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Abstract It has been well established that the internal length scale related to the cell size plays a critical role in
the response of architected structures. It this paper, a Volterra derivative-based approach for deriving nonlocal
continuum laws directly from an energy expression without involving spatial derivatives of the displacement
is proposed. A major aspect of the work is the introduction of a nonlocal derivative-free directionality term,
which recovers the classical deformation gradient in the infinitesimal limit. The proposed directionality term
avoids issues with correspondences under nonsymmetric conditions (such a unequal distribution of points that
cause trouble with conventional correspondence-based approaches in peridynamics). Using this approach, we
derive a nonlocal version of a shear deformable beam model in the form of integro-differential equations. As
an application, buckling analysis of architected beams with different core shapes is performed. In this context,
we also provide a physical basis for the consideration of energy for nonaffine (local bending) deformation.
This removes the need for additional energy in an ad hoc manner towards suppressing zero-energy modes. The
numerical results demonstrate that the proposed framework can accurately estimate the critical buckling load
for a beam in comparison to 3-D simulations at a small fraction of the cost and computational time. Efficacy
of the framework is demonstrated by analysing the responses of a deformable beam under different loads and
boundary conditions.

1 Introduction

Architected materials (such as sandwich beams with periodic core unit cell) [1-3] have emerged as a light
weight and low energy materials as alternatives to more traditional materials. The architected structures can
potentially be used for applications across the length scales, from tissue engineering to the designing the body
of an airport. Classical continuum mechanics (CCM) does not perform well in predicting the mechanical
behaviour of these materials on a structural scale [4,5], since they involve complex internal geometry that
contributes to the response. Therefore, a new challenge for the mechanicians is to address this by coming up
with an appropriate model. One way would be to use the nonlocal continuum models [6]. The earliest such
theory was proposed by the Cosserat brothers in the form of a generalized continuum theory, in which the
material points in a solid body is assumed to have rotational degrees of freedom (dof) in addition to the usual
translational dof [7]. Building on this concept, much later Eringen worked on different nonlocal continuum
models, accounting for the nonlocal effects in the form of higher-order derivatives [8]. This was followed by a
series of works on nonlocal theories [9, 10] with many of its variants like couple-stress theory [11] and modified
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couple-stress theory [12—14]. However, certain nonlocal models may at times show anomalous results (e.g.
anomalous stiffening effect). Moreover, some of these theories require higher-order derivative information that
are difficult to be handled within a finite element (FE)-based formulation due to the requirements for high-
order interelement continuity. Derivative-based evolution equations, in general, are inefficient in capturing
sharp changes in the field variables like shock wave and discontinuities like crack. As a solution to these
issues, a derivative-free theory named as peridynamics (PD) was introduced by Silling in 2000 [15-17]. The
PD-based framework introduced the governing equations by directly invoking action at a distance rather than
contact forces. These equations remain well posed even in the case of discontinuities [ 18—20]. However, the PD-
based framework too has certain limitations; for example, the bond-based PD (BBPD) limits its applicability
by constraining the Poisson’s ratio. The BBPD fails to distinguish between the volumetric and distortional
deformations. The state-based PD (ordinary and non-ordinary) overcomes such limitations by relaxing the
restrictions on the bond forces. However, it is often difficult to arrive at strictly PD-based constitutive models.

One way to bypass these challenges is to have the “constitutive correspondence” between the PD and the
classical continuum mechanics by defining a PD-based deformation gradient. But such extension may suffer
from instability issues originating from zero-energy mode-induced oscillations [21]. To avoid this, additional
energy is typically introduced in the form of spring stiffness. However, such additional energy can change the
solution completely and the correct amount is difficult to be estimated a priori. For many applications, detailed
three-dimensional simulations are not feasible, and reduced dimensional models like beam, plate, and shell
come out to be useful. These models have actually made CCM popular to a great extent. For nonlocal theories
also, focus has been on nonlocalizing these reduced dimensional models; one may refer to [9,10] and [22-24]
for bending and buckling analysis of nonlocal beams and plates, respectively.

In this work, we introduce a nonlocal derivative-free continuum theory (DFCT), in which the governing
equations are arrived at in the form of integro-differential equations, from an energy expression using Volterra
derivative. Specifically, we derive a nonlocal version of the Timoshenko shear deformable beam model without
involving spatial derivatives. A crucial aspect of our theory is the derivation of a derivative-free deformation
gradient, which recovers the classical deformation gradient in the infinitesimal limit. Another important aspect
of the work is to consider the energy corresponding to the local nonaffine deformation of the beam. This
provides a physical basis for adding extra energy in an ad hoc manner for suppressing the zero-energy modes.
Overall, the approach presented here has the following advantages:

(1) We propose a novel way of computing deformation map that does not suffer from the problems of the
commonly used gradient term, when particle distribution is nonuniform.

