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ABSTRACT: Molecular dynamics (MD) simulations have become a valuable tool in
structural biology, o!ering insights into complex biological systems that are di"cult to
obtain through experimental techniques alone. The lack of available data sets and structures
in most published computational work has limited other researchers’ use of these models. In
recent years, the emergence of online sharing platforms and MD database initiatives favor
the deposition of ensembles and structures to accompany publications, favoring reuse of the
data sets. However, the lack of uniform metadata collection, formats, and what data are
deposited limits the impact and its use by di!erent communities that are not necessarily
experts in MD. This Perspective highlights the need for standardization and better resource
sharing for processing and interpreting MD simulation results, akin to e!orts in other areas
of structural biology. As the field moves forward, we will see an increase in popularity and
benefits of MD-based integrative approaches combining experimental data and simulations
through probabilistic reasoning, but these too are limited by uniformity in experimental data availability and choices on how the data
are modeled that are not trivial to decipher from papers. Other fields have addressed similar challenges comprehensively by
establishing task forces with di!erent degrees of success. The large scope and number of communities to represent the breadth of
types of MD simulations complicates a parallel approach that would fit all. Thus, each group typically decides what data and which
format to upload on servers like Zenodo. Uploading data with FAIR (findable, accessible, interoperable, reusable) principles in mind
including optimal metadata collection will make the data more accessible and actionable by the community. Such a wealth of
simulation data will foster method development and infrastructure advancements, thus propelling the field forward.

■ INTRODUCTION
Since their development in the 1970s, molecular dynamics-
based approaches have significantly advanced and gained
credibility as a tool for hypothesis testing, experimental
motivation and interpretation, and enhancing our under-
standing of biology.1 These approaches, rooted in physical
principles, are attractive for addressing various problems,2
including evaluating free energy di!erences,3 predicting
structures,4 unraveling mechanisms of action,5,6 and providing
high-resolution descriptions of systems on a picosecond-by-
picosecond basis, which cannot be achieved through
experimental techniques alone.
However, despite the achievements of these computational

models, they encounter three primary limitations.7 First, the
accuracy of predictions relies on the quality of force fields
employed.8 Second, achieving adequate sampling can be
computationally expensive.9 Last, scalability becomes a
challenge when dealing with the vast number of systems of
interest in biology.10 For instance, considering only natural
amino acids, the protein sequence space grows exponentially as
20N, where N is the sequence length, considering only natural
amino acids.
In the early years of MD, the disparity between the time

scales relevant to biological processes and those accessible to

computer simulations and the limited accuracy of force fields
limited the real-life application of this promising technique.11,12
However, these limitations spurred the development of an
impressive range of enhanced sampling strategies, which now
form the basis of many successful approaches.13 More recently,
force field developmentonce reserved to a few expert
groupshas seen an expansion both in terms of niche specific
force field development and in the number of groups
contributing new parameters.14 With growing computer
power, improved sampling techniques, and force fields, the
systems of interest also grow in complexity, often requiring
even longer simulations and more complex analysis tools.15
Many such simulations are beyond what any group could
sample on their own, using national and international
supercomputer resources. Access of such simulations to the
broader community,16 as happened with SARS-CoV-2 related
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simulations during the pandemic (e.g., https://bioexcel-cv19.
bsc.es/, https://covid.bioexcel.eu/simulations/, or https://
covid.molssi.org/), could spur development of new analysis
methods and new biological insights. Such e!orts have
garnered the support of the community by contributing over
10,000 simulations and over 12.7 ms of simulation data17
leading to an array of publications on the topic of SARS-CoV-
2.
However, there are no clear standards for how to share

simulation data (e.g., processed or raw data), what information
(metadata) is provided to search and find such simulations,
and whether processed data (e.g., structures of top clusters or
analysis) are provided, or how to assess the quality and
biological insights in di!erent data sets, which limits its use by
di!erent communities. Online resources such as the open
science framework,18 Figshare,19 or Zenodo20 simplify the
process of storing trajectories by uploading projects up to
50Gb that can be identified and cited through DOIs, foregoing
some of the long-term limitations of storage requirements for
individual groups or finding published trajectories once a
student or postdoc moves to a new position.21
The validation of molecular dynamics-based approaches

