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Abstract The internal length scale relating to the 

cell size plays a crucial role in predicting the response 

of architected structures when subjected to external 

stimuli. A Volterra derivative-based approach for 

arriving at the non-local derivative-free continuum 

laws for architected structures is proposed. A main-

stay of the work is the derivative-free directionality 

term, which recovers its classical counterpart in the 

infinitesimal limit. Using this approach, we derive the 

non-local integro-differential governing equations of 

a shear deformable plate. We also suggest a physi-

cal basis for the consideration of energy for nonaffine 

deformations and accurately estimate it by perform-

ing buckling analysis. This discards the requirement 

of the additional energy to be incorporated in an arbi-

trary manner for suppressing the unwanted spurious 

oscillations induced from zero energy modes. The 

numerical results demonstrate the efficacy of the pro-

posed framework in precisely capturing the mechani-

cal response of web-core shear deformable plate, 

thereby, manifesting the supremacy of the reduced 

model in shrinking the cost and computational time. 

To bolster our claim, various numerical models with 

different loading conditions have been analysed and 

compared against the three-dimensional FEM results.

Keywords Shear deformable plate · Nonlocal 

mechanics · derivative-free mechanics · Volterra 

derivative · Buckling analysis · Zero-energy mode

1 Introduction

From the body of a ship and bridge deck to biode-

gradable scaffolds in tissue engineering, architected 

materials are used in a wide range of applications. 

Due to their light weight and high strength to density 

ratio, architected materials (like web-core and lattice 

core panels) [1] have emerged as a potential alterna-

tive to various conventional materials. While con-

ventional materials derive their properties from their 

chemical composition, architected materials gain 

majority of their properties from their architecture. 

For example, architecting different core shapes has 

enabled engineers to attain enhanced properties in the 

context of energy absorption capability [2], control-

lability of their elastic wave propagation, high stiff-

ness to density ratio [3, 4], and vibration insulation 

characteristics. Such concept is also incorporated in 

designing structural members, like plates with peri-

odic unit cell (e.g. sandwich panels). These unidirec-

tional plates, specifically steel sandwich plates, have 

emerged as a promising alternative to buckling and 
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bending load bearing structures. It has been claimed 

[5–7] that the steel sandwich panels offer 30–50% 

reduction in the weight of ship decks as compared 

to traditional stiffened steel plate models. Stiffened 

panels serve as the fundamental unit in composing 

the hull, deck and superstructure of ships. Steel sand-

wich panels have shown potential for their applica-

tion in bridges and buildings [8–10]. Another appli-

cation may be found in designing the space vehicles, 

in which the sandwich panels are used in designing 

light-weight load-bearing integrated thermal protec-

tion system (ITPS) [11]. One of the most common 

examples of architected materials is web-core panel, 

which consists of two flange sheets separated by a 

straight web sheet aligned orthogonally to the flange 

faces. The face sheets resist the bending and in-plane 

loads, while the inner core is designed for externally 

applied transverse load. Unfortunately, analysing 

such architected panels is computationally intensive 

and intractable when it comes to modelling the entire 

structure. Therefore, a computational model that pre-

serves the structural information, without requiring 

detailed modeling of the unit cell, is fundamentally 

important for analyzing structures like ships, build-

ings, bridges etc. [12, 13]

In this regard, non-local continuum models [14, 

15] may be good options since they can preserve 

such geometry information through their length-scale 

parameters. The works of Cosserat brothers [16] 

mark the earliest proposition of such generalized con-

tinuum theory, where each material point is assumed 

to possess a rotational degree of freedom (dof) in 

addition to its translational dof. Later-introduced 

non-local theories include Eringen’s model involv-

ing higher order derivatives [17], variants of couple-

stress theory [18, 19] and modified couple stress 

theory [20, 21] (one may refer to [22] for detailed 

discussion on non-local elastic models). There are 

various applications of these nonlocal models (e.g. 

buckling and bending response of beams [23–25] and 

plates [26–28]).

Lately, equivalent single-layer (ESL) beam and 

plate models have been proposed for web-core sand-

wich panels using classical couple stress [29], and 

micropolar [30, 31] continuum theories. These theo-

ries typically involve higher order derivatives [32] in 

the governing equations, which in general, are diffi-

cult to be handled within a finite element (FE)-based 

setup. Silling in 2000 introduced a theory named as 

Peridynamics (PD) in which the evolution equations 

are a set of integro-differential equations, thus invok-

ing the action at a distance rather than contact forces. 

Despite its well-posed structure in case of discon-

tinuities, PD based framework experienced certain 

limitations like constrained Poisson’s ratio (as in the 

case of bond based PD). Although this limitation has 

been relaxed through state based PD, yet arriving 

at the strictly PD based constitutive models is often 

difficult. This limitation can be bypassed by propos-

ing a ‘constitutive correspondence’ between PD and 

the classical continuum mechanics (CCM) via non-

localisation of the deformation gradient. But such an 

extension suffers from instability issues originating 

from the spurious zero-energy mode-induced oscilla-

tions. To surpass this issue, usually additional energy 

is provided in the form of spring stiffness, which may 

change the solution completely. Moreover, a priori 

estimation of this extra energy is another challenge.

In this study, we propose a non-local derivative-

free continuum theory (DFCT) for precisely captur-

ing the response of shear deformable plate with its 

application to steel sandwich panels in specific. The 

derivative-free governing equations are arrived at 

from the energy expression using Volterra deriva-

tive. The expression for derivative-free deformation 

gradient serves as the backbone of this study, which 

converges to the classical deformation gradient in 

the infinitesimal limit. Another key feature of this 

manuscript is the consideration of the energy cor-

responding to nonaffine deformations in a plate-like 

continuum, thereby, providing a physical basis for the 

addition of extra energy in an improvised manner for 

suppressing the zero-energy mode induced oscilla-

tions. The proposed model has a particular advantage 

in precisely capturing the deformations of architected 

materials where individual member may undergo 

localized deformation. Such localized deformations 

are difficult to be predicted in the traditional way. The 

efficacy of the proposed formalism is demonstrated 

by modelling an architected plate and comparing with 

the solution obtained from the detailed three-dimen-

sional model. The results are also compared with 2D 

micropolar plate theory. The efficacy of the proposed 

model is validated by analysing the response for dif-

ferent loading and boundary conditions.

The rest of the paper is organised as follows. A 

derivative-free shear deformable plate model is pro-

posed in Sect. 2. In Sect. 3, the governing equations 



1673Meccanica (2023) 58:1671–1692 

1 3
Vol.: (0123456789)

are arrived at from the energy expression by adopt-

ing Volterra derivative approach. Based on Navier’s 

solution, different terms of governing equations are 

determined analytically in Sect. 4. Numerical mod-

els are solved for different loading conditions in 

Sect.  5. Imposition of pseudo boundary conditions 

is another key aspect of this section. This section 

also demonstrates the computation of additional 

energy term from the buckling response of the 

plate. Finally some concluding remarks are made in 

the Sect. 6.