(2) We derive the governing equations in the form of integro-differential equations using Volterra derivative
from a total energy functional that accounts for nonaffine deformation of the beam. This is crucial to
eliminate the zero-energy modes that afflict the PD solution without adding extra energy on an ad hoc
basis.

(3) Such formulation is particularly important for capturing the deformation of architected materials where
individual members undergo localized deformation, which is difficult to be captured in the traditional way.
We demonstrate the efficacy of this approach by modelling a micro-architected beam and comparing with
full three-dimensional solutions as well as solutions based on micropolar beams. In each case, the approach
outlined here provides a better solution.

While the theory can be seen as a variant of the PD, we call the present theory as the DFCT. Here, the
directionality term differs from its PD counterpart due to a bias correction operation, which plays a crucial role
when there is a loss of symmetry. The efficacy of the framework is demonstrated by analysing the responses
of a shear deformable beam under different loading and boundary conditions.

The rest of the paper is organized as follows. In Sect. 2, a Volterra derivative-based approach is adopted to
propose the derivative-free governing equations for the shear deformable beam. The mainstay of the paper is
the proposal of a directionality term, which approaches its classical counterpart in the infinitesimal limit. In
Sect. 3, the nonlocal derivative-free governing equations for buckling of shear deformable beam are proposed
to compute the required additional energy. This section showcases the efficacy of the proposed formalism
in precisely estimating the critical buckling load of the shear deformable beam. This section also suggests a
meaningful way of imposing different boundary conditions. The numerical implementation of the derive-free
model is discussed in Sect.4, where the additional energy obtained through buckling analysis is adopted to
capture the transverse deformations in the prismatic and non-prismatic (corrugated) shear deformable beams.
The efficacy of the proposed formalism has been showcased by examining the beam under different loading
and boundary conditions. To demonstrate the efficacy of proposed formalism, we further examine the sandwich
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Fig. 1 Pictorial representation of a shear deformable beam presenting the undeformed beam in dashed lines and deformed
configuration of beam using solid lines. The dots in the yellow region represent the neighbourhood Y for a material point X

beam with periodic cores of different shapes and compare the response with different established theories.
Finally, some concluding remarks are made in Sect. 5.

2 Mathematical formulation

The derivative-free continuum formalism bifurcates from the classical theory with the incorporation of a
derivative-free deformation gradient. Presently, we discuss the theory in the context of deriving a derivative-
free nonlocal version of the classical shear deformable beam model. Let us consider a beam of length L
placed along the axis I as shown in Fig. 1, which experiences a transverse loading along the 77[7-axis. The
beam is assumed to have uniform width b, depth & and cross-sectional area A = bh. As per our formalism, a
material point X is assumed to interact nonlocally within an influence domain Qy of finite influence radius
r¢. The volume of the influence domain of the material point X is represented by Vy, which is computed upon
discretization as, Vx=2r.hb. As shown in Figure 1, x; and y,; denote the deformed positions at time ¢ of their
respective undeformed material points X and Y. The deformed and undeformed location of neutral axis is
denoted by (N.A.); and (N.A.)o, respectively. The associated undeformed and deformed fibre lengths and the
fibre stretch are expressed as ryy :=Y — X, ryy 1= y; — x; and uxy = ryy, — rxy, respectively.

2.1 Derivation of a nonlocal derivative-free directionality term

We would first derive a functional form for a derivative-free nonlocal directionality term, G(é , X), which is
used to relate an undeformed fibre with the associated stretch, u xy such that,

uxy = Gu, X)rxy. (D

To avoid bias in the estimate of the directionality term, we first remove the drift information from Eq. (1). This
step is crucial for a symmetry loss, as would be seen later in this paper:

uxy—ﬁX:é(%X)(rXY_FX)a (2)
where 1
fx =— }"xde
X JQ
X X (3)
L_tX = qudY.
VX Qx

From here, we can get an expression for G indicated as follows:
(uxy —iix)(rxy —7x)" = G, X)(rxy — Fx)(rxy —7x)"

— (uxy —ix)(rxy —rx)TdY = G(u, X) / (rxy —Tx)(rxy —rx)TdY
Qyx Qx
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Fig. 2 Pictorial representation of shear deformation at any cross section in the shear deformable beam

—1
= é(u,)o:[/ (uxy—ﬁxxrxy—fx)TdY] U (ny—Fx)(l’xy—Fx)TdY:| @
Qx Qx

From Eq. (4), it can be seen that G imparts the nonlocal attribute by considering the far-off interactions. One
can also show that the derivative-free directionality term approaches its classical gradient counterpart in an
infinitesimal limit (see Appendix A). [t may be interesting to note that a similar expression for the directionality
term was arrived at in the context of optimization, particle filtering and upscaling using a sophisticated stochastic
projection technique [25-28]. We believe our present simple derivation at the continuum level would be useful
and accessible to a larger audience.