against experimental techniques has played a significant role in
their development, resulting in their integration as routine
tools in an expanding number of laboratories, including both
computational and experimental settings.22 Following George
Box’s notion that “All models are wrong, but some are
useful”,23 the traditional MD paradigm is that if simulations
reproduce some known experimental data for a particular
system, then other conclusions derived from the simulation
data might also shine new insights into the system. Though
improved force fields, longer accessible time scales, and the
ability to simulate larger and more complex systems, the
paradigm is shifting for simulations to be more predictive and
yielding testable hypothesis.22 These developments are
allowing truly integrative approaches that combine experiments
and simulations24−28 to solve problems that neither experi-
ments nor simulation could solve on their own. Such
integrative approaches typically employ probabilistic reasoning
to combine experiments and simulations while maintaining a
physical foundation and interpretability of the resulting
ensembles.
To build on such findings, other members of the structural

community need access to the models: as ensembles,
trajectories, or, in some cases, single structures of the relevant
biological states described by the trajectories (e.g., cluster
centers). The heterogeneity in data reporting, data sources,
and how the data are modeled gives rise to many di!erent
protocols29−31each of which might answer di!erent
questions. While more groups are making information from
simulations accessible there is a need for common standards32
that will agree with FAIR principles (Findable, Accessible,
Interoperable, and Reusable).33
Standardized formats and centralized databases have been

crucial to the development in other domains of structural
biology,34,35 and more recently they have been the source for
training the very AI models that have surpassed other tools in
the field (e.g., in protein structure prediction).36,37 Success of
such initiatives often relies in the establishment of task
forces38−43 built from heterogeneous teams across the field
that can represent di!erent points of view and needs of the
community and can drive enforcement of protocols (such as
formats, validation, and metadata collection). Such task forces

help in establishing standards and promoting best practices for
reporting results and structures, which can adapt as the field
requires.
Historically, such MD initiatives that tried to centralize MD

trajectories44−46 were dependent on the e!orts of single groups
(e.g., MODEL,45 Dynameomics44). While this allowed
homogeneous data collection, system setup, and running
conditions, it required a large investment from a single group
and updating trajectories to simulation lengths that are
appropriate for current simulation lengths. More recent
initiatives32 are typically more focused on specific types of
systems such as DNA,46 GPCRs,47 MemProtMD,48 and
NMRlipids49 and often include simulations from multiple
groups, programmatic access to data, standardized analysis, and
metadata collection, while other recent initiatives, such as
MDDB,17 aim for an umbrella repository of simulation data.
Alternatively, many individual groups upload their simulation
data to servers like Zenodo, Figshare, or OSF, relying on those
engines’ searchable libraries. In such cases, there are no
uniform standards for sharing the data.

■ DATABASES IMPROVE COMMUNITY REUSE OF
MD SIMULATIONS

A common concern among our structural biology collaborators
is the perceived lack of actionable output in MD papers, often
providing descriptive simulations without o!ering usable data,
such as coordinates for other communities. The great success
of the PDB50 lies in providing a common starting point for
various modeling approaches irrespective of what technique
(NMR, X-ray, CryoEM) was used to derive the structure. The
metadata collected in the PDB usually provide insights as to
what considerations to take into place when modeling the
system, for example, capturing the e!ect of crystal contacts in
system stability, generating missing residues, or removing
purification tags before using the structure. Di!erent modeling
communities (e.g., Docking, MD, ...) learn to use and modify
those initial structures as starting points to answer biological
questions. Even beyond its original intent, the PDB has
provided the collective data to develop AI-based technologies
that predict protein structures and even complexes.36,37
Di!erent communities have varied expectations of MD

simulations. Some seek practical insights to advance under-
standing, while others focus on system setup, interoperability,
reproducibility, and method development. Structural biolo-
gists, for instance, might prioritize obtaining representative
structures of the most relevant states (e.g., open/close states,
active/inactive states) and emphasize experimental validation
of those states before analyzing and obtaining biological data,
rather than studying the whole ensemble. In this sense,
knowing the purpose of the simulation informs users about
what the ensembles might capture. For example, simulations
using adaptive sampling strategies might unveil kinetic
relations between di!erent states,9 long equilibrium trajectories
at melting temperature might give information about folding
pathways and intermediates,51 while MD simulations starting
from sequence alone (e.g., from blind competitions such as
CASP52) are limited at best to predict the major (native) state.
The MD community, with greater access to computational

resources, is keen on comparing ensembles from di!erent force
fields, developing enhanced sampling approaches that can be
benchmarked against state-of-the-art simulations, and devel-
oping analysis tools. Storage requirements, crucial for
ensembles, can be managed by storing dry trajectories, down
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sampling, or maintaining key structures with velocities for
trajectory restarts. With current computer power and
deterministic algorithms,53 it is possible to reproduce a
trajectory given n intermediate steps, with the caveat that
some MD software will require the same computer architecture
for true reproducibility. However, even in this scenario factors
like software and library versions or the e!ect of load balancing
can produce di!erent results. Since simulations are stochastic,
most of the time a user might not need the exact trajectory but
the conclusions that can be extracted from the ensemble. For
example, some initiatives like Folding@home54 opt to share a
Markov state model of the data where the metastable states
and kinetic relations between them are given.
Often, papers addressing new analysis tools will be tested

against in house simulations run by the group developing the
analysis, and often reviewers will ask for longer simulations on
more systems. This is a particular scenario where reusing
community tested and verified trajectories might save a lot of
time in choosing interesting systems and running for long
enough.