2  Mathematical formulation

Let us consider an isotropic rectangular plate 

of side a and b, with uniform thickness h, placed 

along the Cartesian plane as shown in Fig.  1. 

Within the domain � , each material point X is 

assumed to interact non-locally with its neighbors 

Y , within an influence domain �
X
 , which is circle 

of finite radius r
c
 . The deformed locations of mate-

rial points X and Y are denoted by x and y respec-

tively. The associated undeformed and deformed 

fiber lengths and fiber stretch are expressed as 

rXY ∶= Y − X, rxy ∶= y − x, uXY ∶= rxy − rXY.

2.1  A nonlocal derivative free directionality term:

We begin with the derivation of an operator for a 

derivative-free nonlocal directionality term, Ĝ(u3, X) , 

which is used to relate an undeformed fiber with the 

associated stretch, u
XY
∶= {(u1)XY

, (u2)XY
, (u3)XY

} 

such that,

where d is the dimensionality and u1, u2, u3 represent 

displacements along axes 1, 2, and 3, respectively. 

In this paper, we have adopted the derivative-free 

directionality term (for detailed derivation, one may 

refer to [33]) to estimate the deformation in the bond 

(y − x) . The expression for the derivative-free defor-

mation gradient Ĝ is given below.

where (.̄) represents the averaging operation over the 

domain �
X
 . The explicit expression mentioned in the 

above equation describes the non-local attribute of 

the proposed directionality term by considering far-

off interactions. The proposed derivative-free direc-

tionality term approaches its classical counterpart 

in the infinitesimal limit (see “Appendix 1”). While 

the proposed directionality term operates on a finite 

influence domain like PD, they have certain differ-

ences. A comparative discussion between these two 

approaches is given in “Appendix 2”. It may be inter-

esting to note that a similar expression for the direc-

tionality term was arrived at in the context of opti-

mization, particle filtering, upscaling and continuum 

mechanics using a sophisticated stochastic projection 

technique ([33–36]). The expression for Ĝ has been 

proved to be the best estimator in L2P sense.

2.2  Displacement field

The shear deformable plate captures the deforma-

tion by the coupled effect of bending and shear 

displacements. In the deformed configuration, the 

(1)

(u3)y − (u3)x = Ĝ(u3, Xd)
(

(Y)d − (X)d
)

where d = 1, 2

(2)

Ĝ(u3, Xd) =
[

∫
�X

((u3)y − (u3)Y )((Y)d − (Y)d)
TdY

]

[

∫
�X

((Y)d − (Y)d)

(

(Y)d − (Y)d

)T

dY

]−1

Fig. 1  Pictorial representation of a shear deformable plate
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rotations ( �1, �2 ) about the plane normal to the neu-

tral axes may be related to the transverse deforma-

tion u
3
 and shear deformations ( �1,�2 ) through the 

equations below (see Fig. 2):

The 3D displacement of a plate may be approxi-

mated using the 2D displacements of the mid-sur-

face kinematic variables, by recalling the inexten-

sibility assumptions of the shear deformable plate. 

Thus, the displacement field of a material point at a 

distance z from the neutral axes, may be character-

ized as [37]:

where (u0

1
, u

0

2
) and u

0

3
 denote the axial and trans-

verse displacements respectively, at the neutral axis 

(i.e., at the plane z = 0 ). Accordingly, the velocity 

v ∶= {v1, v2, v3} of the material point X takes the 

form:

with the non-zero strains as:

(3)
−�1 = Ĝ(u3, X1) +�1

−�2 = Ĝ(u3, X2) +�2

(4)

(u
1
)X ≈ (u0

1
)X + z�

1

(u
2
)X ≈ (u0

2
)X + z�

2

(u
3
)X = (u0

3
)X

(5)

v
1
= (u̇

1
)X = (u̇0

1
)X + z�̇

1

v
2
= (u̇

2
)X = (u̇0

2
)X + z�̇

2

v
3
= (u̇

3
)X = (u̇0

3
)X

3  Governing equations

The Hamiltonian H for the plate can be expressed as 

the sum total of the kinetic energy, K and the potential 

energy �.

For any material point X having momentum p 

and mass density � , the kinetic energy ( K ) may be 

expressed in the continuum limits as:

The total potential energy ( � ) for the nonaffine defor-

mation of the plate may be expressed as the sum total 

of the potential energy due to axial stretching ( �
A
 ), 

shear deformation ( �
S
 ), nonlocal bending deforma-

tion ( �
NLB

)(see Fig.  3), work done by externally 

applied transverse load q acting per unit area of the 

plate ( �
q
 ) and the work done by in-plane loads N

11
 

and N
22

 . This can be mathematically written as:

(6)

�11 = �
0

11
+ zĜ(�1, X1) = �

0

11
+ zk11

�22 = �
0

22
+ zĜ(�2, X2) = �

0

22
+ zk22

�12 = �
0

12
+ z(Ĝ(�2, X1) + Ĝ(�1, X2)) = �

0

12
+ zk12

�13 = Ĝ(u3, X1) +�1

�23 = Ĝ(u3, X2) +�2

(7)H = K + �

(8)

K = ∫
�

p.p

2�
d�

K = ∫
a

0
∫

b

0
∫

h∕2

−h∕2

�

2
(((u̇0

1
)X + z�̇

1
)2

+((u̇0

2
)X + z�̇

2
)2 + (u̇0

3
)2
X
)dzdX

2
dX

1

Fig. 2  Pictorial representation of a shear deformation at any 

cross-section in a shear deformable plate

Fig. 3  Pictorial representation of non-local bending in a shear 

deformable plate
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The second term on the right hand side of Eq. (10) 

accounts for the nonaffine deformations arising from 

the non-local bending between two material points. 

(9)� = �A + �S + �NLB − �q − �N

(10)

�=
1

2 ∫
a

0
∫

b

0
∫

h∕2

−h∕2

[
�11�11 + �22�22 + �12�12 + �31�31 + �23�23

]
dzdX2dX1

+
1

2 ∫
a

0
∫

b

0

k

|�X| ∫�X

(
(u3)Y − (u3)X

)2
dYdX2dX1−

1

2 ∫
a

0
∫

b

0

qu2

3
dX2dX1

−
1

2 ∫
a

0
∫

b

0

[
N11

(
Ĝ(u3, X1)

)2
+ N22

(
Ĝ(u3, X2)

)2
]
dX2dX1

The variable k denotes the non-local interparticle 

bending stiffness along the direction of u
3
 . Recalling 

the stress-strain relations of an isotropic plate:

(11)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

�
11

�
22

�
12

�
31

�
23

⎫
⎪
⎪
⎬
⎪
⎪
⎭

=

E

1 − �2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 � 0 0 0

� 1 0 0 0

0 0
1−�

2
0 0

0 0 0
1−�

2
0

0 0 0 0
1−�

2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪
⎪
⎨
⎪
⎪
⎩

�
11

�
22

�
12

�
31

�
23

⎫
⎪
⎪
⎬
⎪
⎪
⎭

where E and � represents the Young’s modu-

lus of elasticity and Poisson’s ratio, respectively. 

