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Fatigue analysis in metallic frame structures can be challenging due to associated compu-
tational costs; if localized plasticity is involved, then the approach of three-dimensional
continuum plasticity models for direct computation of stresses will be infeasible for the
analysis of cyclic loading that would need to be modeled in medium- to high-cycle fa-
tigue and vibratory fatigue applications. This difficulty is particularly accentuated in
architected structures, for which high-resolution three-dimensional finite element analy-
sis would be prohibitively expensive. In this work, we propose an alternative approach
based on the use of novel elasto-plastic frame model with continuous flow (i.e., no sharp
yield function) for modeling 3D frame and lattice structures. Rather than splitting the
strains (as is done in classical plasticity) we split the deformation measures, extension,
curvature and twist, into elastic and plastic components and postulate a rate type evo-
lution rule for the plastic variables in terms of the stress resultants (axial force, bending
moment, and torque). The combination of structural models together with the use of
elasto-plastic operator split to solve the resulting boundary value problem allows for
much faster determination of localized plasticity than continuum models can provide.
The use of a continuous transition from elastic to rate independent plasticity (as opposed
to an abrupt change with classical plasticity models) allows us to capture localized mi-
croplasticity and determine resulting fatigue progression using a cycle-count-free, plastic
work-based approach, formulated in terms of the curvatures and resultants. We demon-
strate that (a) the model is able able to reproduce the response of 3D FEA with very
few elements and (b) the model has the ability to rapidly predict the fatigue life under
variable amplitude combined loading with relatively few frame elements.

Keywords: Low-cycle fatigue; Rate-independent plasticity; Micro-Architected materials;
Geometrically-Exact beam theory; Smooth-Yielding elastic-plastic constitutive model.

1. Introduction

Modeling the initiation and evolution of plastic deformation complex frame-like
structures (such as those possible by 3D printing)—at varying length scales and for
a variety of disparate applications—has been a challenge extensively examined in the
literature, with a particular focus on approximating key aspects of the deformation
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behavior without overly-onerous computational costs. The aim of this paper is to
develop an approach based on a novel rate independent continuous flow model for
elastoplastic frames that significantly reduces computational cost and allows for
rapid evaluation of fatigue and failure response with only slight loss of accurarcy
compared with full FEA calculations.

For example, fractal frame structures like Menger Sponge-type micro-
architectures have been considered for application in next-gen biomedical implants
(seel>?)-their porous structure promotes superior osseointegration, and their tai-
lorable stiffness allows better matching to that of bone, helping prevent stress-
shielding and separation of the implant from the surrounding bone. However, sim-
ulation of even a single unit cell of these structures is quite challenging; recent
works have required anywhere from 300 000 tetrahedral elements® to 2 million? for
simulation of M = 3 sponges.

In the civil engineering literature, knowledge and localization of plastic defor-
mation within a structure has been examined extensively through limit analysis,
in particular via the concept of a plastic hinge.5 8Such plastic hinge models (or
more generally “lumped plasticity models”) possess the flexibility to handle both
hardening and softening cases (e.g.,”19), and is extremely useful for gross failure
analysis, this approach is severely limited for predicting fatigue where accumulation
of localized microplasticity (even in the nominally elastic regime) is the determining
factor before full cross sectional yielding.

There are several beam and rod models in ABAQUS that have some form of
plastic deformation capabilities, however, since they assume elastic response until
full cross sectional yielding they are not suitable for modeling the evolution of
microplastic deformations in the beam ; this precludes their use fatigue modeling
under cyclic load that are crucial for bioimplacts. . Examination of this issue is
included in subsections 4.2 and 4.5.

For example, Tabatabaei et al. (2017)!! employed a plastic-hinge-type formu-
lation to create a computationally-efficient model of micro-architected structures;
they allow plastic hinge formation to be determined during simulation via a von-
Mises-like yield criterion stated in terms of cross-sectional stress-resultants (see
equations (45) and (46) in'!). Similarly Challamel'? has considered the dynamic
shakedown of sttuctures using just a one degree of freedom plasticity model.

Geometrically-exact beam theories (based on the use of direct moment cur-
vature and twist relationships rather than 3D elasticity) have been explored in
the literature for large, nonlinear deformations of elastic rods and shells for some
time,'3 with early works exploring elastic-plastic deformations in shells due to Simo
and Kennedy (1992)'* and beams due to Saje (1997, 1998, 2003).'517 Recent ef-
forts have produced models suitable for use with elastic-plastic analysis in terms
of stress resultants for large deformation of beams,'® and elastic-visco-plastic de-
formations.'® However, all the models described implement an elasto-plastic (E-P)
transition that is abrupt-the material is fully elastic until a certain limit in the
space of moments and forces is reached after which flow ensues. Though quite suit-
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able for static failure analysis, discrete jumps from elastic to (permanent) plastic
behavior (rather than smooth variation between the states) will not lend itself to
capturing fatigue progression under cyclic deformation.

The situation is particularly challenging for lifetime-damage estimation under
cyclic loading. This estimation has been accomplished through means of a cycle
count.?0 If, in addition to the lengthy E-P simulation over structures with complex
substructures such as a Menger sponge, a cycle count at every critical point is re-
quired, understanding the damage mechanics of multiple instances of an architected
structure being designed is undoubtedly out of reach.

Time-domain analysis of complex structures using a complete elastic-plastic fi-
nite element analysis followed by a cycle count at all points through the body is often
computationally intractable for cases of interest, thus workarounds are often used.
Remaining in the time-domain, notch correction (see?'23) and constitutive model-
ing (for instance using the Mroz-Garud?* or Jiang-Sehitoglu?* 2" kinematic hard-
ening plasticity models) of a linear-elastic FEA followed by a cycle count limited to
points anticipated to present the most damage is one approach often encountered.
Alternative approaches have included analyzing the progression of fatigue from the
frequency-domain;2® 3! by posing the problem as a statistical analysis of failure
resulting from vibration, a dramatically faster calculation is possible, but at the
cost of both accuracy (for some cases) and generality.

Following the work of Rajagopal and Srinivasa,?? Wang et al.?3 formulated a
smooth-yielding plasticity model for the case of a one-dimensional (1D) element
stated in terms of moment and curvature, but only considered yielding resulting
from bending for a single beam. In order to develop a physics based approach to
fatigue, Mozafari et al.3* 3% extended this continuous flow plasticity model which
allows fatigue damage to be accumulated through the use of total energy dissipated,
without a cycle count.

The key features of the model developed here are:

(1) A novel approach to elasto-plastic behavior of beams and frames directly in
terms of stress resultants and center-line kinematics. The yield behavior is not
restricted to just the nodes but throughout the structure.

