nature methods

Analysis

https://doi.org/10.1038/s41592-024-02321-7

Outcomes of the EMDataResource cryo-EM
Ligand Modeling Challenge

Received: 14 January 2024

Accepted: 24 May 2024

A list of authors and their affiliations appears at the end of the paper

Published online: 25 June 2024

% Check for updates

The EMDataResource Ligand Model Challenge aimed to assess the reliability
and reproducibility of modeling ligands bound to protein and protein-
nucleic acid complexes in cryogenic electron microscopy (cryo-EM) maps

determined at near-atomic (1.9-2.5 A) resolution. Three published maps
were selected as targets: Escherichia colibeta-galactosidase with inhibitor,
SARS-CoV-2 virus RNA-dependent RNA polymerase with covalently bound
nucleotide analog and SARS-CoV-2 virus ion channel ORF3a with bound
lipid. Sixty-one models were submitted from 17 independent research
groups, each with supporting workflow details. The quality of submitted
ligand models and surrounding atoms were analyzed by visual inspection
and quantification of local map quality, model-to-map fit, geometry,
energetics and contact scores. A composite rather than a single score was
needed to assess macromolecule+ligand model quality. These observations
lead us torecommend best practices for assessing cryo-EM structures of
liganded macromolecules reported at near-atomic resolution.

Cryogenic electron microscopy (cryo-EM) has rapidly emerged as a
powerful method for determining structures of macromolecular com-
plexes. Itiscomplementary to macromolecular crystallography inits
ability to visualize macromolecules and complexes thereof, of varying
sizesand extents of structural heterogeneity in three dimensions at near
to full atomic resolution. The number of new structures determined
by cryo-EM has been steadily increasing, and with improved resolu-
tion (Extended Data Fig.1a). Macromolecular complexes may contain,
in addition to larger components (that is, proteins or nucleic acids),
smaller components such as enzyme cofactors, substrates, analogs or
inhibitors, medically relevant drug discovery candidates or approved
drugs, glycans, lipids, ions or water molecules. Accurate modeling of
ligands within their macromolecular environment is important, as
they can substantially influence larger-scale structure and function. As
the number of novel ligands in cryo-EM-derived structures continues
to increase rapidly (Extended Data Fig. 1b), it becomes important to
investigate how best to validate themto ensure optimal modeled ligand
quality using various measures such as fit of model-to-map, geometry
scores of theligand and local interactions with ions, waters, protein or
nucleic acid components.

An international workshop on validation of ligands in crystallo-
graphic Protein Data Bank (PDB) depositions' held in 2015 identified

several common problems, including weak experimental density,
ligand atoms poorly placed, incorrectly defined or misinterpreted
chemical species, and inclusion of atoms not directly supported by
experimental evidence. The main outcome was a set of best practice
recommendations for PDB depositors and for the PDB archive. For
PDB depositors, recommendations included providing unambiguous
chemical definitions for all ligands present in a structure, including
hydrogen atoms, providing ligand geometry and refinement restraints,
clearly identifying atoms not supported by experimental evidence,
providing the experimental map used for modeling and including
comments explaining outliers. Recommendations for PDB validation
included providing informative images of ligands in their density,
providing stick figure diagramsindicating geometry outliers, identify-
ing atoms not supported by experimental evidence, providing quality
assessment metrics for eachidentified ligand and identifying possible
protonation states. Most of the workshop validation recommenda-
tions have been implemented in PDB validation reports, with ligand
geometric assessments implemented for all experimental methods®™*.

Since 2010, EMDataResource (EMDR) has organized multiple
Challenge activities (https://challenges.emdataresource.org) with the
aimof bringingthe cryo-EM community together to addressimportant
questions regarding the reconstruction and interpretation of maps
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a Target 1 3-gal: 6CVM b

Fig.1|Ligand Challenge targets and ligands from submitted models.

a-c, Targets 1-3 are shown, with each polymer and/or nucleic acid chain rendered
as aseparate surface with a different color, in some cases semitransparent: target
1(a), target 2 (b) and target 3 (c). Target ligands are shown inred. d-f, Segmented
density representing each target ligand is shown with a semitransparent surface,
withall submitted ligand models overlaid: target 1(d), target 2 (e) and target 3 (f).

Target 2 RNAP: 7BV2

¢ Target 3 ORF3a: 7KJR

Map contour levels are 0.35 (2.30), 0.036 (2.60) and 0.25 (3.70), respectively
(sigma values were calculated from the full unmasked map to capture variation
inbackground noise). g-i, Chemical sketches for each of the target ligands PTQ
(g), F86 (h) and PEE (i) (source, PDB). Selected individual ligand poses from
submitted models superimposed on target map densities are shown in Extended
DataFig. 2.

and map-derived atomic coordinate models’. For each Challenge,
a committee consisting of prominent experts is invited to recom-
mend targets and set goals. Each event has been conducted with the
operational principles of fairness, transparency and openness, using
modeler-blind assessments and open results, with a major goal of
promoting innovation.

In 2016, paired Map and Model Challenges invited participants
to apply their new algorithms and/or software to reconstruct maps
and to evaluate models at resolutions of 2.9-4.5 A. The results were
publishedinal9-article special journalissue®. By 2018, most participat-
ing groups had improved their pipelines, eliminating many identified
mistakes. The unique EMRinger map metric for side chain-main chain
consistency’ was first tested systematically in the 2016 Challenge and
isnow standard.

The 2019 Model Metrics Challenge evaluated models, while also
evaluating the effectiveness of many different coordinate-only and
map-model fit metrics for four targets at 1.7-3.3 A resolution. The
results were published in a single joint paper®. To streamline the chal-
lenge process, input of data from participants and initial assessment
pipelines were automated, and comprehensive statistics, visualiza-
tions of scores and comparisons were made available. The CaBLAM
multi-residue main-chain metric’, introduced in 2016, was shownin the
2019 Challenge to be the score most highly correlated with measures

of match to target. The Qscore', inspired and introduced by the 2019
Challenge, hasnow beenadopted by the wwPDB Validation System used
atdeposition as well as in the detailed validation report™.

The 2021 Ligand Model challenge brought together researchand
industry groups to evaluate and discuss available measures and tools
for ligand quality assessment. Many of the issues identified for crystal-
lographicstructuresinthe 2015 ligand workshop were also expected to
occurincryo-EMstructures with modeled ligands, but with additional
considerations unique to cryo-EM. Targets were chosen from publicly
available maps with sufficient resolution to theoretically allow de-novo
ligand modeling, include diverse components suchas proteinand RNA,
and have currentinterest and relevance. The objectives set out were to
identify (1) methods for modeling such ligands and (2) metricsto evalu-
ate map-model fit, stereochemical geometry and chemically sensible
interactions between the ligand and protein or RNA component. We
describe here the overall design and outcomes of the EMDR Ligand
Challenge, recommendations for the cryo-EM community based on cur-
rently available assessment methods and what is needed for the future.

Results

Challenge design

Three cryo-EM map targets were chosen based on the following criteria:
recently published with resolution better than 3 A, maps released in the
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Table 1| Modeling teams with number of models per target, approaches and software used

ID Modeling team m T2 T3  Polymer Ligand Ligand Automation Modeling software
modeling modeling restraints level
software
EMOO1  D.Kihara, G. Terashi, D. Sarkar, 3 2 3 abinitioor  refitor MD Force Field partial Mainmast, Mainmastseg,
J. Verburgt optimized  optimized Rosetta PyMOL, Schrédinger,
VMD, Chimera, MDFF
EMO02 D.Si,S.Lin, M. Zhao, R. Cao, 3 2 3 abinitioor  refit Phenix eLBOW full DeepTracer, Phenix
J. Hou none
EMOO03 A.Muenks, F. DiMaio 3 2 2 optimized refit Phenix eLBOW, partial Rosetta, Chimera
OpenBabel
EMO04 J.Cheng, N. Giri 2 2 2 ab initio refit PyRosetta partial Rosetta, Chimera, DeepTracer
EMOO5  G. Pintilie, M. Schmid, W. Chiu 2 1 1 none refit Phenix eLBOW partial Chimera
EMOO6 M. Baker, C. Hryc 1 1 1 ab initio refit Phenix eLBOW partial Pathwalker, Phenix
EMOO7 A.Perez, A. Mondal, R. Esmaeeli, 1 1 1 optimized  optimized  PyRosetta, partial MELD, Amber, VMD
L.Lang Antechamber, MD
Force Field
EMOO08 P.Emsley 1 1 1 optimized  refit CCP4 AceDRG partial Coot, REFMAC
EMOO9 N.W. Moriarty, P. V. Afonine, 1 1 1 optimized  refit Phenix eLBOW partial Coot, Chimera, ChimeraX,
C.J. Schlicksup, OV. Sobolev Phenix
EMO10  G. Chojnowski 1 1 1 ab initio refit CCP4 mon lib partial ARP/WARP, ChimeraX, Coot,
Isolde, Phenix, doubleHelix
EMOM M. Igaev, H. Grubmidiller,. 1 1 1 ab initio optimized  MD Force Field partial Chimera, Modeller, VMD,
Pohjolainen, A. Vaiana CDMD
EMO12  C.Palmer, R. Nicholls, R. 1 1 1 optimized  refit or CCP4 AceDRG partial CCP-EM, Coot, EMDA, LAFTER,
Warshamanage, K. Yamashita, optimized ProSMART, REFMAC, Servalcat
G. Murshudov, P. Bond, S. Hoh,
M. Olek, K. Cowtan, A. Joseph,
T. Burnley, M. Winn
EMO13  A.Singharoy, S. Mittal, 1 1 optimized refit or CGENFF partial MDFF, CryoFold, MELD
A. Perez, D. Kihara, M. Shekhar, optimized
D. Sarkar, G. Terashi, C. Rowley,
R. Esmaeeli, L. Lang, A. Mondal,
A. Campbell
EMO14  W.-C.Kao, C. Hunte 1 1 optimized  refit Grade (BUSTER), manual ChimeraX, Coot, Isolde,
Phenix eLBOW Phenix
EMO15  G. Schroder, L. Schafer, 1 optimized  refit MD Force Field partial CDMD
K. Pothula
EMO16  D.Kumar 1 optimized refit Phenix eLBOW partial Coot, Phenix
EMO17  S.Weyand, S.C. Vedithi, 1 optimized  refit Schrédinger full Schrodinger
T. Blundell, S. Brohawn Ligprep
Totals 23 17 21