Substituting Eqs. (6) and (11) in Eq. (10) and inte-

grating through the thickness of the plate, we arrive 

at:

where S denotes the shear modu-

lus of elasticity. Using the relation 

(u3)Y − (u3)X = [Ĝ(u3, X1) Ĝ(u3, X2)].[(Y1 − X1) (Y2 − X2)]
T  , 

Equation (12) can be written as:

(12)

� =
1

2 ∫
a

0
∫

b

0
∫

h∕2

−h∕2

E

1 − �2

[(
�11 + ��22

)
�11 +

(
��11 + �22

)
�22 +

1 − �

2

(
�2

12
+ �2

31
+ �2

23

)]

dzdX2dX1

+
1

2 ∫
a

0
∫

b

0

k

|�X| ∫�X

(
(u3)Y − (u3)X

)2
dYdX2dX1−

1

2 ∫
a

0
∫

b

0

qu2

3
dX2dX1

−
1

2 ∫
a

0
∫

b

0

[
N11

(
Ĝ(u3, X1)

)2
+ N22

(
Ĝ(u3, X2)

)2
]
dX2dX1

(13)

� =
1

2 ∫
a

0
∫

b

0
∫

h∕2

−h∕2

E

1 − �2

[(
�11 + ��22

)
�11 +

(
��11 + �22

)
�22

]
+ S

(
�2

12
+ �2

31
+ �2

23

)
dzdX2dX1

+
1

2 ∫
a

0
∫

b

0

k

|�X| ∫�X

((
Ĝ(u3, X1)(Y1 − X1)

)2
+
(
Ĝ(u3, X2)(Y2 − X2)

)2
)

dYdX2dX1

−
1

2 ∫
a

0
∫

b

0

qu2

3
dX2dX1−

1

2 ∫
a

0
∫

b

0

[
N11

(
Ĝ(u3, X1)

)2
+ N22

(
Ĝ(u3, X2)

)2
]
dX2dX1

Replacing (�1, �2) =

(

6kr
2
c

64a2

)

 (for a square plate of side 

length a) in the above Eq.  (13), we obtain:
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It is interesting to note that as the non-locality dimin-

ishes (i.e. r
c
→ 0 ), the additional stiffness also dimin-

ishes to zero (i.e. � → 0 ), Thus recovering the classi-

cal energy expression for the shear deformable plate. 

Following the expressions from Eq. (6) and substitut-

ing them in Eq. (12), we arrive at:

Representing bending stiffness D ∶=
Eh

3

12(1−�2)
 and inte-

grating the above Eq. (15) through the thickness of 

the plate h:

Using the Volterra derivative as in ( [38]), the govern-

ing equation of motions for the elastodynamic con-

tinuum are given by:

(14)

�=
1

2 ∫
a

0
∫

b

0
∫

h∕2

−h∕2

E

1 − �2

[(

�11 + ��22

)

�11 +
(

��11 + �22

)

�22

]

+ S
(

�2

12
+ �2

31
+ �2

23

)

dzdX2dX1

+
1

2 ∫
a

0
∫

b

0

(

Ĝ(u3, X1)
)2
�1dX2dX1+

1

2 ∫
a

0
∫

b

0

(

Ĝ(u3, X2)
)2
�2dX2dX1

−
1

2 ∫
a

0
∫

b

0

qu2

3
dX2dX1−

1

2 ∫
a

0
∫

b

0

[

N11

(

Ĝ(u3, X1)
)2

+ N22

(

Ĝ(u3, X2)
)2
]

dX2dX1

(15)

� =
1

2 ∫
a

0
∫

b

0
∫

h∕2

−h∕2

E

1 − �2

[(

zk11 + �zk22

)

zk11 +
(

�zk11 + zk22

)

zk22

]

+S

(

z2k2

12
+
(

Ĝ(u3, X1) +�I

)2
+
(

Ĝ(u3, X2) +�II

)2
)

dzdX2dX1

+
1

2 ∫
a

0
∫

b

0

(

Ĝ(u3, X1)
)2
�1dX2dX1+

1

2 ∫
a

0
∫

b

0

(

Ĝ(u3, X2)
)2
�2dX2dX1

−
1

2 ∫
a

0
∫

b

0

qu2

3
dX2dX1−

1

2 ∫
a

0
∫

b

0

[

N11

(

Ĝ(u3, X1)
)2

+ N22

(

Ĝ(u3, X2)
)2
]

dX2dX1

(16)

� =
1

2 ∫
a

0
∫

b

0

D
[(

Ĝ(�1, X1) + �Ĝ(�2, X2)
)

Ĝ(�1, X1)

+
(

�Ĝ(�1, X1) + Ĝ(�2, X2)
)

Ĝ(�2, X2)
]

+S
h3

12
k2

12
+ Sh

(

(

Ĝ(u3, X1) +�I

)2
+
(

Ĝ(u3, X2) +�II

)2
)

dX2dX1

+
1

2 ∫
a

0
∫

b

0

(

Ĝ(u3, X1)
)2
�1dX2dX1+

1

2 ∫
a

0
∫

b

0

(

Ĝ(u3, X2)
)2
�2dX2dX1

−
1

2 ∫
a

0
∫

b

0

qu2

3
dX2dX1−

1

2 ∫
a

0
∫

b

0

[

N11

(

Ĝ(u3, X1)
)2

+ N22

(

Ĝ(u3, X2)
)2
]

dX2dX1

(17)

ṗ(�1) = −
��

��1

, ṗ(�2) = −
��

��2

and ṗ(u3) = −
��

�u3
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From Eq. (17), it can be computed that:

Assuming that the transverse shear strains and cor-

responding shear stresses are constant throughout 

the thickness is fallacious. Therefore, to compensate 

for the discrepancy involved in the solution, a shear 

correction factor ( k
s
 ) is introduced in the above equa-

tions. Finally, the non-local derivative-free governing 

equations for a shear deformable plate takes the form:

As the directionality term converges to its classi-

cal counterpart in an infinitesimal limit, the govern-

ing equations also converge to the classical shear 

(18)

