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Abstract The internal length scale relating to the
cell size plays a crucial role in predicting the response
of architected structures when subjected to external
stimuli. A Volterra derivative-based approach for
arriving at the non-local derivative-free continuum
laws for architected structures is proposed. A main-
stay of the work is the derivative-free directionality
term, which recovers its classical counterpart in the
infinitesimal limit. Using this approach, we derive the
non-local integro-differential governing equations of
a shear deformable plate. We also suggest a physi-
cal basis for the consideration of energy for nonaffine
deformations and accurately estimate it by perform-
ing buckling analysis. This discards the requirement
of the additional energy to be incorporated in an arbi-
trary manner for suppressing the unwanted spurious
oscillations induced from zero energy modes. The
numerical results demonstrate the efficacy of the pro-
posed framework in precisely capturing the mechani-
cal response of web-core shear deformable plate,
thereby, manifesting the supremacy of the reduced
model in shrinking the cost and computational time.
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1 Introduction

From the body of a ship and bridge deck to biode-
gradable scaffolds in tissue engineering, architected
materials are used in a wide range of applications.
Due to their light weight and high strength to density
ratio, architected materials (like web-core and lattice
core panels) [1] have emerged as a potential alterna-
tive to various conventional materials. While con-
ventional materials derive their properties from their
chemical composition, architected materials gain
majority of their properties from their architecture.
For example, architecting different core shapes has
enabled engineers to attain enhanced properties in the
context of energy absorption capability [2], control-
lability of their elastic wave propagation, high stiff-
ness to density ratio [3, 4], and vibration insulation
characteristics. Such concept is also incorporated in
designing structural members, like plates with peri-
odic unit cell (e.g. sandwich panels). These unidirec-
tional plates, specifically steel sandwich plates, have
emerged as a promising alternative to buckling and
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bending load bearing structures. It has been claimed
[5-7] that the steel sandwich panels offer 30-50%
reduction in the weight of ship decks as compared
to traditional stiffened steel plate models. Stiffened
panels serve as the fundamental unit in composing
the hull, deck and superstructure of ships. Steel sand-
wich panels have shown potential for their applica-
tion in bridges and buildings [8—10]. Another appli-
cation may be found in designing the space vehicles,
in which the sandwich panels are used in designing
light-weight load-bearing integrated thermal protec-
tion system (ITPS) [11]. One of the most common
examples of architected materials is web-core panel,
which consists of two flange sheets separated by a
straight web sheet aligned orthogonally to the flange
faces. The face sheets resist the bending and in-plane
loads, while the inner core is designed for externally
applied transverse load. Unfortunately, analysing
such architected panels is computationally intensive
and intractable when it comes to modelling the entire
structure. Therefore, a computational model that pre-
serves the structural information, without requiring
detailed modeling of the unit cell, is fundamentally
important for analyzing structures like ships, build-
ings, bridges etc. [12, 13]

In this regard, non-local continuum models [14,
15] may be good options since they can preserve
such geometry information through their length-scale
parameters. The works of Cosserat brothers [16]
mark the earliest proposition of such generalized con-
tinuum theory, where each material point is assumed
to possess a rotational degree of freedom (dof) in
addition to its translational dof. Later-introduced
non-local theories include Eringen’s model involv-
ing higher order derivatives [17], variants of couple-
stress theory [18, 19] and modified couple stress
theory [20, 21] (one may refer to [22] for detailed
discussion on non-local elastic models). There are
various applications of these nonlocal models (e.g.
buckling and bending response of beams [23-25] and
plates [26-28]).

Lately, equivalent single-layer (ESL) beam and
plate models have been proposed for web-core sand-
wich panels using classical couple stress [29], and
micropolar [30, 31] continuum theories. These theo-
ries typically involve higher order derivatives [32] in
the governing equations, which in general, are diffi-
cult to be handled within a finite element (FE)-based
setup. Silling in 2000 introduced a theory named as
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Peridynamics (PD) in which the evolution equations
are a set of integro-differential equations, thus invok-
ing the action at a distance rather than contact forces.
Despite its well-posed structure in case of discon-
tinuities, PD based framework experienced certain
limitations like constrained Poisson’s ratio (as in the
case of bond based PD). Although this limitation has
been relaxed through state based PD, yet arriving
at the strictly PD based constitutive models is often
difficult. This limitation can be bypassed by propos-
ing a ‘constitutive correspondence’ between PD and
the classical continuum mechanics (CCM) via non-
localisation of the deformation gradient. But such an
extension suffers from instability issues originating
from the spurious zero-energy mode-induced oscilla-
tions. To surpass this issue, usually additional energy
is provided in the form of spring stiffness, which may
change the solution completely. Moreover, a priori
estimation of this extra energy is another challenge.

In this study, we propose a non-local derivative-
free continuum theory (DFCT) for precisely captur-
ing the response of shear deformable plate with its
application to steel sandwich panels in specific. The
derivative-free governing equations are arrived at
from the energy expression using Volterra deriva-
tive. The expression for derivative-free deformation
gradient serves as the backbone of this study, which
converges to the classical deformation gradient in
the infinitesimal limit. Another key feature of this
manuscript is the consideration of the energy cor-
responding to nonaffine deformations in a plate-like
continuum, thereby, providing a physical basis for the
addition of extra energy in an improvised manner for
suppressing the zero-energy mode induced oscilla-
tions. The proposed model has a particular advantage
in precisely capturing the deformations of architected
materials where individual member may undergo
localized deformation. Such localized deformations
are difficult to be predicted in the traditional way. The
efficacy of the proposed formalism is demonstrated
by modelling an architected plate and comparing with
the solution obtained from the detailed three-dimen-
sional model. The results are also compared with 2D
micropolar plate theory. The efficacy of the proposed
model is validated by analysing the response for dif-
ferent loading and boundary conditions.

