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Fatigue analysis in metallic frame structures can be challenging due to associated compu-
tational costs; if localized plasticity is involved, then the approach of three-dimensional
continuum plasticity models for direct computation of stresses will be infeasible for the
analysis of cyclic loading that would need to be modeled in medium- to high-cycle fa-
tigue and vibratory fatigue applications. This difficulty is particularly accentuated in
architected structures, for which high-resolution three-dimensional finite element analy-
sis would be prohibitively expensive. In this work, we propose an alternative approach
based on the use of novel elasto-plastic frame model with continuous flow (i.e., no sharp
yield function) for modeling 3D frame and lattice structures. Rather than splitting the
strains (as is done in classical plasticity) we split the deformation measures, extension,
curvature and twist, into elastic and plastic components and postulate a rate type evo-
lution rule for the plastic variables in terms of the stress resultants (axial force, bending
moment, and torque). The combination of structural models together with the use of
elasto-plastic operator split to solve the resulting boundary value problem allows for
much faster determination of localized plasticity than continuum models can provide.
The use of a continuous transition from elastic to rate independent plasticity (as opposed
to an abrupt change with classical plasticity models) allows us to capture localized mi-
croplasticity and determine resulting fatigue progression using a cycle-count-free, plastic
work-based approach, formulated in terms of the curvatures and resultants. We demon-
strate that (a) the model is able able to reproduce the response of 3D FEA with very
few elements and (b) the model has the ability to rapidly predict the fatigue life under
variable amplitude combined loading with relatively few frame elements.

Keywords: Low-cycle fatigue; Rate-independent plasticity; Micro-Architected materials;
Geometrically-Exact beam theory; Smooth-Yielding elastic-plastic constitutive model.

1. Introduction

Modeling the initiation and evolution of plastic deformation complex frame-like

structures (such as those possible by 3D printing)–at varying length scales and for

a variety of disparate applications–has been a challenge extensively examined in the

literature, with a particular focus on approximating key aspects of the deformation
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behavior without overly-onerous computational costs. The aim of this paper is to

develop an approach based on a novel rate independent continuous flow model for

elastoplastic frames that significantly reduces computational cost and allows for

rapid evaluation of fatigue and failure response with only slight loss of accurarcy

compared with full FEA calculations.

For example, fractal frame structures like Menger Sponge-type micro-

architectures have been considered for application in next-gen biomedical implants

(see1,2)–their porous structure promotes superior osseointegration, and their tai-

lorable stiffness allows better matching to that of bone, helping prevent stress-

shielding and separation of the implant from the surrounding bone. However, sim-

ulation of even a single unit cell of these structures is quite challenging; recent

works have required anywhere from 300 000 tetrahedral elements3 to 2 million4 for

simulation of M = 3 sponges.

In the civil engineering literature, knowledge and localization of plastic defor-

mation within a structure has been examined extensively through limit analysis,

in particular via the concept of a plastic hinge.5–8Such plastic hinge models (or

more generally “lumped plasticity models”) possess the flexibility to handle both

hardening and softening cases (e.g.,9,10), and is extremely useful for gross failure

analysis, this approach is severely limited for predicting fatigue where accumulation

of localized microplasticity (even in the nominally elastic regime) is the determining

factor before full cross sectional yielding.

There are several beam and rod models in ABAQUS that have some form of

plastic deformation capabilities, however, since they assume elastic response until

full cross sectional yielding they are not suitable for modeling the evolution of

microplastic deformations in the beam ; this precludes their use fatigue modeling

under cyclic load that are crucial for bioimplacts. . Examination of this issue is

included in subsections 4.2 and 4.5.

For example, Tabatabaei et al. (2017)11 employed a plastic-hinge-type formu-

lation to create a computationally-efficient model of micro-architected structures;

they allow plastic hinge formation to be determined during simulation via a von-

Mises-like yield criterion stated in terms of cross-sectional stress-resultants (see

equations (45) and (46) in11). Similarly Challamel12 has considered the dynamic

shakedown of sttuctures using just a one degree of freedom plasticity model.

Geometrically-exact beam theories (based on the use of direct moment cur-

vature and twist relationships rather than 3D elasticity) have been explored in

the literature for large, nonlinear deformations of elastic rods and shells for some

time,13 with early works exploring elastic-plastic deformations in shells due to Simo

and Kennedy (1992)14 and beams due to Saje (1997, 1998, 2003).15–17 Recent ef-

forts have produced models suitable for use with elastic-plastic analysis in terms

of stress resultants for large deformation of beams,18 and elastic-visco-plastic de-

formations.19 However, all the models described implement an elasto-plastic (E-P)

transition that is abrupt–the material is fully elastic until a certain limit in the

space of moments and forces is reached after which flow ensues. Though quite suit-
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able for static failure analysis, discrete jumps from elastic to (permanent) plastic

behavior (rather than smooth variation between the states) will not lend itself to

capturing fatigue progression under cyclic deformation.

The situation is particularly challenging for lifetime-damage estimation under

cyclic loading. This estimation has been accomplished through means of a cycle

count .20 If, in addition to the lengthy E-P simulation over structures with complex

substructures such as a Menger sponge, a cycle count at every critical point is re-

quired, understanding the damage mechanics of multiple instances of an architected

structure being designed is undoubtedly out of reach.

Time-domain analysis of complex structures using a complete elastic-plastic fi-

nite element analysis followed by a cycle count at all points through the body is often

computationally intractable for cases of interest, thus workarounds are often used.

Remaining in the time-domain, notch correction (see21–23) and constitutive model-

ing (for instance using the Mroz-Garud24 or Jiang-Sehitoglu25–27 kinematic hard-

ening plasticity models) of a linear-elastic FEA followed by a cycle count limited to

points anticipated to present the most damage is one approach often encountered.

Alternative approaches have included analyzing the progression of fatigue from the

frequency-domain;28–31 by posing the problem as a statistical analysis of failure

resulting from vibration, a dramatically faster calculation is possible, but at the

cost of both accuracy (for some cases) and generality.

Following the work of Rajagopal and Srinivasa,32 Wang et al.33 formulated a

smooth-yielding plasticity model for the case of a one-dimensional (1D) element

stated in terms of moment and curvature, but only considered yielding resulting

from bending for a single beam. In order to develop a physics based approach to

fatigue, Mozafari et al.34–36 extended this continuous flow plasticity model which

allows fatigue damage to be accumulated through the use of total energy dissipated,

without a cycle count.

The key features of the model developed here are:

(1) A novel approach to elasto-plastic behavior of beams and frames directly in

terms of stress resultants and center-line kinematics. The yield behavior is not

restricted to just the nodes but throughout the structure.

(2) A systematic procedure for the evaluation of structural parameters for different

beam cross sections.

(3) verification and validation of the results for a variety of load cases.

(4) Application to fatigue loading predictions for combined loading conditions.

Section 2 describes the equations governing the elastic-plastic continuous flow

(EPCF) which forms the core of this work, as well the important particulars of

relating the generalized forces to the flow potential (subsection 2.2) and to the

fatigue damage progression (subsection 2.3). Section 3 describes some salient details

of the numerical approximation, in particular highlighting the variety of algorithms

that can be successfully used with the EPCF model. Finally, section 4 provides
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an extensive array of results to demonstrate the capabilities of the EPCF model.

Beginning with a demonstration of how the required material parameters can be

fit using simple results determined from cantilever beam experiments, subsections

4.2–4.4 show how the models predictions extend well to much more complicated

geometries. Subsection 4.5 shows how the generalization of AMW fatigue parameter

described by Mozafari et al.34 to beam elements can produce results of excellent

accuracy, but at significantly reduced computational cost.