(2) A systematic procedure for the evaluation of structural parameters for different
beam cross sections.

(3) verification and validation of the results for a variety of load cases.

(4) Application to fatigue loading predictions for combined loading conditions.

Section 2 describes the equations governing the elastic-plastic continuous flow
(EPCF) which forms the core of this work, as well the important particulars of
relating the generalized forces to the flow potential (subsection 2.2) and to the
fatigue damage progression (subsection 2.3). Section 3 describes some salient details
of the numerical approximation, in particular highlighting the variety of algorithms
that can be successfully used with the EPCF model. Finally, section 4 provides
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an extensive array of results to demonstrate the capabilities of the EPCF model.
Beginning with a demonstration of how the required material parameters can be
fit using simple results determined from cantilever beam experiments, subsections
4.2-4.4 show how the models predictions extend well to much more complicated
geometries. Subsection 4.5 shows how the generalization of AMW fatigue parameter
described by Mozafari et al.3* to beam elements can produce results of excellent
accuracy, but at significantly reduced computational cost.

2. Theory
2.1. Elastic-Plastic Continuous Flow Model (EPCF) for Beams

It is well known that when considering the yielding behavior in rods under bending
and torsion (or combinations), the moment-curvature relationship does not exhibit
a sharp yield point. This occurs for two reasons:

(1) The geometry; in an E-P beam yielding begins at the outer fibers and moves
towards the center so that at intermediate loads that are below the full section
yielding loads, there is a mix of purely elastic and plastic regions; commercial
FEM codes using classical J2 plasticity can reasonably capture this effect.

(2) The material; under axial loading, the whole cross-section yields at the same
time, nonetheless, axial stress-strain curves reveal behavior that is rarely well-
captured by “perfect” elastic-plastic deformation. As can be seen in Figure
3(a), ABAQUS predicts a sharp transition in axial deformation, though this
is not typically observed experimentally (see, for instance, the fits and plastic
transition parameters determined in Mozafari et al. 20213).

Thus, we anticipate a clearly visible “gradual transition” from purely elastic to full
plastic response in such structures; if this is not captured, plastic deformation in the
structural element will be significantly under-represented. The EPCF model pos-
sesses requisite flexibility to capture both sharp transition (if needed) and gradual
transition through increasing microplastic deformation.

Our aim is to model this behavior at a structural level without having to inte-
grate across the cross section at every time step. Thus, we consider a beam in its
reference configuration with its neutral axis oriented along the z-direction. Under
deformation, we denote displacements of the beam along the z- (axial), y-, and z-
(transverse) directions by u, v, and w, respectively. The twist angle of the beam
is denoted by ¢. For small deformations the strain and curvature measures of the
beam can be written as, q = [¢, kg, Ky, #.]T, where the strains are related to the
displacement as:

du do d*w d?v
Tdw T @ T ar T @

As in small strain plasticity, we introduce the additive splitting of the generalized

strain q = q. + qp.

€

(2.1)
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The generalized load experienced by the beam is denoted by load vector Q =
(1, Mg, My, m.]T, where n is the axial force, m, is the axial moment or torque, and
my and m, are the bending moments around the other two axes® The generalized
load vector Q is related to the generalized strain measures using the following
relationship,

Q=C(a—aqap) (2.2)

The generalized modulus C is a 4 x 4 matrix in which the diagonal elements are the
section moduli under axial deformation, torsion, and bending, (EA, GJ, E1L, Ely)T,
and off-diagonal terms are zero if no phenomena such as warping are considered.

As the frame deforms the loading path traces a curve in the four-dimensional
generalized strain space q. Following Mozafari et al.3* and Jarecki et al.,>” at
every point in the generalized strain space, we will introduce a field of directions
represented by 4 dimensional unit vectors IN that represent the “loading direction”
so that as long the generalized strain rate makes a positive angle with N, plastic
flow is possible while no plastic flow occurs if the loading direction is negative, i.e.,

qp{o’ AN =l (23
# 0, otherwise
Thus, in this model, there is no sharp transition between elastic and plastic behavior.
Instead, there is always plastic flow during loading.

Following Rajagopal and Srinivasa3? it can be shown that the continuity of the
stress as a function of time for different load paths, and the associated flow rule
of classical plasticity can be generalized by specifying that the plastic generalized
curvatures evolve as:

qp = N (2.4)

where (3 is magnitude of the plastic strain rate. The value of 8 controls the transition
from purely elastic to fully plastic flow.
To see this, we take the time derivative of (2.2) and obtain

Q=C(a-q) =C(a-HN) (2.5)

In particular, 8 = 0 implies no plastic flow and so (2.5) reduces to a purely elastic
response.
On the other hand, if we set

_ q-CN

ﬂ_N-(CN

(2.6)

then (2.5) implies that Q« N = 0 and fully plastic flow ensues in the direction N.
In other words, we obtain a plastic hinge.

2Since this is based on Euler-Bernoulli beam theory, the shear forces do no work and so are not
included in the list.
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The central idea here is to choose a constitutive relation for 3 that (a) satisfies
(2.3), (b) ensures rate independent behavior, and (c) ensures that the the response
smoothly transitions from elastic to fully plastic flow when the fully plastic yielding
of the cross section is reached.

In order to achieve this, we define a “gross” or “fully plastic” flow function
F(Q) < 0 such that F(Q) = 0 represents section yielding. We then specify the flow
direction N to be:

oF
N =29
OF
%]

(2.7)

Finally, we specify the constitutive relation for the plastic strain rate magnitude
[ to be:

N.CN (2.8)

Gy = [1+ tanh (N F(Q)] o ppy )

Where, as previously, () denotes Macaulay brackets. Note that the tanh func-
tion ensures a smooth transition from 0 to 1. The transition function a(N) controls
the transition from microplastic to bulk flow in the frame. Its dependence on the
flow direction N is vital to account for the ability to model the response due to
combined loading as we shall see later. Small values of a represent a very gradual
transition from microplastic to section yield such as that encountered in bending
or torsion while large values of a represents a more abrupt transition.

This completes the description of the smooth-yielding model developed for
beams; the only remaining challenge is to determine a suitable means of deter-
mining how applied moments and forces push the model towards elastic-plastic
behavior. The form of the yield function (or flow potential, in the context of this
work) in terms of stress resultants is a nontrivial matter, examined at some length
in the literature (see, in particular, sections 1.4 and 1.5 from;3® for a more recent
examination, see'®). The specific form employed in this paper is discussed in the
following subsection 2.2.

