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ABSTRACT
Deep Learning (DL) methods have dramatically increased in popularity in recent years. While its initial
success was demonstrated in the classification and manipulation of image data, there has been significant
growth in the application of DL methods to problems in the biomedical sciences. However, the greater
prevalence and complexity of missing data in biomedical datasets present significant challenges for DL
methods. Here, we provide a formal treatment of missing data in the context of Variational Autoencoders
(VAEs), a popular unsupervised DL architecture commonly used for dimension reduction, imputation, and
learning latent representations of complexdata.Wepropose anewVAEarchitecture, NIMIWAE, that is oneof
the first to flexibly account for both ignorable andnon-ignorable patterns ofmissingness in input features at
training time. Following training, samples can be drawn from the approximate posterior distribution of the
missing data can be used for multiple imputation, facilitating downstream analyses on high dimensional
incomplete datasets. We demonstrate through statistical simulation that our method outperforms existing
approaches for unsupervised learning tasks and imputation accuracy. We conclude with a case study of an
EHR dataset pertaining to 12,000 ICU patients containing a large number of diagnostic measurements and
clinical outcomes, where many features are only partially observed.
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1. Introduction

Deep Learning (DL) methods have dramatically increased in
popularity in recent years. While its initial success was demon-
strated in the classification and manipulation of image data,
there has been significant growth in the application of DLmeth-
ods to an array of problems in the biomedical sciences (Shickel
et al. 2018; Lopez et al. 2018). The presence of complex interac-
tions among high-dimensional features in modern biomedical
data has motivated the use of Variational Autoencoders (VAEs),
a DL architecture commonly used for unsupervised learning
tasks such as dimension reduction, representational learning,
and generation of synthetic data mimicking real input data,
whichmay be unavailable due to patient confidentiality (Shickel
et al. 2018). In prior evaluations, VAEs have shown tremendous
performance in data generation and representation learning
(Kingma and Welling 2019).

Some of the useful characteristics of the VAE can be derived
from its underlying architecture. This structure is similar to that
of theAutoencoder (AE), which consists of twomajor parts. The
first part is the encoder neural network, which in the AE deter-
ministically transforms the input data into a lower-dimensional
set of factors that is assumed to capture the salient qualities
of the data. The second is the decoder, which is a separate
neural network that attempts to reconstruct the original data
from the lower dimensional space itself (Tschannen, Bachem,
and Lucic 2018). The quality of the dimension reduction and
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reconstruction is measured by the reconstruction error, which
is measured by the difference in the input data and its recon-
structed version. This lower dimensional space may be used
to define structure in the underlying set of input data (Wang,
Yao, and Zhao 2016), similar to PCA. However, the encoder and
decoder are often represented by feed forward neural networks,
allowing for complex nonlinear interactions between features to
be captured in both (LeCun, Bengio, and Hinton 2015). The
VAE additionally imposes a probabilistic assumption on the
input data and the lower-dimensional (or “latent”) space (Doer-
sch 2016), where explicit encoder and decoder distributions are
defined, and neural networks are used to output the parameters
of each distribution (Kingma and Welling 2019). The learned
decoder allows the VAE to also generate synthetic data that has
high fidelity to the original training data, given the learned latent
space.

However, accounting for the prevalence and complexity of
missing data in modern biomedical datasets presents a signif-
icant challenge for training VAEs and other DL architectures.
Existing DL methods that claim to handle missing data either
require pre-training on studies with fully observed data, use
heuristics to replace missing observations, or cannot handle
more complicated forms of missingness, such as Missing at
Random (MAR), orMissingNot a Random (MNAR) (Li, Akbar,
andOliva 2020; Strauss andOliva 2021). Intuitively, when obser-
vations with missing values differ systematically from those
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without missingness, results from standard approaches that do
not properly account for this fact may no longer be accurate. For
example, the common presence of missing data across patient
records in electronic health record data has been shown to
present a significant barrier to the generalizability and applica-
bility of deep learningmethods (Wells et al. 2013). EHRdata also
typically contain many features pertaining to a large number of
patients (Ross, Wei, and Ohno-Machado 2014), and such fea-
tures may show complex interactions with each other as well as
with clinical outcomes of interest (Vinzamuri and Reddy 2013),
compounding the impact of the missingness of these features.
For these reasons, the ability to flexibly account for different pat-
terns of missing data in modern biomedical datasets, especially
in the more difficult non-ignorable missingness setting, would
have great utility.