2.2 Formulation of nonlocal derivative-free governing equations for a shear deformable beam

Consider that uy := {(u1)x, (u2)x, (u3)x} represents the displacement at a material point X along 7, /1 and
111 axes, respectively, defined over the domain 2 (see Fig. 1). Since the shear deformable beam captures the
deformation due to the coupled effect of shear and bending, the rotation 6 about plane normal to the neutral
axis in the deformed configuration may be related to the transverse displacement u#3 and shear deformation ®
through the equation as follows (see Fig.2):

Ox = G(uz, X) — dyx. 5)

Recalling the inextensibility assumption of the shear deformable beam, the displacement field at the material
point X, located at a distance z along the /[ [-axis from the neutral axis, may be characterized as ([9,29]):

x ~ Wy —z2(d)x
(uz)x =0 (6)

(u3)x = ux,
where ”(1) and ug represent the axial and lateral displacements, respectively, of the point at the neutral axis and

® the rotation about the plane normal to the neutral axis in the deformed configuration. Using Eq. (6), the
velocity v := {v1, v2, v3} at any material point in the beam takes the form:

()x = @)y = —z2(P)x
(v)x = (2)x =0 (7
(v3)x = (U3)x.

The Hamiltonian  for the beam can be written as the summation of the total kinetic energy, K, and the
total potential energy, W, of the system given as follows:

H=K+W. (8)



Modelling architected beam using a nonlocal 3983

=0 — 0O —O — OO — O —O— OO — O — O —

Non-local pending

Fig. 3 Pictorial representation of nonlocal bending in the shear deformable beam

Let p denote the momentum at a material point and p the mass density. The kinetic energy term (K) may be
expressed in the continuum limit as ([30]):

f PPig

1
::>K=L§pw9yuﬁuﬂﬁ
h/2 b
. K:i/ / Zp (@D + @x) dzdX ©)

h/2
— K = f / (2(DHx + 43)x) dzd X
h2 2°

= K= fo 5p(1(<1>2>x+A(u3)x)

where [ = [” h}/jz bz?dz represents the second moment of area and A = I h}/jz bdz is the area of the cross

section. The total potential energy (W) for the nonaffine deformation of the beam can be expressed as the
summation of the potential energy due to axial stretching (W 4), shear deformation (Wg), nonlocal bending
deformation (W p) and work done by externally applied transverse load g acting per unit length of the beam
(y), that is,

W =W44+ Vg4 Wy p—V,. (10)

L

w =/0L %EA <é(u1,X))2dX+/ L pa (é(u3,X)—d>>2dX

L
1
dydx — —qu3dX,
ZVX/ ‘/S;X Y1z (u3)y — (u3)x)* /24”3

where E denotes the Young’s modulus of elasticity and 8 denotes the shear modulus of elasticity. The third
term on the right-hand side of the above equation accounts for the nonaffine deformation arising from the
nonlocal bending between the two material points (see Fig.3) and is assumed that

(In

El
Nonlocal bending stiffness o« —-.
L2

Accordingly, y £L (with y being a proportionality constant) denotes the nonlocal interparticle bending stiffness
along the direction of u3. We shall shortly see that the third energy term vanishes in the infinitesimal limit (i.e.
with vanishing nonlocality). Using Eq. (2),

u3)y — (u3)x = Guz, X)rxy. (12)
Equation (11) takes the following form:

L

L N 2 1 . 2
\yzfo SEA <G(u1,X)) dx+/0 SkiBA (G(u3,X)—CI>> dX
L
1 1,
-f / G(u3,X)er) deX—/ ~quddX (13)
2 ) ) 2

— \I,:/OL SEA <é(u1,X)> dx+/0L %ksﬂA (é(ug,X)—CI>>2dX
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4 " EI (6;( X))z/
4}"C 0 yLz “3 Q
L