2.2. Relating the flow potential to the section yielding conditions

To exploit the material constants used with the 3D stress-strain formulation of the
model, we need a means of relating the generalized forces Q to the yield stress of
the material and the cross section of the beam. . For our purposes, the plastic limit
moduli, well-reported in the structural literature (see, for instance, for torsion
and?® for bending), are suitable.

The flow function is given by a von Mises-like yield condition:

F(Q)=f(Q)— Oy = [(,Unn)2 + (,Uxmx)2 + (Uymy)2 + (Uzmz)Q] vz Oy (2.9)

In Equation 2.9, o, denotes the yield stress and the p parameters provide a
bridge between stress and the generalized loading.
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As mentioned previously, significant effort has been expended to determine a
form for the yield function/flow potential that is suitable for use with stress resul-
tants. Causing particular issue is the fact that the generalized-load yield surface—in
addition to being geometry-dependent—is likely not a hypersphere, or even a hyper-
ellipse.

Herrnbock et al.,'® for instance, suggest fits to the following form for a flow
potential in terms of stress resultants:

(03

+

[e3

+

§
mo ¢
+
mgy

Y my
+ [ ——
mly

ni

nly

n2

ngy

ns

—-1=0 2.10
- (2.10)

J m
3
+ ‘
mgy

where the n; are forces, m; are moments, and «, 7, J, £ are potentially distinct
exponents. Mollica et al.*' have shown a systematic procedure for obtaining flow
potentials of any degree of complexity. Such an approach can be tailored to a wide
range of response possibilities but at the cost of increasing the amount of curve
fitting. Though use of specific carefully-tailored flow potentials would undoubtedly
improve accuracy. However, in order to illustrate the efficacy of our approach, we
demonstrate in this paper that the EPCF model can determine suitable fatigue
predictions, even when only using the simplest models with very minimal curve
fitting using a hyper-ellipsoid flow potential.

With a specific form chosen posited for the flow potential , we can now determine
the surface normal (equation (2.7)) as:

pan

N = L “zm“’ (2.11)
\/(Nnn)2 + (pama)? + (:uymy)Q + (p=mz)? | Hymy
pzm

We report the forms of the limit moduli for two cross-sections, though of course,
numerous others are available in the literature, or can be derived using techniques
of the theory of elasticity. (Note that for all cases, we take u, = 1/A.) For a beam
of rectangular cross-section oriented along the x-axis, defined by height h oriented
along the y-axis and width w oriented along the z-axis, we have:

23 4 4

Mo = CL3 (b 1)7 My = h,w27 Hz = h2w (212)

a 3
Where p, corresponds to torsion and p,, 1, to bending, and a = maz(h, w)
and b = min(h,w). For the particular case of a square cross-section, the simpler
expressions ji,; = 3v/3/h%, p, = p, = 4/h* are obtained.
For a beam oriented along the z-axis possessing an elliptical cross-section, de-
scribed by major and minor axis (a + b) and (a — b), respectively, we have the
following:

3v3 S 3 o 3
2ra? (1-45(2)* +4(2)°) BT A b @—0 T a0 —b)
(2.13)

Mz =
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Assuming that the major axis is oriented along the y-axis and the minor axis
along the z-axis. Obviously, the bending parameters are flipped if the opposite
arrangement is true. For the particular case of a circular cross section (radius R)
the simpler expressions i, = 3v/3/(27R®), y = p. = 3/(4R3) are obtained.

Note that for non-circular cross-sections, if significant torsional deformation is
anticipated, then the generalized modulus C should be modified to include warp-
ing; these constants alone will not compensate for this effect with an unmodified
modulus.

2.3. Damage accumulation based on accumulated microplastic
work(AMW) for Fatigue Failure Criterion in
Smooth-Yielding Model

Mozafari et al. (2021),36 determine progress to fatigue in terms of accumulated
microplastic work (AMW), using the following expression:

t
nstress(t> :/ (o 2N EPdt (214)
0

where : denotes the tensor contraction. When AMW (in units of energy per
volume) reaches critical value 7y, fatigue failure is predicted to occur. We suggest
an analogous expression in terms of force resultants:

nrr(t) = /0 Q. q"dt (2.15)

Here we have AMW in terms of individual beam elements, in units of energy
per length.

Below, we compare the AMW calculations for simple loads (axial, bending, and
torsion) of a cantilever beam of length L oriented with its neutral axis along the
z-axis and constant, symmetric cross-section of area A, which should allow us to
accurately approximation 7sress from npg.

Axial Deformation. For the small strain approximation (e, &~ du/dx), both
AMW parameters are related by cross-sectional area (as should be expected given
the units):

nrr(t) = /EA (Zz — EP) ePdt = A (Ngpress(t))

Bending Deformation. We limit ourselves to a beam with a square (height,
h) or circular (radius, r) cross-section; For the loading described, the maximum
stress will occur at z = £h/2 and z = £r for the square and circular cross-sections,
respectively.

For the case in which the cantilever beam so described is loaded with a transverse
load on the neutral axis, the maximum uniaxial stress is given by:

M d?
Oy = Rk (xw /@p>
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Recognizing that for the beam loaded in this way subject to the small strain

approximation, we have ¢f ~ zx?

o we can relate the AMW in terms of stress

z

with that determined using the generalized force and curvature relationships upon
substitution for the particular form of the moment of inertia.

2
nrr(t) = /EI (2;;’ — /4;> &P dt (2.16)

In the case of a square cross-section (where I = (h*/12) = (A/3)(2?)):

nrr(t) = ? (/ 2E (k. — kL) (Z"if)dt) = (?) Nstress(t)

In the case of a circular cross-section (for which I = (7r#/4) = (A/4)(2?)):

wen(®) = 7 ([ 28 (6. = 2) (iD)at) = () naren)

Torsional Deformation. We follow the same process for a cantilever loaded
by a twisting moment, T" around the x-axis which produces angular rotation ¢. The
maximum uniaxial stress in this same cantilever is given by:

Mr d?
"w—J—’“G(f‘“’é>

Recognizing that for the beam loaded in this way subject to the small strain

approximation, we have el ~ 7L, we can relate the AMW in terms of stress
with that determined using the generalized force and curvature relationships upon

substitution for the particular form of the polar moment of inertia.
nrr(t) = J/G(Iiz — kP)iPdt

In the case of a square cross-section (where I = (h*/6) = (24/3)(2?)):

men(®) = %57 ([ 26 0 =) i)at) = (35 ) et

In the case of a circular cross-section (for which J = (7r1/2) = (4/2)(2?)):

en(®) = 5 ([ 26 na = ot )it ) = (5 ) tanestt)

Note that we must multiply these proportionality factors by (1/2) in this case,

however, due to the fact that shear multiplication terms aijefj,i # j appear twice
in a tensor contraction
The foregoing discussion suggests the following form for 7, used throughout this

work:
1 . . . .
n(t) = 1 / (nef + ¢bend(mym5 +meil) + brors(TRL)) dt (2.17)

Where for a square cross-section ¢pend = Ptors = 3, and for a circular cross-
section @pend = Gtors = 4. This form is suitable for simple loadings, but undoubtedly
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becomes inaccurate for more complex ones; nonetheless, as demonstrated in the next
section, we can still use this to leverage the model from Mozafari et al.>* 36 for
excellent fatigue life predictions, but at significantly lower computational cost.