2. Theory

2.1. Elastic-Plastic Continuous Flow Model (EPCF) for Beams

It is well known that when considering the yielding behavior in rods under bending

and torsion (or combinations), the moment-curvature relationship does not exhibit

a sharp yield point. This occurs for two reasons:

(1) The geometry; in an E-P beam yielding begins at the outer fibers and moves

towards the center so that at intermediate loads that are below the full section

yielding loads, there is a mix of purely elastic and plastic regions; commercial

FEM codes using classical J2 plasticity can reasonably capture this effect.

(2) The material; under axial loading, the whole cross-section yields at the same

time, nonetheless, axial stress-strain curves reveal behavior that is rarely well-

captured by “perfect” elastic-plastic deformation. As can be seen in Figure

3(a), ABAQUS predicts a sharp transition in axial deformation, though this

is not typically observed experimentally (see, for instance, the fits and plastic

transition parameters determined in Mozafari et al. 202136).

Thus, we anticipate a clearly visible “gradual transition” from purely elastic to full

plastic response in such structures; if this is not captured, plastic deformation in the

structural element will be significantly under-represented. The EPCF model pos-

sesses requisite flexibility to capture both sharp transition (if needed) and gradual

transition through increasing microplastic deformation.

Our aim is to model this behavior at a structural level without having to inte-

grate across the cross section at every time step. Thus, we consider a beam in its

reference configuration with its neutral axis oriented along the x-direction. Under

deformation, we denote displacements of the beam along the x- (axial), y-, and z-

(transverse) directions by u, v, and w, respectively. The twist angle of the beam

is denoted by ϕ. For small deformations the strain and curvature measures of the

beam can be written as, q = [ϵ, κx, κy, κz]
T , where the strains are related to the

displacement as:

ϵ =
du

dx
, κx =

dϕ

dx
, κy =

d2w

dx2
, κz =

d2v

dx2
. (2.1)

As in small strain plasticity, we introduce the additive splitting of the generalized

strain q = qe + qp.
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The generalized load experienced by the beam is denoted by load vector Q =

[n,mx,my,mz]
T , where n is the axial force, mx is the axial moment or torque, and

my and mz are the bending moments around the other two axesa The generalized

load vector Q is related to the generalized strain measures using the following

relationship,

Q = C(q− qp) (2.2)

The generalized modulus C is a 4×4 matrix in which the diagonal elements are the

section moduli under axial deformation, torsion, and bending, (EA,GJ,EIz, EIy)
T
,

and off-diagonal terms are zero if no phenomena such as warping are considered.

As the frame deforms the loading path traces a curve in the four-dimensional

generalized strain space q. Following Mozafari et al.34 and Jarecki et al.,37 at

every point in the generalized strain space, we will introduce a field of directions

represented by 4 dimensional unit vectors N that represent the “loading direction”

so that as long the generalized strain rate makes a positive angle with N, plastic

flow is possible while no plastic flow occurs if the loading direction is negative, i.e.,

q̇p

{
= 0, if q̇ ·N ≤ 0

̸= 0, otherwise
(2.3)

Thus, in this model, there is no sharp transition between elastic and plastic behavior.

Instead, there is always plastic flow during loading.

Following Rajagopal and Srinivasa32 it can be shown that the continuity of the

stress as a function of time for different load paths, and the associated flow rule

of classical plasticity can be generalized by specifying that the plastic generalized

curvatures evolve as:

q̇p = βN (2.4)

where β is magnitude of the plastic strain rate. The value of β controls the transition

from purely elastic to fully plastic flow.

To see this, we take the time derivative of (2.2) and obtain

Q̇ = C(q̇− q̇p) = C(q̇− βN) (2.5)

In particular, β = 0 implies no plastic flow and so (2.5) reduces to a purely elastic

response.

On the other hand, if we set

β =
q̇ · CN
N · CN

(2.6)

then (2.5) implies that Q̇ •N = 0 and fully plastic flow ensues in the direction N.

In other words, we obtain a plastic hinge.

aSince this is based on Euler-Bernoulli beam theory, the shear forces do no work and so are not
included in the list.
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The central idea here is to choose a constitutive relation for β that (a) satisfies

(2.3), (b) ensures rate independent behavior, and (c) ensures that the the response

smoothly transitions from elastic to fully plastic flow when the fully plastic yielding

of the cross section is reached.

In order to achieve this, we define a “gross” or “fully plastic” flow function

F (Q) ≤ 0 such that F (Q) = 0 represents section yielding. We then specify the flow

direction N to be:

N =

∂F
∂Q∣∣∣∣∣∣ ∂F∂Q ∣∣∣∣∣∣ (2.7)

Finally, we specify the constitutive relation for the plastic strain rate magnitude

β to be:

q̇p = [1 + tanh (α(N)F (Q))]

〈
CN • q̇

N •CN

〉
N (2.8)

Where, as previously, ⟨ • ⟩ denotes Macaulay brackets. Note that the tanh func-

tion ensures a smooth transition from 0 to 1. The transition function α(N) controls

the transition from microplastic to bulk flow in the frame. Its dependence on the

flow direction N is vital to account for the ability to model the response due to

combined loading as we shall see later. Small values of α represent a very gradual

transition from microplastic to section yield such as that encountered in bending

or torsion while large values of α represents a more abrupt transition.

This completes the description of the smooth-yielding model developed for

beams; the only remaining challenge is to determine a suitable means of deter-

mining how applied moments and forces push the model towards elastic-plastic

behavior. The form of the yield function (or flow potential, in the context of this

work) in terms of stress resultants is a nontrivial matter, examined at some length

in the literature (see, in particular, sections 1.4 and 1.5 from;38 for a more recent

examination, see18). The specific form employed in this paper is discussed in the

following subsection 2.2.

2.2. Relating the flow potential to the section yielding conditions

To exploit the material constants used with the 3D stress-strain formulation of the

model, we need a means of relating the generalized forces Q to the yield stress of

the material and the cross section of the beam. . For our purposes, the plastic limit

moduli, well-reported in the structural literature (see, for instance,39 for torsion

and40 for bending), are suitable.

The flow function is given by a von Mises-like yield condition:

F (Q) = f(Q)− σy =
[
(µnn)

2 + (µxmx)
2 + (µymy)

2 + (µzmz)
2
]1/2 − σy (2.9)

In Equation 2.9, σy denotes the yield stress and the µ parameters provide a

bridge between stress and the generalized loading.
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As mentioned previously, significant effort has been expended to determine a

form for the yield function/flow potential that is suitable for use with stress resul-

tants. Causing particular issue is the fact that the generalized-load yield surface–in

addition to being geometry-dependent–is likely not a hypersphere, or even a hyper-

ellipse.

Herrnbock et al.,18 for instance, suggest fits to the following form for a flow

potential in terms of stress resultants:∣∣∣∣ n1n1y
∣∣∣∣α +

∣∣∣∣ n2n2y
∣∣∣∣α +

∣∣∣∣ n3n3y
∣∣∣∣γ +

∣∣∣∣ m1

m1y

∣∣∣∣δ + ∣∣∣∣ m2

m2y

∣∣∣∣δ + ∣∣∣∣ m3

m3y

∣∣∣∣ξ − 1 = 0 (2.10)

where the ni are forces, mi are moments, and α, γ, δ, ξ are potentially distinct

exponents. Mollica et al.41 have shown a systematic procedure for obtaining flow

potentials of any degree of complexity. Such an approach can be tailored to a wide

range of response possibilities but at the cost of increasing the amount of curve

fitting. Though use of specific carefully-tailored flow potentials would undoubtedly

improve accuracy. However, in order to illustrate the efficacy of our approach, we

demonstrate in this paper that the EPCF model can determine suitable fatigue

predictions, even when only using the simplest models with very minimal curve

fitting using a hyper-ellipsoid flow potential.