T1, target 1; T2, target 2; T3, target 3.

Electron Microscopy Data Bank (EMDB), associated coordinatesin the
PDB, small molecules present (ligands, water, metal ions, detergent
and/or lipid) and having current topical relevance (Fig. 1a-c):

« Target1:1.9 A Escherichia coli p-galactosidase (B-gal) in complex
with inhibitor 2-phenylethyl 1-thio-beta-D-galactopyranoside
(PETG) with PDB Chemical Component Dictionary (CCD) IDPTQ,
EMDB map entry EMD-7770, PDB reference model 6CVM (ref.12)

« Target 2: 2.5 A SARS-CoV-2 RNA-dependent RNA polymerase
(RNAP) with the pharmacologically active, nucleotide form of
the prodrug remdesivir (CCD ID F86) covalently bound to RNA,
EMD-30210, PDB reference model 7BV2 (refs. 13,14)

« Target3:2.1 ASARS-CoV-2 Open Reading Frame 3a (ORF3a) puta-
tive ion channel in complex with 1,2-dioleoyl-sn-glycero-3-p
hosphoethanolamine phospholipid (CCD ID PEE), EMD-22898,
PDB reference model 7KJR (ref. 15)

Next, modeling teams were solicited viaemails to multiple bulletin
board lists and were asked to register, generate and upload optimized
models for each target, following provided guidelines (Methods).

Atotal of 61lindependently determined models were contributed by 17
teams from differentinstitutions (IDs EMO01-EMO017), with workflow
details collected for each (see the summaryin Table 1, Supplementary
Information, pp.1-7 and Supplementary Data 1 for details).

Model assessments

Submitted and PDB reference models for each target were evaluated by
passing them through the Model Challenge validation pipeline®*°. Indi-
vidualscoreswere obtained for many different sets of metrics, withanew
ligand analysis track added to the existing fit-to-map, coordinates-only,
comparison-to-reference and comparison-among-models tracks.

Globalfit-to-map metrics included map-model Fourier shell cor-
relation (FSC)", atom inclusion' and EMRinger” and density-based
correlation scores from TEMPy”, Phenix*° and Q score’.

The overall coordinates-only quality was evaluated using Clash-
score, rotamer outliers, Ramachandran outliers and CaBLAM from
MolProbity®?, as well as standard geometry measures (for example,
bond, chirality, planarity) from Phenix**. Davis-QA, ameasure used in
critical assessment of protein structure prediction (CASP) competi-
tions, was used to assess similarity among submitted models®.

Nature Methods


http://www.nature.com/naturemethods
http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-7770
https://doi.org/10.2210/pdb6CVM/pdb
http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-30210
https://doi.org/10.2210/pdb7BV2/pdb
http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-22898
https://doi.org/10.2210/pdb7KJR/pdb

Analysis

https://doi.org/10.1038/s41592-024-02321-7

Table 2 | Ligand assessment teams and methods

Assessment Team members Assessment method

teamID

ATO1 C. Shao wwPDB validation report pipeline (Mogul)

ATO2 P. Emsley Coot Tools

ATO3 B. Schneider, J. Cerny Nucleic acid conformations, protein hydration analysis

ATO4 J.S. Richardson, C.J. Williams, V. Chen, D. Richardson Contact analysis, probescore, occupancy, UnDowser, CaBLAM, visual examination
ATO5 C.I. Williams, Chemical Computing Group Support Team Pharmacophore density fields (PH4)

ATO6 B. Sellers, A. Gobbi, S. Noreng, Y. Yang, A. Rohou Molecular mechanics force field strain energy, NNP

ATO7 G. Pintilie, M. Schmid, W. Chiu Q score analysis

Target 13-gal, 6CVM, PTQ
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Fig.2|Model score distributions of selected assessments for targets 1-3.

The top five rows show the ligand and solvent scores, the bottom six rows show
overall and protein-specific scores. Fit-to-map-based metrics have red labels.
Coordinates-only metrics have black labels. Diamonds indicate individual scores
of submitted models (target 1n =23, target 2 n =17, target 3 n = 21); red triangles

0.2 0.3 Q.A

T g S S|

(with supporting black arrows) indicate the scores of the reference models; ina
few cases no score is available for the reference model. Each score distribution

is plotted against an orange (left) to white to green (right) color gradient with
orange indicating poorer scores, and green indicating better scores, using a scale
appropriate to the metric®. Red, fit to map and black, coordinates only.

Assessment teams contributed a wide variety of ligand-specific
assessments (Table 2, IDs ATO1-ATO07) including ligand, ligand envi-
ronment, solvent and RNA-specific analyses. ATO1 used Mogul* to
evaluate ligand covalent geometry as implemented in the wwPDB
validation process**, withinclusion of acomposite ligand geometry
ranking score®. AT02 evaluated model ligands using Coot*® and
AceDRG?. AT03 evaluated RNA conformation with DNATCO*** and
solvent atom placement around protein residues using water distri-
butions®>*'. ATO4 analyzed ligand all-atom contacts with MolProbity
Probescore’, and ion and water placements UnDowser**. ATO5 scored
ligand placements using density fields derived from pharmacoph-
ore consensus field analysis®*; a method used in computer-aided
drug design to identify and extract possible interactions between a
ligand-receptor complex based on steric and electronic features™.
ATO06 examined ligand strain energies using both molecular mechan-
icsand neural net potential (NNP) energy strategies® ’; where strain
energy is the calculated difference in energy between the modeled
conformation and the lowest energy conformationin solution. ATO7
prepared Q score analyses' for model fit-to-map of whole mod-
els, protein, ligands and water, as well as ligand plus protein and/or

nucleic acid polymer atoms in the immediate vicinity of the ligand
(ligand + immediate vicinity Q score or LIVQ).

Outcomes

The modeled ligands from each of the submissions are shown super-
imposed with their corresponding map density in Fig. 1d-f. Selected
ligand and whole-model score distributions are shown for all three tar-
getsin Fig. 2. Selected individual ligand poses from submitted models
superimposed on target map densities are shownin Extended Data Fig. 2.
Thefullset of pipeline and assessment team scores and their definitions
are provided in Supplementary Data1and online at model-compare.
emdataresource.org.

Overall model scoring. With regards to overall fit-to-map evaluation,
most submitted models scored very similarly to PDB reference models
for all targets, both in terms of the overall map-model FSC" and pro-
tein Qscore’ (Fig. 2, rows 9 and 11). For targets 2 and 3, several teams
modestly improved on EMRinger score’ (Fig. 2, columns 2 and 3, row
10). With regards to overall coordinates-only evaluation, many teams
were able toimprove on PDB reference models for all targetsin terms
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Fig.3|Model and modeling group rankings. a-c, LIVQS is plotted according to
rank for each submitted model (labeled as participant group ID, Table 1, followed
by model number) and for each reference model (labeled as PDBID): target1(a),
target 2 (b) and target 3 (c). Models with good overall MolProbity scores (<3.0)
areshaded green; those with poor MP scores (>3.0) are shaded red and starred;
reference models are shaded blue and labeled in bold. Immediate vicinity

includes all nonhydrogen model atoms <5 A from any ligand nonhydrogen

atom. Model rankings with extended vicinity (LIVQ10) are provided in Extended
DataFig. 4. d, Ranking of Challenge participant groups based on the fit-to-map
accuracy of ligands as shown in a-c, and stereochemical plausibility, as described
inthe main text. Overall rank is calculated as the all-target sum of weighted
zscores for the best per-target models from the group (equation in text).

of Clashscore®” and CaBLAM?*?, metrics that identify steric clashes and
evaluate protein backbone geometry, respectively (Fig. 2, rows 6 and 7).