3. Numerical Approximation
3.1. Elastic-Plastic Boundary Value Problem

Assuming no body force, the generalized force balance equations for an Euler-
Bernoulli beam oriented along the x-axis (or rotated to lie along this direction) can
be written as:

o du do d*w d*v
n——+my— +my—s +m dx =0 (3.1)
/xa [ x Y dx2 ?dx?

Selecting Lagrange test function v for axial displacement and small rotation
due to torsion, and Hermite cubic ¢ for the transverse displacements and their first
derivative, we substitute the individual equations contained in (2.2) into equation
(3.1); partitioning (3.1) with respect to distinct virtual displacements (denoted
below with a § before the appropriate test function), we have:

/ [EA (df ep)] %”dx:o, / [GJ (Zi’ (nm)pﬂ %dw _0, (32)

for axial and torsional deformation on a given element from x, to x; and

o d*p d*5¢p o d*p d%5¢p
/za [EI (dac2 - (nz)p>} T2 dx =0, /xa [EI (d 5 — (Ky)p>:| T2 dx =

(3.3)

for bending about both transverse axes.

Numerically, we can accurately and expediently solve the flow rule and trans-
verse force balance over the finite element mesh using operator split: that is, any
given load increment is split into two steps, (i) an elastic step—freezing the plastic
curvature—and (ii) a plastic step—freezing the plastic rate.

To describe the formulation over a single reference element oriented along the
z-axis from z, to x, we introduce discrete nodal variables u;, ¢,, vy, and wy
representing the axial displacement, twist, and the transverse displacements and
bending rotations along the y- and z-directions, respectively. The axial displacement
u; and twist ¢, are interpolated using Lagrange interpolation functions, denoted
below by . To maintain continuity for both the transverse displacement and the
bending rotation (related to the transverse displacement by the first derivative for
an Euler-Bernoulli beam), we employ Hermite cubic interpolation functions nodal
variables v; and wy. The form for Lagrange and Hermite interpolation functions
as well as the particulars of Gauss-Point numerical integration are well-known see

e.g.4?
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For the deformations described by this model, we have:
o dy; | di, o di;
(/Iu [EA Ir ] dxjd:r) uj = /wa [EAe,] Ir dx
o dipm | dipp o dipm,
— | —d n = GJ(kgz)p) —d
(/l.a {GJ dz ] dx x) ¢ /xa (G (ka),] dz
Tp d2¢1 dZ(PJ Tp szDI
L E e | e ) v = ), B e

o d*on ] d*on o d*on
([ e e s

a

where the lower-case indices shown above take the values of 1 and 2 indices per
element, and the upper-case indices (associated with the Hermite cubic test func-
tions) take the values 1 through 4 indices per element. We can state this concisely
(treating the right hand side as a plastic forcing contribution) as [K;;] (A;) = (F),,
where, now in this case, j varies through the 12 DOFs associated with a single finite
element.

In equation (3.4), we take plastic curvatures as values from the previous load
increment, qy; this constitutes the first update step of the algorithm, in which the
current values of the curvature, that is q"*!, are obtained.The algorithm selected
below is justified noting that for almost all inelastic processes, the loading vector
and flow direction do not change much within a load increment.*3

3.2. Update of Plastic Variables

We state an algorithm described in3” in a form suitable for use with the moment-
curvature model here as Algorithm 1. The plastic update step takes the configura-
tional variables at the (n + 1)th step and the plastic variables at the nth step to
produce the increment in plastic variables Aq,. The change in the plastic variables
within each load step needs to be updated consistent with the yield condition and
flow rule. We denote the nth load step flow direction by N™. Considering equation
(2.4) we arrive at the following condition on plastic strain rate 3:

(CNn . (qn-‘rl _ qn)
N7« CN”

B = [1+ tanh (a(N")F(q" ™, q)t"))] < (3.5)
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Result: Computes q"*!, Given q"

1

2 START: Aq, = 0, ERROR = 1, TOL = 1075, i = 0, imax;
3 q«— q"t;

4

5 while ERROR > TOL and i < imax do
6 | Qp<— qy + Agy;

7 | Ag+«—aq—q%

s | o=llag,l;

9

10 Compute the loading direction N = N(q, qy);
11 if L:=CN+.Aq/CN«N >0 then
12 B =pB(a,ap);

13 0= —aaqi +N;

14 dq, = (6119;2)LN;

15 else

16 dq, = 0;

17 end

18 ERROR «+— ||dg, — Aqyl[;

19 Aqgp «— daqp;

20

21 t—1i1+1
22 end
23
24 (", qpth) «— (q. qp);
25 n<+—n+1

Algorithm 1: Picard Iteration performed at each Gauss point of EP BVP;
Q' denotes the temporary generalized forcing values available after iteration
i.

3.3. Determination of Model Structural Parameters

Since this is a frame model, the response is governed not only by type of loading, but
also by the cross-sectional geometry. For a given geometry, the following features
of the elastic-plastic deformation were considered essential to the proper modeling
of the fracture behavior.

(1) Initial slope of force-displacement curves (Section moduli, EA, EI, GJ);
(2) Perfect plasticity limit forces/moments for single-load cases (Yield stress, oy);
(3) Elastic-plastic behavior in transition region (Transition parameter, «).

The determination of the first two categories is straightforward, following di-
rectly from the geometry and standard experimental procedures; alpha can be
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modified for each single-loading case separately until a suitable match is obtained.
Figure 1 shows this process for the case of pure axial loading.

100

80 -

60 -

40 -

- ABAQUS: 3D
——EPCF Model, a = 6.7e-3
EPCF Model, a =4.0e-3 |]
.......... EPCF Model, a =2.9e-3
————— EPCF Model, a =1.3e-3

Torsional Moment (kN*mm)

20t [/

0 0.‘1 O.é 0.‘3 0.4 0.5

Angle (rad)
Fig. 1: Even if the underlying material has a sharp transition from elastic to plastic,
the structural response under bending and torsion will have a smooth transition to
plastic response. The elastoplastic continuous flow (EPCF) model can be tuned to
better approximate the E-P transition region via judicious selection of «. This is
crucial for fatigue calculations based on damage accumulation

Given force-displacement and moment-curvature experimental data (or data
from a high-fidelity simulation), we suggest the following methods to assess the
accuracy of the E-P beam model and to obtain replicable fits to the given material
parameters.

