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ABSTRACT: We introduce Gaussian accelerated MELD (GaMELD) as a
new method for exploring the energy landscape of biomolecules. GaMELD
combines the strengths of Gaussian accelerated molecular dynamics
(GaMD) and modeling employing limited data (MELD) to navigate
complex energy landscapes. MELD uses replica-exchange molecular
simulations to integrate limited and uncertain data into simulations via
Bayesian inference. MELD has been successfully applied to problems of
structure prediction like protein folding and complex structure prediction.
However, the computational cost for MELD simulations has limited its
broader applicability. The synergy of GaMD and MELD surmounts this
limitation e!ciently sampling the energy landscape at a lower computational
cost (reducing the computational cost by a factor of 2 to six). E"ectively, GaMD is used to shift energy distributions along replicas to
increase the overlap in energy distributions across replicas, facilitating a random walk in replica space. We tested GaMELD on a
benchmark set of 12 small proteins that have been previously studied through MELD and conventional MD. GaMELD consistently
achieves accurate predictions with fewer replicas. By increasing the e!cacy of replica exchange, GaMELD e"ectively accelerates
convergence in the conformational space, enabling improved sampling across a diverse set of systems.

1. INTRODUCTION
Generalized ensemble methods are an attractive enhanced
sampling strategy as they forego predetermining any collective
structural variable to guide the system.1,2 However, methods
such as Replica Exchange typically require many copies of the
system in order to e!ciently sample a range of conditions
(temperature or Hamiltonian) that enhance sampling.3 The
number of replicas is determined by considering how to
expand the range of conditions in such a way that the energy
distributions have some overlap that will allow e!cient
exchange and ultimately a random walk among replica
conditions.4 REMD-based approaches have often been used
for problems involving large conformational changes such as
protein folding.5 However, the folded-to-unfolded transition
further limits e!cient exchanges. Here we propose a
methodology to improve energy distribution overlap along
neighboring replicas resulting in a lower number of required
replicas. We showcase the performance of the method by
predicting the structures of 12 small proteins starting from
their sequence.
Protein folding is the process by which a protein molecule

assumes its functional three-dimensional structure from its
linear amino acid sequence. Beyond its role for potentially
determining structures that cannot be determined experimen-
tally,6,7 the approach can provide insights into other relevant
states accessible to the system such as misfolded states
associated with pathologies (e.g., Alzheimer’s disease).8,9 For
years, the protein folding problem has been of interest for

developing enhanced sampling methods.10,11 Among its
advantages is a clear way to assess success (e.g., identifying
the folded state) and a generalizable strategy for applying the
methodology to multiple protein sequences.
In recent years, we have shown that the MELD (modeling

employing limited data)12,13 approach is e!cient at integrating
experimental knowledge or general knowledge with simula-
tions for predicting the structures of proteins14 and their
complexes.15,16 Some of the caveats of the approach are the
large computational expense due to the number of replicas
needed to expand the desired simulation conditions (typically
300 to 450 K) and how information is enforced in the
Hamiltonian.
Independently, GaMD (Gaussian accelerated molecular

dynamics) is another enhanced sampling technique that places
a bias on the energy to promote exploration of the energy
surface.17 The approach has been successful in a range of
biological problems and has the advantage that is also
independent of structural variables, which simplifies the
transferability of the approach across molecular systems.18,19
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By using GaMD, researchers can overcome energy barriers and
explore complex and heterogeneous systems, including protein
folding and ligand binding.20 Whereas MELD typically starts
from unfolded states and predicts the native state as the
highest population state, GaMD often starts from the native
state to bring insights into kinetics and thermodynamics of
binding or folding.
In this work, we combine the virtues of GaMD with those of

MELD to modulate the overlap between energies across
replicas. We show this GaMELD strategy requires fewer
replicas than MELD to predict the folded state of proteins
while maintaining a high level of accuracy. We focus on the
folding of 12 proteins with sequence lengths ranging from 28
to 92 amino acids and compare the performance against
known experimental structures. We also provide benchmark
results comparing GaMELD against either MELD or
GaREMD (GaMD + REMD), showing that the synergy of
both methods increases the accuracy and reduces the
computational cost.