With a specific form chosen posited for the flow potential , we can now determine

the surface normal (equation (2.7)) as:

N =
1√

(µnn)2 + (µxmx)2 + (µymy)2 + (µzmz)2


µ2
nn

µ2
xmx

µ2
ymy

µ2
zmz

 (2.11)

We report the forms of the limit moduli for two cross-sections, though of course,

numerous others are available in the literature, or can be derived using techniques

of the theory of elasticity. (Note that for all cases, we take µn = 1/A.) For a beam

of rectangular cross-section oriented along the x-axis, defined by height h oriented

along the y-axis and width w oriented along the z-axis, we have:

µx =
2
√
3

a3
(
b
a −

1
3

) ; µy =
4

hw2
; µz =

4

h2w
(2.12)

Where µx corresponds to torsion and µy, µz to bending, and a = max(h,w)

and b = min(h,w). For the particular case of a square cross-section, the simpler

expressions µx = 3
√
3/h3, µy = µz = 4/h3 are obtained.

For a beam oriented along the x-axis possessing an elliptical cross-section, de-

scribed by major and minor axis (a + b) and (a − b), respectively, we have the

following:

µx =
3
√
3

2πa3
(
1− 4.5

(
b
a

)2
+ 4

(
b
a

)3) ; µy =
3

4(a+ b)(a− b)2
; µz =

3

4(a+ b)2(a− b)

(2.13)
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Assuming that the major axis is oriented along the y-axis and the minor axis

along the z-axis. Obviously, the bending parameters are flipped if the opposite

arrangement is true. For the particular case of a circular cross section (radius R)

the simpler expressions µx = 3
√
3/(2πR3), µy = µz = 3/(4R3) are obtained.

Note that for non-circular cross-sections, if significant torsional deformation is

anticipated, then the generalized modulus C should be modified to include warp-

ing; these constants alone will not compensate for this effect with an unmodified

modulus.

2.3. Damage accumulation based on accumulated microplastic

work(AMW) for Fatigue Failure Criterion in

Smooth-Yielding Model

Mozafari et al. (2021),36 determine progress to fatigue in terms of accumulated

microplastic work (AMW), using the following expression:

ηstress(t) =

∫ t

0

σ : ε̇P dt (2.14)

where : denotes the tensor contraction. When AMW (in units of energy per

volume) reaches critical value ηf , fatigue failure is predicted to occur. We suggest

an analogous expression in terms of force resultants:

ηFR(t) =

∫ t

0

Q • q̇P dt (2.15)

Here we have AMW in terms of individual beam elements, in units of energy

per length.

Below, we compare the AMW calculations for simple loads (axial, bending, and

torsion) of a cantilever beam of length L oriented with its neutral axis along the

x-axis and constant, symmetric cross-section of area A, which should allow us to

accurately approximation ηstress from ηFR.

Axial Deformation. For the small strain approximation (εxx ≈ du/dx), both
AMW parameters are related by cross-sectional area (as should be expected given

the units):

ηFR(t) =

∫
EA

(
du

dx
− εP

)
ε̇P dt = A (ηstress(t))

Bending Deformation. We limit ourselves to a beam with a square (height,

h) or circular (radius, r) cross-section; For the loading described, the maximum

stress will occur at z = ±h/2 and z = ±r for the square and circular cross-sections,

respectively.

For the case in which the cantilever beam so described is loaded with a transverse

load on the neutral axis, the maximum uniaxial stress is given by:

σxx =
Mz

I
= −zE

(
d2w

dx2
− κpz

)
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Recognizing that for the beam loaded in this way subject to the small strain

approximation, we have εPxx ≈ zκPz , we can relate the AMW in terms of stress

with that determined using the generalized force and curvature relationships upon

substitution for the particular form of the moment of inertia.

ηFR(t) =

∫
EI

(
d2w

dx2
− κpz

)
κ̇Pz dt (2.16)

In the case of a square cross-section (where I = (h4/12) = (A/3)(z2)):

ηFR(t) =
A

3

(∫
zE

(
κz − κPz

)
(zκ̇Pz )dt

)
=

(
A

3

)
ηstress(t)

In the case of a circular cross-section (for which I = (πr4/4) = (A/4)(z2)):

ηFR(t) =
A

4

(∫
zE

(
κz − κPz

)
(zκ̇Pz )dt

)
=

(
A

4

)
ηstress(t)

Torsional Deformation. We follow the same process for a cantilever loaded

by a twisting moment, T around the x-axis which produces angular rotation ϕ. The

maximum uniaxial stress in this same cantilever is given by:

σxy =
Mr

J
= rG

(
d2ϕ

dx2
− κpx

)
Recognizing that for the beam loaded in this way subject to the small strain

approximation, we have εPxy ≈ rκPx , we can relate the AMW in terms of stress

with that determined using the generalized force and curvature relationships upon

substitution for the particular form of the polar moment of inertia.

ηFR(t) = J

∫
G (κx − κpx) κ̇Px dt

In the case of a square cross-section (where I = (h4/6) = (2A/3)(z2)):

ηFR(t) =
2A

3

(∫
zG (κx − κpx) (zκ̇Px )dt

)
=

(
2A

3

)
ηstress(t)

In the case of a circular cross-section (for which J = (πr4/2) = (A/2)(z2)):

ηFR(t) =
A

2

(∫
zG (κx − κpx) (zκ̇Px )dt

)
=

(
A

2

)
ηstress(t)

Note that we must multiply these proportionality factors by (1/2) in this case,

however, due to the fact that shear multiplication terms σijε
p
ij , i ̸= j appear twice

in a tensor contraction

The foregoing discussion suggests the following form for η, used throughout this

work:

η(t) =
1

A

∫ (
nε̇P + ϕbend(myκ̇

P
y +mzκ̇

P
z ) + ϕtors(T κ̇

P
x )

)
dt (2.17)

Where for a square cross-section ϕbend = ϕtors = 3, and for a circular cross-

section ϕbend = ϕtors = 4. This form is suitable for simple loadings, but undoubtedly
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becomes inaccurate for more complex ones; nonetheless, as demonstrated in the next

section, we can still use this to leverage the model from Mozafari et al.34–36 for

excellent fatigue life predictions, but at significantly lower computational cost.

3. Numerical Approximation

3.1. Elastic-Plastic Boundary Value Problem

Assuming no body force, the generalized force balance equations for an Euler-

Bernoulli beam oriented along the x-axis (or rotated to lie along this direction) can

be written as: ∫ xb

xa

[
n
du

dx
+mx

dϕ

dx
+my

d2w

dx2
+mz

d2v

dx2

]
dx = 0 (3.1)

Selecting Lagrange test function ψ for axial displacement and small rotation

due to torsion, and Hermite cubic φ for the transverse displacements and their first

derivative, we substitute the individual equations contained in (2.2) into equation

(3.1); partitioning (3.1) with respect to distinct virtual displacements (denoted

below with a δ before the appropriate test function), we have:∫ xb

xa

[
EA

(
dψ

dx
− ϵp

)]
dδψ

dx
dx = 0,

∫ xb

xa

[
GJ

(
dψ

dx
− (κx)p

)]
dδψ

dx
dx = 0, (3.2)

for axial and torsional deformation on a given element from xa to xb and∫ xb

xa

[
EIz

(
d2φ

dx2
− (κz)p

)]
d2δφ

dx2
dx = 0,

∫ xb

xa

[
EIy

(
d2φ

dx2
− (κy)p

)]
d2δφ

dx2
dx = 0

(3.3)

for bending about both transverse axes.