Method 1: Residuals. The two residuals below can be employed to assess
accuracy of the continuous-yielding E-P beam model:

4
Ry = |lmax (Q:) — max (Q5")]|
i=1
4 qi(ty) (3.6)
R2:Z Z HHQQ(tj,qhQi)_Kzgp(tjaqi»Qi)

i=1 q;(t;)=qi(to)

where values with the superscript “exp” denote quantities obtained experimen-
tally or numerically from a (presumed) higher fidelity model (such as a full 3D
continuum-based simulation). For the first residual perfect plasticity is assumed
(so that a plateau value is actually attained); the greater the value of R;, the
greater the difference between the numerically predicted plateau value for a given
element of the generalized load vector @Q; and the experimental value Q7. For
the second residual, a forward difference approximation of the numerical (EPCF)
curvature, kq0(t;,¢i, @Q;) is compared with the experimentally determined values,

Ko (L, Gis Qi), in the EP transition region, indexed along generalized displacement
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values from (user-selected) ¢; to ts; the curvature measure is given as:

oy l@iti) — a(t)) Qi) — Qi)
KQQ(tWQMQz) - 3/2 (37)
(Qiltj+2) = 2Qi(tj41) — Qi(tj41))

No residual is included for the initial (elastic) slope—it is determined from stan-
dard experiments, and no modification is required for use here—, or for the yield
stress—once a plateau value is identified for one of the force resultant of interest,
the yield stress follows from the plastic limit moduli.

Method 2: Slope Intersection.

For the case of the elastoplastic beam and frame response, we identify 4 char-
acteristic features of the response (see figure 2 as well as the discussion in** and,*®
in which this approach is applied to nonlinear models of biological fibers). (1) the

initial slope which represents the elastic stiffness Dy, (2) the final slope Do, which
represents the flow behavior after full section yielding and is related to the flow
function g hardening characteristics (3) the intersection point (Qo, go) between the
initial and final slope lines (related to the form of the flow function) and (4) the point
(Q1,q0) corresponding to the drop in the stress due to continuous flow (related to
the transition parameter «/). We note that this method reduces to standard defini-
tions of yield if the structure has a sharp yield point; it also separates the “transient
region” from the full section yield thus obviating the need for complex hardening
rules to account for this phenomenon. This approach provides an easily-replicable
method for fitting data in an EP simulation.

Q

A

(40, Qo) Do

/.

~q

Fig. 2: Slope intersection method for fitting our elastic-plastic deformation model
to data. The key measurements that will be used for the parameter fitting are (1)
the initial slope Dy, (2) the final slope Do (3) the point of intersections (Qg, qo)
and the point (Q1, o) that represents deviation from the sharp yield.

In the case of the EPCF model, the smoothness parameter « selected should
be the one that minimizes error at the point on the stress-strain (or generalized
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Table 1: List of the transition function a values determined for pure loading cases;
all values are shown in units of 1/MPa. These are used in equation (3.8)

H Cross-Section H Qag ‘ Qpend Otors H
Square 0.1 | 0.00571 | 0.00667
Circle 0.1 | 0.00571 | 0.00667

force-displacement) curve directly beneath the intersection point of the bilinear
representation generated from the two slopes. Figure 2 shows what this fitting
method looks like graphically.

Figure 3 below shows single load simulations, representative of the type of data
that can be used to fit the material parameters needed for the elastic-plastic con-
tinuous flow beam elements. For each of the different load types, different o values
are determined; the values obtained for the square and circular cross-sections under
the loading conditions considered above are listed in Table 1.
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Square CS, EPCF Model
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Circular CS, ABAQUS: 1D
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(b) ()

Fig. 3: Single load (a) axial, (b) bending, and (c) torsion simulation used to fit «
parameter in EPCF model for rectangular and circular cross-sections.

We will set the transition function a(N) to be simply linear in the direction of
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loading, i.e.,

3
=1
With the «; being obtained from curve fitting the “pure” loading cases: a; being
fit to axial loading (see Fig. 3(a)) az being fit to pure bending (see Fig. 3(b)) and
ag being fit to pure torsion (see Fig. 3(c)). The values of «; for square and circular
cross sections can be seen in Table 1.

4. Results
4.1. Monotonic Combined Loading Studies

The predictions of the EPCF model was compared to finite element (FE) simula-
tions performed in ABAQUS. The design of the structures used is shown in Figure
4.

y L ‘ 1

f .

z

Fig. 4: Cantilever simulated in ABAQUS with C3D8 and B33 elements for compar-
ison against predictions of continuously-yielding EP beams. Different combinations
of displacements and rotations were applied to the beam and the tip deflection
versus the applied load was compared (see also Fig. 5

One end of the beam was fully constrained, and loads were applied on the other
end of the beam. Every node/element at the end surface was coupled to a single
reference point and individual and combined loads such as vertical displacement,
and rotations were imposed on that point.

Figure 5(a) shows the results obtained for loading via an off-axis displacement
(i.e., flexure, not pure bending); the EPCF model captures the behavior predicted
in ABAQUS fairly well here.

Figure 5b,c,d,e shows the comparison between the smooth-yielding model for
the tension-torsion combined loading and bending-torsion case, respectively, for
both square and circular cross-sections. Notice the prominent mismatch in gener-
alized load plateau height for the case of torsion in the square cross-section; this is
undoubtedly due to the omission of warping in the EPCF formulation. Future mod-
ifications to include warping will likely capture the final generalized load plateau
for non-circular cross-sections under torsion much more accurately.
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Fig. 5: Results of simultaneous monotonous end loading of a cantilever beam: com-
parison between ABAQUS 3D and the EPCF model.

4.2. Monotonic and Cyclic Loading of Beams under Various End

Loadings

Once the smoothness parameter has been appropriately selected using single-load
input as described previously, the calibrated results extend well to handle cyclic
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deformations. A comparison between cyclic deformations predicted by ABAQUS
against those from the EPCF model is shown below in Figure 6.
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Fig. 6: Cyclic deformation comparison between ABAQUS and the EPCF model for
single load (a) Tension, (b) Torsion, and (c¢) Bending. The continuous-yield behavior
of the EPCF model allows it to compute fatigue damage from the accumulated
microplastic work, which would not be possible with current commercial code.

As noted before, the sharp transition of J2 plasticity (and the piecewise jump in
behavior in the hardening model used in ABAQUS) will not capture the continuous
accrual of plasticity (and associated damage from microplastic work), so-though
simulations using models in this class are useful as a comparison-they would not
be suitable for the AMW fatigue calculation described here.