L . 2 1 . 2
— w:/ SEA (G(ul,X)) dX+/ SkiBA (G(u3,X)—<I>> dX
0 0

L[t El (é( X))de /Ll 2%
6VC 0 J/Lz M3, 0 2(]1/!3

L
1
(rxy)>dYdX — / Equgdx
0

X

L 1 R 2 L 1 R 2
N \y:/ 5EA (G(ul,X)) dX+/ —ksBA (G(u3,X>—<I>) dXx
0

1 L R 2 L
+§/0 ﬂ(G(u3,X)> dX—/O Equ3arx (14)

where ¥ = , from which we can see that ¥ — 0 as the nonlocality diminishes (r. — 0) recovering the
classical energy expression for the shear deformable beam. A pictorial representation of the same is presented
in Fig. 3. Using Eq. (6), the above equation may further be written as:

yEIr

L 1 R 2 L 1 R 2
w:/ _EA (G(ZCD, X)) dx+/ “k,BA (G(u3,X)—<I>> dx
0o 2 0o 2

1 . L
+/0 5 (G(u3,X)> —/0 Squidx

L 1 . 2
dz G(zcb X)) dX+/ SkiBA <G(u3,X)—<I>> dX
0

U
\

L 1 . 2 L 1 )
+/ —y (G(u3,X)> dX—/ ~quidX. (15)
0o 2 0o 2

Using Volterra derivative as discussed in ([6]), the equations of motion of an elastodynamic continuum are
given by

. SH Y
p = —-—— =
du du
s () = Y 4 plus) = Y (16)
p =—30 ™ p(u3 S
The first nonlocal derivative-free governing equations for Timoshenko beam may be obtained by
SH
(D) = ——. 17
p(®) 5D a7
From Eq. (16), it can be computed that
p(®) = pld
W8 L . 2 Ly . 2
— = —EI(G (P, X)) dX —ksBA(G (u3,X) — @) dX
5D 5<1>[/02(()> +f02”3((”3))}
S\IJ A A A
— S5=C (ElaG(cb, X), X) — kA (G (u3, X) — q>)
— I =EIG (é (@, X), X) +kBA (é(u3, X) — <I>>. (18)

Similarly, the second governing equation may be computedas:
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. 0H
puz) = ——

Sus
p(u3) = pAiiz

Sw ) L A 2 Ly 4. 2 L
_ = —kBA(Guz, X) — @ 9 (G (u3, X)) — —quidX
S 5u3[1; SkeBA (Glus, X) - o) +—1; 59 (6 3. ) A; Sau3 }

5w ) ) ) o
= (G (ksﬂAG(ug, X), x) — 69, X)) —9G (G(u3, X), x) T
— pAiiy = k,fA (é (G(u3, X), X) — G, X)) +96 (é(u3, X), X) tq. (19)

Therefore, the nonlocal derivative-free governing equations may be written as
ol = EIG (G (@, X), X) +kBA <é(u3, X) — <I>>

pAiiz = kB A (G (é(u3, X), X) — G4, X)) +96 (é(u3, X), X) +q. e

3 Buckling analysis of shear deformable beam

Similarly, the nonlocal derivative-free counterparts of the governing equations for the buckling analysis of the
shear deformable beam, subjected to axial compressive load P, may be written as

EIG (é (@, X), X) 4k BA (é (u3, X) — q>) —0
k,BA (é (é (3, X), X) — 6 (@, X)) — PG (é (u3, X), X) 196 (é (3, X), X) —0. (1)
The above equations can be decoupled as

G(G(G(@, X),X), X)+ AG(D, X) =0

A A A A A (22)
G(G(G(G(u3, X), X), X), X) + AG(G(u3, X), X) =0,
where
W (P =0/ (ED
B (u) 1 (23)
ksBA
The general solution for the nonlocal decoupled equations for buckling analysis can be written as
uz = Cicos VAX + Casin vVAX + C3X + Cs o1

® = Cssinv/AX + Cev/AncosvVAX + C.

Given that the general solution for the nonlocal equations must satisfy the governing equations, substituting
Eq. (24) in Eq. (22) and comparing the coefficient of each term, we arrive at

usz = C COS\/KX+CQSin«/XX+C3X+C4

(25)
d = —CZ\/XU cosvVAX + Cn/Xn sinvV/AX — Cs,

where 7 is a constant parameter and {C1, C, C3, C4} are constants that can be obtained using the boundary

conditions. For the first case, we begin with simply supported end conditions, i.e. u3 = 0 and E[ é(dD, X)=0
atx =0and x = L:

G(@, X) = —129 (VC«/KCOS (FC\Z/X> — 2sin (FC\Z/X>) <C1 cos (x/XX) + Cysin («/XX))

ENIY
G(®, X)=¢ (Cl cos (\/XX) + Casin (JXX))
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Fig. 5 Pictorial representation of the cross section of Y-shaped core of the corrugated Timoshenko beam

—12 ’"c\/X . }"C«/X
{:rg\/%(rcﬁcos( 2 )—2sm( > ))

Imposing the boundary conditions, we get

B 1 0 0 17
cos«/KL sin\/KL L 1 gl
02 =0 = [Al{C}=0.
0 0 0 3
¢ Cs
| ccos /AL ¢sin/AL 0 0]

For a nontrivial solution to exist, | A | should vanish,

sin /AL =0
72El ( - L) —9L?