The rest of the paper is organised as follows. A
derivative-free shear deformable plate model is pro-
posed in Sect. 2. In Sect. 3, the governing equations
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are arrived at from the energy expression by adopt-
ing Volterra derivative approach. Based on Navier’s
solution, different terms of governing equations are
determined analytically in Sect. 4. Numerical mod-
els are solved for different loading conditions in
Sect. 5. Imposition of pseudo boundary conditions
is another key aspect of this section. This section
also demonstrates the computation of additional
energy term from the buckling response of the
plate. Finally some concluding remarks are made in
the Sect. 6.

2 Mathematical formulation

Let us consider an isotropic rectangular plate
of side a and b, with uniform thickness h, placed
along the Cartesian plane as shown in Fig. 1.
Within the domain £2, each material point X is
assumed to interact non-locally with its neighbors
Y, within an influence domain €2y, which is circle
of finite radius r.. The deformed locations of mate-
rial points X and Y are denoted by x and y respec-
tively. The associated undeformed and deformed
fiber lengths and fiber stretch are expressed as

I'yy :=Y—X,rxy =YX, Uyy I=Ty, —TIyy.

Fig. 1 Pictorial representation of a shear deformable plate

2.1 A nonlocal derivative free directionality term:

We begin with the derivation of an operator for a
derivative-free nonlocal directionality term, G(u3,X ),
which is used to relate an undeformed fiber with the
associated  stretch, uyy 1= {(u))yy, (Uy)xy, (U3)xy }
such that,

(3), — (u3), = Guz, X)) ((V), — (X)) whered =1,2

ey
where d is the dimensionality and u,, u,, u; represent
displacements along axes 1, 2, and 3, respectively.
In this paper, we have adopted the derivative-free
directionality term (for detailed derivation, one may
refer to [33]) to estimate the deformation in the bond
(y — x). The expression for the derivative-free defor-
mation gradient Gis given below.

Gus, X)) =

[ ((u3), — @)y )(V), — (?>d>TdY]
2y 2)

— _ 7 17!
[ [ =@ (0.~ @) dY]
Qx

where (7) represents the averaging operation over the
domain £2y. The explicit expression mentioned in the
above equation describes the non-local attribute of
the proposed directionality term by considering far-
off interactions. The proposed derivative-free direc-
tionality term approaches its classical counterpart
in the infinitesimal limit (see “Appendix 17). While
the proposed directionality term operates on a finite
influence domain like PD, they have certain differ-
ences. A comparative discussion between these two
approaches is given in “Appendix 2”. It may be inter-
esting to note that a similar expression for the direc-
tionality term was arrived at in the context of opti-
mization, particle filtering, upscaling and continuum
mechanics using a sophisticated stochastic projection
technique ([33-36]). The expression for G has been
proved to be the best estimator in L2P sense.

2.2 Displacement field
The shear deformable plate captures the deforma-

tion by the coupled effect of bending and shear
displacements. In the deformed configuration, the
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Fig. 2 Pictorial representation of a shear deformation at any
cross-section in a shear deformable plate

rotations (6, 8,) about the plane normal to the neu-
tral axes may be related to the transverse deforma-
tion u; and shear deformations (@, ®,) through the

equations below (see Fig. 2):
-0, = G(uy, X)) + @, )
-0, = G(uy, X,) + @,

The 3D displacement of a plate may be approxi-
mated using the 2D displacements of the mid-sur-
face kinematic variables, by recalling the inexten-
sibility assumptions of the shear deformable plate.
Thus, the displacement field of a material point at a
distance z from the neutral axes, may be character-
ized as [37]:

)y = @)y + 2@,

(up)yx ~ (”(z))x + 290, “4)
(u3)y = (U3)y

where (u9,u3) and ul denote the axial and trans-
verse displacements respectively, at the neutral axis
(i.e., at the plane z = 0). Accordingly, the velocity
v :={v|,v,,v3} of the material point X takes the
form:

vy = (ity)y = @)y + 20,

vy = (iy)y = (ilg)y + 2, %)

vy = (i3)y = (’;‘g)x

with the non-zero strains as:
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£ = 5(1)1 + ZG(QI,XI) = 5(1)1 + zky,
£y = €9, + 2G(D,, X,) = €9, + zkyy
£ = € + 2G( @y, X)) + G(@, X,)) = €2, + zky,
£13 = G(u3,X1) + @,
£33 = G(u3,X2) + o,
(6)

3 Governing equations

The Hamiltonian 7/ for the plate can be expressed as
the sum total of the kinetic energy, K and the potential
energy V.

H=K+¥ (7)

For any material point X having momentum p
and mass density p, the kinetic energy (K) may be
expressed in the continuum limits as:

K:/@dg
Q

2p
a pb ph)2

K= / / / (@) + 26,7 ®)
0o Jo —h/z2

F(@)y + 20,)* + (UD3)dzdX,dX,

The total potential energy (¥) for the nonaffine defor-
mation of the plate may be expressed as the sum total
of the potential energy due to axial stretching (¥,),
shear deformation (¥), nonlocal bending deforma-
tion (Wy;p)(see Fig. 3), work done by externally
applied transverse load g acting per unit area of the
plate (¥,) and the work done by in-plane loads Ny;
and N,,. This can be mathematically written as:

Undefrmed plate surface

Deformed plate surface

Fig. 3 Pictorial representation of non-local bending in a shear
deformable plate
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V=¥ +¥+Py—¥, - Py 9) where E and u represents the Young’s modu-
lus of elasticity and Poisson’s ratio, respectively.