In this article, we introduce a novel deep learning archi-
tecture called Non-Ignorably Missing Importance-weighted
Autoencoder (NIMIWAE) that treats missing observations as
latent variables in the VAE framework using Importance-
Weighted Autoencoders (IWAEs). Here we model the prob-
ability of missingness using a feed forward neural network,
facilitating more flexible handling of MNAR patterns of miss-
ingness across a large set of available features. Through simula-
tions, we show that proper modeling of the missingness mech-
anism increases the accuracy of missing data imputation, as
well as downstream coefficient estimation using these imputed
datasets. Lastly, we show that in the Physionet 2012 Challenge
EHR dataset, accounting for MNAR missingness results in
significant differences in downstream fitted models to predict
in-hospital mortality. More generally, NIMIWAE is a flexible
framework within the VAE family to handlemultiple patterns of
missingness commonly found in complex biomedical datasets.

2. Methods

2.1. Variational Autoencoder

LetX be an n× p data matrix, where xi denotes the observation
vector pertaining to the ith observation, i = 1, . . . , n, and xij
denotes the value of the jth feature in this vector, j = 1, . . . , p. In
a VAE, we assume x1, . . . , xn are iid samples from amultivariate
p.d.f or “generative model” pψ(X|Z). Here, Z is an n× dmatrix,
such that Z = {z1, . . . , zn} and zi is a latent vector of length
d pertaining to the ith sample (Kingma and Welling 2019).
Typically it is assumed that d ≤ p, such that Z constitutes a
lower-dimensional representation of the original data X. The
parameters ψ and conditional distribution pψ(X|Z) indicate
how the observed data X may be generated from Z. In this
manner, a VAE aims to learn accurate representations of high-
dimensional data, and may be used to generate synthetic data
with similar qualities as its training data. These aspects are
also aided through the use of embedded deep learning neural
networks, for example within pψ(X|Z), which also facilitate its
applicability to larger dimensions and complex datasets.

2.1.1. Objective Function
Since ψ is unknown, learning is performed by maximiz-
ing the marginal log-likelihood of X with respect to ψ ,
where we denote this marginal log-likelihood as log pψ(X) =

log
∫
pψ(X,Z)dZ = log

∫
pψ(X|Z)p(Z)dZ. However, due to the

integral involved, this quantity is often intractable and is difficult
to maximize directly. Therefore, VAE’s alternatively optimize
the so-called “Evidence Lower Bound” (ELBO), which has the
following form (Kingma and Welling 2019):

LELBO(θ ,ψ) = EZ∼qθ (Z|X) log
[
pψ(X|Z)p(Z)

qθ (Z|X)

]
(1)

L̂ELBO
K (θ ,ψ) = 1

K

K∑
k=1

log

[
pψ(X|Z̃k)p(Z̃k)

qθ (Z̃k|X)

]
. (2)

Here, LELBO(θ ,ψ) denotes the ELBO such that LELBO(θ ,ψ) ≤
log pψ(X). Also let L̂ELBO

K (θ ,ψ) denote the empirical approxi-
mation to (1) computed by Monte Carlo integration, such that
LELBO(θ ,ψ) ≈ L̂ELBO

K (θ ,ψ) and Z̃1, . . . , Z̃K are K samples
drawn from qθ (Z|X), the variational approximation of the true
but intractable posterior pψ(Z|X), also called the “recognition
model”. Furthermore, denote fψ(Z) and gθ (X) as the decoder
and encoder feed forward neural networks of the VAE, where
ψ and θ are the sets of weights and biases pertaining to each
of these neural networks, respectively. Given Z, fψ(Z) outputs
the distributional parameters pertaining to pψ(X|Z). Given X,
gθ (X) outputs the distributional parameters for qθ (Z|X).

In variational inference, qθ (Z|X) is constrained to be from a
class of simple distributions, or “variational family”, to obtain the
best candidate from within that class to approximate pψ(Z|X).
Variational inference is usually used in tandem with amortiza-
tion of the parameters where the neural network parameters
are shared across observations (Gershman andGoodman 2014),
allowing for stochastic gradient descent (SGD) to be used for
optimization of Eq. (2) (Kingma andWelling 2019). In practice,
both qθ (Z|X) and p(Z) are typically assumed to have simple
forms, such as multivariate Gaussians with diagonal covariance
structures, and qθ (Z|X) is commonly assumed to be factoriz-
able, such that qθ (Z|X) = ∏n

i=1 qθ (zi|xi) (Kingma and Welling
2019).