Ligand and ligand-environment scoring. Ligand and ligand-
environment evaluation methods were challenged by missing atomsin
some submissions, the covalently boundligand (target 2), and presence
of charged ligands (targets2and 3). In terms of ligand-specific fit-to-map
(ligand Q score), many teams made improvements relative to the PDB
reference model of target 1 but scored similarly or worse than the PDB
reference oftargets2and 3 (Fig. 2, row1). Interms of covalent geometry
(Mogul)***, many ligands in the submitted models were improved rela-
tivetoreferencesfortargets1and 3, whileresults were mixed for target 2
(Fig.2,row5). Withrespectto calculated ligand strain energy and pharma-
cophoreligand-environment modeling, many of the submitted models
wereimproved relative to references for targets 1and 2, but some poses
werelessfavorable (Fig.2, rows 3and 4). Ligand strain energy qualitatively
should beless than 3 kcal mol with minor relaxation using the sampling
and scoring as described in the Methods. Only a subset of submitting
groups carefully considered treatment of ions (Extended Data Fig. 3).

Nucleic acid scoring. Target 2’s RNA (a typical A-form double helix,
with two unpaired nucleotides at the 5’ end of the template strand) had

close-to-expected geometries for most submitted models as assessed
by DNATCO nucleic acid Confal scores®®* (Fig. 2, column 2, row 8).
Values of torsion anglesin the dinucleotide units assigned to DNATCO
NtC classes agreed with expected distributions including sugar ring
torsions that define pucker. Note that before running this Challenge,
target 2’s reference model (PDB 7BV2) had been reversioned by the
depositionauthorsandrereleased by the PDB with several corrections
tosequence, RNA conformation and CaBLAM outliers®, thus limiting
scope for model improvement.

Submitted model rankings. To evaluate and rank quality of ligand
fit-to-map within the context of the macromolecular complex, we
developed a new score, LIVQ, which averages Q scores of nonhy-
drogen atoms of the ligand together with all nonhydrogen polymer
atoms in the immediate vicinity of ligand (LIVQ, ligand + immedi-
ate enVironment Q score). A distance cutoff of 5 A was chosen to
define the immediate vicinity of the ligand for model ranking
purposes (LIVQS5, Fig. 3a—c); extension to 10 A yielded similar
results (LIVQ10, Extended Data Fig. 4). The results of the analysis
show that for each target there are several models that exhibit very
good model-to-map fit comparable to that of reference PDB-deposited
models (Fig. 3a-c, blue bars). Nine, two and three submitted models

Nature Methods


http://www.nature.com/naturemethods
https://doi.org/10.2210/pdb7bv2/pdb

Analysis

https://doi.org/10.1038/s41592-024-02321-7

Target 1 reference
B-gal, CYM, PTQ

Yo és’th}d _f ﬁ}-&?n
» J

Tr”pg568>:‘\ 2:5‘/,% j‘,,’?;f’
/ @

530

U20.P°

Target 1 model EMO12_1

Fig. 4| Visualization of ligands and surrounding atoms in deposited
reference models and best-scoring submitted models. a-c, The deposited
reference models for targets 1-3 as described in the main text: target 1 (a), target
2 (b) and target 3 (c). d-f, The best-scoring submitted models for each target:
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target1(d), target 2 (e) and target 3 (f). Modeled solvent atoms are shown as red
spheres; amodeledioninaanddisshown as adark blue sphere. Numerical labels
with dashed lines indicate atom-to-atom distances in Angstroms.

respectively on targets 1-3 score better than the corresponding
deposited reference model.

Group rankings. Overall ranking of participating groups (Fig.3d) used
acombination of LIVQS5 and MolProbity score, itself a weighted func-
tion of clashes, Ramachandran favored and rotamer outliers’. LIVQ5
was weighted higher than stereochemical plausibility, similar to the
approach customarily used in CASP*’:

rank = (0.8 X ZLIVQSyge; + 0.2 X zMolProbity, ..)
target=1...3

where the z.metric is the number of standard deviations relative to
the mean of the score distribution for all models from each group on
the selected target according to the selected metric. Overall, group
EMO0O03 (DiMaio) had the best relative performance by this ranking
criterion, being the only group that outscored all deposited reference
PDB models (Fig. 3a-c).

Alternate group rankings. The model-compare website Group Rank-
ingcalculator enables users to explore other possible ranking formulas:
zscores of up to 40 different individual metrics can be selected for
inclusion with adjustable weighting. Extended Data Fig. 5 illustrates
an alternate ranking method based on 13 different metrics including
ligand, ligand+environment, full model coordinates-only and full
model fit-to-map. By this alternate method, five groups ranked higher
than PDB reference models: EMO10 (Chojnowski), EMO08 (Emsley),

EMO12 (Palmer), EM0O03 (DiMaio) and EMO09 (Moriarty), and one
performed very close to reference, EMO11 (Igaev).

Ligand quality. The ligand environment for the reference models
and the best submitted models are compared for each targetin Fig. 4.

For Target 1 (3-gal), the PTQ ligand OS5 atom connected to the
sugar ringis situated at the bottom of the binding pocket in the refer-
ence model (Fig. 4a) and in eight submitted models, whereas in the
top-scoring model (Fig. 4d), as well as five other submitted models,
the sugar ringis flipped with oxygen O5 situated at the top. The flipped
ligand fits the density better and has more optimal interatomic dis-
tances to water and protein atoms for hydrogen-bonding, with O5
H-bonded to a coordinated water of the nearby magnesium ion. The
density shape does not preclude the possibility thatboth original and
flipped conformations are present, each with partial occupancy, and
probescores for the two states are nearly identical (Extended Data
Fig. 6a).

For Target 2 (RNAP), the F86 ligand is very similar for the deposited
and top-scoring model (Fig.4b,e, respectively), although distances to
base-paired U10 are slightly different. F86 probescores varied greatly
across models, with the reference at 10.1, model EM008 1 at 39.9 and
the worst model at-106.9 (Extended Data Fig. 6). Many models did not
correctly create the RNA polymer-F86 (remdesivir) covalentbond. In
addition, only five models indicated partial occupancy for F86, yet the
map density for F86 and its paired base is almost exactly half that of
adjacentbase pairs (Extended DataFig. 6b), indicating 50% occupancy.
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In the case of target 3 (ORF3aion channel), the deposited and
top-scoring PEE ligand models (Fig. 4c¢,f, respectively) have similar
interactions to nearby atoms and placed water molecules, although
with slightly differentinteratomic distances. The head-group aminoN
atom (which hasno close contacts within4 A) points upin the deposited
model but away from the camera view in the top-scoring model. The
long lipid tails of PEE have lower density, with confusingly interlaced
and gapped connectivity that indicates disorder; the ensemble of all
PEE ligand models shown in Fig. 1f may be a more meaningful repre-
sentation than any one individual model.

Discussion

The selected targets for the Ligand Challenge are some of the first
structures deposited and released into PDB that contain ligands mod-
eled into cryo-EM maps with resolution of 3 A or better. Our Challenge
results revealed that a deposited PDB model’s ligand and local ligand
environment may not be fully optimaliin terms of concurrent fit-to-map
and coordinates-only measures. For all three targets, and especially for
target 1, adjustments in the ligand and/or ligand environment could
bemade to the deposited reference model thatimproved one or more
validation criteria, as demonstrated by several modeler groups. Most
of the submitted models were in the ‘better’ range, where tiny differ-
ences in measured scores become inconsequential. In our previous
Challenge, we showed that overall fit-to-map and coordinates-only
metrics are orthogonal measures®; here we see that at alocal level,
ligand and/or ligand-environment fit-to-map and coordinates-only
metrics are similarly independent (Fig. 2, Extended Data Fig. 5b and
Supplementary Data 2). In other words, ligands that fit wellinto density
may not be optimized with respect to ligand coordinates-only valida-
tion criteria, and vice versa. The inclusion of environment atomsin the
LIVQS score explains the difference in group rankings reported herein
Fig.3d versusthosereportedinref.40, based solely onligand Qscores.

Based onour analyses and experiences running the Challenge, we
make the following recommendations.

Recommendation1, regarding validation of the macromolecular
models: for ligand-macromolecular complexes, the macromolecular
model should be subject to standard geometric checks as done for
X-ray crystallographic based models'. These include standard cova-
lentgeometry checks and MolProbity evaluation, including CaBLAM,
Clashscore®”*?, sugar pucker and DNATCO*** conformational analysis
should be checked for nucleic acid components. The macromolecular
model-map fit should be evaluated by EMRinger’, Q score'® and FSC".
Serious local outliers (which usually indicate an incorrect local con-
formation) should be emphasized, rather than overall average scores.

The individual MolProbity scores, CaBLAM and Clashscore have
more utility for validation of protein conformation than overall Mol-
Probity score thatincorporates Ramachandran and side-chain rotamer
quality, as cryo-EM model refinement includes these as restraints.