2. METHODS
2.1. GaMELD. We have implemented the GaMELD

methodology into OpenMM,21 by incorporating GaMD-
OpenMM22 into MELD13 0.6.1. Although both methods are
implemented in the OpenMM simulation engine and have a
Python front-end, some changes were necessary to make them
work together harmoniously and accurately. The resulting
method is freely available from GitHub (https://github.com/
doesm/gameld).
In GaMD we identify a certain threshold energy that will

serve to modify the system potential. Energies below the
threshold will have a quadratic bias on top of the force field
energy, while those above the threshold will not be a"ected.
Typically, in GaMD a short run of cMD is used to determine
the threshold energy according to di"erent schemes.17 In
GaMELD, we use the threshold energy, E, of the highest
temperature replica and calculate the threshold of the
neighboring replica below as the di"erence between the
previous threshold and the standard deviation of the potential
energies simulated during a predefined number of steps. So, if
we order the replicas, r, by temperature, from highest to lowest,
the first replica will maintain the same threshold, Er=1 = Er=1.
For the next replicas, we will apply the following equation

E E
N

e e1 ( )
i

N

ir r 1
1

2=
= (1)

where N is the number of steps simulated, ei the potential
energy of the system in each step and e ̅ the mean of the ei
values. This iterative process is performed twice for each
replica within the simulation, once after cMD and again after
GaMD equilibration (see Figure 1).
2.2. Benchmark Systems. We used a benchmark set of 12

small proteins (Table 1) to determine the ability of our new
sampling strategy to sample and identify the native state
starting from an unfolded state. We used three assessment
metrics based on the root-mean-square deviation (RMSD) of
each protein model to the native structure. The proteins and
specific residues used to measure RMSD are provided in Table
1. Unless stated otherwise, the RMSD values reported
correspond to the Cα atoms in regions that are well-defined
in experimentally determined structures (e.g., excluding flexible
tails or loops). Whenever possible, we compare our results with

previous studies on these systems for comprehensive analysis
and discussion. First, we looked at whether the method was
able to sample native-like structures anywhere in the ensemble
BestStruct. This is a basic test that allows us to find issues with
the sampling strategy and/or force field. We then checked the
ability of the force field/sampling strategy to identify the native
state within the ensemble using statistical mechanics−either as
the centroid of the highest population cluster (Best1Pop) or as
the centroid of one of the top five clusters by population
(Best5Pop) following CASP (critical assessment of structure
prediction) standards.23 Based on previous studies,12 we
considered an RMSD value of 4 Å or lower as indicative of a
successful prediction.

2.3. Simulation Details. We modeled the systems using
the all-atom force field "14SB36 to model protein side chains
and the "99SB37 for modeling the backbone ("14SBonlysc in
AMBER)38 with a cuto" of 1.8 nm, mbondi3 intrinsic radii and
the implicit solvent model GB-Neck2.39 Initial conformations
were fully extended as generated by the tleap sequence
command.40
For all simulations, we performed H,T-REMD5,41 with a 2 fs

time step during 500 ns. The number of replicas varied from 5
to 14 and exchange attempts occurred every 5 ps. Temper-
atures ranged from 300 to 450 K, increasing geometrically.
Each simulation consisted of 3 stages: cMD, GaMELD

equilibration and GaMELD Production. The preparation time,
where boost parameters are not updated, was 0.5 and 4.5 ns for
the cMD and GaMELD equilibration respectively. The

Figure 1. Schematic representation of the GaMELD method. Each
replica performs three stages: conventional molecular dynamics
(cMD), equilibration and production. In addition, there is a previous
substage for cMD and equilibration. Energy thresholds are set after
cMD and after equilibration. Times are expressed in nanoseconds.

