We use the randomized lasso method to conduct feature
selection with Gaussian randomization that corresponds to the prespecified split proportion
p; Exact and MLE provide inference for the effects of the features selected with this ran-
domized version of the lasso. The standard implementation of the lasso, which is used by
Polyhedral+, applies feature selection on the entire dataset, and is represented in the plot as
Standard. The distribution of the F1 score for the Gaussian randomization scheme closely
resembles the randomization involved in the related Split procedure. As expected, the accu-
racy of selection increases with higher values of the split proportion, eventually matching
the accuracy attained by the standard method on the full data.
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Fig.2. Accuracy based on the quality of feature selection.
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Fig. 3. Coverage rate of confidence intervals under signal regime 3.

In Fig. 2(b), we fix the split proportion at 0.80 and vary our signal regimes in the set 1-5.
Consistent with expectations, the accuracy of feature selection increases as we strengthen
the signals. Notably, all the methods used for feature selection perform almost equally well
at a split proportion of 0.80, which is consistent with the findings of Fig. 2(a).

Next, we compute the false coverage rate of the confidence intervals for different methods,
whichisequalto FCR = {j € £: ,Bj‘-S & Cf}/max(|8|, 1). In Figs. 3 and 4, we plot the coverage
rates 1 — FCR for 90% confidence intervals under the Full Model and Selected Model. The
averaged coverage rate, over all replications, is highlighted with a filled circle. The horizontal
dashed line at 0.90 depicts the target coverage rate for all the methods.

Exact achieves the desired rate of coverage, as do the previous methods of selective infer-
ence. This pattern remains consistent even as we change the split proportion or the strength
of signals in different signal regimes.

In Figs. 5 and 6, we investigate how the Exact confidence intervals compare in length
when we vary the split proportion and the strength of signals.

Under the Full Model, we observe that the interval lengths produced by Exact and MLE
are consistently less variable than those of Polyhedral+. This observation is also true if
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Fig.5. Length of confidence intervals under signal regime 3.

we focus attention on split proportion p = 0.80, at which the randomized methods are
comparable to Polyhedral+ in terms of the quality of feature selection.

Similar patterns are seen in Fig. 6 as we change the signal strengths under signal regimes
1-5. Under both models, our Exact method yields only nominally longer intervals than
MLE, but, consistently gives shorter intervals than the two split-based strategies Split and
UV. As previously mentioned, we only display the lengths of split-based methods for the
Selected Model, as they are much longer than the other methods when used under the
Full Model. The increasing cost of discarding data from the selection stage is evident from
Fig. 5(b).

5. ANALYSIS OF HIV DRUG RESISTANCE DATA

We apply our method to the HIV drug resistance data. This dataset, originally analysed
by Rhee et al. (20006), is publicly available on the Stanford HIV Database. The goal of the
analysis is to find associations between mutations of the HIV virus and drug resistance to
antiretroviral drugs. We extract a part of this dataset that focuses on the response to one
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Fig. 6. Length of confidence intervals at fixed split proportion 0.80.

particular drug, lamivudine (3TC), as has been described previously by Bi et al. (2020) and
Panigrahi et al. (2021). The predictive features in these data are 91 mutations that appeared
more than 10 times in the samples, and the response is a log-transformed value of the mea-
surement for drug resistance. Our dataset contains 633 sample observations for the response
and the set of 91 features.

We focus on three randomized procedures for interval estimation. To run our method,
we consider drawing a Gaussian randomization variable w ~ N (0,, 2), where p = ny/n =
0.8, and 2 is set as per (5). We implement the randomized lasso with the randomization
variable w. The randomized lasso selects a subset of 14 mutations. At the inference stage, we
use our exact pivot to construct confidence intervals for the selected regression coefficients.
For comparison, we construct approximate confidence intervals using MLE after the same
run of the randomized lasso. We also consider the intervals produced by Split based on
p = 0.8. That is, Split uses 80% of the data samples for selecting features, and this resulted
in selecting a subset of 17 features. The remaining 20% of the samples were reserved for
selective inference.

On average, we observe that the length of interval estimators based on the Exact method
is 3.76. This follows our simulated results, which showed that the Exact intervals are longer
than the MLE intervals, with an average length of 2.76. However, this longer length is a
necessary trade-off to achieve exact selective inference with our pivot. Despite this, our
intervals are still shorter than those produced by the Split procedure, which have an average
length of 6.58 in this instance. Figure 7 displays box plots for the interval lengths, which
clearly demonstrate this pattern.

6. DISCUSSION

We conclude the paper with two remarks. Firstly, while exact selective inference has its
benefits, it also comes at a cost. By conditioning on additional information to obtain our
pivot, we sacrifice some power in comparison to approximate techniques developed in prior
work, such as Panigrahi et al. (2017) and Panigrahi & Taylor (2023). Further research is
required to investigate the cost in power for exact inference. Secondly, the pivot generated
from the randomization scheme used in the paper can also be applied to more general esti-
mation problems, including the class of M-estimation problems. We believe that the same
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Fig. 7. Lengths of interval estimators.

pivot could be used as long as the selection algorithm permits a linear representation in
optimization variables at the solution. For these problems, our pivot would provide asymp-
totic selective inferences instead of exact selective inferences, which would require a formal
theoretical justification and needs to be studied in future work.
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