Recommendation2, regarding validation of ligand models: ligands
in macromolecular complexes should conform to standard covalent
geometry measures (bond lengths, angles, planarity, chirality) as rec-
ommended by the wwPDB validation report>*. Additional checks that
shouldbe applied toligandsinclude fit to density using methods appli-
cable to cryo-EM such as Q score, occupancy (density strength, both
absolute and relative to surroundings), and identification of missing
atoms, including any surroundingions.

Ligand energetics should also be examined. Ligand models should
beassessed for their strainenergy (the calculated differencein energy
between the modeled conformation and the lowest energy conforma-
tion in solution) to identify improbable model geometries and lower
energy alternatives®?°, Other methods can be used but may have dif-
ferent thresholds due to variation in absolute energy values. Strain
energy calculations using NNPs offer speed close to force fields with
the accuracy of quantum mechanics calculations and are predicted
to play a primary role in identifying accurate strain energies in the

future. Moreresearchis needed to evaluate the overall utility of these
new deep learning methods.

Recommendation 3, regarding validation of ligand environment:
the detailed interaction of the ligand with its binding site is of great
importance and should be assessed by several independent metrics.
Pharmacophore modeling® is an optimized and time-tested energetic
measure for how well the site would bind the specific ligand. LIVQ
scores, introduced here, measure the density fit of the surrounding
residues as well as the ligand itself. Probescore® both quantifies and
identifies specific all-atom contacts of hydrogen-bond, clash and
vander Waalsinteractions. All three types of measure should be taken
into account. If the ligand model shows only weak interaction with its
environment, the model is not right.

During the virtual wrap-up workshop, modelers and assessors
shared their experiences and strategies to identify and/or assess the
correct pose for the ligand based on the cryo-EM density maps. It was
noted that the local map resolution for a ligand can be worse than
the overall map resolution. As one objective measure, Q scores were
found to belower for ligandsin the best submitted models than for the
nearby environment (Extended Data Table 1). Factors that may affect
resolvability of local ligand map features include incomplete occu-
pancy, multiple conformations and/or poses present, regions of ligand
flexibility or disorder, chemical modifications and radiation damage.

Recommendation 4, regarding organization of future Challenges:
future cryo-EM Model Challenges should be organized similarly to the
well-established CASP and CAPRIchallenge events of the X-ray crystal-
lography and prediction communities*, with incorporation of auto-
mated checks andimmediate author feedback on allmodel submissions.

Recommendation 5, regarding topics for future Challenges: for
future Challenge topics, validation of RNA models should be consid-
ered, including identification of RNA-associated ions, owing to the
rapidly rising numbers of RNA-containing cryo-EM structures* *3, We
also recommend maps determined in the 3.5-10 A resolution range
be considered as future targets to reflect the rapid rise in depositions
of maps from subtomogram averaging of components in cell tomo-
grams**™*¢, There are very few validation tools for that resolution range.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
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References

1. Adams, P. D. et al. Outcome of the First wwPDB/CCDC/D3R
Ligand Validation Workshop. Structure 24, 502-508 (2016).

2. Gore, S. et al. Validation of structures in the Protein Data Bank.
Structure 25, 1916-1927 (2017).

3. Smart, O.S. et al. Validation of ligands in macromolecular
structures determined by X-ray crystallography. Acta Crystallogr.
D. Struct. Biol. 74, 228-236 (2018).

4. Feng, Z. et al. Enhanced validation of small-molecule ligands and
carbohydrates in the Protein Data Bank. Structure 29, 393-400.e1
(2021).

5. Lawson, C. L., Berman, H. M. & Chiu, W. Evolving data standards
for cryo-EM structures. Struct. Dyn. 7, 014701 (2020).

6. Lawson, C. L. & Chiu, W. Comparing cryo-EM structures. J. Struct.
Biol. 204, 523-526 (2018).

7. Barad, B. A. et al. EMRinger: side chain-directed model and map
validation for 3D cryo-electron microscopy. Nat. Methods 12,
943-946 (2015).

8. Lawson, C. L. et al. Cryo-EM model validation recommendations
based on outcomes of the 2019 EMDataResource challenge. Nat.
Methods 18, 156-164 (2021).

Nature Methods


http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02321-7

Analysis

https://doi.org/10.1038/s41592-024-02321-7

9.

10.

mn.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Williams, C. J. et al. MolProbity: more and better reference data for
improved all-atom structure validation. Protein Sci. 27, 293-315
(2018).

Pintilie, G. et al. Measurement of atom resolvability in cryo-EM
maps with Q-scores. Nat. Methods 17, 328-334 (2020).

Wang, Z., Patwardhan, A. & Kleywegt, G. J. Validation analysis of
EMDB entries. Acta Crystallogr. D. Struct. Biol. 78, 542-552 (2022).
Bartesaghi, A. et al. Atomic resolution cryo-EM structure of
[-Galactosidase. Structure 26, 848-856.e3 (2018).

Yin, W. et al. Structural basis for inhibition of the RNA-dependent
RNA polymerase from SARS-CoV-2 by remdesivir. Science 368,
1499-1504 (2020).

Kokic, G. et al. Mechanism of SARS-CoV-2 polymerase stalling by
remdesivir. Nat. Commun. 12, 279 (2021).

Kern, D. M. et al. Cryo-EM structure of SARS-CoV-2 ORF3a in lipid
nanodiscs. Nat. Struct. Mol. Biol. 28, 573-582 (2021).
Kryshtafovych, A., Adams, P. D., Lawson, C. L. & Chiu, W.
Evaluation system and web infrastructure for the second cryo-EM
model challenge. J. Struct. Biol. 204, 96-108 (2018).

Rosenthal, P. B. & Henderson, R. Optimal determination of particle
orientation, absolute hand, and contrast loss in single-particle
electron cryomicroscopy. J. Mol. Biol. 333, 721-745 (2003).
Lagerstedst, I. et al. Web-based visualisation and analysis of 3D
electron-microscopy data from EMDB and PDB. J. Struct. Biol. 184,
173-181(2013).

Joseph, A. P, Lagerstedt, |., Patwardhan, A., Topf, M. & Winn, M.
Improved metrics for comparing structures of macromolecular
assemblies determined by 3D electron-microscopy. J. Struct. Biol.
199, 12-26 (2017).

Afonine, P. V. et al. New tools for the analysis and validation of
cryo-EM maps and atomic models. Acta Crystallogr. D. Struct. Biol.
74, 814-840 (2018).

Chen, V. B. et al. MolProbity: all-atom structure validation for
macromolecular crystallography. Acta Crystallogr. D. Biol.
Crystallogr. 66, 12-21(2010).

Liebschner, D. et al. Macromolecular structure determination
using X-rays, neutrons and electrons: recent developments in
Phenix. Acta Crystallogr. D. Struct. Biol. 75, 861-877 (2019).
Kryshtafovych, A. et al. Challenging the state of the art in protein
structure prediction: highlights of experimental target structures
for the 10th Critical Assessment of Techniques for Protein
Structure Prediction Experiment CASP10. Proteins 82, 26-42
(2014).

Bruno, I. J. et al. Retrieval of crystallographically-derived
molecular geometry information. J. Chem. Inf. Comput. Sci. 44,
2133-2144 (2004).

Shao, C. et al. Simplified quality assessment for small-molecule
ligands in the Protein Data Bank. Structure 30, 252-262.e4 (2022).
Casanal, A., Lohkamp, B. & Emsley, P. Current developments

in Coot for macromolecular model building of electron
cryo-microscopy and crystallographic data. Protein Sci. 29,
1069-1078 (2020).

Nicholls, R. A. et al. Modelling covalent linkages in CCPA4. Acta
Crystallogr. D. Struct. Biol. 77, 712-726 (2021).

Cerny, J., Bozikova, P., Svoboda, J. & Schneider, B. A unified
dinucleotide alphabet describing both RNA and DNA structures.
Nucleic Acids Res. 48, 6367-6381(2020).

Cerny, J. et al. Structural alphabets for conformational analysis of
nucleic acids available at dnatco.datmos.org. Acta Crystallogr. D.
Struct. Biol. 76, 805-813 (2020).

Biedermannova, L. & Schneider, B. Structure of the ordered
hydration of amino acids in proteins: analysis of crystal structures.
Acta Crystallogr. D. Biol. Crystallogr. 71, 2192-2202 (2015).

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

Cerny, J., Schneider, B. & Biedermannova, L. WatAA: Atlas of
Protein Hydration. Exploring synergies between data mining and
ab initio calculations. Phys. Chem. Chem. Phys. 19, 17094-17102
(2017).

Prisant, M. G., Williams, C. J., Chen, V. B., Richardson, J. S. &
Richardson, D. C. New tools in MolProbity validation: CaBLAM for
CryoEM backbone, UnDowser to rethink ‘waters, and NGL Viewer
to recapture online 3D graphics. Protein Sci. 29, 315-329

(2020).