ṗ(�1) =�
h3

12
�̈1

ṗ(�2) =�
h3

12
�̈2

ṗ(u3) =�hü3

��

��1

=DĜ(Ĝ(�1, X1), X1) + D�Ĝ(Ĝ(�2, X1), X2)

+
Sh3

12

(

Ĝ(Ĝ(�1, X2), X2) + Ĝ(Ĝ(�2, X2), X1)
)

− Sh
(

Ĝ(u3, X1) +�1

)

��

��2

=DĜ(Ĝ(�2, X2), X2) + D�Ĝ(Ĝ(�1, X1), X2)

+
Sh3

12

(

Ĝ(Ĝ(�2, X1), X1) + Ĝ(Ĝ(�1, X2), X1)
)

− Sh
(

Ĝ(u3, X2) +�2

)

��

�u3

=Sh
(

Ĝ(Ĝ(u3, X1), X1) + Ĝ(�1, X1)
)

+ Sh
(

Ĝ(Ĝ(u3, X2), X2) + Ĝ(�2, X2)
)

+(N11 + �1)Ĝ(Ĝ(u3, X1), X1) + (N22 + �2)Ĝ(Ĝ(u3, X2), X2) − q

(19)

�
h3

12
�̈1 =DĜ(Ĝ(�1, X1), X1) + D�Ĝ(Ĝ(�2, X1), X2)

+
Sh3

12

(

Ĝ(Ĝ(�1, X2), X2) + Ĝ(Ĝ(�2, X2), X1)
)

− ksSh
(

Ĝ(u3, X1) +�1

)

�
h3

12
�̈2 =DĜ(Ĝ(�2, X2), X2) + D�Ĝ(Ĝ(�1, X1), X2)

+
Sh3

12

(

Ĝ(Ĝ(�2, X1), X1) + Ĝ(Ĝ(�1, X2), X1)
)

− ksSh
(

Ĝ(u3, X2) +�2

)

�hü3 =ksSh
(

Ĝ(Ĝ(u3, X1), X1) + Ĝ(�1, X1)
)

+ ksSh
(

Ĝ(Ĝ(u3, X2), X2) + Ĝ(�2, X2)
)

+(N11 + �1)Ĝ(Ĝ(u3, X1), X1) + (N22 + �2)Ĝ(Ĝ(u3, X2), X2) − q

deformable plate equations in the infinitesimal limit 

[39, 40]. One may also note that the derivative-free 

shear deformable plate theory recovers a derivative-

free shear-rigid (Kirchhoff) plate theory for a thin 

plate (a discussion on this is given in “Appendix 3”).

4  Navier’s solution for bending and buckling

The analytical solution for the simply supported plate 

can be obtained by adopting the Navier’s solution. 

The displacement fields are assumed as [31]:
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where,

For the assumed displacement fields, the terms in Eq. 

(19) may be analytically computed for a finite radius 

of influence ( r
c
 ) (refer to “Appendix 4”):

where,

(20)

u
3
=

∞
∑

n=1

∞
∑

m=1

(u
3
)mn sin(�X

1
) sin(�X

2
)

�
1
=

∞
∑

n=1

∞
∑

m=1

(�
1
)mn cos(�X

1
) sin(�X

2
)

�
2
=

∞
∑

n=1

∞
∑

m=1

(�
2
)mn sin(�X

1
) cos(�X

2
)

q =

∞
∑

n=1

∞
∑

m=1

Qmn sin(�X
1
) sin(�X

2
)

(21)

� =

m�

a

� =

n�

b

(22)

Ĝ(Ĝ(�1, X1), X1) = −C
2

1
(�1)mn

cos(�X1)sin(�X2)

Ĝ(Ĝ(�1, X2), X2) = −C
2

2
(�1)mn

cos(�X1)sin(�X2)

Ĝ(Ĝ(�2, X1), X1) = −C
2

1
(�2)mn

sin(�X1)cos(�X2)

Ĝ(Ĝ(�2, X2), X2) = −C
2

2
(�2)mn

sin(�X1)cos(�X2)

Ĝ(Ĝ(�1, X1), X2) = −C1C2(�1)mn
sin(�X1)cos(�X2)

Ĝ(Ĝ(�2, X1), X2) = −C1C2(�2)mn
cos(�X1)sin(�X2)

Ĝ(Ĝ(u3, X1), X1) = −C
2

1
(u3)mn

sin(�X1)sin(�X2)

Ĝ(Ĝ(u3, X2), X2) = −C
2

2
(u3)mn

sin(�X1)sin(�X2)

Ĝ(u3, X1) = −C1(u3)mn
cos(�X1)sin(�X2)

Ĝ(u3, X2) = −C2(u3)mn
sin(�X1)cos(�X2)

Ĝ(�1, X1) = C1(�1)mn
sin(�X1)sin(�X2)

Ĝ(�2, X2) = C2(�2)mn
sin(�X1)sin(�X2)

Substitution of Eq. (22) into Eq. (19) yields 

the following relations for the coefficients 

( (u3)mn, (�1)mn, (�2)mn, Qmn ) [41]:

where,

and

(23)

C
1
=

3

�2r3

c

(

�r
c
cos

(

�r
c

)

− sin
(

�r
c

))

C
2
=

3

�2r3

c

(

�r
c
cos

(

�r
c

)

− sin
(

�r
c

))

(24)M̂ẅ + k̂w = Q

(25)
w ={(u

3
)mn (�

1
)mn (�

2
)mn}

T

Q ={Qmn 0 0}T

(26)k̂ =

⎡
⎢
⎢
⎣

k̂
11

k̂
12

k̂
13

k̂
21

k̂
22

k̂
23

k̂
31

k̂
32

k̂
33

⎤
⎥
⎥
⎦

Fig. 4  A pictorial repre-

sentation of a undeformed 

web-core shear deformable 

plate and b specification of 

its microstructural unit cell

Fig. 5  Boundary conditions for buckling analysis of a simply 

supported shear deformable plate
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(27)
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For performing the buckling analysis, the in-plane 

biaxial compressive loads are applied through Eq. 

(27) as given below:

where f = N
11
∕N

22
 . To obtain a non-trivial solution, 

the determinant of the k̂ matrix must be zero. This 

gives the following expression for the additional term 

�
0
:

(28)
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�1 = f�0, �2 = �0
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5  Numerical simulation

As discussed in the previous section, the additional 

energy is derived from the buckling analysis of the 

structural member. Accordingly, we first study the 

buckling response of a web core plate with detailed 

modelling by considering two square plates with 

sides 2.04 m and 1.2 m each. The global element size 

for each plate is taken as 24 mm. The shell elements, 

S8R5 (an 8-node doubly curved thick shell, reduced 

integration) are adopted for 3D FEM analysis using 

ABAQUS software. The microstructure of the plate is 

modelled by periodically repeating the unit cell geom-

etry as shown in Fig.  4a. The dimensions of the unit 

cell are as follows: length of the unit cell L = 0.12 m, 

height h = 0.044 m, thickness of web t
w
= 2 mm, and 

Fig. 6  Buckling analysis of 

a corrugated shear deform-

able plate with simply sup-

ported boundary conditions
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thickness of flange tf  is varied from 4 mm to 12 mm. 