— Pcrz

(26)

27)

(28)

(29)

To perform the numerical analysis, we first take an example of a Y-shaped core beam. However, other core
shapes have been examined in the later section. Using Eq. (29), we compute the critical load P, for a simply
supported shear deformable beam with Y-shaped core. Figure 4 presents the pictorial representation of the Y-
shaped core beam. Figure 5 presents the cross section of the Y-shaped core ([31]) with dimensions, a = 0.002

m, s = 0.026 m, 7. = 0.0003 m, tf = 0.001 m, d = 0.022 m and d; = 0.013 m.

The value of s/L ratio is varied from 0.035 to 0.25, and the value of critical buckling load is computed
using detailed 3-D Finite Element (FE) analysis. The first buckling mode is shown in Fig. 6. The obtained

buckling load is used to compute the additional stiffness through Eq. (29).
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Fig. 6 First buckling mode for sandwich beam with Y-shaped core obtained using 3-D FE analysis

0

S —e—DFCT
= —o—classical
CST

Error (in %)
>

-20

0 0.05 0.1 0.15 0.2 0.25 0.3
s/L

Fig. 7 Comparison of the relative percentage error obtained via different methodologies

Now, we define an error measure for comparing the performance of different methods, in which the 3-D
FE results serve as a benchmark. The error is computed using the following formula:

Per)method — (P,
Error = Ferlmethod — (For)3prim 4o (30)

(Per)3DFEM
The error % is computed for DFCT (with y = 2719.577 for this particular example), classical theory ([31]),

couple-stress theory (CST) ([31]) and is presented in Fig. 7. As can be seen from Fig. 7, the proposed framework
can provide an accurate estimate of the critical buckling load.

3.1 Imposition of boundary condition (BC)-s using pseudo-nodes

One important aspect for the simulation of the integro-differential equations is the imposition of the boundary
conditions. Therefore, before performing the deformation studies we address this by incorporating pseudo-
nodes on each side of the beam. A fictitious region of length twice the influence radius is assumed on each
boundary as shown in Figs. 8 and 9. Within a discretized set up, the BCs are given as follows:

Clamped BC:

@) W3)_p = u3)p

31
(i) & p=—ap, GV
where P = 1,2, 3, ... denote the discretization nodes and P = —1, —2, —3, ... denote the node on the
extended boundary.
Simply supported BC:

(@) (u3)-p =—3)p
(ii) ®_p =dp where P=1,2,3,.... (32)

(ii) G(G(u3, X), X) = G(®, X).
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Fig. 10 Pictorial representation of the shear deformable beam with Y-shaped core subjected to transverse loading

4 Numerical results
4.1 Analysis of shear deformable beam with Y-shaped core

For numerical simulation, we begin with the analysis of a corrugated shear deformable beam subjected to
transverse load. A pictorial representation of the beam is presented in Fig. 10. For studying the shear deformable
beam, the derivative-free nonlocal equations are simulated in the strong form.

The undeformed length of the beam is considered as L = 0.6477m. The cross-sectional area A and second
moment of area / are assumed to be the same as given in the previous section. The mechanical properties of
the beam, i.e. Young’s modulus £ = 209G Pa and the mass density p = 7850kg/ m3, are considered with
the time step taken as At = 1us. To investigate the importance of the additional term in effectively capturing
the nonlocal bending effect, we first examine the response of the simply supported beam when subjected to
uniformly distributed load ¢ (x) = 1000N /m. The simply supported BCs are implemented through Eq. (32).
Figure 11 presents the importance of additional nonlocal bending energy in arriving at a stabilized solution.
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Fig. 11 The effect of additional term in stabilizing the nonlocal solution obtained via DFCT
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Fig. 12 Comparison of results obtained via PD and DFCT, after incorporating the additional term

To demonstrate the advantages of the proposed formalism over a PD correspondence, in the context of
loss of symmetry, a random discretization of nodes is considered. The undeformed length of the beam is
taken as L = 1.667m. The pseudo-boundaries are implemented through Eq. (32). The dynamic analysis is
performed using a time step At =3us. The responses obtained via the PD and the DFCT are recorded and
presented in Fig. 12 (at time 7y = 1500us). The DFCT-based response presents the stabilized solution for the
energy obtained through buckling analysis performed in the previous section. However, the zero-energy mode
oscillations still persist in PD analysis Fig. 13 and Fig. 14.