Jiang, S., Feher, M., Williams, C., Cole, B. & Shaw, D. E. AutoPH4:
an automated method for generating pharmacophore models
from protein binding pockets. J. Chem. Inf. Model. 60, 4326-4338
(2020).

Tyagi, R., Singh, A., Chaudhary, K. K. & Yadav, M. K. in
Bioinformatics (eds Singh, D. B. & Pathak, R. K.) Ch. 17, 269-289
(Academic, 2022).

Sellers, B. D., James, N. C. & Gobbi, A. A comparison of quantum
and molecular mechanical methods to estimate strain energy in
druglike fragments. J. Chem. Inf. Model. 57, 1265-1275 (2017).
Lee, M.-L. et al. chemalot and chemalot_knime: command line
programs as workflow tools for drug discovery. J. Cheminform. 9,
38 (2017).

Smith, J. S., Isayev, O. & Roitberg, A. E. ANI-1: an extensible neural
network potential with DFT accuracy at force field computational
cost. Chem. Sci. 8, 3192-3203 (2017).

Croll, T. I., Williams, C. J., Chen, V. B., Richardson, D. C. &
Richardson, J. S. Improving SARS-CoV-2 structures: peer review
by early coordinate release. Biophys. J. 120, 1085-1096 (2021).
Modi, V., Xu, Q., Adhikari, S. & Dunbrack, R. L. Jr. Assessment of
template-based modeling of protein structure in CASP11. Proteins
84, 200-220 (2016).

Giri, N. & Cheng, J. Improving protein-ligand interaction modeling
with cryo-EM data, templates, and deep learning in 2021 Ligand
Model Challenge. Biomolecules 13,132 (2023).

Zhang, K. et al. Cryo-EM structure of a 40 kDa SAM-IV riboswitch
RNA at 3.7 A resolution. Nat. Commun. 10, 5511 (2019).

Su, Z. et al. Cryo-EM structures of full-length Tetrahymena
ribozyme at 3.1 A resolution. Nature 596, 603-607 (2021).
Lawson, C. L., Berman, H. M., Chen, L., Vallat, B. & Zirbel, C. L.
The Nucleic Acid Knowledgebase: a new portal for 3D structural
information about nucleic acids. Nucleic Acids Res. https://doi.org/
10.1093/nar/gkad957 (2023).

Sun, S. Y. et al. Cryo-ET of parasites gives subnanometer insight
into tubulin-based structures. Proc. Natl Acad. Sci. USA119,
e2111661119 (2022).

Liu, H.-F. et al. nextPYP: a comprehensive and scalable platform
for characterizing protein variability in situ using single-particle
cryo-electron tomography. Nat. Methods 20, 1909-1919 (2023).
Chmielewski, D. et al. Structural insights into the modulation of
coronavirus spike tilting and infectivity by hinge glycans. Nat.
Commun. 14, 7175 (2023).

Publisher’s note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature America,
Inc. 2024

Nature Methods


http://www.nature.com/naturemethods
https://doi.org/10.1093/nar/gkad957
https://doi.org/10.1093/nar/gkad957

Analysis https://doi.org/10.1038/s41592-024-02321-7

Catherine L. Lawson® '/, Andriy Kryshtafovych®?2, Grigore D. Pintilie?, Stephen K. Burley"**%, Jifi Cerny ®’,

Vincent B. Chen®2, Paul Emsley®, Alberto Gobbi'®“?, Andrzej Joachimiak ® "', Sigrid Noreng'***, Michael G. Prisant®,
Randy J. Read®', Jane S. Richardson ® 8, Alexis L. Rohou® ', Bohdan Schneider ®’, Benjamin D. Sellers ® '°4°,
Chenghua Shao', Elizabeth Sourial'®, Chris I. Williams'®, Christopher J. Williams ®2, Ying Yang®, Venkat Abbaraju’,
Pavel V. Afonine'®, Matthew L. Baker ® ", Paul S. Bond ® '3, Tom L. Blundell® ', Tom Burnley ® ?°, Arthur Campbell?,
Renzhi Cao ® %, Jianlin Cheng ® %, Grzegorz Chojnowski® 2%, K. D. Cowtan ® '8, Frank DiMaio ® ?°, Reza Esmaeeli?®,
Nabin Giri ® 2%, Helmut Grubmiiller ® %, Soon Wen Hoh® ™, Jie Hou®?, Corey F. Hryc", Carola Hunte ® %,

Maxim Igaev® 7, Agnel P. Joseph ® ?°, Wei-Chun Kao ® %%, Daisuke Kihara ® %, Dilip Kumar ® 3246, Lijun Lang ® 2,
Sean Lin*3, Sai R. Maddhuri Venkata Subramaniya ® *, Sumit Mittal ® 3*%5, Arup Mondal?*#8, Nigel W. Moriarty'®,
Andrew Muenks?, Garib N. Murshudov®, Robert A. Nicholls ® *?°, Mateusz Olek'3%, Colin M. Palmer®?°,

Alberto Perez® 2%, Emmi Pohjolainen?, Karunakar R. Pothula®, Christopher N. Rowley®?, Daipayan Sarkar ® 30344950,
Luisa U. Schifer®, Christopher J. Schlicksup', Gunnar F. Schréder ® 3%, Mrinal Shekhar?-*, Dong Si ® %,

Abhishek Singharoy ® **, Oleg V. Sobolev® ', Genki Terashi ® 3°, Andrea C. Vaiana® 7°, Sundeep C. Vedithi®"®,
Jacob Verburgt®°, Xiao Wang ® ¥, Rangana Warshamanage®, Martyn D. Winn ® ?°, Simone Weyand', Keitaro Yamashita®?,
Minglei Zhao™, Michael F. Schmid ®#, Helen M. Berman**? & Wah Chiu®3#'

'RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA. 2Genome Center,
University of California, Davis, CA, USA. *Departments of Bioengineering and of Microbiology and Immunology, Stanford University, Stanford, CA,

USA. “Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA. °Rutgers Cancer Institute of
New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA. °RCSB Protein Data Bank and San Diego Supercomputer Center,
University of California San Diego, La Jolla, CA, USA. "Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic. ®Department of
Biochemistry, Duke University, Durham, NC, USA. °MRC Laboratory of Molecular Biology, Cambridge, UK. °Discovery Chemistry, Genentech Inc., San
Francisco, CA, USA. "Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA. “Department of Biochemistry
and Molecular Biology, University of Chicago, Chicago, IL, USA. ®Structural Biology, Genentech Inc., South San Francisco, CA, USA. “Department of
Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK. ®Chemical Computing Group, Montreal, Quebec,
Canada. ®Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. "Department of
Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA. ®York Structural Biology Laboratory,
Department of Chemistry, University of York, York, UK. ®Department of Biochemistry, University of Cambridge, Cambridge, UK. *Scientific Computing
Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK. ?’Center for Development of Therapeutics, Broad
Institute of MIT and Harvard, Cambridge, MA, USA. 2Department of Computer Science, Pacific Lutheran University, Tacoma, WA, USA. ZDepartment

of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA. 2*European Molecular Biology Laboratory, Hamburg

Unit, Hamburg, Germany. ®Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA. *Department of
Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA. #Theoretical and Computational Biophysics Department, Max Planck
Institute for Multidisciplinary Sciences, Géttingen, Germany. 2Department of Computer Science, Saint Louis University, St. Louis, MO, USA. ZInstitute of
Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine and CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg,
Freiburg, Germany. **Department of Biological Sciences, Purdue University, West Lafayette, IN, USA. *Department of Computer Science, Purdue
University, West Lafayette, IN, USA. **Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston,
TX, USA. ®¥Division of Computing & Software Systems, University of Washington, Bothell, WA, USA. *Biodesign Institute, Arizona State University, Tempe,
AZ, USA. *School of Advanced Sciences and Languages, VIT Bhopal University, Bhopal, India. *®Electron Bio-Imaging Centre, Diamond Light Source,
Harwell Science and Innovation Campus, Didcot, UK. ¥Institute of Biological Information Processing (IBI-7, Structural Biochemistry) and Jiilich Centre
for Structural Biology (JuStruct), Forschungszentrum Jiilich, Jiilich, Germany. *Department of Chemistry, Carleton University, Ottawa, Ontario, Canada.
39physics Department, Heinrich Heine University Diisseldorf, Diisseldorf, Germany. “°Nature’s Toolbox (NTx), Rio Rancho, NM, USA. #Division of Cryo-EM
and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA. “Department of Quantitative and Computational Biology, University
of Southern California, Los Angeles, CA, USA. “*Present address: Berlin, Germany. “*Present address: Protein Science, Septerna, South San Francisco,
CA, USA. “Present address: Computational Chemistry, Vilya, South San Francisco, CA, USA. “Present address: Trivedi School of Biosciences, Ashoka
University, Sonipat, India. ¥Present address: The Chinese University of Hong Kong, Hong Kong, China. “®Present address: National Renewable Energy
Laboratory (NREL), Golden, CO, USA. “*Present address: MSU-DOE Plant Research Laboratory, East Lansing, MI, USA. *°Present address: School of
Molecular Sciences, Arizona State University, Tempe, AZ, USA. [/e-mail: cathy.lawson@rutgers.edu; wahc@stanford.edu