■ LACK OF INTEROPERABILITY ACROSS MD
PLATFORMS REQUIRES MORE INFORMATIVE
METADATA

Bioinformatics tools have historically had a large appeal to the
structural biology community because they are fast, easy to
setup, and provide an interpretable output. More recently,
AlphaFold (AF)37 and other AI programs36 have taken the
scientific community by surprise with its spectacular success
for protein structure determination.36,37 Beyond its success, it
has been rapidly embraced by the structural biology
community thanks to its simple input, concise output, and
easy-to-gray confidence score for the predictions. AF is useful
for many aspects of molecular modeling and structural biology
and has already been incorporated into many experimental
pipelines.55−58 Beyond protein structure prediction, AF also
has some degree of transferability, with great potential for
predicting protein−protein59 and protein−peptide60 com-
plexesand even ranking peptides by binding a"nity.61
However, while tools like AlphaFold excel at a specific task

(structure prediction), MD simulation protocols undergo

significant changes depending on the research question
such as sampling around a native protein state, describing
processes like binding or folding, or predicting free energy
di!erences between di!erent drugs. All simulations will
typically require three steps: 1) system setup, 2) equilibration,
3) production runs.62 The first step helps introduce the physics
model, solvents, and other molecules that are going to define
the system. Tools such as Charmm-GUI63 and others64,65
facilitate this interconversion66,67 from an initial structure to
the generation of the simulation system. However, not
everything is accounted for; for example, SARS-CoV-2 exposed
many expert groups the challenges in modeling glycans into
proteins, which lead to new protocols introduced in these
pipelines. The equilibration process refers to reaching the
simulation temperature, equilibrating the system to the correct
density, and relaxing the solvent/solute system such that the
initial conditions do not artificially drive the solute away from
the initial starting state. The production is what generates the
ensemble that will be analyzed for insights. Depending on the
purpose of the simulations, conventional or enhanced sampling
approach, the form of the potential energy,68 and simulation
package, the conditions of the simulation will be di!erent, and
it is still frequent to find suboptimal parameter choices in the
literature (e.g., Berendsen thermostat/barostat). Furthermore,
not all simulation packages can run all force fields, and some of
the simulation parameters do not have the exact counterparts
in other packages. Thus, reproducing or reanalyzing simulation
data with a di!erent package than the one used to generate the
data is not possible (e.g., recalculate the energy for every frame
in an ensemble).68 This lack of interoperability68,69 requires
specific attention when deciding what metadata users will need
to reproduce or reanalyze ensembles.
Given the wide range of questions that simulations can

address, there is no unique protocol that will work for all
systems. Here, the value of developing and maintaining up-to-
date tutorials to exemplify good simulation practices becomes
helpful. In particular, when these questions are posed, robust
and transferable protocols can be established. A prime example
is the use of alchemical free energy methods in drug discovery:
how does a chemical change (ligand or protein mutant) a!ect
the stability of the system (ΔGmutation)? Protocols for such

Figure 1. Complementary nature of computational simulations and biophysical experiments in integrative structural biology. a) Experimental
techniques are utilized to refine computational simulations through the application of probabilistic reasoning. This integration of experimental data
enhances the accuracy and reliability of the simulations. b) Biasing or reweighting MD simulations with experimental data. When using biases
(top), the system directly samples a distribution that aligns with the experimental data. Alternatively (bottom), unbiased simulations lead to a
population distribution that is later reweighted against experimental data.73
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methods are now well established to yield a free energy value
with calculated error bars and have been incorporated into
many standard computational chemistry programs, often
geared toward big pharma.70,71 However, tutorials cannot
cover every possible scenarios. Including all metadata needed
to reproduce a project in simulations will allow users to
transfer simulation protocols from specific projects into their
pipelines. This becomes especially crucial for new methods
that have not been tested as thoroughly as more established
ones or for which tutorials are not available.