h/2
/ / / ) ‘711511 + 02y +013€1p + 031631 + 523523]dZdX2dX1
h/2

1 2 1 rert o, (10
= ((u3)y = (u3)y ) dYdX,dX,—= quidX,dX,
2Jo Jo |Qx| Qy 2Jo Jo

1 [ fr . 5 ) )
_5/ / [N“(G(u3’xl)) + Ny (Guz, X)) ]dX2dXl
0 0

The second term on the right hand side of Eq. (10) Substituting Eqgs. (6) and (11) in Eq. (10) and inte-
accounts for the nonaffine deformations arising from grating through the thickness of the plate, we arrive
the non-local bending between two material points. at:

h/2 1—
/ / / [ 611+//l822)811+(ﬂ611+622)622+Tﬂ(6%2+£§1+€§3)

w1 —
dzdX,dX,
L[k ) L[ (12)
= / / / ((uz)y — (uz)x ) dYdX,dX,—= / / quidX,dX,
2J)o Jo 19| Jo, 2J)o Jo
1 /e[ - 2 A 2
-3 [N“(G(u3,Xl)) + Ny (G, X,)) ]dX2dX1
o Jo
The variable k denotes the non-local interparticle where S denotes  the  shear  modu-
bending stiffness along the direction of u;. Recalling lus  of elasticityy ~ Using the  relation
the stress-strain relations of an isotropic plate: (3)y — () = [G(uz, X)) Gluz. X)LI(Y, = X)) (Y, =X,
Equation (12) can be written as:
/2
2 2 2
Y= / / / e 1 — 511 + M£22)611 + (e, +822)822] +8(e], + 5, +823)dZdX2dX1
1 R 2. > (13)
1 / / / (Glus, XY, = X)) + (Glus, Xo)(Y, — X5)) )dedeXl
2 Jo Jo 19| Ja,
1 a b 5 1 a b . 2 . )
1 qldX,dX, —= [NH(G(u3,X1)) + Ny (G5, X,)) ]ddexl
2J)o Jo 2J)o Jo
o lu 0 0 O €1 Replacing (9,,9,) = <6§ 2)(forasquare plate of side
022 E wl 19,4 0 0 €22 length a) in the above Eq. (13), we obtain:
Cn(=1_ 2 00710 0 14en (11)
o3 100 0 £ 0 |]ey
023 00 0 0 =||exn

~ |
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/2
/ / /h/2 1= [(e11 + pen) ey, + (uey + ex)en| + S(e7, + &5, + £3;)dzdX,dX,
1 : ’ L ’ 14
+5/ / (Glus, X)) SlddeX1+§/ / (G(us, X,)) " 9,dX,dX, (14)
0 0 0 0

a b a b
1 1 A 2 N 2
-3 / / qugarxzarxl—5 / / [N”(G(u3,X,)) + Ny (G(us, X)) ]ddeXI
0 0 0 0

It is interesting to note that as the non-locality dimin-

ishes (i.e. 7, — 0), the additional stiffness also dimin- o(D,) = — o (D) = — oD and pau;) = _or
ishes to zero (i.e. 9 — 0), Thus recovering the classi- P 5®,’ P oD, Pt oy
cal energy expression for the shear deformable plate. 17

Following the expressions from Eq. (6) and substitut-
ing them in Eq. (12), we arrive at:

h/2
W= / / / zk11 + pzky, )zkyy + (uzky +zk22)zk22]

e 1 -
2 A 2
+S<12kf2 + (G(u3,Xl) + @) + (Gluz, Xy) + @) )ddedel

1 a b . 5 1 a b . )
+= / / (Guz, X)) 9,dX,dX += / / (G(us, X,)) 8,dX,dX,
2 0 0 2 0 0

a b a b
1 1 A 2 n 2
- / / qugarxzarxl—E / / [N”(G(MS,XI)) + Ny (G(us, X)) ]ddeXI
0 0 0 0

s)

Representing bending stiffness D := ; 25}' )and inte-

grating the above Eq. (15) through the thickness of
the plate h:

a b
Y= %/ / D[(G(‘Dl’xl) + MG(‘Dz’Xz))G(@pXO
o Jo
(MG(¢1’X )+ G(‘Dzvxz))@(d’zvxz)]

+SZ zkfz + Sh((f}(u3,X1) +@,) + (G, Xy) + @,,)2)dX2dX1 (16)

a b
+5 / / (G(u3,X1))2191dX2dX1+1 / / (G(us, X)) 9,dX, dX,
0 0

1 a
_5/0 / qu3dX2dX1——// Ny G(u3,X1)) +N22(G(u3,X2 ]ddeX1

Using the Volterra derivative as in ( [38]), the govern-
ing equation of motions for the elastodynamic con-
tinuum are given by:
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From Eq. (17), it can be computed that:

. h3 .
p(@) =p—=D,;

12
W o
)(D,) =p—d
p(D,) plZ )
pus) =phiiy
s¥ A A .
o =DG(G(®,, X)), X,) + DuG(G(@,,X,),X,)
1
Sh [~ » P A
+ (GG@), X)), X,) + G(G(@,,X,), X)) — Sh(G(us, X)) + D) (18)
¥ A A A
@ =DG(G(D,, X,),X,) + DuG(G(®,,X,),X,)
2
Sh3 2 2 A A A
+57 (G(G(@,, X)), X)) + GG(@), X5), X)) = Sh(Glus, Xy) + By)
¥ S - A -
N =Sh(G(G(us, X)), X)) + G(@, X)) + Sh(G(G(uz, X,), X,) + G(@,, X))
3

+(Ny; + 9))G(G(uz, X)), X)) + (Nyy + 9,)G(G(uz,X,), X,) — g

Assuming that the transverse shear strains and cor-
responding shear stresses are constant throughout
the thickness is fallacious. Therefore, to compensate
for the discrepancy involved in the solution, a shear
correction factor (k) is introduced in the above equa-
tions. Finally, the non-local derivative-free governing
equations for a shear deformable plate takes the form:

deformable plate equations in the infinitesimal limit
[39, 40]. One may also note that the derivative-free
shear deformable plate theory recovers a derivative-
free shear-rigid (Kirchhoff) plate theory for a thin
plate (a discussion on this is given in “Appendix 37).