Nature Methods


http://www.nature.com/naturemethods
mailto:cathy.lawson@rutgers.edu
mailto:wahc@stanford.edu
http://orcid.org/0000-0002-3261-7035
http://orcid.org/0000-0001-5066-7178
http://orcid.org/0000-0002-1969-9304
http://orcid.org/0000-0003-2492-979X
http://orcid.org/0000-0003-2535-6209
http://orcid.org/0000-0001-8273-0047
http://orcid.org/0000-0002-3311-2944
http://orcid.org/0000-0002-3343-9621
http://orcid.org/0000-0001-7855-3690
http://orcid.org/0000-0002-4194-1240
http://orcid.org/0000-0002-5808-8768
http://orcid.org/0000-0001-9039-8523
http://orcid.org/0000-0002-8465-4823
http://orcid.org/0000-0002-2708-8992
http://orcid.org/0000-0001-5307-348X
http://orcid.org/0000-0002-8345-343X
http://orcid.org/0000-0003-0305-2853
http://orcid.org/0000-0002-3796-8352
http://orcid.org/0000-0002-0189-1437
http://orcid.org/0000-0002-7524-8938
http://orcid.org/0000-0002-0251-3956
http://orcid.org/0000-0002-3270-3144
http://orcid.org/0000-0003-1039-8000
http://orcid.org/0000-0002-8584-5154
http://orcid.org/0000-0002-0826-3986
http://orcid.org/0000-0001-8781-1604
http://orcid.org/0000-0002-0997-8422
http://orcid.org/0000-0001-8687-6334
http://orcid.org/0000-0003-4091-6614
http://orcid.org/0000-0002-2721-678X
http://orcid.org/0000-0001-6076-2187
http://orcid.org/0000-0002-1696-7676
http://orcid.org/0000-0002-5360-8947
http://orcid.org/0000-0002-8577-8617
http://orcid.org/0000-0002-4883-1546
http://orcid.org/0000-0002-5054-5338
http://orcid.org/0000-0002-4167-2108
http://orcid.org/0000-0003-1803-5431
http://orcid.org/0000-0001-7039-2589
http://orcid.org/0000-0002-9000-2397
http://orcid.org/0000-0002-0623-3214
http://orcid.org/0000-0002-5339-909X
http://orcid.org/0000-0002-8865-0651
http://orcid.org/0000-0003-3474-4705
http://orcid.org/0000-0003-4435-7098
http://orcid.org/0000-0003-0496-6796
http://orcid.org/0000-0002-5442-7582
http://orcid.org/0000-0003-1077-5750
http://orcid.org/0000-0002-8910-3078

Analysis

https://doi.org/10.1038/s41592-024-02321-7

Methods

Challenge process and organization

The Ligand Model Challenge process closely followed the streamlined
procedure adopted in the previous Model Metrics Challenge®. In the fall
0f2020, apanel of advisors with expertise in cryo-EM methods, ligand
modeling and/or ligand model assessment was recruited (J. Cerny,
P.Emsley, A.Joachimiak, ). Richardson, R.Read, A.Rohou, B. Schneider).
The panel worked with EMDR team members to develop the challenge
goals and guidelines, to identify suitable ligand-containing reference
models from the PDB with cryo-EM map targets from EMDB and to
recommend metrics to be calculated for each submitted model.

The main stated goal was to identify metrics most suitable for
evaluating and comparing fit of ligands in atomic coordinate models
into cryo-EM maps with 3.0 A or better reported overall resolution.
The specific focus areas for Assessor teams suggested by the expert
panel were: (1) geometry and fit to map of small molecules including
ligands, water, metal ions, detergent, lipid and nanodiscs; (2) model
geometry (including backbone and side-chain conformations, clashes)
inthe neighborhood surrounding the small molecules; (3) local model
fit-to-map density per residue and per atom; (4) resolvability at residue
or atom-level and (5) atomic displacement parameters (B factors)
recommended optimization practice. A key question to be answered
is, how reliable are ligands, waters and/or ions built into cryo-EM
maps? Can they be placed automatically or is manual intervention
needed?

Modeling teams were tasked with creating and uploading their
optimized model for each target map. The challenge rules and guid-
ance were as follows: (1) submitted models should be as complete
and as accurate as possible (that is, close to publication-ready), with
atomic coordinates and atomic displacement parameters for allmodel
components. (2) Submitted models must use the deposited PDB refer-
encemodel’sresidue, ligand and chain numbering and/or labeling for
all shared model components. (3) Ligands should ideally be deleted
andrefitted independently. (4) Additional polymer residues should be
labeled according to the reference model’s sequence, residue number-
ing and/or chain IDs. (5) If additional waters, ions and/or ligands are
included, they should be labeled with unique chain IDs. (6) If predicted
hydrogen atom positions are part of the modeling process, hydro-
gens should beincluded in the submitted coordinates. (7) Models are
expected to adhere to the reconstruction’s point symmetry (D2 for
target 1, Cl1for target 2 and C2 for target 3).

Members of cryo-EM and modeling communities were invited
to participate in February 2021 and details were posted at challenges.
emdataresource.org. Models were submitted by participant teams
between 1 March and 15 April. For each submitted model, metadata
describing the full modeling workflow were collected via a Drupal
webform (Supplementary Dataland 2), and coordinates were uploaded
and converted to PDBx/mmCIF format using PDBextract*. Model
coordinates were then processed for atom and/or residue ordering and
nomenclature consistency using PDB annotation software (Feng, Z.,
https://sw-tools.rcsb.org/apps/MAXIT) and additionally checked
for sequence consistency, ligand atom naming and correct position
relative to the designated target map. Models were then evaluated as
described below (in the ‘Model evaluation system’ section).

Inmid-April 2021, models, workflows and initial calculated scores
were made publicly available for evaluation, blinded to modeler team
identity and software used. In the period from mid-April to mid-May,
evaluators discovered several problems with the submitted models
that blocked assessment software from completing calculations. The
primaryissueidentified wasinconsistent ligand atom naming. Approxi-
mately half of all submitted models had to be revised to make atom
names consistent with the deposited reference models (Challenge rule
(2) above). Corrected coordinate files were provided by the submitting
modeler teams, which were then reprocessed as described above and
rereleased to evaluators.

Avirtual 3 day (-4 hours per day) workshop was held in mid-July
2021 to review the Challenge results. All modeling participants were
invited to attend remotely and present overviews of their modeling
processes and/or assessment strategies. Recommendations were made
foradditional evaluations of the submitted models as well as for future
challenges. Modeler teams, workflows and software were unblinded
during the workshop.

Datasources and modeling

Target mapswere obtained from EMDB*: target 1. coli3-galactosidase-
PETG", EMD-7770; target 2 SARS-CoV-2 RNAP or Remdesivir®,
EMD-30210 and target 3 SARS-CoV-2 ORF3a putative ion channeland/
or phospholipid in nanodisc”, EMD-22898.

Table 1 summarizes the approach and lists the software used by
each modeling team. Further details for each model can be found in
Supplementary Data 1. Modeling teams categorized their polymer
modeling type as ab initio (followed by optimization), optimized or
not optimized. Non-ab initio approaches made use of polymer coor-
dinates fromthe following PDB entries: target1, 6CVM, 1J)Z7 and 6 TTE;
target2,7BV2,7B3D, 6X71and 30VB and target 3, 7KJR.

Submitted models were further categorized by ligand modeling
type, eitherindependently refit or optimized. Initial ligand coordinates
and restraints were obtained from the PDB CCD*, Crystallography
Open Database’® or from a PDB entry. Ligand restraint generation
software included BUSTER Grade (Global Phasing Ltd), Phenix eLBOW”",
CCP4 AceDRG*?, PyRosetta*’, AMBER Antechamber®*, OpenBabel®,
CHARMM CGenFF*¢, LigPrep (Schrédinger LLC) and CCP4 mono-
mer library”. Restraints were not applied by teams using molecular
dynamics-based approaches.

Ab initio modeling software included ARP/WARP*®, Mainmast*’,
Mainmastseg®, Pathwalker®', Rosetta®’, Modeller®*and DeepTracer®*®,
Model optimization software included CDMD®®, Phenix*?, REFMAC®,
Servalcat®®, ProSMART®’, MDFF"°, CryoFold”">, Amber**, MELD”>"* and
Schrodinger (Schrodinger LLC). The program doubleHelix” was used
to assign RNA sequence and refinement restraints. Atomic displace-
ment parameters (B factors) were optimized for 32 of 61 models, with
23 applyingindividual atomic B factors.