■ POTENTIAL OF MD SIMULATIONS IN
INTEGRATIVE STRUCTURAL BIOLOGY

In its evolution into a well-established technique, MD has
traversed various stages,1 progressing from using data to
validate specific simulation aspects to becoming a predictive
technique driving insights and hypotheses that are sub-
sequently experimentally validated.22 Concurrently, integrative
and hybrid modeling approaches (Figure 1a) have emerged to
solve problems that neither experiments nor computational
approaches could resolve on their own. Integrative structural
biology grapples with data fraught with inherent uncertainties
and noise, such as experimental errors or limited resolu-
tion.35,72 Probabilistic reasoning allows for a systematic and
quantitative assessment of these uncertainties, providing a
more accurate understanding of the reliability and limitations
of the structural models generated (Figure 1b). However,
determining the number of states represented by the data or
reconciling di!erent sources of data compatible with distinct
states poses a challenge. MD, with its natural sampling of
diverse states, provides a robust framework for modeling such
ambiguous and noisy data. While MD has historically
incorporated certain types of information (e.g., single inter-
residue distances), truly integrative MD approaches have only
recently become commonplace.72
Some of the challenges in this field are the heterogeneity in

experimental data reporting originating from di!erent systems
and laboratories, heterogeneity in how di!erent modeler
groups handle the data (e.g., some data might be ignored),
and how the final models are reported (e.g., a structure, an
ensemble, interpretation of the data, modeling of the errors,
...). Such heterogeneity ultimately leads to a diverse range of
protocols and techniques, typically associated with di!erent
computational laboratories, using similar probabilistic integra-
tion techniques (e.g., Bayesian inference74,75) to answer a
diverse set of biological questions.26,27,73,76,77 Every new
project requires a deep understanding of the data, how to
interpret it and apply it to simulations, or how to use it to
reweight MD ensembles. Users who access MD data need to
understand exactly how the experimental information was
modeled, which might be hard to obtain from a paper. This
can be done by providing more verbose metadata where the
original experimental information, how it is modeled, and with
which software (and version) is provided.
The challenges increase when simulating dynamic and

flexible systems, such as protein conformational changes,
protein−ligand interactions, or integrating structural informa-
tion across di!erent scales, from atomic to cellular levels.30,31,78
Below, we provide two case examples highlighting the
challenges discussed in this context, focusing on structure
determination using sparsely labeled NMR or CryoEM data.
In the case of sparsely labeled NMR,79 the challenge lies in

identifying possible interpretations of the NOESY spectra

based on the chemical shifts of di!erent atoms. Ambiguity and
noise arise as a signal in the spectra can have multiple
interpretations, some peaks may not be visible, and some
regions along the sequence might be blind to the experiment
(i.e., no label in those residues). Traditional NMR structure
determination e!orts encounter di"culties due to the
numerous viable structures arising from data interpretations.
By combining the sparsely labeled NMR data set with
simulations, typically using Bayesian inference, structures that
are both physically compatible with the force field and
representative of the ensemble’s Boltzmann distribution can
be obtained.80−83 However, this approach does not provide
information about the uncertainty associated with each peak in
the data set. A di!erent use of Bayesian inference is often
observed in CryoEM data analysis. Here, the initial state is
already close to the native state, as revealed by the density
map. However, the CryoEM data set does not possess uniform
resolution, leading to uneven distribution of uncertainties
throughout the structure. In this scenario, the objective is to
evaluate the uncertainty ensemble based on the collected data
and simulation framework.24,84 Furthermore, the data might
contain information about di!erent conformers which can be
rationalized in terms of di!erent states and their associated
populations.85

■ BRINGING TOGETHER MULTIPLE POINTS OF VIEW
FOR BETTER USE OF SIMULATION DATA

From the early database initiatives championed by individual
groups to the more contemporary community e!orts that allow
interactive and programmatic data access, the field has been
steadily advancing methods to share and facilitate greater
interaction with MD data. As computational power has grown,
so have MD databases, expanding from under 10 terabytes in
2010 to hundreds of terabytes in recent years.21 The
infrastructure, storage capacity, and resources for interactive
analysis of these databases is also improving. Early projects
required physical shipment of data disks among consortium
methods, while more recent and larger projects can exchange
information rapidly (e.g., through globus). Maintaining storage
requirements for such databases is increasingly challenging in a
centralized manner, necessitating multiple distribution nodes.
Projects related to COVID,16 for instance, have found
sponsorship of storage space through either molSSI or AWS
(https://registry.opendata.aws/foldingathome-covid19/), this
type of initiative does not scale to all possible projects and
other sources of funding are needed.
To overcome these challenges, the community is now