19)

pgdﬁ'l =DG(G(®,,X,), X,) + DuG(G(®,.X,), X,)

+51—}§ (GG(@. X)), X) + G(G(@), X)), X)) = k,Sh(Glu, X)) + @)
pgcﬁz =DG(G(®,. X,), X,) + DuG(G(@,,X,), X,)

LS

12

(G(G(@,.X)). X)) + GG, X,). X)) — k,Sh(G(us. X,) + D)

phiiy =k Sh(G(G(us, X)), X)) + G(@,, X)) + k,Sh(G(G(us, X,), X,) + G(@,,X,))
+(Ny; + 9)G(G(us, X)), X)) + (Nyy + 9,)G(G(uz, X,), X,) — g

As the directionality term converges to its classi-
cal counterpart in an infinitesimal limit, the govern-
ing equations also converge to the classical shear

4 Navier’s solution for bending and buckling
The analytical solution for the simply supported plate

can be obtained by adopting the Navier’s solution.
The displacement fields are assumed as [31]:
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;=) Y (13),, sin(aX,) sin(fX,)

(20)

i @1

For the assumed displacement fields, the terms in Eq.
(19) may be analytically computed for a finite radius
of influence (r,) (refer to “Appendix 47):
G(G(@,,X,), X)) = —CX®,),,,cos(aX,)sin(fX,)
G(G(@,,X,), X,) = —=CH®)),,,cos(aX;)sin(fX,)
G(G(@,, X)) X)) = —CX(@,),,,sin(aX, )cos(X,)
G(G(@,,X,), X,) = —C3(®D,),,,sin(aX, cos(fX,)
G(G(¢1,X1),X2) = —C,Cy(D)),,,8in(aX)cos(BX;)
G(G(®,,X,),X,) = —C, Cy(D,),,,cos(aX,)sin(fX,)
G(G(uz, X)), X)) = —C2(u3),y,sin(aX;)sin(fX,)
G(G(u3,X2),X2) = —C%(u3)m,,sin(aX1)sin(ﬂXz)
Guz, X)) = —C,(u3),,,co8(aX, )sin(X,)

Gus, Xy) = —Cy(u3),,,sin(aX, )cos(fX,)

G(‘pl ,X1) = C(D),,sin(aX)sin(fX;)

G(<P2, X,) = Cy(@,),,,sin(aX )sin(BX;)

(22)

where,

Fig. 4 A pictorial repre-
sentation of a undeformed
web-core shear deformable
plate and b specification of
its microstructural unit cell
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y=b: u,=0, u,=0, ¢,=0

=0
=X

x=0: u,=0, u,=0, ¢,
=°n ‘0=°n e

0="% ‘0

y=0: u,=0, u,=0, ¢,=0

Fig. 5 Boundary conditions for buckling analysis of a simply
supported shear deformable plate

C, = %(arccos(arc) —sin(ar,))
3 ' . (23)
C, = W(ﬂrccos(ﬂrc) —sin(pr,))

c

Substitution of Eq. (22) into Eq. (19) yields
the following relations for the coefficients
(U3) > (@D (@) Qo) [41]:

Miv+kw = Q (24)
where,

w ={(u3)mn (¢1)mn (dsZ)mn}T (25)

0 ={0,, 00}"

and

A ]:611 ’:‘12 ]:‘13

k= ]fz1 ’fzz ]fz3 (26)
k3 k3 kyz

L=0.12m

h=0.044 m

ty =2 mm

t=4-12mm
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ky, ==C(k,ph+ Nyy + 9)) — C3(k,fh + Ny, + 95)
/%12 =/A<21 = Cik;ph
kyy =k, = Cyk,ph

A 3

ky, =—C3D — Cg/zE — k,ph

~ N h3
ky3 =k3, = —uDC,C, — C, Czﬁﬁ

N 3
ks :—C%pE - C3D — k,ph

27

190=

N

D

For performing the buckling analysis, the in-plane
biaxial compressive loads are applied through Eg.
(27) as given below:

Ny = =Ny, Ny = =N,

28
9 =19y, 9, =19, @8

where f = Ny;/N,,. To obtain a non-trivial solution,
the determinant of the k matrix must be zero. This
gives the following expression for the additional term
9

N =D’NyCiC; + (B C:Con°k2) /3 + D*NyC ] Cof + (DF*COhk,) /12

+(DF*CSh*k,) /12 + (NoB> Cyh*k,) /12 + DB>Cl Wk’
+DFPCih*k: — D*NyCi Cou® + N> Coh*k:

+(DNyfCSH*) /12 + (DF*CTCyh*k,) /12 + (DB>C} Coh*k,) /12

—D*N,C{Cif u* + (N,f*C: C3hk,) /12

+NoB*CifH*k> + (DNoBCSfH) /12 + (DN SC{C3h) /12

+D?BC3Chk, + D*BCHCohk, + (N, f2Chk,) /12
+DNyfC2hk, — (DNyBC2Cih*v) /6 + DNofCfhk,

(29)

+(NoB* CLCafli*k,)/12 = D*BCT Cyhk,y* — D*BCI Cohk,y?