2.1.2. Estimation Procedure and Use Cases
Let (θ̂ (t), ψ̂(t)) be the estimates of (θ ,ψ) at update (or iteration)
t. For t = 0, these values are often initialized to small values
centered around 0, although other initialization schemes may
be used (Saxe, Mcclelland, and Ganguli 2014; Murphy 2016).
Each subsequent update t ≥ 1 consists of two general steps to
maximize L(θ ,ψ). First, K samples are drawn from q

θ̂ (t) (Z|X)

to compute the quantity in 2), conditional on (θ̂ (t), ψ̂(t)). Then,
the so-called “reparameterization trick” is used to facilitate
the calculation of gradients of this approximation to obtain
(θ̂ t+1, ψ̂ t+1) using stochastic gradient descent (Kingma and
Welling 2019). This proceduremay be repeated for a fixed num-
ber of iterations, or may be terminated early via pre-specified
early stop criteria (Prechelt 1998). Kingma and Welling (2019)
provides additional details on the maximization procedure for
VAEs. The networks fψ(Z) and gθ (X) also allow the VAE to
capture complex and nonlinear relationships between features
when outputting the distributional parameters for the genera-
tive and recognition models, respectively, through the inclusion
of hidden layers in each network. The number of hidden layers
and nodes per layer for each network are commonly determined
via hyperparameter tuning.
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Aftermodel fitting, the VAE has several useful features. First,
synthetic data can be generated by sampling from the learned
generativemodel p

ψ̂
(X|Z) after drawing a sample from q

θ̂
(Z|X)

(Mattei and Frellsen 2019; Nazabal et al. 2018). Second, the
posterior modes in the latent space Z can be determined from
q
θ̂
(Z|X). These posterior modes may be used for purposes

such as clustering or substructure discovery (Lim, Jiang, and
Yi 2020). In some applications, p

ψ̂
(X|Z) may also be used to

directly perform imputation (Nazabal et al. 2018), however, the
statistical properties of this procedure have not been thoroughly
discussed in prior work.

2.2. Importance-Weighted Autoencoder

The IWAE (Burda, Grosse, and Salakhutdinov 2015) is a gener-
alization of the standard VAE, where the resulting IWAE bound,
corresponding to the ELBO in (1), can be written as

LIWAE
K (θ ,ψ) = EZk∼qθ (Z|X) log

[
1
K

K∑
k=1

pψ(X|Zk)p(Zk)

qθ (Zk|X)

]
(3)

L̂IWAE
K (θ ,ψ) = log

[
1
K

K∑
k=1

pψ(X|Z̃k)p(Z̃k)

qθ (Z̃k|X)

]
. (4)

An important distinction in (3) from (1) is that a VAE assumes
a single latent variable Z in 1) that is sampled K times in the
ELBO approximation from 2). In contrast, an IWAE assumes
K iid latent variables in the expression for its lower bound,
where Z1, . . . ,ZK

iid∼ qθ (Z|X). The contribution of each Zk
in (3) is weighted by p(Zk)

qθ (Zk|X)
. Then, to compute its empirical

approximation L̂IWAE
K , typically only one sample is drawn for

each Zk in (4). For K > 1, Burda, Grosse, and Salakhutdinov
(2015) showed that log p(X) ≥ LIWAE

K+1 ≥ LIWAE
K , such that

LIWAE
K → log p(X) asK → ∞ if pψ(X,Z)/qθ (Z|X) is bounded.

Thus, the IWAE bound more closely approximates the true
marginal log-likelihood when K > 1 (Cremer, Morris, and
Duvenaud 2017), at the cost of greater computational burden.
For K = 1, LIWAE

1 = LVAE, the IWAE corresponds exactly
to the standard VAE. In this way, the IWAE can be considered
to be part of the VAE family, and we refer to methods that use
either VAEs or IWAEs broadly as “VAE methods”. Intuitively,
using more Monte Carlo samples, that is K > 1, allows the
IWAE to prevent the lower bound frombeing greatly susceptible
to occasional poor samples from the variational posterior: a
limitation of the standard VAE. A visualization of the workflow
for an IWAE (without missing data) can be found in Section A
of the supplementary materials.

VAE methods have shown excellent performance in repre-
sentation learning onmany types of data. However, the presence
of missingness in X presents significant challenges to the above
modeling procedures and the application of VAE methods in
general.

2.3. Missing Data

In this section, we first introduce notation for missing data and
review the different mechanisms of missingness, as described
in the statistical literature. Let the data be factored such that
X = {Xo,Xm}, with Xo denoting the observed values and Xm

denoting the missing values. For each observation vector xi,
denote xoi and xmi respectively to be the observed and missing
features of xi. Also, letR be amatrix of the same dimension asX,
with entries rij = I(xij is observed) for the ith observation and
jth feature, where I(·)denotes the indicator function. In thisway,
R is the “mask”matrix pertaining toX, such that xoi = {xij : rij =
1} and xmi = {xij : rij = 0} for all i = 1, . . . , n and j = 1, . . . , p.
Importantly, one can consider missing values as latent variables
likeZ, as there are no distinctions between unknownparameters
andmissing variables in Bayesian statistics (Gelman et al. 1995).
This allows us to model the missing data Xm jointly with latent
variable Z and the observed data {Xo,R}.