Numerically, we can accurately and expediently solve the flow rule and trans-

verse force balance over the finite element mesh using operator split: that is, any

given load increment is split into two steps, (i) an elastic step–freezing the plastic

curvature–and (ii) a plastic step–freezing the plastic rate.

To describe the formulation over a single reference element oriented along the

x-axis from xa to xb, we introduce discrete nodal variables uj , ϕn, vJ , and wN

representing the axial displacement, twist, and the transverse displacements and

bending rotations along the y- and z-directions, respectively. The axial displacement

uj and twist ϕn are interpolated using Lagrange interpolation functions, denoted

below by ψ. To maintain continuity for both the transverse displacement and the

bending rotation (related to the transverse displacement by the first derivative for

an Euler-Bernoulli beam), we employ Hermite cubic interpolation functions nodal

variables vJ and wN . The form for Lagrange and Hermite interpolation functions

as well as the particulars of Gauss-Point numerical integration are well-known see

e.g.42
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For the deformations described by this model, we have:(∫ xb

xa

[
EA

dψi

dx

]
dψj

dx
dx

)
uj =

∫ xb

xa

[EAϵp]
dψi

dx
dx(∫ xb

xa

[
GJ

dψm

dx

]
dψn

dx
dx

)
ϕn =

∫ xb

xa

[GJ(κx)p]
dψm

dx
dx(∫ xb

xa

[
EIz

d2φI

dx2

]
d2φJ

dx2
dx

)
vJ =

∫ xb

xa

[EIz(κz)p]
d2φI

dx2
dx(∫ xb

xa

[
EIy

d2φM

dx2

]
d2φN

dx2
dx

)
wN =

∫ xb

xa

[EIy(κy)p]
d2φM

dx2
dx

(3.4)

where the lower-case indices shown above take the values of 1 and 2 indices per

element, and the upper-case indices (associated with the Hermite cubic test func-

tions) take the values 1 through 4 indices per element. We can state this concisely

(treating the right hand side as a plastic forcing contribution) as [Kij ] (∆j) = (Fp)i,

where, now in this case, j varies through the 12 DOFs associated with a single finite

element.

In equation (3.4), we take plastic curvatures as values from the previous load

increment, qn
p ; this constitutes the first update step of the algorithm, in which the

current values of the curvature, that is qn+1, are obtained.The algorithm selected

below is justified noting that for almost all inelastic processes, the loading vector

and flow direction do not change much within a load increment.43

3.2. Update of Plastic Variables

We state an algorithm described in37 in a form suitable for use with the moment-

curvature model here as Algorithm 1. The plastic update step takes the configura-

tional variables at the (n + 1)th step and the plastic variables at the nth step to

produce the increment in plastic variables ∆qp. The change in the plastic variables

within each load step needs to be updated consistent with the yield condition and

flow rule. We denote the nth load step flow direction by Nn. Considering equation

(2.4) we arrive at the following condition on plastic strain rate β:

β =
[
1 + tanh

(
α(Nn)F (qn+1,qn+1

p )
)]〈CNn · (qn+1 − qn)

Nn •CNn

〉
(3.5)



September 23, 2024 16:9 output

12 D. Jarecki et al. 2023

Result: Computes qn+1, Given qn

1

2 START: ∆qp = 0, ERROR = 1, TOL = 10−6, i = 0, imax;

3 q←− qn+1;

4

5 while ERROR > TOL and i < imax do

6 qp ←− qn
p +∆qp;

7 ∆q←− q− qn;

8 ϕ = ||∆qp||;
9

10 Compute the loading direction N = N(q,qp);

11 if L := CN •∆q/CN •N > 0 then

12 β = β(q,qp);

13 θ = − ∂β
∂qp

•N;

14 dqp = (β+θϕ)L
1+θL N;

15 else

16 dqp = 0;

17 end

18 ERROR←− ||dqp −∆qp||;
19 ∆qp ←− dqp;

20

21 i←− i+ 1

22 end

23

24 (qn+1,qn+1
p )←− (q,qp);

25 n←− n+ 1

Algorithm 1: Picard Iteration performed at each Gauss point of EP BVP;

Qn
i denotes the temporary generalized forcing values available after iteration

i.

3.3. Determination of Model Structural Parameters

Since this is a frame model, the response is governed not only by type of loading, but

also by the cross-sectional geometry. For a given geometry, the following features

of the elastic-plastic deformation were considered essential to the proper modeling

of the fracture behavior.

(1) Initial slope of force-displacement curves (Section moduli, EA, EI, GJ);

(2) Perfect plasticity limit forces/moments for single-load cases (Yield stress, σy);

(3) Elastic-plastic behavior in transition region (Transition parameter, α).

The determination of the first two categories is straightforward, following di-

rectly from the geometry and standard experimental procedures; alpha can be
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modified for each single-loading case separately until a suitable match is obtained.

Figure 1 shows this process for the case of pure axial loading.
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Fig. 1: Even if the underlying material has a sharp transition from elastic to plastic,

the structural response under bending and torsion will have a smooth transition to

plastic response. The elastoplastic continuous flow (EPCF) model can be tuned to

better approximate the E-P transition region via judicious selection of α. This is

crucial for fatigue calculations based on damage accumulation

Given force-displacement and moment-curvature experimental data (or data

from a high-fidelity simulation), we suggest the following methods to assess the

accuracy of the E-P beam model and to obtain replicable fits to the given material

parameters.

Method 1: Residuals. The two residuals below can be employed to assess

accuracy of the continuous-yielding E-P beam model:

R1 =

4∑
i=1

||max (Qi)−max (Qexp
i )||

R2 =

4∑
i=1

qi(tf )∑
qi(tj)=qi(t0)

∣∣∣∣∣∣κqQ(tj , qi, Qi)− κexpqQ (tj , qi, Qi)
∣∣∣∣∣∣ (3.6)

where values with the superscript “exp” denote quantities obtained experimen-

tally or numerically from a (presumed) higher fidelity model (such as a full 3D

continuum-based simulation). For the first residual perfect plasticity is assumed

(so that a plateau value is actually attained); the greater the value of R1, the

greater the difference between the numerically predicted plateau value for a given

element of the generalized load vector Qi and the experimental value Qexp
i . For

the second residual, a forward difference approximation of the numerical (EPCF)

curvature, κqQ(tj , qi, Qi) is compared with the experimentally determined values,

κexpqQ (tj , qi, Qi), in the EP transition region, indexed along generalized displacement
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values from (user-selected) ti to tf ; the curvature measure is given as:

κqQ(tj , qi, Qi) =
(qi(tj+1)− qi(tj)) |Qi(tj+1)−Qi(tj)|
(Qi(tj+2)− 2Qi(tj+1)−Qi(tj+1))

3/2
(3.7)

No residual is included for the initial (elastic) slope–it is determined from stan-

dard experiments, and no modification is required for use here–, or for the yield

stress–once a plateau value is identified for one of the force resultant of interest,

the yield stress follows from the plastic limit moduli.

Method 2: Slope Intersection.