4.3. Deformation of Frames

In this section we show the efficacy of the new beam model in the simulation of
the response of more complex structures. We begin with the consideration of two-
dimensional (2D) and three-dimensional (3D) portal frames. We compare the model
response with that of an ABAQUS 3D model with a square shaped cross section
for every vertical support (centerline length Ly = 11.5 mm) and horizontal beam
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(centerline length L; = 9 mm). The width w and height h of the cross sections
were 1 mm. The end surfaces (3D ABAQUS) and end nodes (EPCF) of the vertical
support in the frame were constrained. The nodes/elements at the shared sections
between a support and a beam at a top corner of a frame were coupled to a reference
node and loads were applied to that assigned node accordingly.

Figure 7 (c) shows the region where the displacement was applied to deform the
three-dimensional frame. The size of the applied loading region was selected to be
big enough to eliminate any erroneous localized deformation while still being small
enough to simulate a point-wise loading condition on a frame.

Ly

(a)

Fig. 7: Structures simulated in ABAQUS with C3D8 elements for comparison
against predictions of continuous-flow EP beam elements. (a) 2D Portal Frame, (b)
3D Portal Frame; (c¢) Finite element mesh used for 3D portal frame in ABAQUS,
with regions of load application highlighted.

The three-dimensional eight node brick element C3D8 element was used to sim-
ulate both beams and frames. Notably, the geometry and applied load in the 2D
frame were in 2D but a 3D element was used to simulate it when the square shaped
cross section of the frame was considered.

Three loading cases were considered; for both the 2D and 3D portal frames,
applied displacement of u;, = 5 mm were used (Figure 7), giving one case for
the 2D frame, one for the 3D frame in which both applied displacements were
in the same direction, and one final case for the 3D frame in which the applied
displacements were in the opposite direction (push-pull).

The force-displacement curves are presented and compared well to the ana-
lytical results as shown in Figures 8 - 9, with only the push-pull case exhibiting
discrepancies with the result predicted by ABAQUS.

The push-pull 3D frame plateau loads predicted by the EPCF model and
ABAQUS differed somewhat (Figure 9(b)); it is likely that this is due to torsion.
For the push-pull case, the vertical support beams twist around the central axis
somewhat, and, because the cross-section employed is non-circular, warping is an-
ticipated. Modifications to the EPCF model to include warping would likely address
this. Nonetheless, we are able to effectively produce results with significantly re-
duced computational effort that reasonably represent the anticipated deformation
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Fig. 8: Load displacement at point of application on 2D portal frame.
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Fig. 9: Load displacement at point of application of 3D portal frame; (a) applied
displacements in same direction, (b) applied displacements in alternate directions.
The descrepancy in figure 23 is due to warping which is not accounted for in the
current formulation

results of complex loadings and structures, using only data gleaned from material
parameters, geometry, and simple fits to pure load cases, which was our intended
result.

4.4. Deformation of Microarchitected Geometries

In this subsection, we demonstrate how the EPCF model (with judicious choice of
section moduli parameters) can be used to model the elastic-plastic deformation in
complex microarchitected geometries.

We consider the recent work of Kushwaha et al.* The fractal Menger sponge ge-
ometry (created by repeating, progressively smaller, self-similar removals of a cube
from an original solid cube) has been evaluated as a potential design for prostheses,
for two reasons principally: first, the tailorable architecture allows a better match
between the elastic modulus of bone and the prosthesis, and second, the porous
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structure promotes superior osseointegration as the surrounding bone heals and
accepts the prosthesis. As an engineering problem, however, the Menger sponge
presents a challenge; clearly predictive analysis must be performed before prosthe-
ses with these novel designs can be cleared for use in humans, but meshing itself is
a challenge. Prediction of the likely fatigue life is computationally prohibitive.

Kuswaha et al.* performed numerical simulation of various Menger sponge
structures using ANSYS Mechanical APDL; their mesh convergence analysis re-
vealed that they required about 2 million quadratic tetrahedral elements (SOLID
187). We aim to replicate the qualitative behavior they observed, but with dramat-
ically fewer elements.

We referred to Kuswaha’s provided materials, using an elastic modulus of 1.55
GPa and a Poisson ratio of 0.3. Taking the specific yield stress of 40.70 for the
solid specimen (denoted L0; see Kuswaha, Table 3) and the reported density (1.25
g cm™ 3), we have a yield stress of 50.875 kPa.

From Kushwaha'’s description of the Menger sponge compressive tests, and their
reported boundary conditions for the base of the sponge in their ANSYS simula-
tions, we fix displacements and rotations in for all nodes on the base of our selected
meshes. Determining the particulars of the compressive loading, however, is not as
clear. The experimental loading used a central pillar to press the specimen, partially
distributing this load via a top plate (see Figure 5 in*), but the relative size of the
pillar is not reported. Assuming that the top plate would not distribute the load
uniformly but that greatest contact would be experienced at the center of the spec-
imen (and in the absence of any details on their chosen numerical implementation)
we employed a loading profile windowed with the square root of a sine function
centered over the largest (centermost) cavity.

The Menger sponge is symmetric; arbitrarily, we orient the bottom part of the
sponge in the zy-plane (and the bottom part of the 2D reduction in the z-plane) at
z = 0. Denoting side length by L (equal to 5 cm, to match the stated geometry in
Kushwaha et al.,* we have selected the following form for the boundary condition
at the top face (z = L) of the 2D reduction (Sierpinski carpet):

Wapp () = 4 /sin (ﬂ%) (4.1)

where wgp, denotes the maximum applied displacement boundary condition in the
z-direction (gradually approached as a ramp loading from zero to maximum over
the top surface). Similarly, for the 3D simulation, we employ the loading boundary

condition:
. (TT\ . [(TY
Wapp(T,y) = \/sm (f) sin (f) (4.2)

For both the 2D and 3D simulations, we reduced the computational load by
trying to enforce symmetry down the center-line (2D) or center-planes (3D). For
the 2D case, we maintained u = 6,, = 0, = 0 at the centerline (x = L/2); for the 3D
case, we enforced u = v =6, = 0, = 0 at the center-planes (x = L/2 and y = L/2).
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Table 2: List of section moduli and flow potential parameters used for all levels of
Sierpinski carpet simulation (consistent discretization allows the same values to be
used for each). Note that, in this case, symmetry causes EI, = EI, and pu, = i,
so only one value is reported for bending.