Missingness was classified into three major categories,
or mechanisms, in the seminal work by Little and Rubin
(2002). These mechanisms are missing completely at random
(MCAR),missing at random (MAR), andmissing not at random
(MNAR), and they satisfy the following relations: (a) MCAR:
p(ri|xi, zi,φ) = p(ri|φ), (b) MAR: p(ri|xi, zi,φ) = p(ri|xoi ,φ),
and (c) MNAR: p(ri|xi, zi,φ) = p(ri|xoi , xmi , zi,φ). Here, φ

denotes the unknown parameters pertaining to the missingess
model p(ri|xi, zi,φ), where ri = {ri1, . . . , rip}. We discuss forms
of this model in Section 2.3.2. In the presence of missingness
mask R, the marginal log-likelihood may be written as

log pψ ,φ(Xo,R) = log
∫∫

pψ ,φ(Xo,Xm,Z,R)dXmdZ. (5)

We may factor pψ ,φ(Xo,Xm,Z,R) using the selection model
factorization (Diggle and Kenward 1994), which is written as
pψ ,φ(Xo,Xm,Z,R) = pψ(Xo,Xm|Z)p(Z)p(R|X,Z,φ), where
p(R|X,Z,φ) = ∏n

i=1 p(ri|xi, zi,φ).

2.3.1. IgnorableMissingness
In a likelihood-based analysis under either MCAR or MAR,
the missingness mechanism is considered to be “ignorable”
such that the missingness mechanism need not be explicitly
modeled in these cases (Rubin 1976; Little and Rubin 2002).
Under ignorable missingness, the left hand side of (5) can be
separated into log pψ(Xo) + log pφ(R|Xo), where pψ(Xo) is
the marginal distribution of Xo. Therefore, pφ(R|Xo) need not
be specified because inference on the parameters of interest
pertaining to pψ(Xo) is independent of pφ(R|Xo). Then, one
aims to maximize the quantity

log pψ(Xo) = log
∫∫

pψ(Xo,Xm,Z)dXmdZ

= log
∫

pψ(Xo,Z)dZ. (6)

This quantity can be bounded below exactly as in Section 2.1.1,
conditioning on just the observed data Xo, rather than the
full data X. Existing methods typically take advantage of this
simplification, and are shown to perform well under ignorable
missingness. Details for these methods are given in Section A of
the supplementary materials.

2.3.2. Non-IgnorableMissingness
In contrast, non-ignorable (orMNAR)missingness refers to the
case where the missingness can be dependent on any unob-
served values, including themissing entries xmi .MNARmissing-
ness can also be dependent on xoi as well as latent values like Z,
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and thusMNAR represents themost general and difficult case of
missingness in practice. Here, we assume that R is independent
of Z, as conditioning on such latent factors may be compu-
tationally redundant based on the assumed data generating
process (Ibrahim 2001). In this setting, themissingness typically
requires specification of a model for the missingness p(R|X,φ)

(Stubbendick and Ibrahim 2003). Current VAE methods are
only able to handle MCAR or MAR missingness, and there
is no method to properly deal with the more difficult MNAR
case. This issue is especially problematic because missingness
in many real world applications have been posited to be non-
ignorable (Beaulieu-Jones and and 2016; O’Shea 2019).

There have been a number of ways to specify p(R|X,φ) in
statistical literature. For example, Diggle and Kenward (1994)
proposes a binomial model for the missing data mechanism:

p(R|X,φ) =
n∏

i=1

p∏
jm=1

[
p(rijm = 1|xi,φjm)

]rijm

×
[
1 − p(rijm = 1|xi,φjm)

]1−rijm ,

where jm = 1, . . . , pmiss indexes the pmiss features in X that
contain missingness, φjm is the sets of coefficients pertaining to
jmthmissingness model, and p(rijm = 1|xi,φjm) can bemodeled
straightforwardly by a logistic regression model, such that

logit[p(rijm = 1|xi,φjm)] = φ0jm + xoi φ1jm + xmi φ2jm , (7)

where φ1jm = {φ1,jm,1, . . . ,φ1,jm,pobs}T is a pobs × 1 vector of
coefficients pertaining to the fully-observed features, φ2jm =
{φ2,jm,1, . . . ,φ2,jm,pmiss}T is a pmiss × 1 vector of coefficients per-
taining to the missing features, and φ0jm is the intercept of the
jthm missingness model.