For the case of the elastoplastic beam and frame response, we identify 4 char-

acteristic features of the response (see figure 2 as well as the discussion in44 and,45

in which this approach is applied to nonlinear models of biological fibers). (1) the

initial slope which represents the elastic stiffness D0, (2) the final slope D∞ which

represents the flow behavior after full section yielding and is related to the flow

function g hardening characteristics (3) the intersection point (Q0, q0) between the

initial and final slope lines (related to the form of the flow function) and (4) the point

(Q1, q0) corresponding to the drop in the stress due to continuous flow (related to

the transition parameter α). We note that this method reduces to standard defini-

tions of yield if the structure has a sharp yield point; it also separates the “transient

region” from the full section yield thus obviating the need for complex hardening

rules to account for this phenomenon. This approach provides an easily-replicable

method for fitting data in an EP simulation.

q

Q

D0

D∞(q0, Q0)

(q0, Q1)

q0

Fig. 2: Slope intersection method for fitting our elastic-plastic deformation model

to data. The key measurements that will be used for the parameter fitting are (1)

the initial slope D0, (2) the final slope D∞ (3) the point of intersections (Q0, q0)

and the point (Q1, q0) that represents deviation from the sharp yield.

In the case of the EPCF model, the smoothness parameter α selected should

be the one that minimizes error at the point on the stress-strain (or generalized
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Table 1: List of the transition function α values determined for pure loading cases;

all values are shown in units of 1/MPa. These are used in equation (3.8)

Cross-Section αax αbend αtors

Square 0.1 0.00571 0.00667

Circle 0.1 0.00571 0.00667

force-displacement) curve directly beneath the intersection point of the bilinear

representation generated from the two slopes. Figure 2 shows what this fitting

method looks like graphically.

Figure 3 below shows single load simulations, representative of the type of data

that can be used to fit the material parameters needed for the elastic-plastic con-

tinuous flow beam elements. For each of the different load types, different α values

are determined; the values obtained for the square and circular cross-sections under

the loading conditions considered above are listed in Table 1.

0 0.05 0.1 0.15 0.2

Displacement (mm)

0

100

200

300

400

500

600

F
o
rc

e
 (

k
N

)

Square CS, ABAQUS: 3D

Square CS, ABAQUS: 1D

Square CS, EPCF Model

Circular CS, ABAQUS: 3D

Circular CS, ABAQUS: 1D

Circular CS, EPCF Model

(a)

0 0.05 0.1 0.15 0.2

Angle (rad)

0

20

40

60

80

100

120

140

B
e
n
d
in

g
 M

o
m

e
n
t 

(k
N

*m
m

)

Square CS, ABAQUS: 3D

Square CS, EPCF Model

Circular CS, ABAQUS: 3D

Circular CS, EPCF Model

(b)

0 0.05 0.1 0.15 0.2

Angle (rad)

0

20

40

60

80

100

T
o
rs

io
n
a
l 
M

o
m

e
n
t 
(k

N
*m

m
)

Square CS, ABAQUS: 3D

Square CS, EPCF Model

Circular CS, ABAQUS: 3D

Circulac CS, EPCF Model

(c)

Fig. 3: Single load (a) axial, (b) bending, and (c) torsion simulation used to fit α

parameter in EPCF model for rectangular and circular cross-sections.

We will set the transition function α(N) to be simply linear in the direction of
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loading, i.e.,

α(N) =

3∑
I=1

αiNi (3.8)

With the αi being obtained from curve fitting the “pure” loading cases: α1 being

fit to axial loading (see Fig. 3(a)) α2 being fit to pure bending (see Fig. 3(b)) and

α3 being fit to pure torsion (see Fig. 3(c)). The values of αi for square and circular

cross sections can be seen in Table 1.

4. Results

4.1. Monotonic Combined Loading Studies

The predictions of the EPCF model was compared to finite element (FE) simula-

tions performed in ABAQUS. The design of the structures used is shown in Figure

4.

L r1

v

w
u

φz

x

y

z

φy

φx

Fig. 4: Cantilever simulated in ABAQUS with C3D8 and B33 elements for compar-

ison against predictions of continuously-yielding EP beams. Different combinations

of displacements and rotations were applied to the beam and the tip deflection

versus the applied load was compared (see also Fig. 5

One end of the beam was fully constrained, and loads were applied on the other

end of the beam. Every node/element at the end surface was coupled to a single

reference point and individual and combined loads such as vertical displacement,

and rotations were imposed on that point.

Figure 5(a) shows the results obtained for loading via an off-axis displacement

(i.e., flexure, not pure bending); the EPCF model captures the behavior predicted

in ABAQUS fairly well here.

Figure 5b,c,d,e shows the comparison between the smooth-yielding model for

the tension-torsion combined loading and bending-torsion case, respectively, for

both square and circular cross-sections. Notice the prominent mismatch in gener-

alized load plateau height for the case of torsion in the square cross-section; this is

undoubtedly due to the omission of warping in the EPCF formulation. Future mod-

ifications to include warping will likely capture the final generalized load plateau

for non-circular cross-sections under torsion much more accurately.
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(b) Force displacement responsse due to
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(c) Torque vs. twist response due to si-
multaneous Axial load and Twist:
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(d) Moment vs transverse rotation re-
sponse due to combined bending and tor-
sion
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(e) Torque vs Twist angle response due
to combined bending and torsion

Fig. 5: Results of simultaneous monotonous end loading of a cantilever beam: com-

parison between ABAQUS 3D and the EPCF model.

4.2. Monotonic and Cyclic Loading of Beams under Various End

Loadings

Once the smoothness parameter has been appropriately selected using single-load

input as described previously, the calibrated results extend well to handle cyclic
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deformations. A comparison between cyclic deformations predicted by ABAQUS

against those from the EPCF model is shown below in Figure 6.
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Fig. 6: Cyclic deformation comparison between ABAQUS and the EPCF model for

single load (a) Tension, (b) Torsion, and (c) Bending. The continuous-yield behavior

of the EPCF model allows it to compute fatigue damage from the accumulated

microplastic work, which would not be possible with current commercial code.

As noted before, the sharp transition of J2 plasticity (and the piecewise jump in

behavior in the hardening model used in ABAQUS) will not capture the continuous

accrual of plasticity (and associated damage from microplastic work), so–though

simulations using models in this class are useful as a comparison–they would not

be suitable for the AMW fatigue calculation described here.

4.3. Deformation of Frames

In this section we show the efficacy of the new beam model in the simulation of

the response of more complex structures. We begin with the consideration of two-

dimensional (2D) and three-dimensional (3D) portal frames. We compare the model

response with that of an ABAQUS 3D model with a square shaped cross section

for every vertical support (centerline length L2 = 11.5 mm) and horizontal beam
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(centerline length L1 = 9 mm). The width w and height h of the cross sections

were 1 mm. The end surfaces (3D ABAQUS) and end nodes (EPCF) of the vertical

support in the frame were constrained. The nodes/elements at the shared sections

between a support and a beam at a top corner of a frame were coupled to a reference

node and loads were applied to that assigned node accordingly.

Figure 7 (c) shows the region where the displacement was applied to deform the

three-dimensional frame. The size of the applied loading region was selected to be

big enough to eliminate any erroneous localized deformation while still being small

enough to simulate a point-wise loading condition on a frame.

(a) (b) (c)

Fig. 7: Structures simulated in ABAQUS with C3D8 elements for comparison

against predictions of continuous-flow EP beam elements. (a) 2D Portal Frame, (b)

3D Portal Frame; (c) Finite element mesh used for 3D portal frame in ABAQUS,

with regions of load application highlighted.