A pictorial representation of the unit cell specifications 

and the undeformed web-core shear deformable plate 

is presented through Fig. 4b.

The value of shear correction factor is taken as 5/6. 

As the value of k
s
= 5∕6 corresponds to a rectangu-

lar cross-section, an equivalent height of the plate is 

computed through the formula he = 2tf + tw(h − 2tf ) . 

Young’s modulus and Poisson’s ratio are assumed to be 

206 GPa and 0.3, respectively. The density of material 

is taken as � = 7850 kg/m3 . For performing the buck-

ling analysis, we set the time derivative terms and the 

transverse load to zero in Eq. (24). The buckling analy-

sis is performed in two stages: first, for ‘Stress pertur-

bation’ the conditions u
3
= �

2
= 0 are set at x = 0 and 

x = a . After that, for the ‘Buckling mode calculation’ 

we set u
3
= u

2
= �

2
= 0 at x = 0 and x = a . The pic-

torial representation of the same is given in Fig. 5.

Based on these boundary conditions, the buckling 

analysis of the corrugated plate is performed using 

3D FEM. The value of f is taken sufficiently large (i.e. 

f = 10
6 ) to demonstrate the uniaxial buckling while 

the value of f = 0.25 is assumed to perform the biax-

ial buckling analysis of the corrugated plate. Various 

buckling modes for a shear deformable plate of size 

a = 2.04 m are presented through Fig. 6. Correspond-

ing buckling loads and additional energy terms are 

computed for each buckling mode.

The value of the number of half-waves, m, along 1 

direction is varied from 2 to 11 and the buckling loads 

are computed through the proposed formalism for 

uniaxial and biaxial compressive loading. The results 

obtained via derivative-free framework are compared 

with the 2D micropolar and classical results (taken 

from [31]). The relative percentage error from the 

results via 3D FEM is computed and presented in 

Figs. 7 and 8. The error is computed through the fol-

lowing formula:

Fig. 7  Comparison of the relative percentage error obtained 

via different methodologies on performing the uniaxial buck-

ling analysis of a shear deformable plate with corrugations

Fig. 8  Comparison of the relative percentage error obtained 

via different methodologies on performing the biaxial buckling 

analysis of a shear deformable plate with corrugations

Fig. 9  Variation in the value of �
0
 on varying the thickness of 

flange in a corrugated shear deformable beam. (n=1, f=0.25)
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We further examine the effect of varying the flange 

thickness on the additional energy term ( �
0
 ). For this 

purpose, different plates are modelled and buckling 

(30)Error =
(N

0
)
method

− (N
0
)
3DFEM

(N
0
)
3DFEM

× 100

Fig. 10  Pictorial represen-

tation of square plate (blue 

dots) surrounded by pseudo 

boundary (red dots). (Color 

figure online)

Fig. 11  Boundary effect 

minimization for a clamped 

b simply supported shear 

deformable plate

Fig. 12  Pictorial representation of a simply supported web-

core plate subjected to externally applied load

Fig. 13  The non-local transverse deformation in a simply sup-

ported web-core shear deformable plate without incorporating 

the additional energy term
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loads are computed by varying the flange thick-

ness from 4 to 12 mm. As the thickness of the flange 

increases, the corresponding buckling load also 

increases. Consequently, the value of �
0
 should also 

increase to satisfy the energy requirement. Similar 

trends have been recorded through proposed frame-

work and the results are presented in Fig. 9.

Therefore, the non-local parameter can be esti-

mated by performing the buckling analysis of the 

plate and incorporating the recorded buckling load 

in Eq.  29. The estimated non-local parameter effi-

ciently removes the spurious zero-energy based 

oscillations and provides a stabilised solution, 

which is in good agreement with detailed 3D-FE 

simulation.

5.1  Imposition of boundary conditions on 

pseudo-nodes

One important aspect of the simulation is the impo-

sition of the boundary conditions. We address this 

issue by incorporating pseudo nodes on each side 

of the plate. A fictitious region of length twice the 

radius of influence domain ( r
c
 ) is adopted on each 

side of the plate. A pictorial representation of the 

plate with pseudo nodes is presented in Fig. 10.

Different BCs are imposed as given below. 

Clamped BC:

Simply Supported BC:

The pictorial representation of the boundary condi-

tions is presented in Fig. 11.

5.2  Static deformation in a Simply supported plate

We further examine a simply supported shear deform-

able plate under the application of a uniformly dis-

tributed load (see Fig.  12). For this purpose, we set 

the time derivative terms and the in-plane axial loads 

(31)

i)(u3)−P = (u3)P at x = (0, a) and y = (0, b)

ii)(�1)−P = −(�1)P at x = (0, a)

iii)(�2)−P = −(�2)P at y = (0, b)

(32)

i)(u3)−P = −(u3)P at x = (0, a) and y = (0, b)

ii)(�1)−P = (�1)P at x = (0, a)

iii)(�2)−P = (�2)P at y = (0, b)

Fig. 14  The non-local transverse deformation in a simply sup-

ported web-core shear deformable plate after incorporating the 

additional energy term

Fig. 15  The transverse deformation in a simply supported 

shear deformable plate under the application of uniformly dis-

tributed load

Table 1  Comparison of the maximum transverse deformation 

obtained via different methodologies

S.No. Methodology Max. Trans-

verse deforma-

tion

Relative % error

1. 3D FEM 0.2427 –

2. DFCT 0.2425 − 0.082

3. 2D Micropolar [31] 0.2449 0.906

4. 2D Classical [31] 0.2512 3.502
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to be zero. The derivative-free non-local governing 

equations are solved in their strong form. The plate 

of dimension 2.04 × 2.04 m 2 is modelled by adopt-

ing the same unit cell and material properties as dis-

cussed in the previous section.

The plate is discretized into 3481 nodes by uni-

formly distributing them at a spacing of �X = 24 

mm. The radius of influence ( r
c
 ) is taken as 52.3 mm, 

which corresponds to approximately 2.18�X . A uni-

formly distributed load Qmn = 16q
0
∕(�mn) , where 

q
0
= 10000 N/m2 , is applied along the downward 

direction. We firstly examine the non-local response 

without the additional energy term. The model is 

observed to behave in an non-physical manner. The 

response of the middle section of the web-core plate 

is presented in Fig. 13.