2.4. NIMIWAE: IWAEwith NonignorableMissingness

We now propose a novel method to perform statistical learning
and imputation using an IWAE in the presence of missing data
(NIMIWAE), assuming missingness is nonignorable. We later
show how this model can be simplified when missingness is
assumed to be ignorable (IMIWAE). First, we specify a gen-
eral form of the lower bound, in which we use the general
IWAE framework to form a tighter bound on the marginal
log-likelihood than the VAE ELBO. Let us define qθ (Z,Xm)

as the variational joint posterior pertaining to (Z,Xm). We
can factor this variational joint posterior as qθ (Z,Xm) =
qθ1(Z|Xo)qθ2(Xm|Z,Xo,R). Here, for k = 1, . . . ,K, we assume
Zk

iid∼ qθ1(Z|Xo) similar to the traditional IWAE. We addi-
tionally assume iid latent variables Xm

k
iid∼ qθ2(Xm|Z,Xo,R)

pertaining to the missing features, where each Xm
k has dimen-

sionality pmiss. Similar to traditional VAEs, we use the class
of factorized variational posteriors, except now qθ (Z,Xm) =∏n

i=1 qθ (zi, xmi ) and qθ (zi, xmi ) = qθ1(zi|xoi )qθ2(xmi |zi, xoi , ri).
Then, denoting zik and xmik as the ith observation vectors of Zk

and Xm
k , respectively, we have zi1, . . . , ziK

iid∼ qθ1(zi|xoi ) and

xmi1, . . . , x
m
iK

iid∼ qθ2(xmi |zi, xoi , ri). The form of the lower bound,
which we call theNonIgnorablyMissing Importance-Weighted

Auto Encoder bound, or “NIMIWAE bound”, is derived as
follows:

log pψ ,φ(Xo,R)

=
n∑

i=1
log pψ ,φ(xoi , ri)

=
n∑

i=1
log

[∫∫
pψ ,φ(xoi , x

m
i , ri, zi)dzidx

m
i

]

=
n∑

i=1
logE(zik ,xmik )∼qθ (zi ,xmi )

[
1
K

K∑
k=1

pψ ,φ(xoi , x
m
ik , ri, zik)

qθ1(zik|xoi )qθ2(xmik |zik, xoi , ri)

]

≥
n∑

i=1
E(zik ,xmik )∼qθ (zi ,xmi ) log

[
1
K

K∑
k=1

pψ ,φ(xoi , x
m
ik , ri, zik)

qθ1(zik|xoi )qθ2(xmik |zik, xoi , ri)

]

= LNIMIWAE
K . (8)

As explained in Section 2.3, we use the selection model
factorization of the joint distribution of {xi, ri, zi}, such that

pψ ,φ(xoi , x
m
i , ri, zi) = pψ(xoi , x

m
i |zi)p(zi)pφ(ri|xoi , xmi ).

Here, ψ denotes the weights and biases of the encoder and
decoder neural networks, and φ denotes the weights and biases
of the missingness network that learns the parameters of the
missingness model.

Applying the above factorizations to (8), and estimating the
expectations in (8) by sampling from qθ (zi, xmi ) we obtain the
estimate of the NIMIWAE bound:

L̂NIMIWAE
K =

n∑
i=1

log

[
1
K

K∑
k=1

pψ(xi|z̃ik)p(z̃ik)pφ(ri|xoi , x̃mik)
qθ1(z̃ik|xoi )qθ2(x̃mik |z̃ik, xoi , ri)

]
,

(9)
where {z̃ik, x̃mik} are samples of {zi, xmi } that are drawn via
ancestral sampling (Bishop 2006) from qθ1(z̃ik|xoi ) and
qθ2(x̃mik |z̃ik, xoi , ri), respectively, and the NIMIWAE bound
is optimized using the Adam optimizer (Kingma and
Ba 2014). In NIMIWAE, we have four neural networks
fψ(zi), gθ1(xoi ), gθ2(x

o
i , ri, zi), and hφ(xi), which respectively

output the parameters pertaining to pψ(xi|zik), qθ1(zik|xoi ),
qθ2(xmik |zik, xoi , ri), and pφ(ri|xoi , xmik).