Table 1. Protein Residues for RMSD

PDB ID
#

residues residues for RMSD protein name
1FME24 28 5 to 26 structure of FSD-EY
1DV025 47 4 to 42 C-terminal UBA domain of

HHR23A
1FEX26 59 6 to 59a MYB-domain of human RAP1
1HP827 68 3 to 63 human P8-MTCP1
1LMB28 92 6 to 85a lambda repressor−operator

complex
1MI029 65 9 to 65a redesigned protein G variant

NuG2
1PRB30 53 8 to 50a albumin-binding domain
1UBQ31 76 1 to 72a structure of ubiquitin
2HBA32 52 1 to 6, 17 to 52 N-terminal domain of

ribosomal protein L9
2P6J33 52 5 to 48a designed engrailed

homeodomain variant UVF
2WXC34 47 9 to 27, 35 to 46a BBL
3GB135 56 1 to 56a B1 domain of streptococcal

protein G
aFrom ref 12.
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thresholds for GaMELD were set after 5 ns of cMD and then
again after 45 ns of GaMELD equilibration (Figure 1). While
GaMD allows for several options to boost the potential, here
we opted for the boosting of the total potential energy only
and used the upper-bound integration scheme.17
2.4. Coarse Physical Insights as Information. We used

four types of coarse physical insights (CPI)12 based on
observations of globular proteins in the PDB (e.g., they have
hydrophobic cores). We divide the four types into information
originating from (i) secondary structure prediction,42,43 (ii)
hydrophobic packing, (iii) β-strand pairing, and (iv) confine-
ment restraints for compact structures. Such information is
inherently noisy, as we lack knowledge of the particular
hydrophobic contacts (or strand pairs) that lead to native-like
interactions. We provide such information as possible distance
restraints−knowing that some will be incompatible with the
system.
MELD uses Bayesian inference to identify the best

interpretation of the data that is compatible with the physics
of the system. This information is applied as strong distance
restrictions at low-temperature replicas, while they weaken and

vanish at higher replicas (higher temperatures). To configure
the CPIs, we adopted the same input parameters and settings
as previously described.12

2.5. Clustering Approach. Trajectory clustering was
performed using the cluster command, a component of the
CPPTRAJ program.44 The analysis focused on the last half of
the trajectory data, employing the hierarchical agglomerative
(bottom-up) approach with epsilon set to 245 and adopting the
single-linkage criteria (utilizing the shortest distance between
members of two clusters). Clustering was conducted every 10
frames, and subsequently, all other frames were assigned to
clusters based on their proximity to the nearest centroid.

3. RESULTS AND DISCUSSION
In the initial MELD simulations, as well as through di"erent
work over the years, the number of replicas employed in the
one-dimensional H,T-REMD ladder was maintained at 30 as a
compromise between sampling e!ciency and computational
cost. However, this number is significantly higher than the
number one would use to expand the same temperature range
using T-REMD.38 This computational expense has long been a

Figure 2. Superposition of the experimental structure in red and the best-predicted structure in blue, with unmeasured residues shown in gray. The
RMSD in angstroms between the two structures is provided in parentheses.

Table 2. RMSD Comparison of Three Enhanced Sampling Methodologies against the Native Statea

BestStruc (Å) Best1Pop (Å) Best5Pop (Å)