The three-dimensional eight node brick element C3D8 element was used to sim-

ulate both beams and frames. Notably, the geometry and applied load in the 2D

frame were in 2D but a 3D element was used to simulate it when the square shaped

cross section of the frame was considered.

Three loading cases were considered; for both the 2D and 3D portal frames,

applied displacement of uin = 5 mm were used (Figure 7), giving one case for

the 2D frame, one for the 3D frame in which both applied displacements were

in the same direction, and one final case for the 3D frame in which the applied

displacements were in the opposite direction (push-pull).

The force-displacement curves are presented and compared well to the ana-

lytical results as shown in Figures 8 - 9, with only the push-pull case exhibiting

discrepancies with the result predicted by ABAQUS.

The push-pull 3D frame plateau loads predicted by the EPCF model and

ABAQUS differed somewhat (Figure 9(b)); it is likely that this is due to torsion.

For the push-pull case, the vertical support beams twist around the central axis

somewhat, and, because the cross-section employed is non-circular, warping is an-

ticipated. Modifications to the EPCF model to include warping would likely address

this. Nonetheless, we are able to effectively produce results with significantly re-

duced computational effort that reasonably represent the anticipated deformation
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Fig. 8: Load displacement at point of application on 2D portal frame.
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Fig. 9: Load displacement at point of application of 3D portal frame; (a) applied

displacements in same direction, (b) applied displacements in alternate directions.

The descrepancy in figure 23 is due to warping which is not accounted for in the

current formulation

results of complex loadings and structures, using only data gleaned from material

parameters, geometry, and simple fits to pure load cases, which was our intended

result.

4.4. Deformation of Microarchitected Geometries

In this subsection, we demonstrate how the EPCF model (with judicious choice of

section moduli parameters) can be used to model the elastic-plastic deformation in

complex microarchitected geometries.

We consider the recent work of Kushwaha et al.4 The fractal Menger sponge ge-

ometry (created by repeating, progressively smaller, self-similar removals of a cube

from an original solid cube) has been evaluated as a potential design for prostheses,

for two reasons principally: first, the tailorable architecture allows a better match

between the elastic modulus of bone and the prosthesis, and second, the porous
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structure promotes superior osseointegration as the surrounding bone heals and

accepts the prosthesis. As an engineering problem, however, the Menger sponge

presents a challenge; clearly predictive analysis must be performed before prosthe-

ses with these novel designs can be cleared for use in humans, but meshing itself is

a challenge. Prediction of the likely fatigue life is computationally prohibitive.

Kuswaha et al.4 performed numerical simulation of various Menger sponge

structures using ANSYS Mechanical APDL; their mesh convergence analysis re-

vealed that they required about 2 million quadratic tetrahedral elements (SOLID

187). We aim to replicate the qualitative behavior they observed, but with dramat-

ically fewer elements.

We referred to Kuswaha’s provided materials, using an elastic modulus of 1.55

GPa and a Poisson ratio of 0.3. Taking the specific yield stress of 40.70 for the

solid specimen (denoted L0; see Kuswaha, Table 3) and the reported density (1.25

g cm−3), we have a yield stress of 50.875 kPa.

From Kushwaha’s description of the Menger sponge compressive tests, and their

reported boundary conditions for the base of the sponge in their ANSYS simula-

tions, we fix displacements and rotations in for all nodes on the base of our selected

meshes. Determining the particulars of the compressive loading, however, is not as

clear. The experimental loading used a central pillar to press the specimen, partially

distributing this load via a top plate (see Figure 5 in4), but the relative size of the

pillar is not reported. Assuming that the top plate would not distribute the load

uniformly but that greatest contact would be experienced at the center of the spec-

imen (and in the absence of any details on their chosen numerical implementation)

we employed a loading profile windowed with the square root of a sine function

centered over the largest (centermost) cavity.

The Menger sponge is symmetric; arbitrarily, we orient the bottom part of the

sponge in the xy-plane (and the bottom part of the 2D reduction in the x-plane) at

z = 0. Denoting side length by L (equal to 5 cm, to match the stated geometry in

Kushwaha et al.,4 we have selected the following form for the boundary condition

at the top face (z = L) of the 2D reduction (Sierpinski carpet):

wapp(x) =

√
sin

(πx
L

)
(4.1)

where wapp denotes the maximum applied displacement boundary condition in the

z-direction (gradually approached as a ramp loading from zero to maximum over

the top surface). Similarly, for the 3D simulation, we employ the loading boundary

condition:

wapp(x, y) =

√
sin

(πx
L

)
sin

(πy
L

)
(4.2)

For both the 2D and 3D simulations, we reduced the computational load by

trying to enforce symmetry down the center-line (2D) or center-planes (3D). For

the 2D case, we maintained u = θy = θz = 0 at the centerline (x = L/2); for the 3D

case, we enforced u = v = θy = θz = 0 at the center-planes (x = L/2 and y = L/2).
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Table 2: List of section moduli and flow potential parameters used for all levels of

Sierpinski carpet simulation (consistent discretization allows the same values to be

used for each). Note that, in this case, symmetry causes EIx = EIy and µy = µz,

so only one value is reported for bending.

EA (kN) EI (kN/mm) GJ (kN/mm) µn(mm−2) µy(mm−3) µx(mm−3)

1.33e3 9.49e1 7.27e1 1.17 5.04 6.55

To attempt replication of the behavior of solid regions of the Menger sponge

with 1D beam elements, section moduli corresponding to elements large enough

along the cross-section that they would touch surrounding elements are used; the

parameters relating the flow potential to the generalized forces were calculated

without modification (see Table 2).

The deformations predicted by the EPCF model for symmetric loadings of the

M = 0, 1 (Figure 10) and M = 2, 3 (Figure 11) 2D sponges are shown below;

visually, they appear similar to the results obtained by Kushwaha et al. using

ANSYS APDL, most notably with the high stress regions occurring in the same

locations.

(a) (b)

Fig. 10: Deformation of (a) M = 0 and (b) M = 1 Sierpinski Carpets under

centrally-loaded compressive force using EPCF model with 2860 and 2774 frame

elements, respectively. Displayed von Mises stresses are in MPa. (Compare defor-

mations with result from ANSYS APDL with 2 million tetrahedral elements in

Kushwaha et al. 20214).
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(a) (b)

Fig. 11: Deformation of (a) M = 2 and (b) M = 3 Sierpinski Carpets under

centrally-loaded compressive force using EPCF model with 2564 and 2496 frame

elements, respectively. Displayed von Mises stresses are in MPa. (Compare defor-

mations with result from ANSYS APDL with 2 million elements in Kushwaha et

al. 20214).

Though the material they tested was non-metallic (PLA), we show in figure

12 that the EPCF model produces specific (density-normalized) compressive stress

plateaus that seem reasonably consistent with the experimentally-predicted specific

compressive stress values at small strains, replicating the behavior they describe

(elastic loading region followed by a plateau in the compressive stress). In partic-

ular, Kushwaha et al. 20214 state that “It can be concluded that there exist two

distinctive compressive strain regimes for all the levels of the structure: 1) linear

elastic region and 2) a plateau region”. Figure 11 shows qualitatively similar be-

havior, in particular showing close matches of the plateau stress with much less

computational resources and effort. To address the 2D reduction of the 3D model,

the effective densities used to determine the specific stress are modified from the 3D

values as 1.11, 0.988, and 0.7023 kg/m3 for the M = 1, 2, and 3 carpets, respectively

(determined via subtracting empty portions from the 2D sponge and multiplying

the resulting fractional value times the bulk density of 1.25 kg/m3).