Participants made use of VMD’®, Chimera”’, ChimeraX’®, Coot?,
ISOLDE”’, EMDA®° and PyMOL for visual evaluation and/or manual
modelimprovement of map-model fit. Manipulation of map densities
was carried out using CCP-EM®, EMDA and LAFTER®,

Model evaluation system

The evaluation pipeline for the 2021 challenge (model-compare.
emdataresource.org) was built on the basis of the 2019 Model Chal-
lenge pipeline®. Submitted models were evaluated for >70 individual
metrics in four established tracks using the software packages as
follows: fit-to-map EMDB Cryo-EM Validation Analysis"”, TEMPy",
Phenix* and UCSF ChimeraX”®/MapQ'’; coordinates-only, Phenix*
and comparison-to-reference CAD®*, HBPLUS®**, LGA®, MMalign®’,
OpenStructure® and Phenix*. Anew ligand track was also created for
comparison of ligand-specific scores. Ligand and nucleic acid-specific
scores provided by Assessor teams (Table 2) were integrated into data
tables alongside scores from the evaluation pipeline to enable com-
parisons and composite score generation (Supplementary Data 2).

Pharmacophore modeling

The Molecular Operating Environment (MOE) platform was used to
score the placement of ligands. Starting from the model coordinates
submitted by each group, the MOE QuickPrep application was used
to prepare all-atom structures with hydrogens and atomic partial
charges. For each target, an ensemble of structures consisting of all
submitted models was input into the db_AutoPH4 application to pro-
duce pharmacophore consensus fields based on the ensemble. The
pharmacophore consensus fields were then used to score the ligand
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poses of each submission. Additional details are provided in the Sup-
plementary Information.

Strain energy calculations

To prepare, ligands were extracted from model files. For the T2
F86 ligand, strain energy was measured after deleting the covalent
bond to the RNA polymer (SMILES:Nc(ncnl)c2nlc([C@]3(C#N)
O[C@@HI([C@HNIC@H]30)0)COP([O-1([0-]) = O)cc2). For
the T3 PEE ligand, all models were truncated to just the head
group (SMILES:CCC(OC[C@@H](OC(CC) = 0)CO[P@I([O-])
(OCCI[NH3+]) = 0) = 0). Hydrogens were added using MOE/Proto-
nate3D from the Chemical Computing Group.

To calculate molecular mechanics force field strain energy, pre-
dicted ligand energy was calculated by minimizing each ligand struc-
ture using OpenEye/SZYBKI (MMFF94S with the Sheffield solvation
model) withamaximum root mean-square deviation of 0.6 A. Predicted
global minimum energy was identified by sampling conformations
using OpenEye/Omega and then minimizing each conformer structure
using OpenEye/SZYBKI(MMFF94S with Sheffield solvation model) with
norestraints, then selecting the conformer with the lowest minimized
energy.

To calculate NNP energy, predicted ligand energy was calculated
by minimizing eachligand structureinanin-houseimplementation of
the ANINNP* with a maximum root mean-square deviation of 0.6 A.
Predicted global minimum energy was identified by sampling confor-
mations using OpenEye/Omega and then minimizing each conformer
structure using the same in-house implementation of the ANI NNP
with no restraints.

Reported scores are predicted strain energy as (predicted ligand
energy - global minimum energy) in kcal mol™. NNPwas only calculated
for the T1ligand as the method currently does not support atomic
charges.

Molecular graphics
Molecular graphicsimages were generated using UCSF Chimera (Figs. 1
and 4 and Extended DataFig.2) and KiNG®* (Extended Data Figs. 3 and 6).

Classification of unique ligands in PDB introduced by cryo-EM
Search of the PDB via RCSB PDB’s data API* identified 981 unique
nonpolymer ligands and/or PDB CCD IDs in EM-derived PDB struc-
tures released through December 2021. Next, for each ligand, the PDB
entry that first introduced the ligand/CCD ID was identified. The 403
unique nonpolymer ligands that were found to be introduced in struc-
tures determined by cryo-EM were then manually classified as enzyme
modulators (substrates, inhibitors, agonists, cofactors), medically
relevant drugs, lipids, photochemicals (for example carotenoids),
peptides (amino-acid-based), reagents (buffers or labels), nucleotides
or steroids (fused rings).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Cryo-EM map targets were the primary maps of EMDB entries EMD-
7770,EMD-30210 and EMD-22898 (www.ebi.ac.uk/emdb, emdatare-
source.org). Reference models were PDB entries 6CVM v.1.3 (target 1),
7BV2v.3.4 (target 2) and 7KJR v.1.1 (target 3) wwpdb.org. Submitted
models, model metadata, result logs and compiled data are available
via challenges.emdataresource.org/?q=2021-model-challenge and
archived via Zenodo at https://doi.org/10.5281/zenod0.10551958
(ref. 90). Interactive summary tables, graphical views and spread-
sheet downloads of compiled results are available at model-compare.
emdataresource.org/2021/cgi-bin. Source Data are provided with
this paper.
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Extended Data Fig.1| Growth of cryo-EM structures and novel ligands by year of release into the Protein Data Bank (PDB) through 2023. Inset: major
derived from them. (a) Cryo-EM maps released into the EM Data Bank (EMDB) categories of novel ligands found in cryo-EM-derived models (through 2021). See
archive by year and resolution range (source: www.emdataresource.org) up to Online Methods for details.

the end 0f 2023. (b) Novel non-polymer ligands included in cryo-EM structures
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Extended DataFig. 2| Selected submitted ligand models for each of the
Challenge targets. Panels are labeled by team ID and model # (see Table 1), in
order of decreasing ligand Q-scores (see Fig. 3, row 1) from top to bottom. The
portion of the map corresponding to the ligand is shown as a semi-transparent
surface, along with the model of the ligand. Ligand Q-score is the average Q-score

Q_ligand=0.482

ofallnon-H atoms in the ligand. For each atom, the Q-score is measured by
correlation of map density to the expected gaussian function, at points within 2 A
of the atom and closer to the atom than any other non-H atom in the the model'.

Higher-scoringligand models fit better in the cryo-EM density than lower-scoring
models.
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Extended Data Fig. 3| Evaluation of ions in submitted models (stereo one or two waters, Mg?* plus waters with zero occupancy, no atoms modeled,
images). (a) Target16cvm reference model Mg A2002 (gray sphere) with water or atoms significantly displaced. (b) Some groups placed metal ions with weak
ligands (orange spheres), located near the PETG ligand, with density for classic justification, as exemplified by the Na* (grey sphere) shown here in model
octahedral coordination. Only six of 23 submitted Target 1 models included the EMO0O05_1for Target 3.

Mg? and all three coordinating waters. Others had either only Mg?, Mg* plus
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Extended Data Fig. 4| Q-score rankings for ligand + extended vicinity and for fullmodels. (a-c) LIVQ10 (Ligand + extended vicinity <10 A) Q-scores (black bars) and
fullmodel Q-scores (gray bars) are plotted for each submitted model and each reference model, with order according to ligand + extended vicinity rank.
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Extended Data Fig. 5| Alternative Group Ranking by sum of Ligand,

Ligand+Environment, Full Model Coordinates-only, Full Model Fit-to-Map
composite scores. (a) Group ranking (left-to-right) according to the sum of four

composite z-scores, as described below. Only groups that submitted models
for all 3 targets and have rank similar to or better than PDB reference models
are shown. (b) Correlation table (n = 61) of scores used to create z-scores and

rankings in panel (A) and/or Fig. 4. Group composite scores were calculated per
team as follows. For each submitted model, and for each score type, acomposite

z-score was calculated. For each target (T1, T2, T3), the model submitted by
that group with maximum composite z-score was selected for inclusionin

the final average score over all targets. Ligand: z = (0.33*z.MogulComposite +
0.33*z.StrainEnergyMM + 0.33*z.Q-ligand). Ligand+environment: z = (0.33*z.
Pharmacore +0.33*z.Probescore + 0.33*z.LIVQ5). Fullmodel coordinates-only:
z=(0.25*z.Clash + 0.5*z.CablamConf+ 0.25*z.CablamCa). Full model fit-to-
map: z=(0.25*z.EMRinger + 0.25*z.Q-Protein + 0.25*2.TEMPySMOC + 0.25*z.
PhenixFCSO05).
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Extended DataFig. 6 | Ligand/Ligand Environment Probescores.

(a) Molprobity Probescore® distributions for ligands in Targets 1-3 (reference
models: red triangles; submitted model scores are plotted as gray circles with
following exceptions: Target 1, yellow boxes if PTQ sugar ring position was flipped
relative to reference; Target 2, asterisk if F86 was set to half-occupancy; Target 3,
blue diamondsif PEE was modeled as head-group+tails). Scores are plotted

in horizontal axis lanes with small random vertical shifts to visually separate
clustered points. Notably, score distributions have wide spreads independent of
noted model features: PTQ sugar orientation, F86 occupancy, or PEE inclusion

of tails-although for PEE the score distribution is noticeably broader when the

larger and more variable tails are included. (b) T2 density map with reference
modelin the region of the F86 ligand, showing half-strength density for the
remdesivir ligand, implying that only half the molecules have covalently bound
inhibitor. Image is reproduced from Figure 6 of reference ** (open access CC-BY
license, no permission required for reuse). (c-e) T2 F86 + pyrophosphate ligand
environments for the reference model (PDBid 7BV2), model EM004 _2, and model
EMO0O08_1, respectively. All-atom contact dots are from Probescore, with all-atom
clashes in hot pink and favorable H-bonds and vdW contacts in green and blue.
Molecular graphics are shown in KiNG®.
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Extended Data Table 1| Ligand and Ligand+environment Q-scores for submitted models with highest ligand Q-scores

Expected_Q is the expected Q-score for well-fitted models in maps at similar resolutions, based on analysis of a subset of publicly archived maps and models”. Q-scores well below the
expected value indicate either that the map is not as well resolved as other maps at similar resolution, for example due to heterogeneity, or that the model is not optimally fitted to the map.