PDB ID number of replicas GaMELD MELD MELDb GaMELD MELD MELDb GaMELD MELD MELDb

3GB1 7 0.6 2.1 1.4 2.1 2.4 7.9 2.1 2.4 3.4
1FME 5 0.7 0.8 2.0 2.9 2.0 7.7 2.9 2.0 3.4
1DV0 6 1.0 4.0 0.9 3.7 8.1 1.0 2.6 6.5 1.0
1PRB 7 1.1 1.0 1.4 1.9 1.8 2.5 1.9 1.8 2.5
2P6J 7 1.3 1.6 1.7 2.7 2.3 2.7 2.7 2.3 2.7
1LMB 14 2.3 5.2 3.6 10.9 9.5 9.2 2.8 8.2 9.2
2WXC 7 2.4 3.3 2.2 6.9 6.3 9.7 6.9 6.3 5.4
1MI0 8 2.4 3.6 1.5 2.9 8.0 3.3 2.9 7.9 2.6
1UBQ 9 2.5 4.7 3.0 2.7 5.4 4.0 2.7 5.4 4.0
2HBA 7 3.0 3.2 0.9 3.9 3.6 7.8 3.9 3.6 7.8
1FEX 14 3.0 2.1 3.2 4.0 6.7 8.9 3.9 4.0 3.5
1HP8 8 3.8 3.7 3.2 6.2 5.5 4.5 5.1 4.6 4.3
success 100% 83% 100% 75% 42% 42% 83% 50% 67%

aNumbers in italics indicate the native state is not identified (Best1Pop,Best5Pop)/sampled (BestStruct). bFrom ref 12.
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barrier to entry for the community to use MELD. For example,
many accessible GPU-based clusters (e.g., through the
ACCESS consortium) will rarely allow jobs with more than
16 GPUS. While MELD has the capacity of asynchronous
REMD, allocating 15 GPUs for a 30-replica job doubles the
amount of human time needed for calculations to complete.
Thus, it would be desirable to identify protocols that maintain
high accuracy while reducing the number of replicas and
associated computational resources.
GaREUS46 was recently developed as an enhanced sampling

technique that merges replica-exchange umbrella sampling
(REUS)4 with Gaussian accelerated molecular dynamics
(GaMD). REUS accelerates sampling along predefined
reaction coordinates, while GaMD boosts the conformational
sampling thereby accelerating the convergence of free-energy
calculations while utilizing the same computational resources
as REUS. In our current implementation, we use GaMELD to
improve energy overlap across MELD replicas, thus reducing
the overall computational cost of the simulations while
improving the convergence and quality of the predictions.
The BestStruc results obtained for GaMELD indicate that

our methodology is capable of sampling the correct structure
in all cases. Figure 2 shows the BestStruc superposed with the
experimental structure where most α-helix and β-sheet
topologies are in perfect agreement. Furthermore, a compar-
ison with MELD results using 30 replicas (see Table 2) shows
that GaMELD is able to maintain an excellent performance
while reducing the number of replicas. Both traditional MELD
and GaMELD sample native states in the ensemble for all 12
systems in the study, but GaMELD is able to identify the
native state through clustering more oftenespecially as the
top cluster by population (Best1Pop). The average improve-
ment over the 12 systems for Best1Pop is 1.5 Å, whereas the
best structures in the ensemble remain similar, with a BestStruct
average improvement of only 0.08 Å. Thus, MELD’s ability to
e!ciently sample the native state remains similar, while the
convergence rate that allows us to identify native states
through clustering improves substantially. Table 2 also shows a

greater number of proteins (nine systems) sampling the native
state Best1Pop compared to vanilla MELD (five systems).
Notably, GaMELD successfully predicted the structure of
1UBQ (Best1Pop = 2.7 Å), a slow-folding protein.47 We
additionally ran MELD simulations with the same number of
replicas as GaMELD. In these conditions, GaMELD shows a
surprising improvement in prediction accuracy over traditional
MELD. In particular, MELD is no longer able to sample native
conformations in the ensemble for all 12 systems, and the
ability to identify a Best5Pop decreases to six of the 12 systems.
Initially, our goal was to set the total number of replicas as