The quantity hφ(xi), which we call the “missingness net-
work”, outputs the distributional parameters to the missingness
model pφ(ri|xoi , x̃mik) specifically given in (9). Furthermore, by
omitting this network and its contribution to the NIMIWAE
bound altogether, one can attain an ignorably missing version
of the NIMIWAE method (IMIWAE), which would be more
suitable for use when assuming MCAR and MAR missingness.
We explore the empirical performance of each of these models
under misspecification of the missingness mechanism in Sec-
tion 3. An illustration of hφ(xi) is given in Figure 1.

Historically, the set of features for the pmiss logistic regression
models from (7) need to be carefully pre-specified, usually based
upon prior information (Little and Rubin 2002). Prior work
has shown that overparameterization of the missingness model
can lead to identifiability issues and divergence in EM-based
maximization procedures (Ibrahim and Molenberghs 2009).
Our proposed method allows users to similarly pre-specify a
subset of features in themissingness network, which can be used
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Figure 1. Architecture of proposed NIMIWAE method. Dark colored nodes (Xo , R, Xm = 0) represent deterministic values, lightly colored nodes (Z, Xm′) represent learned
distributional parameters, andoutlined (in red) nodes represent sampledvalues.Orange cells correspond to latent variables Z and Xm. Z1, . . . , ZK and Xm1 , . . . , X

m
K are sampled

from their respective variational posteriors qθ1 (Z|Xo) and qθ2 (X
m|Z, R, Xo). Below is the NIMIWAE bound (LNIMIWAE

K ) and the estimate of the NIMIWAE bound (L̂NIMIWAE
K ),

which is optimized via stochastic gradient descent.

for sensitivity analyses, which is very commonly done for real-
life settings. When prior information on the missingness is not
available, however, it is unclear how overparameterization will
affect model fitting and performance in this setting. Therefore,
in Section 3, we evaluate empirically the use of all p features in
the missingness network when assuming MNAR missingness
using statistical simulation.

Additional details regarding the NIMIWAE algorithm are
outlined in Section A of the supplementary materials.

2.4.1. Multiple Imputation
Following training, NIMIWAE can provide point estimates for
E[xmi |xoi , ri], defined as the expected value of the missing fea-
tures given the observed data and the mask for the ith obser-
vation under MNAR. The same NIMIWAE model can also
perform multiple imputation of the incomplete training dataset
to facilitate inference in downstream statistical models. We first
note that

E[xmi |xoi , ri] =
∫

xmi pψ ,φ(xmi |xoi , ri)dxmi

=
∫∫

xmi pψ ,φ(xmi , zi|xoi , ri)dzidxmi

=
∫∫

xmi
pψ ,φ(xmi , x

o
i , zi, ri)

pψ ,φ(xoi , ri)
dzidxmi

=
∫∫

xmi
pψ(xi|zi)p(zi)pφ(ri|xoi , xmi )

pψ ,φ(xoi , ri)
dzidxmi .

Then, we may estimate this integral by self-normalized
importance sampling. We use the proposal density
qθ1(zi|xoi )qθ2(xmi |zi, xoi , ri), and consider pψ ,φ(xoi , ri) as some
unknown constant. Then, we define the quantities

wik = sik
si1 + · · · + siK

, and sik = pψ(xi|z̃ik)p(z̃ik)pφ(ri|xoi , x̃mik)
qθ1(z̃ik|xoi )qθ2(x̃mik |z̃ik, xoi , ri)

for k = 1, . . . ,K, with 1 sample drawn from the variational
posterior of each latent variable zik and xmik to compute sik,

where wik is defined as standardized “importance weights”
(Mattei and Frellsen 2019). Using these weights wemay estimate
E[xmi |xoi , ri] ≈ ∑K

k=1 wikx̃mik . Then, the process can be repeated
for each observation i = 1, . . . , n.

In the MCAR or MAR case, one can similarly estimate
E[xmi |xoi ] using the fitted IMIWAEmodel. By following a similar
derivation using the proposal density qθ1(zi|xoi )qθ2(xmi |zi, xoi ),
we obtain the same approximation E[xmi |xoi ] ≈ ∑K

k=1 wikx̃mik ,
with wik defined as before, but with a slightly different form for
sik:

sik = pψ(xi|z̃ik)p(z̃ik)
qθ1(z̃ik|xoi )qθ2(x̃mik |z̃ik, xoi )

.

Given these weights wik, we may now also produce Q
multiply-imputed datasets using the sampling importance
resampling (SIR) algorithm (Smith and Gelfand 1992). We first
construct a set ofK candidate draws and corresponding weights
using the procedure described above (default K = 10 × Q
draws), and then perform a weighted resample of size Q with
replacement from this set of draws to obtain approximate draws
from pψ(xmi |xoi , ri), for each observation i = 1, . . . , n. We may
then use techniques (Rubin 2004) to pool the estimates obtained
from a candidate regression model fit on each imputed dataset,
and obtain pooled point estimates and standard errors that
account for the uncertainty due to the imputation. In our analy-
ses, we used NIMIWAE to construct Q = 50 multiply-imputed
datasets by drawing K = 500 times from qθ2(xmi |zi, xoi , ri) for
each i = 1, . . . , n after the model was trained.