Fig. 16  Estimation of transverse deformation through a 3D FEM and b proposed framework for a simply supported shear deform-

able plate subjected uniformly varying load

Fig. 17  Estimation of transverse deformation through a 3D FEM and b proposed framework for a simply supported shear deform-

able plate subjected parabolic load
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These unphysical deformations are settled down 

by addition of the proposed extra energy term. 

To bolster our claim, we incorporate the addi-

tional extra energy term �
0
= 22.962 MN, which 

is obtained from the buckling analysis of the plate. 

The results obtained after the addition of extra 

energy term are found to be in accordance with the 

expected deformed shape of the plate. The trans-

verse deformation of the mid section of the plate is 

presented in Fig. 14.

To examine the accuracy of the proposed model, 

we further study the response of a corrugated shear 

deformable plate with side a=1.2m. The plate is 

simply supported at all edges and the imposition of 

pseudo boundaries is implemented as discussed in the 

previous section. The thickness of the flange is taken 

as 6mm. The plate is subjected to a uniformly distrib-

uted load Qmn = 16q
0
∕(�mn) , where q

0
= 10000 N/

m2 . The additional energy term is incorporated and 

the transverse deformation of the mid plate section is 

recorded for m=2 and n=1. The transverse deforma-

tion in the plate is presented in Fig. 15.

The result is found to be in good agreement with 

the 3D FE result. The maximum transverse defor-

mation of the mid section of the plate is recorded 

via 3D FEM, proposed model, 2D micropolar and 

2D classical theory. The results for 2D micropolar 

and 2D classical theory have been taken from [31]). 

The relative percentage error is computed through 

the formula (Table  1).

5.3  Static analysis of simply supported plate under 

the application of unsymmetrical loading 

condition

We extend our study to demonstrate the efficacy of 

the proposed framework in precisely capturing the 

response of the corrugated shear deformable plate 

under the application of unsymmetrical transverse 

loading conditions. The steel plate is modelled with 

the dimensions and material properties same as dis-

cussed above. The plate is discretised into 3481 parti-

cles uniformly spaced at an inter-particle distance of 

24mm. The simply supported boundary conditions 

are imposed on all the sides on the plate. The pseudo 

boundaries are implemented as per the Eq. (32). We 

first examine the response of the plate under the 

application of uniformly varying load such that 

Qmn(x) = 16q
0
∕(�mn)

(

x

a

)

 , where q
0
= 10000 N. The 

response is recorded and presented through Fig.  16. 

The corresponding 3D model is analysed using FEM 

software. The results obtained through proposed 

(33)�(u
3
) =

(u
3
)
method

− (u
3
)
3DFEM

(u
3
)
3DFEM

× 100

Fig. 18  Comparison of zero energy oscillations in simply supported shear deformable plate subjected to uniformly distributed load 

when analysed via (a) PD and (b) proposed method
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framework are found in good agreement with the 3D 

FEM results.

To bolster our claim, we further examine the same 

plate under the application of parabolic loading such 

that Qmn(x) = 16q
0
∕(�mn)

(

x

a

)2

 , where q
0
= 10000 

N. The response is recorded and is presented through 

Fig. 17. The results obtained through proposed frame-

work are found in good agreement with the 3D FEM 

results.

6  Conclusions

In this work, we have introduced a Volterra deriva-

tive based approach to arrive at the derivative-free 

non-local reduced dimensional continuum model. 

In specific, we have derived the integro-differential 

governing equations for a shear deformable plate. 

The equations have been derived from the nonaff-

ine energy of the plate. The buckling analysis of the 

plate has been performed to determine the additional 

energy required for suppressing the zero-energy mode 

induced oscillations. The results obtained from the 

proposed framework are more accurate in predict-

ing the transverse deformation of a corrugated plate, 

in comparison to the 2D classical and 2D micropo-

lar theory. Various numerical exercises have been 

performed to showcase the efficacy of the proposed 

formalism in capturing the response of the archi-

tected plate under the application of different loading 

conditions.

The authors would like to extend the study in the 

future to derive the non-local reduced model for shell 

structures by considering the corresponding nonaffine 

energy expression.
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Appendix 1: Localization of derivative‑free 

deformation gradient G

The proposed derivative-free directionality term 

approaches its classical deformation gradient coun-

terpart in the infinitesimal limit. For demonstration, 

let us assume sufficient smoothness of the field such 

that the displacement ( u
3
 ) at a material point Y , in the 

neighbourhood of X , can be approximated using a 

truncated Taylor expansion as:

where ▿ is the classical gradient operator. The aver-

age stretch around X may also be approximated in a 

similar way.

The nonlocal derivative-free deformation gradient is 

expressed as:

where I is the identity tensor. Replacing the terms in 

Eq. (36) with those given in Eqs. (34) and (35), we 

get,

(34)(u3)Y ≈ (u3)X + ▿(u3, X
d
)(Y

d
− X

d
),

(35)(ū3)Y ≈ (u3)X + ▿(u3, X
d
)(Y

d
− X

d
).

(36)

G(u3, X
d
) = I + Ĝ(u3, X

d
)

= I +

[

∫
�

x

(

(u3)Y − (ū3)Y
)(

Y
d
− Ȳ

d

)T
dY

]

[

∫
�

x

(

Y
d
− Ȳ

d

)(

Y
d
− Ȳ

d

)T
dY

]−1

,
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where F is the classical deformation gradient.

Appendix 2: Comparison of DFCT based 

non‑local deformation gradient and PD based 

counterpart

The following non-local gradient term in the DFCT 

is actually rooted in measure theory and has been 

derived via a stochastic projection technique [33]. A 

similar expression may also be found in stochastic fil-

tering [42, 43].