Only the plateau associated with the M = 3 sponge disagrees strongly with the

experimentally-predicted plateau, with the EPCF predicting a much higher com-

pressive stress than observed; referring to the supplementary videos associated with

Kushwaha et al.,4 we see that, for the M = 3 case, the thin geometry associated
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with the numerous holes in the sponge lead to early buckling, a failure mode that is

not accounted for in the small-deformation EPCF model, thus it is to be expected

that the EPCF would anticipate higher stress before failure. Additionally, we note

from the supplementary video that the initial loading does not appear to deform

the structure much, and the initial strains recorded in the plot may be due only to

cross-head movement.
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Fig. 12: Specific compressive stress (stress/density) results determined using elastic-

plastic continuous-flow (EPCF) model 2D sponge simulations, for 3D printed PLA

Menger sponge specimens of increasing Menger Sponge level; plateau values for M =

0, 1, and 2 compare favorably against Figure 1(c) in,4 but more detailed comparison

is not possible due to the use of PLA, as no loading-unloading data was provided.

While using a 2D analogue of the Menger sponge can produce comparative

results significantly faster, the EPCF model is, of course, suitable for use with

3D simulations also. Using a tessellation density that is consistent between the

M = 1, 2, and 3 sponges (with the same density along the cross-section as that

of the 2D Sierpinski carpet meshes), we performed a simulation of a compressive

loading of three Menger sponges.

The locations of maximum von Mises stress predicted by the EPCF model

compare favorably with those obtained in Kushwaha et al.4 as can be seen below

in Figures 16 and 17. We should note that the location of the maximum stresses is

probably the extent of the comparison possible in this case, since the result shown

in Kushwaha4 is for larger deformation than would be accurate to simulate under

the assumptions of the EPCF model. (Our maximum compressive strain is half

that in their simulation, but as can be seen in Figure 12, the plateau stress is still

approached, even at this reduced strain input.) Additionally, uncertainty about the

form of the loading boundary conditions used in their ANSYS simulation likely

influences any discrepancy between the results.

With the ability to predict elastic-plastic deformations in complex structures

but at greatly-reduced effort from both the engineer and the computer, the simu-
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Fig. 13: Deformation of M = 1 Menger Sponge under centrally-loaded compression

using EPCF model with 94734 frame elements. Displayed von Mises stresses are in

MPa. Pictured deformations are scaled by a factor of 5 for visibility.

Fig. 14: Deformation of M = 2 Menger Sponge under centrally-loaded compression

using EPCF model with 74976 frame elements. Displayed von Mises stresses are in

MPa. Pictured deformations are scaled by a factor of 5 for visibility.

lation of lengthy cyclic histories for this kind of structure is in reach. Though large

deformations are not suitable for use with the EPCF model as described in this

work, we are not interested in those for the purposes of fatigue analysis. (With this

limitation in mind, care must be taken when using this model to avoid cases in
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Fig. 15: Deformation of M = 3 Menger Sponge under centrally-loaded compression

using EPCF model with 65572 frame elements. Displayed von Mises stresses are in

MPa. Pictured deformations are scaled by a factor of 5 for visibility.

(a) (b)

Fig. 16: Comparison of (b) EPCF deformation (scaled by a factor of 5) predictions

with (a) fully-deformed result from ANSYS APDL with 2 million elements in

Kushwaha et al. 20214) for M = 1 Menger sponge. Note that the ANSYS model

has much larger strains at its final state (large deformation model), so the stresses

shown should not be identical.

which, even though macroscopic strains are small, locally large strains would be

produced.)

The next sub-section demonstrates how the physically-based AMW fatigue pa-

rameter can be used with this model to predict fatigue without addition of a sig-

nificant computational penalty (as compared to commonly-used methods such as
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(a) (b)

Fig. 17: Comparison of (b) EPCF deformation (scaled by a factor of 5) predictions

with (a) fully-deformed result from ANSYS APDL with 2 million elements in

Kushwaha et al. 20214) for M = 3 Menger sponge. Despite the different color-

mapping scheme selected, it is evident that peak stresses are predicted in the same

location for each model.

cycle counts, for which determination of the elastic-plastic history is only the be-

ginning of the fatigue analysis). This can in turn be used to leverage the structural

calculation capabilities demonstrated here.

4.5. Application to Physically-Based Fatigue Predictions

Dogbone specimens of various standardized shapes are used to replicate the stress

states that appear in objects of engineering importance in the controlled environ-

ment of the laboratory. Direct simulation of the nonlinear, elastic-plastic stress-

strain state that occurs in the body during deformation is, traditionally, quite com-

putationally expensive, and requires careful meshing.

A recent work by Mozafari et al.36 demonstrates the performance of the smooth-

yielding model combined with the accumulated microplastic work (AMW) fatigue

parameter by predicting the fatigue life associated with multiple dogbone speci-

mens. As can be seen in Figure 12 of,36 defining the geometry accurately requires

quite a few elements (612, 1545, and 5604, for the cases shown); we are able to

produce comparable fatigue predictions with only 8 elements.

We reference the extensive Al 7075-T651 experimental results provided in Zhao

and Jiang’s excellent 2008 paper;46 as described in detail in this work, multi-

ple specimen types were used to perform tension, torsion, and tension-torsion

tests. Using the specimen geometry taken together with the material parameters

(E = 0.717e5MPa, ν = 0.306,YS = 501MPa), we determine the section moduli and

the parameters that relate generalized load and yield (i.e., the µ-parameters). As

an initial guess for the accumulated microplastic work at failure, we use the value
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Table 3: List of section moduli used for Al 7075-T651 fatigue predictions, with the

relevant specimen (and experimental runs from Zhao and Jiang 2008) noted.

Specimen EA (kN) EI (kN/mm) GJ (kN/mm)

Solid Cylinder (2a) 7.68e6 6.55e7 5.02e7

Tubular (4a), (5c)-(5f) 9.91e6 6.05e8 4.63e8

Table 4: List of flow potential parameters used for Al 7075-T651 fatigue predictions,

with the relevant specimen (and experimental runs from Zhao and Jiang 2008)

noted.

Specimen µn(mm−2) µy(mm−3) µx(mm−3)

Solid Cylinder (2a) 0.00933 0.00376 0.00415

Tubular (4a), (5c)-(5f) 0.00723 0.00103 0.00113

reported by Mozafari et al.36 for Al 7075-T6 (ηf = 2850MJ/m3) as the fatigue

failure criterion, recognizing that the difference in material processing (and, poten-

tially, surface finish) may require adjustments to the actual etaf value that would

be appropriate for use.

The complete structural parameters used by the EPCF model for this effort

are reported in Tables 3 and 4. As noted in previous sub-sections, the smoothness

parameter, α, associated with the EPCF beam element under pure torsion, pure

bending, and pure axial deformation, is distinct. Using nonlinear FEA simulations

with perfect plasticity as a baseline, however, would result in a continuous-flow

parameter α parameter that is too large to accurately accrue fatigue damage from

accumulated microplastic work. Referencing Mozafari et al.36–in which the ξ value

(≈ 1/α) is determined to be 107 MPa for the case of Al-7075 T6–we select values

near the inverse of their value for both tension and torsion, in particular, αn =

8e− 3MPa−1 (for tension), and αx = 10e− 3MPa−1 (for torsion).