Target Map Model with Q_ligand Q_near LIivas Expected_Q at
(Reported highest ligand Q- (ligand (atoms <5A (ligand +atoms reported map
Resolution) score atoms) of ligand) <5A of ligand) resolution

T1 B-gal (1.94) EMO005_2 0.809 0.849 0.845 0.846
T2 RNAP (2.5A) EMO009_1 0.707 0.735 0.731 0.690
T3 ORF3a (2.1A) EMO016_1 0.767 0.819 0.812 0.791
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name, describe more complex techniques in the Methods section.

A description of all covariates tested
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

X X X

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  The following software was used by Ligand Challenge Modelling Teams:

Ligand restraint generation:

AMBER/Antechamber v.20 ambermd.org/antechamber

BUSTER Grade v.1.2.19 grade.globalphasing.org

CCP4/AceDRG v.223 www2.mrc-Imb.cam.ac.uk/groups/murshudov/content/acedrg/acedrg.html
CCP4 monomer library v.5.52 www.ccp4.ac.uk/html/mon_lib.html

CHARMM/CGenFF v.2.4.0 cgenff.silcsbio.com

LigPrep v21-1 newsite.schrodinger.com/platform/products/ligprep

OpenBabel v3.1.0 openbabel.org

Phenix/eLBOW v1.14, v1.19.2 phenix-online.org

PyRosetta v.4 www.pyrosetta.org

Ab initio modeling:

ARP/WARP v.8.1 arpwarp.embl-hamburg.de

DeepTracer v1 deeptracer.uw.edu

Mainmast v.1.04 kiharalab.org/emsuites/mainmast.php
Mainmastseg v.1 kiharalab.org/emsuites/mainmastseg.php
Modeller v. 10.2 salilab.org/modeler

NAMD v.2.14 www.ks.uiuc.edu/Research/namd
Phenix/Pathwalker v.1.19.1 phenix-online.org
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Rosetta v.4 rosettacommons.org

Model optimization:

Amber v.20 ambermd.org

CDMD vGromacs-2018-densfit www.mpinat.mpg.de/grubmueller/densityfitting
CryoFold v2.0 github.com/SingharoylLab/CryoFold_GUI

doubleHelix v.5.0.1 gitlab.com/gchojnowski/doublehelix

MDFF v0.4 www.ks.uiuc.edu/Research/vmd/plugins/mdff

MELD v.0.4.20 github.com/maccallumlab/meld

Phenix v.1.18.2 — 1.19.2 phenix-online.org

ProSMART v.0.859 www2.mrc-Imb.cam.ac.uk/groups/murshudov/content/prosmart/prosmart.html
REFMAC v5.8.0272 www.ccpem.ac.uk, www.ccp4.ac.uk

Schrodinger v.21-1 newsite.schrodinger.com

Servalcat development version github.com/keitaroyam/servalcat

Visual evaluation/manual model improvement:

Chimera v.1.1.5 www.cgl.ucsf.edu/chimera

ChimeraX v.1.1 www.cgl.ucsf.edu/chimerax

Coot v.0.8.9, v.0.9.5 www?2.mrc-Imb.cam.ac.uk/personal/pemsley/coot

EMDA v.1.1.3 www2.mrc-Imb.cam.ac.uk/groups/murshudov/content/emda/emda.html
ISOLDE v.1.1.0 tristanic.github.io/isolde

KiNG v.2.24 www.biochem.duke.edu/people/richardson-lab

PyMOL v.2.4.0 pymol.org

VMD v.1.9.4 www.ks.uiuc.edu/Research/vmd
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Manipulation of map densities:

CCP-EM v.20210312 nightly release www.ccpem.ac.uk/download.php

EMDA v1.1.3 www2.mrc-Imb.cam.ac.uk/groups/murshudov/content/emda/emda.html
LAFTER v.1.1 github.com/StructuralBiology-ICLMedicine/lafter

The following software was used by EMDataResource to collect Challenge Models/Data:

Model metadata collection:
Drupal v.7.88 webform v.7.x-4.24 drupal.org

Model coordinates collection:
PDB-extract v.4.0 pdb-extract.wwpdb.org

Model coordinates processing:
MAXIT v.11.1 swtools.rcsb.org/apps/MAXIT




Data analysis The following software was used in the Ligand Challenge Pipeline or by individual Assessment Teams:

Ligand:

UCSF Chimera/MapQ plugin v1.2 github.com/gregdp/mapq (Q-score_Ligand; Q-score_HOH)
wwPDB report Model statistics 20191225.v01 and Mogul v1.8.5 validate-rcsb-4.wwpdb.org
OpenEye/SZYBKI v2.7.0 eyesopen.com

OpenEye/Omega v5.0.0 eyesopen.com

ANI neural net potential, Genentech in-house version github.com/Genentech/g_ani

Ligand Environment:

UCSF Chimera/MapQ plugin v.1.2 github.com/gregdp/mapq (LIVQ5; LIVQ10)

MOE QuickPrep/db_AutoPH4 MOE v.2020.09 www.chemcomp.com/Products.htm (Pharmacophore)
Probescore v2.18 https://github.com/rlabduke/probe

Fit-to-Map:

EMDB CryoEM Validation Analysis v.0.0.dev8 pypi.org/project/va/0.0.0.dev8 (Al_all, Al_BB)
TEMPy v.2 tempy.ismb.lon.ac.uk (CCC,SMOC)

Phenix v.1.19.2-4158 phenix-online.org (EMRinger, boxCC, CCpeaks, CCmask, CCvol, FSCO5)
UCSF Chimera/MapQ plugin v1.2 github.com/gregdp/mapq (Q-score_Protein)

Coordinates-only:

DNATCO v4.1 dnatco.datmos.org (conformer_score, conformer_percentile, RMSD)

KiNG v2.23 kinemage.biochem.duke.edu/software (issue visualization)

Phenix v1.19.2-4158 phenix-online.org (Molprobity: MPscore, Clashscore, Rotamer_out, Rama_out, Rama_favor, CABLAM_conf_out,
CABLAM_Calpha_out, RNAsuite-out, RibosePucker-out, UnDowser_HOHclash)

Comparison-to-Reference:

CAD v.1646 bitbucket.org/kliment/voronota/src/master (CAD)

HBPLUS v.3.06 www.ebi.ac.uk/thornton-srv/software/HBPLUS (HBJaccard, HBPrecision)

LGA v.04.2019 proteinmodel.org/AS2TS/LGA/Iga.html (GDT_TS, GDT_HA, GDC_ALL, GDC_SC, RMSD, DAVIS_QA)
MMalign v.20210816 zhanggroup.org/MM-align (TM_score)

OpenStructure v.2.1 www.openstructure.org (LDDT, QS_score)

Phenix v.1.19.2-4158 phenix-online.org (Nclose, Nfar, CAscore,SeqMatch)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Cryo-EM Map Targets were the primary maps of EMDB entries EMD-7770, EMD-30210, and EMD-22898 www.ebi.ac.uk/emdb, emdataresource.org

Reference models were PDB entries 6¢cvm v1.3 (Target 1), 7bv2 v3.4 (Target 2), and 7kjr v1.1 (Target 3) wwpdb.org

Submitted models, model metadata, result logs and compiled data are available via challenges.emdataresource.org/?q=2021-model-challenge and archived at
Zenodo: doi.org/10.5281/zenodo.10551958

Interactive summary tables, graphical views and spreadsheet downloads of compiled results are available at model-compare.emdataresource.org/2021/cgi-bin.
Supplementary source data tables are provided with this paper.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender n/a

Population characteristics n/a
Recruitment n/a
Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size (n=61) consisted of all of models submitted by modeler co-authors.
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Data exclusions  no data were excluded from analysis
Replication multiple models of each Challenge target were submitted by different teams
Randomization  randomization not applicable to study owing to Challenge design

Blinding analyses of challenge targets were blinded with respect to team identity

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
n/a | Involved in the study n/a | Involved in the study
|:| Antibodies |Z |:| ChiIP-seq
|:| Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology and archaeology |:| MRI-based neuroimaging

|:| Animals and other organisms
|:| Clinical data

|:| Dual use research of concern

X X X X X X
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