witnessing the emergence of new funding initiatives and
consortiums that aim to build scalable systems for MD
simulation data,21 and possibly for on-demand analysis.86 One
of the challenges in depositing data is making sure credit is
given where it is deserved: that is, the database should be
citable but also the contributions from di!erent users
contributing trajectories.87,88 For example, the set of protein
folding trajectories for a small set of fast protein folders have
been a standard in the field that have been reused and analyzed
well beyond the initial paper.51 Access to the trajectories was
granted based on requests by individuals, and papers cited the
original publication. In the new paradigm, such trajectories
would already be available to the community, but there should
be a mechanism by which using them would still give
recognition to the original creators rather than just the
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database. Such recognition is critical when analyzing the
impact of one’s work or when requesting funding to agencies.87
Simultaneously, recent years have seen an increase of

trajectories being deposited by individual users in services like
Zenodo, Figshare, or the Open Science Framework (OSF),
which provide storage capacities (up to 50Gb per project) and
a citable DOI. A recent analysis89 of data deposited in these
servers revealed close to 2,000 MD data sets (March 2023) for
a cumulative 14 Tb of data. While these data were accessible
and downloadable, finding it is not trivial, which reinforces the
need for better standardization of metadata to identify and
classify data. These data sets also vary in how they store data:
how often data are stored, if solvent is stored, and velocities.
Some of the data sets thus allow us to restart trajectories while
others do not. Despite current limitations, some studies are
already making use of this wealth of data to reach conclusions
that would be hard to replicate by the e!orts of a single
group.90 Other approaches such as Folding@Home,91 which
generate a large number of trajectories for a project, have opted
for depositing Markov State Models derived from the
simulations in the Open Science Framework (OSF), which
are much compressed with respect to the original trajectories,
while keeping the original trajectories available on demand.
Throughout this Perspective, we have underscored the need

for e!ective metadata that will enable users from di!erent
communities to search and retrieve data sets of interest,
download relevant information for their communities (e.g.,
single structures, ensembles, or input data), and identify
whether simulations have been compared with experiments
and, if so, how they have been integrated. We have also
addressed how data were modeled and the nature of the
original data. These are just a few of the things that we believe
are important. Often, the specifics of a simulation, including
the type of simulation, the data format, and the modeling
approach, are unique to a particular group and cannot typically
be included in all detail in the manuscripts themselves.
Therefore, data repositories play a critical role in bridging this
gap by providing detailed descriptions (actual input) of how
each simulation was conducted. Including such details would
enable users from various communitiesnot just those who
run simulationsto grasp the purpose and significance of
these simulations and to use them according to their needs.
This aligns with the FAIR guidelines.33
We can learn from existing communities (Figure 2) that

have faced similar challenges related to data formatting and
integration. For instance, the integrative/hybrid modeling
community has established a database (PDB-dev) that
endorses a federated system92 linking separate pieces of
informationmeaning that not all information is stored in a
single location. This could include, for example, both the
models and experimental data. By synchronizing e!orts,
unifying formats, and fostering e!ective communication, the
PDB-dev database o!ers capabilities that extend beyond those
of the traditional PDB (e.g., multiscale resolution). Such
initiatives have greatly benefitted from community workshops
to identify needs/solutions and task forces that help oversee
implementation (see Figure 2).
Considering the larger volumes of data generated by

simulations, a federated system, where data trajectories are
not centralized in one repository, appears to be a more
practical solution. Some initiatives are already exploring the use
of MD simulation data in artificial intelligence.93,94 The
availability of informative metadata will be essential in building

robust data sets. This will involve filtering simulations based on
various criteria, such as the type of MD (such as conventional
MD), the force fields used, the duration of simulations, and the
specific simulation conditions. More advanced features will
include programmatic access to databases, requiring access to
software capable of processing trajectories on the fly. This type
of initiative is, for example, done in CASP where all the models
submitted are analyzed by an ever-expanding list of tested
computational tools.96

■ CONCLUSION AND OUTLOOK
In conclusion, the advancements in molecular dynamics (MD)
simulations have paved the way for new insights and
discoveries in structural biology. However, the field faces
challenges that hinder its full potential. The limitations of MD
simulations, such as accuracy, computational expense, and data
interpretation, necessitate the need for standardization,
integration, and data accessibility. Promoting data sharing
and reproducibility can drive the development of better
interconversion tools to overcome formatting di!erences and
new protocols for compiling and sharing metadata. This will
lead to simulation data that is easier to find and more reusable
by the community, thus adhering to FAIR principles.
Moreover, user-friendly software tools, up-to-date tutorials,
and MD databases will empower researchers to implement
protocols e!ectively and analyze simulations e"ciently. By
embracing Open Science principles and fostering collabo-
ration, the structural biology community can overcome these
challenges, leading to more robust integrative approaches and a
deeper understanding of complex biological systems.
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