3. Numerical Results

3.1. Simulated Data

We use statistical simulation to evaluate the imputation per-
formance of our proposed NIMIWAE and IMIWAE methods
and under the assumption of MCAR, MAR, and MNAR miss-
ingness. We note that for each of these simulations, we use all
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p features in NIMIWAE’s missingness network. We also com-
pared this performance to state-of-the-artmissing datamethods
in machine learning that claim to handle ignorable missing-
ness patterns: HIVAE (Nazabal et al. 2018), VAEAC (Ivanov,
Figurnov, and Vetrov 2019), MIWAE (Mattei and Frellsen
2019), in addition to the popular MICE method (Van Buuren
and Groothuis-Oudshoorn 2011) and a naïve mean imputa-
tion method. We also included MissForest (Stekhoven and
Buhlmann 2011) in analyses where the model could be fit in
a CPU with 32 GB of memory. For all simulations, we divided
the full data into training and validation sets with ratio 8:2. For
methods that require hyperparameter tuning, each method was
trained on the training set for a given set of hyperparameters, the
performance of this model was then evaluated on the validation
set, and finally the training set was imputed using the model
pertaining to the optimal set of hyperparameters (based up
on validation set performnance). For methods that required
no hyperparameter tuning, we directly imputed just the train-
ing set, for consistency across all methods. In Sections 3.1.1–
3.1.2, we evaluate performance on fully synthetic data. Then,
in Section 3.1.3, we simulate missingness into existing datasets
from the UCI machine learning repository to preserve non-
linearity and interactions between features previously observed.
The simulation setup and performance criteria are described in
the subsequent sections.

3.1.1. Simulation Setup
Wefirst evaluate the performance of eachmethod on completely
synthetic data. Here we assume X is generated such that X =
ZW+ B, whereW and B and are matrices of dimensions d × p
and n × p, respectively, Z ∼ Nd(0, I), Wlj ∼ N(0, 0.5), and
Bij ∼ N(0, 1) for i = 1, . . . , n, j = 1, . . . , p, and l = 1, . . . , d.

We then simulate the missingness mask matrix R such that
30% of features are partially observed, and 50% of the observa-
tions for each of these features are missing. We generate rij from
the Bernoulli distribution with probability equal to p(rijm =
1|xi,φ), such that logit[p(rijm = 1|xi,φ)] = φ0 + φ1xoi + φ2xmi .
Here, we assume that jm = 1, . . . , pmiss index the missing
features, φ1 = {φ11, . . . ,φ1,pobs} are the coefficients pertaining
to the fully observed features, and φ2 = {φ21, . . . ,φ2,pmiss} are
those pertaining to the partially observed features, and pobs and
pmiss are the total number of features that are fully and partially
observed, respectively. We set pmiss = 	0.3 ∗ p� and pobs =
p − pmiss. We drew nonzero values of φ1 and φ2 from the log-
normal distribution with mean μφ = 5, with log standard
deviation σφ = 0.2.

To evaluate the impact of the misspecification of the miss-
ingness mechanism on model performance, rijm was simulated
under each mechanism as follows: (a) MCAR: {φ1,φ2} = 0,
(b) MAR: Same as MCAR except φ1jo �= 0 for one randomly
selected completely-observed feature jo where jo = pmiss +
1, . . . , p, and (c) MNAR: Same as MCAR except φ2jm �= 0.
In this way, for each MAR or MNAR feature, the missingness
is dependent on just one feature. In each case, we used φ0 to
adjust the overall expected rate of missingness of each feature to
approximately 50%.

Lastly, we simulated a binary response variable assuming
Pr(y = 1|X) = Sigmoid(β0 +Xβ), where y is a binary response

variable, β = {β1, . . . ,βp} are the set of regression coefficients,
and β0 is the intercept. In many applications, it is of interest to
use the features in X to predict some outcome variable y when
X is only partially observed. Therefore, the ability accurately
estimate β is also of importance in the presence of missingness.
Multiple imputationmethods likeMICE can be used to perform
coefficient estimation by pooling the coefficient estimates from
logistic regression models fitted on each individual multiply-
imputed dataset. We similarly perform coefficient estimation
using multiply-imputed datasets from the SIR algorithm within
NIMIWAE, allowing for direct comparisons in coefficient esti-
mation with MICE in estimating β .