H EA (kN) ‘ EI (kN/mm) ‘ GJ (kN/mm) H fin (mm=2) ‘ fy (mm =) ‘ pz (mm=3) H
| 1333 | 9491 | 727el || 117 | 504 | 655 |

To attempt replication of the behavior of solid regions of the Menger sponge
with 1D beam elements, section moduli corresponding to elements large enough
along the cross-section that they would touch surrounding elements are used; the
parameters relating the flow potential to the generalized forces were calculated
without modification (see Table 2).

The deformations predicted by the EPCF model for symmetric loadings of the
M = 0,1 (Figure 10) and M = 2,3 (Figure 11) 2D sponges are shown below;
visually, they appear similar to the results obtained by Kushwaha et al. using
ANSYS APDL, most notably with the high stress regions occurring in the same
locations.
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Fig. 10: Deformation of (a) M = 0 and (b) M = 1 Sierpinski Carpets under
centrally-loaded compressive force using EPCF model with 2860 and 2774 frame
elements, respectively. Displayed von Mises stresses are in MPa. (Compare defor-
mations with result from ANSYS APDL with 2 million tetrahedral elements in
Kushwaha et al. 2021%).
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Fig. 11: Deformation of (a) M = 2 and (b) M = 3 Sierpinski Carpets under
centrally-loaded compressive force using EPCF model with 2564 and 2496 frame
elements, respectively. Displayed von Mises stresses are in MPa. (Compare defor-
mations with result from ANSYS APDL with 2 million elements in Kushwaha et
al. 2021%).

Though the material they tested was non-metallic (PLA), we show in figure
12 that the EPCF model produces specific (density-normalized) compressive stress
plateaus that seem reasonably consistent with the experimentally-predicted specific
compressive stress values at small strains, replicating the behavior they describe
(elastic loading region followed by a plateau in the compressive stress). In partic-
ular, Kushwaha et al. 20214 state that “It can be concluded that there exist two
distinctive compressive strain regimes for all the levels of the structure: 1) linear
elastic region and 2) a plateau region”. Figure 11 shows qualitatively similar be-
havior, in particular showing close matches of the plateau stress with much less
computational resources and effort. To address the 2D reduction of the 3D model,
the effective densities used to determine the specific stress are modified from the 3D
values as 1.11, 0.988, and 0.7023 kg/m? for the M = 1, 2, and 3 carpets, respectively
(determined via subtracting empty portions from the 2D sponge and multiplying
the resulting fractional value times the bulk density of 1.25 kg/m?).

Only the plateau associated with the M = 3 sponge disagrees strongly with the
experimentally-predicted plateau, with the EPCF predicting a much higher com-
pressive stress than observed; referring to the supplementary videos associated with
Kushwaha et al.,* we see that, for the M = 3 case, the thin geometry associated
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with the numerous holes in the sponge lead to early buckling, a failure mode that is
not accounted for in the small-deformation EPCF model, thus it is to be expected
that the EPCF would anticipate higher stress before failure. Additionally, we note
from the supplementary video that the initial loading does not appear to deform
the structure much, and the initial strains recorded in the plot may be due only to
cross-head movement.

M =0, EPCF
s M = 1, EPCF

M =2, EPCF
- = =M=3,EPCF

0.02

0.015

0.01

0.005 |

Specific compressive stress (MPa/(kg/m

0 0.005 0.01 0.015 0.02 0.025 0.03
Compressive strain

Fig. 12: Specific compressive stress (stress/density) results determined using elastic-
plastic continuous-flow (EPCF) model 2D sponge simulations, for 3D printed PLA
Menger sponge specimens of increasing Menger Sponge level; plateau values for M =
0, 1, and 2 compare favorably against Figure 1(c) in,* but more detailed comparison
is not possible due to the use of PLA, as no loading-unloading data was provided.

While using a 2D analogue of the Menger sponge can produce comparative
results significantly faster, the EPCF model is, of course, suitable for use with
3D simulations also. Using a tessellation density that is consistent between the
M = 1,2, and 3 sponges (with the same density along the cross-section as that
of the 2D Sierpinski carpet meshes), we performed a simulation of a compressive
loading of three Menger sponges.

The locations of maximum von Mises stress predicted by the EPCF model
compare favorably with those obtained in Kushwaha et al. as can be seen below
in Figures 16 and 17. We should note that the location of the maximum stresses is
probably the extent of the comparison possible in this case, since the result shown
in Kushwaha? is for larger deformation than would be accurate to simulate under
the assumptions of the EPCF model. (Our maximum compressive strain is half
that in their simulation, but as can be seen in Figure 12, the plateau stress is still
approached, even at this reduced strain input.) Additionally, uncertainty about the
form of the loading boundary conditions used in their ANSYS simulation likely
influences any discrepancy between the results.

With the ability to predict elastic-plastic deformations in complex structures
but at greatly-reduced effort from both the engineer and the computer, the simu-
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Fig. 13: Deformation of M = 1 Menger Sponge under centrally-loaded compression
using EPCF model with 94734 frame elements. Displayed von Mises stresses are in
MPa. Pictured deformations are scaled by a factor of 5 for visibility.
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Fig. 14: Deformation of M = 2 Menger Sponge under centrally-loaded compression
using EPCF model with 74976 frame elements. Displayed von Mises stresses are in
MPa. Pictured deformations are scaled by a factor of 5 for visibility.

lation of lengthy cyclic histories for this kind of structure is in reach. Though large
deformations are not suitable for use with the EPCF model as described in this
work, we are not interested in those for the purposes of fatigue analysis. (With this
limitation in mind, care must be taken when using this model to avoid cases in
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Fig. 15: Deformation of M = 3 Menger Sponge under centrally-loaded compression
using EPCF model with 65572 frame elements. Displayed von Mises stresses are in
MPa. Pictured deformations are scaled by a factor of 5 for visibility.
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Fig. 16: Comparison of (b) EPCF deformation (scaled by a factor of 5) predictions
with (a) fully-deformed result from ANSYS APDL with 2 million elements in
Kushwaha et al. 2021*) for M = 1 Menger sponge. Note that the ANSYS model
has much larger strains at its final state (large deformation model), so the stresses
shown should not be identical.

which, even though macroscopic strains are small, locally large strains would be
produced.)

The next sub-section demonstrates how the physically-based AMW fatigue pa-
rameter can be used with this model to predict fatigue without addition of a sig-
nificant computational penalty (as compared to commonly-used methods such as
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(a) (b)

Fig. 17: Comparison of (b) EPCF deformation (scaled by a factor of 5) predictions
with (a) fully-deformed result from ANSYS APDL with 2 million elements in
Kushwaha et al. 2021%) for M = 3 Menger sponge. Despite the different color-
mapping scheme selected, it is evident that peak stresses are predicted in the same
location for each model.

cycle counts, for which determination of the elastic-plastic history is only the be-
ginning of the fatigue analysis). This can in turn be used to leverage the structural
calculation capabilities demonstrated here.