Multiple strain control loading paths (including proportional, exactly 90◦ out-

of-phase, and two out-of-phase Lissajous curves) are described in Figure 4 of Zhao

and Jiang 2008;46 it is easy to convert these into load paths in displacement. We

use the various displacement load paths as control input for an EPCF simulation

set up as follows:

• Half of the specimen midsection geometry (from x = L/2 to x = L, where L

depends on the particular specimen) was simulated;

• 8 nodes were used to discretize the length of the geometry into frame elements

(following appropriate convergence analysis);

• Symmetry was enforced on one end (x = L/2); it was treated as fixed relative

to the end under displacement control;

• Displacement was prescribed on the other end (x = L), according to the ap-
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propriate waveforms for tension and torsion channels provided in Zhao and

Jiang.46

The EPCF simulations performed against the fatigue data collected in Table

2(a)46 were fully-reversed axial tension; Table 4(a)46 contained data from fatigue

experiments performed in fully-reversed torsion. Table 5(d)46 contained data col-

lected under 90◦ out-of-phase loading, and Tables 5(d) and 5(e)46 contained loading

paths defined by Lissajous curves. No functional definition was provided for the Lis-

sajous curves, but we fit the curves shown as follows; for 5(e), we specified axial

channel uin and shear channel ϕin as:

uin =
∆uin
2

sin(t)

ϕin =
∆ϕin
2

sin
(
2(8π)t− π

1.9

)
where and for 5(f):

uin =
∆uin
2

sin(t)

ϕin =
∆ϕin
2

sin
(
4(8π)t− π

2.3

)
where ∆uin/2 and ∆ϕin/2 denote the amplitudes for the prescribed displacements.

Using these load paths, we are able to replicate the fatigue predictions under tension

and tension-torsion with high accuracy, for most points staying within a factor of

2 (see Figure 18), with only the 90◦ out-of-phase results (circular, EPCF, 5d in

Figure 18) presenting an issue.

Experimental results were taken from Tables 2, 4, and 5 in,46 omitting–for this

work–nonzero mean cases. Future modification to the EPCF model to include kine-

matic hardening should allow general cyclic cases to be accurately handled.

5. Conclusion

This work demonstrates that a moment-curvature-based EPCF frame model can

provide full-structural plasticity calculations in a computationally-efficient and ac-

curate manner, replicating results obtainable by 3D FEA but with significantly

lower degrees of freedom and greatly-reduced meshing efforts, particularly for com-

plex micro-structures.

THis makes it possible to carry out cycle-count-free fatigue calculations via use

of the accumulated microplastic work, something which classical J2 plasticity mod-

els (even with frame elements) available in commercial software are not capable of.

This exciting development brings full-structural, time-domain fatigue calculations

closer to the hands of the design engineer.

However the current approach has very simple cross sectional kinematics—the

CS rotates rigidly. This is unrealistic and results in early plasticity (due to stiffer

elastic response). The results can be further improved by considering cross sectional
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Fig. 18: Fatigue predictions produced by EPCF compared to experimental results

of Zhao and Jiang:46 (a) under tension, with zero mean stress (fatigue data from

Table 2a); (b) under torsion with zero static axial load. Fatigue data taken from

table 4a; and (c) Under Tension torsion with 4 different loading paths (fatigue data

from table 5c-f in Zhao and Jiang46)

warping (such as by using an approach similar to that developed by Payette and

Reddy47).

6. Acknowledgements

A. R. Srinivasa and Dominic Jarecki gratefully acknowledge the support of TDA,

Inc. in conducting this research. J. N. Reddy and A. R. Srinivasa would also like

to acknowledge National Science Foundation CMMI grant No. 1952873 for their

support in the performance of this work. The authors are pleased to acknowledge the

discussions with Dr. Archana Arbind (Indian Institute of Technology, Kharagpur,

India) for some aspects of the formulation. The paper is dedicated to Professor

Yeong-Bin Yang on his 70th birthday. Professor Yang’s research and professional

leadership has enormously benefited the structural mechanics community all over

the world, and we wish him good health and happiness in the years to come.



September 23, 2024 16:9 output

Small-Deformation Rate-Independent Continuous-Flow Model for Fatigue 31

References

1. M. Zhao, H. Qing, Y. Wang, J. Liang, M. Zhao, Y. Geng, J. Liang and B. Lu, Supere-
lastic behaviors of additively manufactured porous niti shape memory alloys designed
with menger sponge-like fractal structures, Materials & Design 200 (2021) p. 109448.

2. X. Zhang, F. Yang, B. Liu and J. Deng, Design of menger sponge fractal structural
niti as bone implants, Modelling and Simulation in Materials Science and Engineering
29(8) (2021) p. 084001.

3. N. Viet, N. Karathanasopoulos and W. Zaki, Effective stiffness, wave propagation,
and yield surface attributes of menger sponge-like pre-fractal topologies, International
Journal of Mechanical Sciences 227 (2022) p. 107447.

4. B. Kushwaha, K. Dwivedi, R. S. Ambekar, V. Pal, D. P. Jena, D. R. Mahapatra and
C. S. Tiwary, Mechanical and acoustic behavior of 3d-printed hierarchical mathemat-
ical fractal menger sponge, Advanced Engineering Materials 23(4) (2021) p. 2001471.

5. D. W. White, Plastic-hinge methods for advanced analysis of steel frames, Journal of
Constructional Steel Research 24(2) (1993) 121–152.

6. O. Bayrak and S. A. Sheikh, Plastic hinge analysis, Journal of Structural Engineering,
ASCE 127(9) (2001) 1092–1100.

7. J. Y. R. Liew, H. Chen, N. E. Shanmugam and W. F. Chen, Improved nonlinear
plastic hinge analysis of space frame structures, Engineering Structures 22(10) (2000)
1324–1338.

8. M. H. Scott and G. L. Fenves, Plastic hinge integration methods for force-based beam–
column elements, Journal of Structural Engineering, ASCE 132(2) (2006) 244–252.

9. G. Cocchetti and G. Maier, Elastic–plastic and limit-state analyses of frames with
softening plastic-hinge models by mathematical programming, International Journal
of Solids and Structures 40(25) (2003) 7219–7244.

10. D. Ehrlich and F. Armero, Finite element methods for the analysis of softening plastic
hinges in beams and frames, Computational Mechanics 35(4) (2005) 237–264.

11. M. Tabatabaei and S. N. Atluri, Simple and efficient analyses of micro-architected
cellular elastic-plastic materials with tubular members, International Journal of Plas-
ticity 99 (2017) 186–220.

12. N. Challamel, Dynamic analysis of elastoplastic shakedown of structures, Interna-
tional Journal of Structural Stability and Dynamics 5(02) (2005) 259–278.

13. P. M. Pimenta and T. Yojo, Geometrically exact analysis of spatial frames, Applied
Mechanics Reviews 46(11) (1993).

14. J. C. Simo and J. Kennedy, On a stress resultant geometrically exact shell model. part
v. nonlinear plasticity: formulation and integration algorithms, Computer Methods in
Applied Mechanics and Engineering 96(2) (1992) 133–171.

15. M. Saje, I. Planinc, G. Turk and B. Vratanar, A kinematically exact finite element
formulation of planar elastic-plastic frames, Computer Methods in Applied Mechanics
and Engineering 144(1-2) (1997) 125–151.

16. M. Saje, G. Turk, A. Kalagasidu and B. Vratanar, A kinematically exact finite element
formulation of elastic–plastic curved beams, Computers & Structures 67(4) (1998)
197–214.

17. D. Zupan and M. Saje, Finite-element formulation of geometrically exact three-
dimensional beam theories based on interpolation of strain measures, Computer Meth-
ods in Applied Mechanics and Engineering 192(49-50) (2003) 5209–5248.
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