We further extend our study to demonstrate the efficacy of DFCT in obtaining the stabilized solution
under the application of unsymmetrical transverse loading. For this purpose, we analyse the response of the
corrugated beam when subjected to a uniformly varying load (UVL) g (x) = ¢qo (1 - %) and a parabolic loading

q(x) =qo (l - %)2, where go = 1000N /m. The responses for the UVL and parabolic loading are presented
in Fig. 13 and Fig. 14. Figure 14 demonstrates the efficacy of the DFCT over PD in suppressing the zero-energy
oscillations with the nonlocal bending energy.

4.2 Analysis of a prismatic shear deformable beam

To examine the accuracy of the proposed formalism in determining the response of a prismatic shear deformable
beam, we consider a steel beam of length L = 1.538m, cross-sectional area A = 7196.8 x 10~%m? and second
moment of area I = 2.01 x 107> m*. The Young’s modulus of elasticity and mass density of the material is
considered as E = 210G Pa and p = 7850kg/m?, respectively. The experimental value of buckling load
P, = 3779kN for the column of same dimension has been suggested by [32]. This value of P, is substituted
in Eq. (29) to compute the coefficient y = 1.88 x 10°, which is further incorporated to analyse the response
of the beam when subjected to uniformly distributed load gg = 1000N /m. The simply supported boundary
conditions are incorporated through Eq. (32). The transverse and rotational displacement for a randomly
discretized beam (with mean interparticle spacing AX = 0.0034m) is presented in Fig. 15 and Fig. 16. The
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Fig. 13 Comparison of the response recorded via PD and DFCT for simply supported shear deformable beam with Y-shaped
core when subjected to uniformly distributed load
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Fig. 14 Comparison of the response recorded via PD and DFCT for simply supported shear deformable beam with Y-shaped
core when subjected to parabolic loading

DFCT-based response presents the stabilized solution for the energy obtained through buckling analysis.
However, the zero-energy mode oscillations still persist in PD analysis.

Since concrete is one of the most widely used construction material, we further extend our study to
examine the response of concrete beams. For the numerical simulations, a prismatic beam of length L = 10m
is considered with the depth, 4, and the width, b, of beam taken as 2 m and 1 m, respectively. For the numerical
analysis, we consider M40 grade of concrete (with p = 2400 kg/m3, w=0.3and E = 5000,/fx M Pa,
where f,; denotes the characteristic compressive strength of a particular grade of concrete). A shear correction
factor ky = 5/6 is used. A time step of 1us is chosen for analysing the dynamic response of the beam under
varying loading and boundary conditions. The shear deformable beam subjected to varying external loading
is randomly discretized using 450 particles. The radius of influence is taken as r. = 46.2mm.

4.2.1 A clamped—clamped beam subjected to a uniformly distributed loading

The beam is clamped at both the ends. The boundary conditions in terms of #3 and & are imposed using Eq.
(31). The beam is analysed for ¢y = 500us. We begin with the analysis of the beam subjected to uniformly
distributed load of intensity go = 1000N /m.

The curves presented in Fig. 18a to Fig. 17 show the responses via DFCT and PD. A portion of Fig. 18a
(marked with dotted rectangle) is zoomed in and is presented in Fig. 18b to figure 17. for clear visualization
of oscillations in PD, which are considerably reduced in the response captured via DFCT. A similar trend is
observed in the rotational displacement, which is presented in Fig. 18.

4.2.2 A clamped—clamped beam subjected to a uniformly varying load

We further extend our study to analyse the response of the beam when subjected to a uniformly varying load
as shown in Fig. 19
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Fig. 20 Comparison between the response captured via PD and DFCT when the beam is subjected to a uniformly varying load.
a Transverse displacement of the beam. b A zoomed view of transverse deformation: oscillations are observed in PD

The load intensity go = 1000N /m is applied, and the response is captured via PD and DFCT. Fig. 20 and
Fig. 21 demonstrates the efficacy of proposed formalism in effectively minimizing the oscillations observed
in the beam when subjected to unsymmetrical loading.

The curves presented in Fig.20a report the oscillations in the transverse displacement response captured
via PD. A portion of Fig.20a, marked with dotted rectangle, is zoomed in for clear visualization of oscillations
in PD, which are not seen in the response captured via DFCT (see Fig.21b). Figure 21 shows the comparison
of the rotational response obtained via two methodologies. The results are found in conformity as higher
oscillations are observed in the case of PD as compared to DFCT.