—(DB*CC3h*k,v) /6 — (DF*CICoh*k,v) /6
+DN,yBC: Cohk, + 2DB*CC K2y

+(DNyBC; C3fh*) /12 + DN,BC: Csfhk, — (DN, SC Coflv) /6
D =D*>C}C; + D*CCof + (B Cyh'*k,) /12 = D*CICyv* + B> Coh*k:

+(DBCSI’) /12 + DBCyhk,

—D’CICA? + (BPC2Cah*k,) /12 + PO + (DBCSfH) /12

+DBCICIH) /12 + (B> Cifh'k,) /12
+DBCECifn) /12 — (DBC: Cyh*) /6 + DBCfhk,
+(B*CICofn*k,) /12 + DRCICohk,

+DBC: Cafhk, — (DPCCafl’v)/6)

@ Springer



1680

Meccanica (2023) 58:1671-1692

Fig. 6 Buckling analysis of
a corrugated shear deform-
able plate with simply sup-
ported boundary conditions

(a) m=1

(b) m=2

(c) m=3

5 Numerical simulation

As discussed in the previous section, the additional
energy is derived from the buckling analysis of the
structural member. Accordingly, we first study the
buckling response of a web core plate with detailed
modelling by considering two square plates with
sides 2.04 m and 1.2 m each. The global element size

@ Springer

(d) m=4

for each plate is taken as 24 mm. The shell elements,
S8R5 (an 8-node doubly curved thick shell, reduced
integration) are adopted for 3D FEM analysis using
ABAQUS software. The microstructure of the plate is
modelled by periodically repeating the unit cell geom-
etry as shown in Fig. 4a. The dimensions of the unit
cell are as follows: length of the unit cell L = 0.12 m,
height 7 = 0.044 m, thickness of web ¢, = 2 mm, and
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Fig. 7 Comparison of the relative percentage error obtained
via different methodologies on performing the uniaxial buck-
ling analysis of a shear deformable plate with corrugations
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Fig. 8 Comparison of the relative percentage error obtained
via different methodologies on performing the biaxial buckling
analysis of a shear deformable plate with corrugations

thickness of flange 7, is varied from 4 mm to 12 mm.
A pictorial representation of the unit cell specifications
and the undeformed web-core shear deformable plate
is presented through Fig. 4b.

The value of shear correction factor is taken as 5/6.
As the value of k, = 5/6 corresponds to a rectangu-
lar cross-section, an equivalent height of the plate is
computed through the formula h, = 2z, +1,,(h — 21;).
Young’s modulus and Poisson’s ratio are assumed to be
206 GPa and 0.3, respectively. The density of material

45
—8—m=1
40 |—e—m=2
m=3

351

4 5 6 7 8 9 10 1 12
flange thickness t, (in mm)

Fig. 9 Variation in the value of J, on varying the thickness of
flange in a corrugated shear deformable beam. (n=1, f/=0.25)

is taken as p = 7850 kg/m>. For performing the buck-
ling analysis, we set the time derivative terms and the
transverse load to zero in Eq. (24). The buckling analy-
sis is performed in two stages: first, for ‘Stress pertur-
bation’ the conditions u; = @, = 0 are set at x = 0 and
x = a. After that, for the ‘Buckling mode calculation’
we set u3 = u, = P, =0 at x =0 and x = a. The pic-
torial representation of the same is given in Fig. 5.

Based on these boundary conditions, the buckling
analysis of the corrugated plate is performed using
3D FEM. The value of fis taken sufficiently large (i.e.
f =10° to demonstrate the uniaxial buckling while
the value of f = 0.25 is assumed to perform the biax-
ial buckling analysis of the corrugated plate. Various
buckling modes for a shear deformable plate of size
a = 2.04 m are presented through Fig. 6. Correspond-
ing buckling loads and additional energy terms are
computed for each buckling mode.

The value of the number of half-waves, m, along 1
direction is varied from 2 to 11 and the buckling loads
are computed through the proposed formalism for
uniaxial and biaxial compressive loading. The results
obtained via derivative-free framework are compared
with the 2D micropolar and classical results (taken
from [31]). The relative percentage error from the
results via 3D FEM is computed and presented in
Figs. 7 and 8. The error is computed through the fol-
lowing formula:
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Fig. 10 Pictorial represen-
tation of square plate (blue

dots) surrounded by pseudo
boundary (red dots). (Color
figure online)

Fig. 11 Boundary effect
minimization for a clamped
b simply supported shear
deformable plate

‘S b s R R i d e g
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(o oo ddd o oo '
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"’l’l”’l’l”l"’:
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4 -3-2-10 123 4

(2) (b)

Q(x,y) 600 — " . . —
m . —#— without additional stiffness |
l TN,
\A
200
A A |
= - -200 |
Fig. 12 Pictorial representation of a simply supported web- 400 +
core plate subjected to externally applied load
-600
(Ny) - (Ny) -800 . : g .
Error = —cmethod  + 073DFEM o 100 (30) 0 05 1 15 2

(N 0) 3DFEM

We further examine the effect of varying the flange

Fig. 13 The non-local transverse deformation in a simply sup-
ported web-core shear deformable plate without incorporating
the additional energy term

thickness on the additional energy term (39,)). For this
purpose, different plates are modelled and buckling
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loads are computed by varying the flange thick-
ness from 4 to 12 mm. As the thickness of the flange
increases, the corresponding buckling load also
increases. Consequently, the value of 9, should also
increase to satisfy the energy requirement. Similar
trends have been recorded through proposed frame-
work and the results are presented in Fig. 9.

Therefore, the non-local parameter can be esti-
mated by performing the buckling analysis of the
plate and incorporating the recorded buckling load
in Eq. 29. The estimated non-local parameter effi-
ciently removes the spurious zero-energy based
oscillations and provides a stabilised solution,
which is in good agreement with detailed 3D-FE
simulation.

5.1 Imposition of boundary conditions on
pseudo-nodes

One important aspect of the simulation is the impo-
sition of the boundary conditions. We address this
issue by incorporating pseudo nodes on each side
of the plate. A fictitious region of length twice the
radius of influence domain (r,) is adopted on each
side of the plate. A pictorial representation of the
plate with pseudo nodes is presented in Fig. 10.