the square root of the number of residues for general
applicability. This approach proved successful for nine out of
the 12 proteins in our data set. However, upon a detailed
analysis of the results, it became apparent that proteins 1DV0,
1LMB, and 1FEX required a di"erent number of replicas to
achieve optimal results. Surprisingly, there was no discernible
correlation between the number of replicas and metrics such as
the number of total round trips or local exchange probability.
Nevertheless, we observed that the total number of round trips
emerged as a valuable indicator for adjusting the number of
replicas. Specifically, when the number of round trips fell below
100 for a 500 ns simulation, increasing the number of replicas
was advantageous. Conversely, when the number of round
trips exceeded 100, decreasing the number of replicas was
more beneficial. This adaptive approach yielded enhancements
in Best1Pop for both 1DV0 and 1FEX, as well as improvements
to Best5Pop for 1LMB. These outcomes underscore the
intricate interplay between the physics of the system and the
data employed, resulting in complex folding routes across the
folding transition−and the relevance of counting round trips to
quantify the ease with which the current protein-data
combination explores transitions above or below the folding
point.
In our simulations, we consistently applied identical coarse

physical insights (CPI) and secondary structure predictions, as
previously detailed12 (see Methods). However, the amount of
information and its accuracy varied depending on the specific

Figure 3. Kernel density estimates of Potential Energy for proteins ID 1FME (five replicas), 3GB1 (seven replicas) and 1UBQ (nine replicas).
Replicas with the same number have the same color. The remaining graphs for the proteins can be found in the Supporting Information (Figure
S1).
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protein sequence. Interestingly, when conducting simulations
with an equivalent number of replicas, we observed that
GaMELD consistently exhibited a higher exchange probability
and a greater number of round trips across all considered
systems (see Table S1). The number of round trips is
especially important in REMD as it ensures random walks
across the di"erent conditions in the replica ladder, favoring
convergence and overall exploration of the conformational
space, as seen by the number of clusters obtained via identical
clustering protocols (see Methods and Table S2).
As expected, the new approach is more e!cient at sampling

diverse sets of structures, resulting in a higher number of
clusters. Surprisingly, a higher number of clusters does not
necessarily lead to a better overall structure. For example,
protein 2HBA sampled only 39 clusters in MELD for 1255 in
GaMELD, yet the Best1PopMELD result was marginally better
than GaMELD (3.6 vs 3.9 Å respectively). Conversely, some
systems for which both protocols identify a large number of
clusters (the BBL protein, PDB ID: 2WXC) perform poorly in
terms of finding the native statewhich could point to a force
field imbalance. Previous simulations with this protein
identified similar issues using a di"erent combination of
force field and solvent model.48 Although BBL is a fast folder,
it has low stability compared to other proteins,34 and previous
reports indicate that di"erences in experimental conditions
could a"ect its conformation.49
The combination of MELD and GaMD acts as a way to

sculpt the energy landscape, with di"erent emphasis. GaMD
will increase the energy in regions below the threshold, while
MELD will increase the energy in regions that are incompatible
with any subset of data. Thus, e"ectively MELD focuses
exploration along a few minima that might contain the native
state, and GaMD flattens the energy of those regions,
e"ectively shifting the energy distribution to higher energies.
By having di"erent thresholds for each replica (see Methods)
we e"ectively decrease the energy gap between neighboring
replicas, increasing the probability of exchange (see Figures 3
and S1−S2). Consequently, the number of round trips and the
exchanges also increase (see Table S1). Notably, when GaMD
is not used, the higher number of replicas does not always
improve the results. For example, the MELD Best1Pop of
3GB1 with seven replicas and 1FME with five is substantially
lower than the previous results with 30 replicas. This is in
agreement with previous results showing how the number of
replicas could impact di"erently depending on the nature of
the process.50−53

A higher number of round trips should also lead to better
convergence properties in the REMD approach. When
selecting representative structures we rely on clustering
populations. Typically, cluster populations over 30% give the
user confidence that the system is predicting the native state.
However, there are cases where clusters with high populations
are not native-like (false positives) and cases where the top
cluster population is below 30% (false negatives). While false
negatives still capture the correct structure, the user would
typically change the simulation protocol to increase con-
vergence. Figure 4 shows that indeed GaMELD reduces the
number of false positives while increasing the number of false
negatives and true positives. One might think that the higher
number of true positives might be due to lower overall
exploration of conformational space. However, counting the
number of clusters predicted by each approach (see Table S2)
shows that GaMELD is able to sample a higher number of