4.3 A clamped—clamped beam subjected to parabolic loading

In our next example, we analyse the beam subjected to parabolic external loading. The load g at a distance x from

the left support of the beam of length L may be defined as ¢ (x) = qo (%)2 The load intensity go = 1000N /m.
The response at t = 500.s is presented in Fig. 22 and Fig. 23 to manifest the efficacy of proposed formalism
in capturing the response of a shear deformable beam subjected to an unsymmetrical external loading.



3994 M. Saxena et al.

x108

—PD
——DFCT

Rotational displacement

0 2 4 6 8 10
Length

|

Fig. 21 Comparison between the rotational displacement captured via PD and DFCT when the beam is subjected to a uniformly
varying load

5 %107
==
I
‘g |
205 !
8 |
© I
o -f [
%) I
o I
I
? 15l |
15 ,
: |
I
= |
o -2r
= ——PD ;
——DFCT i
N | S
0 2 4 6 8 10
Length
%107
G -05"
£
[0}
[&]
3]
o -1t
K]
o
[0
g 15f
%
g
&
= —FPD
——DFCT

9.2 9.4 9.6 9.8 10
Length

Fig. 22 Comparison between the response captured via PD and DFCT. a Transverse displacement of the beam. b A zoomed view
of transverse deformation: oscillations are observed in PD

The transverse response of the beam subjected to parabolic loading is recorded and presented in Fig.22a.
Figure 22b magnifies the portion of Fig.22a, enclosed by the rectangle with dotted lines, for a better visual-
ization of oscillating response captured via PD. Figure 23 shows the comparison of the rotational response
obtained via PD and DFCT.

4.3.1 A simply supported beam subjected to uniformly distributed loading

To demonstrate the efficacy under different boundary condition, we now examine the same shear deformable
beam under simply supported boundary condition. The beam is subjected to a uniformly distributed external
load of intensity go = 1000N /m. A pictorial representation of the same is presented in Fig. 24.
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The simply supported boundary conditions are imposed using Eq. (32). The response obtained at
ty = 200us is presented in Fig. 25 and Fig. 26. The transverse response of the simply supported shear
deformable beam subjected to uniformly distributed load is presented in Fig. 25a. Figure 25b presents a mag-
nified portion of 25a, enclosed by the rectangle with dotted lines, for a better visualization of oscillating
response captured via PD. Figure26a presents the rotational response obtained via PD and DFCT, and the
zoomed section is presented in Fig.26b. The figures demonstrate the presence of higher oscillations in the
response obtained via PD. Therefore, it can be manifested that the proposed formalism, i.e. DFCT, is a better
alternative for capturing the response of a shear deformable beam.

4.4 A simply supported sandwich beam with periodic core shapes subjected to three-point bending

To demonstrate the efficacy of the proposed formalism in precisely capturing the response of a simply supported
shear deformable beam, we examine the sandwich beams with two different core shapes, i.e. web-core (o =
90°) and truss-core (¢ = 60°). In the first case, we study the response of a 2-m-long sandwich beam with
web-core length s = 0.2m and depth d = 0.1m (as shown in Fig. 27a). The thickness of the core is taken as
0.005m. For numerical analysis, we consider Young’s modulus as 206G Pa and Poisson’s ratio as 0.3.

The buckling analysis of the web-core beam is performed using 3-D FE model as illustrated in Fig. 27b,
c. The buckling load (P,,) is recorded and presented in Table 1. The additional stiffness is then computed
through Eq. (29). To demonstrate the efficacy of the proposed formalism, the beam is examined under three-
point bending (as shown in Fig. 29a), and the results are then compared with the corresponding response
obtained via 3-D FE, sandwich theory [31] and couple-stress theory (CST) [31]. The 3-D FE results serve as
the benchmark for comparison with different methodologies and the relative error % by using Equation (30).
Table 1 presents the comparison and error% (E) for web-core sandwich beam with different cross-sectional
properties.

For the next case, we consider a sandwich beam with truss-core unit cell (¢« = 60°) which is repeated
periodically along the length of the beam (as shown in Fig. 28b). The thickness of core is taken as ¢ = 0.005m.
The mechanical properties of the beam are same as in the case of web-core sandwich beam. Figure 28c
represents the buckling response of the beam under simply supported boundary conditions.

The critical buckling load obtained from the buckling analysis is recorded and used to compute the extra
stiffness term. The beam is further examined under three-point bending (as shown in Figure 29b), and the
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ha=90 \

Fig. 27 a Unit cell of a web-core. b A schematic view of undeformed (meshed) web-core sandwich beam modelled using a 3-D
FE software. ¢ First buckling mode for a web-core sandwich beam using 3-D FE analysis

Fig. 28 a Unit cell of a truss-core. b A schematic view of undeformed (meshed) truss-core sandwich beam modelled using a 3-D
FE software. ¢ First buckling mode for a truss-core sandwich beam using 3-D FE analysis

result is validated through 3-D FE model. The result is recorded and further compared with those obtained
via sandwich theory and CST (which are taken from [31]). Table 1 presents the comparison of maximum
transverse deflection of the beam obtained via different methodologies.