Different BCs are imposed as given below.
Clamped BC:

%10

—*—with additional stiffness

0 0.5 1 1.5 2

Fig. 14 The non-local transverse deformation in a simply sup-
ported web-core shear deformable plate after incorporating the
additional energy term

\l\l\l\“\lll [T

u\\\.“‘\‘\‘\“\'mummm““

W m mm T m “‘“
Il

Fig. 15 The transverse deformation in a simply supported
shear deformable plate under the application of uniformly dis-
tributed load

D(uz)_p = (u3)p atx = (0,a)andy = (0,b)
i@ _p=—(@)p atx=(0,a) 3D
(D)) _p = =(Dy))p aty=(0,b)

Simply Supported BC:

Dus)_p=—(us3)p atx=(0,a)andy = (0, b)
@) _p=(D)p atx=(0,a) (32)
ii)(Dy)_p = (@y)p aty=(0,b)

The pictorial representation of the boundary condi-
tions is presented in Fig. 11.

5.2 Static deformation in a Simply supported plate

We further examine a simply supported shear deform-
able plate under the application of a uniformly dis-
tributed load (see Fig. 12). For this purpose, we set
the time derivative terms and the in-plane axial loads

Table 1 Comparison of the maximum transverse deformation
obtained via different methodologies

S.No. Methodology Max. Trans- Relative % error
verse deforma-
tion

1. 3D FEM 0.2427 -

2. DFCT 0.2425 —0.082

3. 2D Micropolar [31] 0.2449 0.906

4. 2D Classical [31] 0.2512 3.502
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U, Magnitude
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Fig. 16 Estimation of transverse deformation through a 3D FEM and b proposed framework for a simply supported shear deform-

able plate subjected uniformly varying load

to be zero. The derivative-free non-local governing
equations are solved in their strong form. The plate
of dimension 2.04 x 2.04 m? is modelled by adopt-
ing the same unit cell and material properties as dis-
cussed in the previous section.

The plate is discretized into 3481 nodes by uni-
formly distributing them at a spacing of AX =24
mm. The radius of influence (r,) is taken as 52.3 mm,

U, Magnitude

which corresponds to approximately 2.184X. A uni-
formly distributed load Q,, = 16q,/(xmn), where
go = 10000 N/m?, is applied along the downward
direction. We firstly examine the non-local response
without the additional energy term. The model is
observed to behave in an non-physical manner. The
response of the middle section of the web-core plate
is presented in Fig. 13.

0.2

0.4

T
|
T
T

0.6

08

0 0.2 0.4 0.6 0.8 1 12

(b)

Fig. 17 Estimation of transverse deformation through a 3D FEM and b proposed framework for a simply supported shear deform-

able plate subjected parabolic load
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These unphysical deformations are settled down
by addition of the proposed extra energy term.
To bolster our claim, we incorporate the addi-
tional extra energy term ;= 22.962 MN, which
is obtained from the buckling analysis of the plate.
The results obtained after the addition of extra
energy term are found to be in accordance with the
expected deformed shape of the plate. The trans-
verse deformation of the mid section of the plate is
presented in Fig. 14.

To examine the accuracy of the proposed model,
we further study the response of a corrugated shear
deformable plate with side a=1.2m. The plate is
simply supported at all edges and the imposition of
pseudo boundaries is implemented as discussed in the
previous section. The thickness of the flange is taken
as 6mm. The plate is subjected to a uniformly distrib-
uted load Q,,, = 16g,/(wmn), where g, = 10000 N/
m?. The additional energy term is incorporated and
the transverse deformation of the mid plate section is
recorded for m=2 and n=1. The transverse deforma-
tion in the plate is presented in Fig. 15.

The result is found to be in good agreement with
the 3D FE result. The maximum transverse defor-
mation of the mid section of the plate is recorded
via 3D FEM, proposed model, 2D micropolar and
2D classical theory. The results for 2D micropolar
and 2D classical theory have been taken from [31]).

0 0.2 0.4 0.6 0.8 1 1.2 0

The relative percentage error is computed through
the formula (Table 1).

(U3)method — (U3)3DFEM
A(uy) = 100 33
’ (U3)3pFEM 33)

5.3 Static analysis of simply supported plate under
the application of unsymmetrical loading
condition

We extend our study to demonstrate the efficacy of
the proposed framework in precisely capturing the
response of the corrugated shear deformable plate
under the application of unsymmetrical transverse
loading conditions. The steel plate is modelled with
the dimensions and material properties same as dis-
cussed above. The plate is discretised into 3481 parti-
cles uniformly spaced at an inter-particle distance of
24mm. The simply supported boundary conditions
are imposed on all the sides on the plate. The pseudo
boundaries are implemented as per the Eq. (32). We
first examine the response of the plate under the
application of uniformly varying load such that
0,.,(x) = 164,/ (nmn)(i), where g, = 10000 N. The

response is recorded and presented through Fig. 16.
The corresponding 3D model is analysed using FEM
software. The results obtained through proposed

<10

Fig. 18 Comparison of zero energy oscillations in simply supported shear deformable plate subjected to uniformly distributed load

when analysed via (a) PD and (b) proposed method
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framework are found in good agreement with the 3D
FEM results.

To bolster our claim, we further examine the same
plate under the application of p221rabolic loading such

that Q,,,(x) = 16¢q,/ (ﬂmn)(i) , where g, = 10000

N. The response is recorded and is presented through
Fig. 17. The results obtained through proposed frame-
work are found in good agreement with the 3D FEM
results.

6 Conclusions

In this work, we have introduced a Volterra deriva-
tive based approach to arrive at the derivative-free
non-local reduced dimensional continuum model.
In specific, we have derived the integro-differential
governing equations for a shear deformable plate.
The equations have been derived from the nonaft-
ine energy of the plate. The buckling analysis of the
plate has been performed to determine the additional
energy required for suppressing the zero-energy mode
induced oscillations. The results obtained from the
proposed framework are more accurate in predict-
ing the transverse deformation of a corrugated plate,
in comparison to the 2D classical and 2D micropo-
lar theory. Various numerical exercises have been
performed to showcase the efficacy of the proposed
formalism in capturing the response of the archi-
tected plate under the application of different loading
conditions.