distinct clusters. Similarly, Figure S3 shows the RMSD
distribution over all replicas over time, again showing greater
diversity and width of sampling using GaMELD. This
demonstrates that GaMELD surpasses energy barriers more
swiftly, preventing the sampling from getting trapped in an
energy basin. Despite these advances, most simulations are not
converged for both methodologies as shown by the RMSD
density plots in Figure S4. One could argue that GaMELD
simulations are closer to convergence as shown by greater
overlap over independent walkers. However, proteins like
protein G (3gb1 and 1mi0) or ubiquitin (1UBQ) show that
only a few walkers have sampled the native state.
Finally, there is a significant di"erence between MELD and

GaMD. MELD guarantees that the relative Boltzmann weight
between di"erent clusters that satisfy di"erent subsets of data
is the same as in the unbiased force field. On the other hand,
GaMD boosts the potential of regions below the threshold
(the di"erent minima we are interested in). Since the biasing
potential is quadratic, it could alter the weight between
di"erent minima compatible with MELD data. Hence, we used
GaMD-based toolkits54 to unbias the lowest temperature
replica from GaMELD simulations (see Figure 5). Indeed the
boosting potential follows a Gaussian distribution, which
enabled accurate reweighting of the simulations using
cumulant expansion to the second-order (Figure 5b). By
reweighting the GaMELD simulations, we verified that indeed
the native conformations further increased in population once
the bias was removed (as depicted in Figure 5a). GaMELD
uses the lowest replica to identify the native state, but one
could look at the ensemble of replicas to identify the
computational folding pathways. However, the GaMELD
folding pathways are not necessarily related to the native
folding pathways as MELD biases are compatible with native-
like structures, and not necessarily with intermediates.55
While we set out to integrate GaMD and MELD to improve

MELD predictions, we were also interested in understanding
how MELD improves GaMD. Thus, we compared GaMD
REMD (GaREMD) simulations (no CPIs) with those using
GaMELD in a subset of three proteins for which REMD data
was also available.38 We ran GaMELD simulations for 0.5 μs
and GaREMD simulations for 2 μs. Table 3 summarizes our

Figure 4. Most populated cluster for each protein utilizing MELD
(light blue) and GaMELD (orange) is highlighted. Blue dotted lines
at 4 Å and 30% signify the prediction’s success.
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results, revealing that even running shorter simulations (and a
lower number of replicas than REMD) resulted in improved
RMSD for the Best1Pop cluster. For 2WXC, which we
mentioned as problematic before, none of the systems
captured it through clusteringbut, GaMELD sampled the
native state in the ensemble in a fraction of the time.

4. CONCLUSIONS
This study introduces GaMELD, a novel method that merges
GaMD with MELD, o"ering an improved strategy for
exploring the intricate energy landscapes of biomolecules.
We have benchmarked the method against a set of 12 proteins,
showing that GaMELD consistently delivered accurate
predictions with fewer replicas, substantially reducing
computational resources. While the computational savings
will depend on the particular system, the average saving for the
12 proteins studied in this work is 22 GPUs per simulation. By
introducing Gaussian biases to modulate the overlap in energy
distributions along replicas, the method increases the number
of round trips in replica space, increases the total number of
clusters identified in the ensemble, and reduces the amount of
false positive clusters identified.
Like data, software should be in accordance with FAIR

principles56 (findable, accessible, interoperable, reusable).
MELD has been freely accessible through GitHub for several
years (https://github.com/doesm/gameld), addressing various
biological challenges.14,15,57−59 Our current research demon-
strates its interoperability with other enhanced sampling

methods, surpassing the individual e!cacy of each method.
Although we integrated it with GaMD in this study, the
potential exists to combine MELD with alternative enhanced
sampling techniques, such as metadynamics,60 which has
already been adapted for use with multiple parallel replicas.61
These future possibilities open exciting avenues for tackling
complex biomolecular systems.
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