It is interesting to note that the proposed formalism accurately captures the response for different core
shapes and flange to core thickness ratio.
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Fig. 29 A pictorial representation of simply supported shear deformable sandwich beam with a web-core and b truss-core unit
cell subjected to three-point bending (F = 10kN)

Table 1 Maximum transverse deflection in a sandwich beam, predicted with present and validation models for L = 2.0m beams
subjected to three-point bending (F = 10kN)

S.no.  Periodic core shape tf/te  Pe (inN) Max. transverse deflection (in mm)

3D-FE Sandwich theory (E) CST(E) DECT(E)
1. Web-core (¢ = 90°) 2 1.66x 107 1.804 1.791 (—0.73%) 1.791 (—=0.73%) 1.798 (—0.32%)
2. Web-core (¢ = 90°) 1 2.0797x10°  2.843 2.810 (—1.17%) 2.810 (—1.17%) 2.815 (—0.98%)
3. Truss-core (@« = 60°) 1 7.256x10° 0.714 0.721 (0.98%) 0.718 (0.6%) 0.7155 (0.168%)

5 Conclusion

In this paper, we have introduced a Volterra derivative-based approach to derive the nonlocal continuum models
without involving spatial derivatives. Specifically, we have derived the nonlocal integro-differential governing
equations for a thick or shear deformable beam. The equations have been derived from a nonaffine energy of
the beam, which plays a crucial role in addressing problems with the zero-energy modes that afflict the PD
solutions without the addition of extra energy in an ad hoc manner. Another major aspect of the work has
been the proposal of a derivative-free directionality term, which approaches its classical counterpart in the
infinitesimal limit.

The theory, while can be seen as a variant of the peridynamics (PD), has certain advantages over the PD, par-
ticularly when there is a loss of symmetry. The proposed directionality term avoids issues with correspondences
under nonsymmetric conditions. We have performed buckling analysis of corrugated beam and found that the
derivative-free formulation can provide accurate estimate the critical buckling load, while the derivative-based
theories like the classical Timoshenko beam and couple-stress theory give erroneous estimates for the critical
buckling load. The efficacy of the formalism has been showcased by solving multiple problems for different
loading and boundary conditions. To bolster our claim, shear deformable beams with different core shapes
are examined under three-point loading conditions and the results are validated against the well-established
theories like couple-stress theory and sandwich theory. The results are found to be in good agreement with
those obtained via 3-D FE models.

The authors would like to extend the study in the future to derive the nonlocal integro-differential models for
other structural components such as plates and shells, considering the respective nonaffine energy expressions.
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Appendix A localization of derivative-free deformation gradient G

Here, we demonstrate that the derivative-free nonlocal directionality term approaches the classical deformation
gradient in the infinitesimal limit. Let us assume sufficient smoothness of the field such that the displacement
at a material point Y, in the neighbourhood of X, can be approximated using a truncated Taylor expansion as:

u(¥) ~u(X) + vu, X)(Y — X), (A1)
where V is the classical gradient operator. The average stretch around X may also be approximated in a similar

way.
i(Y) ~ u(X) + v, X)¥ — X). (A2)

The nonlocal derivative-free deformation gradient is expressed as:

Gu,X)=1+ G, X)

:I+|:/;2x(u—ﬁ)(Y—f/)TdY} [/QX(Y—Y)(Y—I?)TdY}_I,

where [ is the identity tensor. Replacing the terms in Eq. (A3) with those given in Egs. (A1) and (A2), we get,

(A3)

Gm1+[/ (u(X) + V@, X)(Y — X) — (u(X) + V(u, X)(Y — X))) (Y—?)Tdy].
Q
—1
1+[/ (Y—)?)(Y—?)Tdy]
Qx
=1+[/ V(u,X)(Y—X—Y—X)(Y—Y)TdY]U
X Q

—1
=14+ v(u X) [/ (Y—X—Y—}_()(Y—Y)TdY][/ (Y—Y)(Y—Y)Tdy]
Q, Qx

—1
(Y — Y)Y — ?)Tdy]

X

-1
=1+ V(u,X) U Y -1)(y - Y)TdY} [/ Y -V - Y)TdY}
Q Qx

=1+4+9Vu,X)
—F. (A4)
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