4.5. Application to Physically-Based Fatigue Predictions

Dogbone specimens of various standardized shapes are used to replicate the stress
states that appear in objects of engineering importance in the controlled environ-
ment of the laboratory. Direct simulation of the nonlinear, elastic-plastic stress-
strain state that occurs in the body during deformation is, traditionally, quite com-
putationally expensive, and requires careful meshing.

A recent work by Mozafari et al.3¢ demonstrates the performance of the smooth-
yielding model combined with the accumulated microplastic work (AMW) fatigue
parameter by predicting the fatigue life associated with multiple dogbone speci-
mens. As can be seen in Figure 12 of,3® defining the geometry accurately requires
quite a few elements (612, 1545, and 5604, for the cases shown); we are able to
produce comparable fatigue predictions with only 8 elements.

We reference the extensive Al 7075-T651 experimental results provided in Zhao
and Jiang’s excellent 2008 paper;*® as described in detail in this work, multi-
ple specimen types were used to perform tension, torsion, and tension-torsion
tests. Using the specimen geometry taken together with the material parameters
(E =0.717e5MPa, v = 0.306, YS = 501MPa), we determine the section moduli and
the parameters that relate generalized load and yield (i.e., the u-parameters). As
an initial guess for the accumulated microplastic work at failure, we use the value



September 23, 2024 16:9 output

28 D. Jarecki et al. 2023

Table 3: List of section moduli used for Al 7075-T651 fatigue predictions, with the
relevant specimen (and experimental runs from Zhao and Jiang 2008) noted.

H Specimen H EA (kN) ‘ ET (kN/mm) ‘ GJ (kN/mm) H
Solid Cylinder (2a) 7.68¢6 6.55e7 5.02e7
Tubular (4a), (5¢)-(5f) 9.91e6 6.05e8 4.63e8

Table 4: List of flow potential parameters used for Al 7075-T651 fatigue predictions,
with the relevant specimen (and experimental runs from Zhao and Jiang 2008)
noted.

H Specimen H fn (mm=2) ‘ fhy (mm =) ‘ e (mm—3) H
Solid Cylinder (2a) 0.00933 0.00376 0.00415
Tubular (4a), (5¢)-(5f) || 0.00723 | 0.00103 | 0.00113

reported by Mozafari et al.3% for Al 7075-T6 (ny = 2850MJ/m?) as the fatigue
failure criterion, recognizing that the difference in material processing (and, poten-
tially, surface finish) may require adjustments to the actual eta; value that would
be appropriate for use.

The complete structural parameters used by the EPCF model for this effort
are reported in Tables 3 and 4. As noted in previous sub-sections, the smoothness
parameter, «, associated with the EPCF beam element under pure torsion, pure
bending, and pure axial deformation, is distinct. Using nonlinear FEA simulations
with perfect plasticity as a baseline, however, would result in a continuous-flow
parameter o parameter that is too large to accurately accrue fatigue damage from
accumulated microplastic work. Referencing Mozafari et al.36~in which the ¢ value
(= 1/a) is determined to be 107 MPa for the case of Al-7075 T6-we select values
near the inverse of their value for both tension and torsion, in particular, o, =
8e — 3MPa™! (for tension), and a, = 10e — 3MPa™! (for torsion).

Multiple strain control loading paths (including proportional, exactly 90° out-
of-phase, and two out-of-phase Lissajous curves) are described in Figure 4 of Zhao
and Jiang 2008;%6 it is easy to convert these into load paths in displacement. We
use the various displacement load paths as control input for an EPCF simulation
set up as follows:

e Half of the specimen midsection geometry (from x = L/2 to x = L, where L
depends on the particular specimen) was simulated;

e 8 nodes were used to discretize the length of the geometry into frame elements
(following appropriate convergence analysis);

e Symmetry was enforced on one end (z = L/2); it was treated as fixed relative
to the end under displacement control;

e Displacement was prescribed on the other end (z = L), according to the ap-
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propriate waveforms for tension and torsion channels provided in Zhao and
Jiang.46

The EPCF simulations performed against the fatigue data collected in Table
2(a)4 were fully-reversed axial tension; Table 4(a)*® contained data from fatigue
experiments performed in fully-reversed torsion. Table 5(d)%® contained data col-
lected under 90° out-of-phase loading, and Tables 5(d) and 5(e)%6 contained loading
paths defined by Lissajous curves. No functional definition was provided for the Lis-
sajous curves, but we fit the curves shown as follows; for 5(e), we specified axial
channel u;, and shear channel ¢;, as:

Uiy, = AZM sin(t)
Adin . T
Gin = Adin sin (2(877)75 — E)
where and for 5(f):
Uip = Agm sin(t)
Din = A;bm sin (4(87T)t - ;—3)

where Au;y, /2 and A¢;, /2 denote the amplitudes for the prescribed displacements.
Using these load paths, we are able to replicate the fatigue predictions under tension
and tension-torsion with high accuracy, for most points staying within a factor of
2 (see Figure 18), with only the 90° out-of-phase results (circular, EPCF, 5d in
Figure 18) presenting an issue.

Experimental results were taken from Tables 2, 4, and 5 in,*® omitting for this
work-—nonzero mean cases. Future modification to the EPCF model to include kine-
matic hardening should allow general cyclic cases to be accurately handled.

5. Conclusion

This work demonstrates that a moment-curvature-based EPCF frame model can
provide full-structural plasticity calculations in a computationally-efficient and ac-
curate manner, replicating results obtainable by 3D FEA but with significantly
lower degrees of freedom and greatly-reduced meshing efforts, particularly for com-
plex micro-structures.

THis makes it possible to carry out cycle-count-free fatigue calculations via use
of the accumulated microplastic work, something which classical J2 plasticity mod-
els (even with frame elements) available in commercial software are not capable of.
This exciting development brings full-structural, time-domain fatigue calculations
closer to the hands of the design engineer.

However the current approach has very simple cross sectional kinematics—the
CS rotates rigidly. This is unrealistic and results in early plasticity (due to stiffer
elastic response). The results can be further improved by considering cross sectional
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Fig. 18: Fatigue predictions produced by EPCF compared to experimental results
of Zhao and Jiang:*® (a) under tension, with zero mean stress (fatigue data from
Table 2a); (b) under torsion with zero static axial load. Fatigue data taken from
table 4a; and (¢) Under Tension torsion with 4 different loading paths (fatigue data
from table 5c-f in Zhao and Jiang?6)

warping (such as by using an approach similar to that developed by Payette and
Reddy*7).
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