On the other hand, the non-local gradient term for the 

PD correspondence may be written as [44-46]:

The above two expressions become identically same 

when (u
3
)
X
 and X

d
 , which is perhaps the case when 

there are detectable symmetries (e.g. through material 

homogeneity and/or symmetries in applied loading 

configurations). This is however not true in general 

and accordingly the two expressions differ. To numer-

ically assess the performances of the two expressions, 

we have considered a shear deformable plate model, 

(37)

G ≈I +

[

∫
�

x

(

(u3)X + ▿(u3, X
d
)(Y

d
− X

d
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d
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d
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d
))

)

(

Y
d
− Ȳ

d

)T
dY

]

.
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∫
�

X

(Y
d
− Ȳ

d
)(Y
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d
)TdY
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x
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Y
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d
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dY
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X
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d
)

[

∫
�

x

(Y
d
− X

d
− Ȳ
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d

)T
dY

][

∫
�

X

(Y
d
− Ȳ
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∫
�

x

(Y
d
− Ȳ

d
)
(

Y
d
− Ȳ

d

)T
dY

][

∫
�

X

(Y
d
− Ȳ

d
)(Y

d
− Ȳ

d
)TdY

]−1

=I + ▿(u3, X
d
)

=F

(38)Ĝ
DFCT

(u3, X
d
) =

[

∫
�

x

(

(u3)Y − (ū3)Y
)(

Y
d
− Ȳ

d

)T
dY

][

∫
�

x

(

Y
d
− Ȳ

d

)(

Y
d
− Ȳ

d

)T
dY

]−1

(39)Ĝ
PD
(u3, X

d
) =

[

∫
�

x

(

(u3)Y − (u3)X
)(

Y
d
− X

d

)T
dY

][

∫
�

x

(

Y
d
− X

d

)(

Y
d
− X

d

)T
dY

]−1

arrived at via constitutive correspondences using PD 

[47–49] and DFCT gradient terms. For simplicity, the 

material properties of the plate have been kept uni-

form and boundary conditions in the form of simple 

supports are considered at all the four sides of the 

plate. Under a uniform distribution of particles, the 

two approaches give the same solution. However, for 

random distribution, the PD variant exhibits unphysi-

cal oscillations, whereas the DFCT appears to work 

fine (see Fig 18).

Appendix 3: Equivalence of shear deformable 

plate theory and the shear‑rigid plate theory 

in static case

Here we demonstrate that the derivative-free shear 
deformable plate theory is equivalent to shear-rigid 
(Kirchhoff) plate theory for a thin plate. The non-
local governing equations for the shear deformable 
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plate subjected to transverse load q/unit area can be 
written as:

Equations 40 and  41 may be written as:

(40)
DĜ(Ĝ(�1, X1), X1) + D�Ĝ(Ĝ(�2, X1), X2)

+
Sh3

12

(

Ĝ(Ĝ(�1, X2), X2) + Ĝ(Ĝ(�2, X2), X1)
)

− k
s
Sh

(

Ĝ(u3, X1) +�1

)

= 0

(41)
DĜ(Ĝ(�2, X2), X2) + D�Ĝ(Ĝ(�1, X1), X2)

+
Sh3

12

(

Ĝ(Ĝ(�2, X1), X1) + Ĝ(Ĝ(�1, X2), X1)
)

− k
s
Sh

(

Ĝ(u3, X2) +�2

)

= 0

(42)
ksSh

(

Ĝ(Ĝ(u3, X1), X1) + Ĝ(�1, X1)
)

+ ksSh
(

Ĝ(Ĝ(u3, X2), X2) + Ĝ(�2, X2)
)

+�1Ĝ(Ĝ(u3, X1), X1) + �2Ĝ(Ĝ(u3, X2), X2) − q = 0

(43)

DĜ(Ĝ(Ĝ(�1, X1), X1), X1) + D�Ĝ(Ĝ(Ĝ(�2, X1), X2), X1)

+
Sh

3

12

(

Ĝ(Ĝ(Ĝ(�1, X2), X2), X1) + Ĝ(Ĝ(Ĝ(�2, X2), X1), X1)
)

− k
s
Sh

(

Ĝ(Ĝ(u3, X1), X1) + Ĝ(�1, X1)
)

= 0

Upon adding the Eqs. 43 and  44, we get:

Using the fact that, 
(

� +
2Sh

3

12D

)

= 1 , the above Eqn 

takes the form:

(44)

DĜ(Ĝ(Ĝ(�2, X2), X2), X2) + D�Ĝ(Ĝ(Ĝ(�1, X1), X2), X2)

+
Sh

3

12

(

Ĝ(Ĝ(Ĝ(�2, X1), X1), X2) + Ĝ(Ĝ(Ĝ(�1, X2), X1), X2)
)

− k
s
Sh

(

Ĝ(Ĝ(u3, X2), X2) + Ĝ(�2, X2)
)

= 0

(45)

DĜ(Ĝ(Ĝ(�1, X1), X1), X1) + DĜ(Ĝ(Ĝ(�2, X2), X2), X2)

DĜ(Ĝ(Ĝ(�1, X1), X2), X2)

(

� +
2Sh3

12D

)

+ DĜ(Ĝ(Ĝ(�2, X1), X1), X2)

(

� +
2Sh3

12D

)

−k
s
Sh

(

Ĝ(Ĝ(u3, X1), X1) + Ĝ(�1, X1)
)

− k
s
Sh

(

Ĝ(Ĝ(u3, X2), X2) + Ĝ(�2, X2)
)

= 0

(46)
DĜ(Ĝ(Ĝ(�1, X1), X1), X1) + DĜ(Ĝ(Ĝ(�2, X2), X2), X2)

DĜ(Ĝ(Ĝ(�1, X1), X2), X2) + DĜ(Ĝ(Ĝ(�2, X1), X1), X2)

−k
s
Sh

(

Ĝ(Ĝ(u3, X1), X1) + Ĝ(�1, X1)
)

− k
s
Sh

(

Ĝ(Ĝ(u3, X2), X2) + Ĝ(�2, X2)
)

= 0
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However, Eq. 42 may be rewritten as:

and,

Adding the Eqs. 47 and 48, we get:

Substituting Eqs.  44 in Eq.  49 and rearranging the 
terms leads to:

(47)

ksSh
(

Ĝ(Ĝ(Ĝ(Ĝ(u3, X1), X1), X1), X1) + Ĝ(Ĝ(Ĝ(�1, X1), X1), X1)
)

+ksSh
(

Ĝ(Ĝ(Ĝ(Ĝ(u3, X2), X2), X1), X1) + Ĝ(Ĝ(Ĝ(�2, X2), X1), X1)
)

+ �1Ĝ(Ĝ(Ĝ(Ĝ(u3, X1), X1), X1), X1) + �2Ĝ(Ĝ(Ĝ(Ĝ(u3, X2), X2), X1), X1)

− Ĝ(Ĝ(q, X1), X1) = 0

(48)
ksSh

(

Ĝ(Ĝ(Ĝ(Ĝ(u3, X1), X1), X2), X2) + Ĝ(Ĝ(Ĝ(�1, X1), X2), X2)
)

+ksSh
(

Ĝ(Ĝ(Ĝ(Ĝ(u3, X2), X2), X2), X2) + Ĝ(Ĝ(Ĝ(�2, X2), X2), X2)
)

+ �1Ĝ(Ĝ(Ĝ(Ĝ(u3, X1), X1), X2), X2) + �2Ĝ(Ĝ(Ĝ(Ĝ(u3, X2), X2), X2), X2)