The authors would like to extend the study in the
future to derive the non-local reduced model for shell
structures by considering the corresponding nonaffine
energy expression.
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Appendix 1: Localization of derivative-free
deformation gradient G

The proposed derivative-free directionality term
approaches its classical deformation gradient coun-
terpart in the infinitesimal limit. For demonstration,
let us assume sufficient smoothness of the field such
that the displacement (u;) at a material point Y, in the
neighbourhood of X, can be approximated using a
truncated Taylor expansion as:

(uz)y = (u3)y + v(usz, X )(Y, — X)), (34)

where v is the classical gradient operator. The aver-
age stretch around X may also be approximated in a
similar way.

(i13)y = (u3)y + V(uz, X)(Y; — X,). (35)

The nonlocal derivative-free deformation gradient is
expressed as:

Gus, X,) = 1+ G(uy, X))

4 [ / (s = @) (3= n)rdy] -

[/Q (¥, - 7,) (Y, - f’d)TdY]_l,

where [ is the identity tensor. Replacing the terms in
Eq. (36) with those given in Egs. (34) and (35), we
get,
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G ~I+ / <(u3)x + vy, X)) Yy — Xy) — (u3)y + v(us, X,)(Y, — Xd))) (Y, - Yd)TdY] .
LJ @,
r -1

I+ Y, =YY, — Yd)TdY]
L/ 2y
- _ _ T _ _ _1
=I+ / v(us, XY, =X, — Y, — Xd)(Yd - Yd) dY] [/ Y, =YY, - Yd)TdY]

|/, o 37)

=1 + v(us, X) [/ Yy=X;= Y, =X )(Y, - yd)TdY] [
Qx

=+ v(us3,X,) [/ Y, -Y)(v, - yd)TdY] [
Qx

=+ v(u3,X,)
=F

Qx

-1
Y, - Y)Y, - Yd)TdY]
Qx

-1
Y, =¥ (Y, - I?d)TdY]

where F is the classical deformation gradient.

Appendix 2: Comparison of DFCT based
non-local deformation gradient and PD based
counterpart

The following non-local gradient term in the DFCT
is actually rooted in measure theory and has been
derived via a stochastic projection technique [33]. A
similar expression may also be found in stochastic fil-
tering [42, 43].

arrived at via constitutive correspondences using PD
[47—49] and DFCT gradient terms. For simplicity, the
material properties of the plate have been kept uni-
form and boundary conditions in the form of simple
supports are considered at all the four sides of the
plate. Under a uniform distribution of particles, the
two approaches give the same solution. However, for
random distribution, the PD variant exhibits unphysi-
cal oscillations, whereas the DFCT appears to work
fine (see Fig 18).

-1
Gprer(us, X,) = [/ ((u3)y — (@3)y) (Y, — yd)Tdy] [/ (Y, =¥,) (v, - yd)Tdy] (38)
Q, Q,

x

On the other hand, the non-local gradient term for the
PD correspondence may be written as [44-46]:

-1
Gpp(us, X)) = [/ ((u3)y—(u3)x)(Yd_Xd)TdY] [/ (Yd—Xd)(Yd_Xd)TdY] (39)
Q Q.

x

The above two expressions become identically same
when (u#3)y and X, which is perhaps the case when
there are detectable symmetries (e.g. through material
homogeneity and/or symmetries in applied loading
configurations). This is however not true in general
and accordingly the two expressions differ. To numer-
ically assess the performances of the two expressions,
we have considered a shear deformable plate model,

Appendix 3: Equivalence of shear deformable
plate theory and the shear-rigid plate theory
in static case

Here we demonstrate that the derivative-free shear
deformable plate theory is equivalent to shear-rigid
(Kirchhoff) plate theory for a thin plate. The non-
local governing equations for the shear deformable
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plate subjected to transverse load g/unit area can be
written as:

DG(G(@,, X)), X)) + DuG(G(@,. X)), X,)
Sh3 40)

+17 (GG@,,X,). X,) + G(G(@,,X,). X)) — k,Sh(G(uz, X,) +@,) =0

DG(G(@,,X,),X,) + DuG(G(@,. X)), X,)

@1
. . A
+2 (G(G(@0, X)), X)) + GG@1,X0), X)) — Sh(Glu Xy) +By) = 0
k,Sh(G(Glus. X)) X)) + G(@1. X)) + kySh(G(Glu3. X,). X5) + G(@y. X)) “2)

+9,G(G(us, X,), X)) + 9,G(G(u3, X,),X,) —q = 0

Equations 40 and 41 may be written as: DG(G(G((DZ,Xz),XZ),Xz) + DuG(G(G@,,Xl),Xz),Xz)

DG(G(G((DI’Xl)sXI)’Xl) + DMG(G(G(‘Dzle)st)le) + ‘S;_};S (G(G(G(¢2,X1),X1),X2) + G(G(G(¢17X2)’X1)’X2))
Sh? [ 5 2 PP . A .
+45 (G(G(G@y, X,), X,), X)) + GG(G(@,, X,), X)), X)) - kSh(G(G(uz, X,). X,) + G(@,.X,)) =0
44

- kSh(G(G(uz, X)), X)) + G(@,, X)) =0
(43) Upon adding the Egs. 43 and 44, we get:

DG(G(G(@,, X)), X,), X)) + DG(G(G(®,, X,), X,), X,)

28h? e lte
25K 45
D > + DG(G(G((D27X1)’X1)’ X2) (ﬂ + 12D > ( )

—kSh(G(G(us, X)), X)) + G(@,, X)) — kSh(G(G(uz, X,), X,) + G(@,,X,)) =0

28h*

DG(G(G(®,.X)). X,). X,) <M +

Using the fact that, (/4 + %) =1, the above Eqn

takes the form:

DG(G(G(@,, X,), X)), X)) + DG(G(G(®,, X,), X,), X,)
DG(G(G(®,,X,), X,), X,) + DG(G(G(@,, X,), X)), X5)
~k,Sh(G(Gus, X)), X)) + G@,, X)) = kSh(G(Gus, X,), X,) + G(@,,X,)) = 0

(46)
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However, Eq. 42 may be rewritten as:

kySh(G(G(G(G(us3. X)), X)), X)), X)) + G(G(G(@,. X)). X)), X))
+k,Sh(G(G(G(G(uz, X,), X5), X)), X)) + G(G(G(®,, X,), X)), X))
+8,G(G(G(G(us, X)), X)), X)), X)) + 9,G(G(G(G(us, X,), X,), X)), X,)
- G(G(q’xl)vxl) =0

(47)

and,

k,Sh(G(G(G(G(u3. X)), X)). X,). X,) + G(G(G(@,. X)), X,). X,))

+k Sh(G(G(G(G(uz, X,), X,), X5), X,) + G(G(G(@,, X)), X,), X,))
+9,G(G(G(G(us, X)), X)), X5), X)) + 9,G(G(G(G(u3, X,), X,), X5), X;)
- G(G(9,X,),X,) =0

(48)

Adding the Egs. 47 and 48, we get:

k,Sh(G(G(G(Gus, X)), X)), X)), X)) + GG(G(@), X)), X)), X))
+kSSh(G(G(G(G(“3’X1)’X1)’X1)sX1) + G(G(G(‘Dpxl),xz),xz))

+k Sh(G(G(G(G(uz, X,), X,). X)), X)) + G(G(G(®,, X)), X)), X))
+8,G(G(G(G(us, X)), X)), X)), X)) + 9,G(G(G(G(us, X,), X,), X)), X,)
- G(G(q, X)), X))

+k,Sh(G(G(G(Guz, X,). X,), X)), X)) + G(G(G(@,, X)), X)), X))
+8,G(G(G(G(us, X)), X)), X)), X)) + 9,G(G(G(G(us, X,), X,), X)), X,)
- G(G(g.X)).X) =0

(49)

Substituting Eqgs. 44 in Eq. 49 and rearranging the
terms leads to:

D(G(G(G(G(uz, X)), X)), X)), X)) + 2G(G(G(G(uz, X)), X1, X5), X5)
+G(G(G(G(u3, X)), X5), X5), Xz))

D A A A A
+ 191 <@ (G(G(G(G(u3’Xl)’Xl)’Xl)’Xl)

s

+G(G(G(G(us, X)), X)), X,). X,)) + G(G(us, X,), X))

o <k?9h ( G(G(G(Glu3, X)X, Xo), Xo) + G(G(G(G(MS’Xl)’Xl)vxz)vXZ))

+G(G(us, X)), X,))

D N A A A
4 5 (G(G(@.X). X)) + G(6(q.X,). X)) = 0

(50)
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With the assumption that for a shear rigid (Kirchhoff)
plate:

3

X +r, _ - 2rc
[ o= Tom - Toran| =
X

1=

D .4 Xotre — — 213 (36)
k Sh D [/ (Y, = Y)Y, = Yz)Tdyz] = TC
X,—r,
we arrive at the governing equation for a shear rigid Substitution of Eq. (56) in the the Eq. (55) yields:
plate in the static case. ' ' '
D(G(G(G(Gluz, X)), X)), X1, X)) + 2G(G(G(Glus, X)), X)), X), X))
+G(G(G(G(u3, X5), X,), X,), X)) (52)
+9,(G(Guz, X)), X)) +9,(G(G(u3, X,). X,)) —q =0
Therefore, with the assumption that kLSh << 1, the G(&,X,) =—C,E%os(aX,) sin(fX,)
shear deformable plate theory becomes equivalent to G X,) =—C,&%in(aX,) cos(fX,) D)
shear-rigid (Kirchhoff) plate theory for a thin plate. '
where,
Appendix 4: Computation of analytical C, = % (ar.cos(ar,.) —sin(ar,))
expressions for G(G(£, X)), X,) ar, (58)

Let us assume a field variable & defined by the far-off
interactions of any material point X such that,

& = &Y sin(aX,) sin(fX,) (53)

The derivative-free directionality term G(.f,Xl) and
G(.f,Xz) can be computed as:

C, = ﬁzirg(ﬁrccos(ﬁrc) —sin(pr,))

The expression for G(G(E,Xl),Xl) can be computed
as:

-1
G X)) = [ E -, - Yl)Tle] [ / (X, =YY, - Yl)Tle]

Q Q

X ) ~ X ~ _ . (54)

G(E.X,) = [ & -, - Y2>TdY2] [ (Y, = Y)Y, - Yz)Tdyz]

Qy Qx
For an influence domain of definite length r,, the
above expressions take the form,
GE.X)) =
[ X +r, _ _ 11 rXitr —_ — 17!
/ E-ow, —Y)'ay, / (Y, - Y)Y, —Y)'ay,
LJ X, —r. 1 LJX —r. i (55)

G, X,) =

c

2T 27T

r X,4r, _ _ 1r X+, _ _ ]
/ (E-&)Y, - Y,)Tdy, / Y, = Y)Y, - Y, ay,
| J X . 1L/X . i

where,
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A X, +r, . e — _ 3

G(G(&.X,).X,) =[ /X (GE.X) - GEX))(Y, - Y1>TdY1] 3 59)
=C2&%in(aX,) sin(BX,)

Similarly,

Xy+r, [ _ 3

¥ _ - - T

G(G(&.X,).X,) = [ /X - (G, X,) = G, X))(Y, — Y>) de] 7,03 (60)
=C;&%in(aX,) sin(BX,)

and,

A X547, .  — _ 3

G(G(&,x,).X,) = (G X)) = GEX )Y, = Yy dY, | —— 61)

X 2}"6'3

2= Te

=C,C,&%in(aX,) sin(fX,)
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