− Ĝ(Ĝ(q, X2), X2) = 0

(49)

ksSh
(

Ĝ(Ĝ(Ĝ(Ĝ(u3, X1), X1), X1), X1) + Ĝ(Ĝ(Ĝ(�1, X1), X1), X1)
)

+ksSh
(

Ĝ(Ĝ(Ĝ(Ĝ(u3, X1), X1), X1), X1) + Ĝ(Ĝ(Ĝ(�1, X1), X2), X2)
)

+ksSh
(

Ĝ(Ĝ(Ĝ(Ĝ(u3, X2), X2), X1), X1) + Ĝ(Ĝ(Ĝ(�2, X2), X1), X1)
)

+ �1Ĝ(Ĝ(Ĝ(Ĝ(u3, X1), X1), X1), X1) + �2Ĝ(Ĝ(Ĝ(Ĝ(u3, X2), X2), X1), X1)

− Ĝ(Ĝ(q, X1), X1)

+ksSh
(

Ĝ(Ĝ(Ĝ(Ĝ(u3, X2), X2), X1), X1) + Ĝ(Ĝ(Ĝ(�2, X2), X1), X1)
)

+ �1Ĝ(Ĝ(Ĝ(Ĝ(u3, X1), X1), X1), X1) + �2Ĝ(Ĝ(Ĝ(Ĝ(u3, X2), X2), X1), X1)

− Ĝ(Ĝ(q, X1), X1) = 0

(50)

D
(

Ĝ(Ĝ(Ĝ(Ĝ(u3, X1), X1), X1), X1) + 2Ĝ(Ĝ(Ĝ(Ĝ(u3, X1), X1), X2), X2)

+Ĝ(Ĝ(Ĝ(Ĝ(u3, X2), X2), X2), X2)
)

+ �1

(

D

ksSh

(

Ĝ(Ĝ(Ĝ(Ĝ(u3, X1), X1), X1), X1)

+Ĝ(Ĝ(Ĝ(Ĝ(u3, X1), X1), X2), X2)
)

+ Ĝ(Ĝ(u3, X1), X1)
)

+ �2

(

D

ksSh

(

Ĝ(Ĝ(Ĝ(Ĝ(u3, X2), X2), X2), X2) + Ĝ(Ĝ(Ĝ(Ĝ(u3, X1), X1), X2), X2)
)

+Ĝ(Ĝ(u3, X2), X2)
)

−q −
D

ksSh

(

Ĝ(Ĝ(q, X1), X1) + Ĝ(Ĝ(q, X2), X2)
)

= 0



1690 Meccanica (2023) 58:1671–1692

1 3
Vol:. (1234567890)

With the assumption that for a shear rigid (Kirchhoff) 
plate:

we arrive at the governing equation for a shear rigid 
plate in the static case.

Therefore, with the assumption that D

k
s
Sh

<< 1 , the 

shear deformable plate theory becomes equivalent to 
shear-rigid (Kirchhoff) plate theory for a thin plate.

Appendix 4: Computation of analytical 

expressions for Ĝ(Ĝ(�, X
d
), X

d
)

Let us assume a field variable � defined by the far-off 
interactions of any material point X such that,

The derivative-free directionality term Ĝ(�, X1) and 
Ĝ(�, X2) can be computed as:

For an influence domain of definite length r
c
 , the 

above expressions take the form,

where,

(51)
D

k
s
Sh

<< 1

(52)

D
(

Ĝ(Ĝ(Ĝ(Ĝ(u3, X1), X1), X1), X1) + 2Ĝ(Ĝ(Ĝ(Ĝ(u3, X1), X1), X2), X2)

+Ĝ(Ĝ(Ĝ(Ĝ(u3, X2), X2), X2), X2)
)

+�1

(

Ĝ(Ĝ(u3, X1), X1)
)

+�2

(

Ĝ(Ĝ(u3, X2), X2)
)

− q = 0

(53)� = �0
sin(�X

1
) sin(�X

2
)

(54)

Ĝ(�, X1) =

[

∫
�

X

(� − �)((Y1 − Y1)
T
dY1

][

∫
�

X

(Y1 − Y1)((Y1 − Y1)
T
dY1

]−1

Ĝ(�, X2) =

[

∫
�

X

(� − �)((Y2 − Y2)
T
dY2

][

∫
�

X

(Y2 − Y2)(Y2 − Y2)
T
dY2

]−1

(55)

Ĝ(�, X1) =

[

∫
X1+r

c

X1−r
c

(� − �)(Y1 − Y1)
T
dY1

][

∫
X1+r

c

X1−r
c

(Y1 − Y1)(Y1 − Y1)
T
dY1

]−1

Ĝ(�, X2) =

[

∫
X2+r

c

X2−r
c

(� − �)(Y2 − Y2)
T
dY2

][

∫
X2+r

c

X2−r
c

(Y2 − Y2)(Y2 − Y2)
T
dY2

]−1

Substitution of Eq. (56) in the the Eq. (55) yields:

where,

The expression for Ĝ
(

Ĝ
(

�, X1

)

, X1

)

 can be computed 
as:

(56)

[

∫
X

1
+r

c

X
1
−r

c

(Y
1
− Y

1
)(Y

1
− Y

1
)TdY

1

]

=
2r

3

c

3

[

∫
X

2
+r

c

X
2
−r

c

(Y
2
− Y

2
)(Y

2
− Y

2
)TdY

2

]

=
2r

3

c

3

(57)
Ĝ(�, X1) =−C1�

0cos(�X1) sin(�X2)

Ĝ(�, X2) =−C2�
0sin(�X1) cos(�X2)

(58)

C
1
=

3

�2r3

c

(

�r
c
cos

(

�r
c

)

− sin
(

�r
c

))

C
2
=

3

�2r3

c

(

�r
c
cos

(

�r
c

)

− sin
(

�r
c

))
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Similarly,

and,

(59)
Ĝ
(

Ĝ
(

�, X1

)

, X1

)

=

[

∫
X1+r

c

X1−r
c

(Ĝ(�, X1) − Ĝ(�, X1))(Y1 − Y1)
T
dY1

]

3

2rc3

=C
2

1
�0sin(�X1) sin(�X2)

(60)
Ĝ
(

Ĝ
(

�, X2

)

, X2

)

=

[

∫
X2+r

c

X2−r
c

(Ĝ(�, X2) − Ĝ(�, X2))(Y2 − Y2)
T
dY2

]

3

2rc3

=C
2

2
�0sin(�X1) sin(�X2)

(61)Ĝ
(

Ĝ
(

�, X1

)

, X2

)

=

[

∫
X2+r

c

X2−r
c

(Ĝ(�, X1) − Ĝ(�, X1))(Y2 − Y2)
T
dY2

]

3

2rc3

=C1C2�
0sin(�X1) sin(�X2)
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