We vary n, p, and d such that n = {10, 000; 100,000}, p =
{25; 100} features, and d = {2; 8}. We simulated 10 datasets
per simulation condition, spanning various missingness mech-
anisms and values for {n, p, d}. We fix the values of β at 0.25 for
each feature, and adjusted β0 to ensure equal proportions for the
two binary classes in Y. We measured imputation performance
by calculating the average L1 distance between true and imputed
masked values in X. Letting X̂m denote the imputed masked
values of the true Xm values of the missing entries, we denote
the average L1 distance is simply |X̂m−Xm|

Nmiss
, where Nmiss is the

total number of missing entries in the dataset. To assess the
ability ofmultiple imputationmethods in performing coefficient
estimation, we reported the percent bias (PB) of these pooled
estimates compared to the truth, averaged across the p features,
that is PB = 1

p
∑p

j=1
|βj−β̂j|

|βj| .
We also evaluated the methods’ performance under nonlin-

earity of the underlying missingness mechanism. In particu-
lar, we simulated data with missingness model logit[p(rijm =
1|xi,φ)] = φ0+φ1(xoi )2+φ2(xmi )2, where the covariate in each
missingness model is now the square of the respective feature.
We evaluated performance under 10 simulated datasets with
n = 100,000 and p = 25.

3.1.2. Simulation Results
Figure 2 shows the results pertaining to n = 100,000. Error bars
represented the variability in performance across 10 simula-
tions.Despite the overparameterizedmissingnessmodel,NIMI-
WAE consistently yields improved imputation performance
compared to other methods under MNAR missingness, while
yielding an average L1 that is comparable to other methods in
the MCAR and MAR cases, under these conditions assuming
large sample sizes. This can be exceptionally useful formany real
data applications, where the true covariates of the missingness
model may not be known a priori. In estimating β , we see that
NIMIWAE yields a lower average percent bias under MNAR
missingness, while MICE, IMIWAE, and NIMIWAE perform
similarly under MCAR or MAR mis singness.

Figure 3 shows the results pertaining to n = 10,000 using the
alternative initializationmethod described in Section 2.4, due to
the smaller sample size in this setting. We see that NIMIWAE
performs best in imputing MNAR values, and in estimating
the coefficients under MNAR missingness, and still performs
comparably well to other methods in the MCAR and MAR
cases. The results of the analyses on n = 10,000 simulations
with default initialization can be found in Section B of the
supplementary materials. We found that the default method
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Figure 2. Average L1 distance between true and imputed values for missing entries (left) and percent bias of pooled coefficient estimates (right) for p = 25 (top 4) and
p = 100 (bottom 4) features, stratified by d. NIMIWAE outperforms all methods in imputing MNAR missing values, while performing comparably to other methods in
imputingMCAR andMAR values. Here, n = 100,000,μφ = 5, and error bars show the variability of eachmetric across 10 reps. Weights and biases were initialized by using
the default semi-orthogonal matrix method.

initializedweights formissing features too small for the network
to recover in the MNAR case, under the lower sample size and
high dimensionality setting. Based upon these results, we rec-
ommend the alternative weight initialization for smaller sample
sizes (n ≤ 10,000) with large dimensionality (p ≥ 100), while
the default initialization may suffice when the sample size is
large, or if the dimensionality of the data is smaller. Alternatively,
onemay greatly improve imputation performance by narrowing
down the features that are input into the missingness network
using some prior knowledge or assumptions on the mechanism
of missingness. In practical applications, it is unknown which
mechanismmay truly underly the data, and, as usual, sensitivity
analyses, where one varies the assumed mechanism, is still

important. For example, imputing data via IMIWAE may be
helpful and be more efficient under MCAR or MAR than via
NIMIWAE.

It is also worth noting that the computational time for NIMI-
WAE and IMIWAE were comparable to that of the other deep
learning methods (HIVAE, VAEAC, MIWAE). The majority of
the computing time for each method was consumed during
hyperparameter tuning. Significantly, as these compared meth-
ods are all generative models, multiple imputation and down-
stream statistical analysis was very fast, compared to parameter
tuning and model training.

Overall, these simulations confirm that existingmethods can
impute MCAR and MAR missingness with a reasonable degree
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Figure 3. Average L1 distance between true and imputed values for missing entries (left) and percent bias of pooled coefficient estimates (right) for p = 25 (top 4) and
p = 100 (bottom 4) features, stratified by d. NIMIWAE outperforms all methods in imputing MNAR missing values, while performing comparably to other methods in
imputing MCAR and MAR values. Here, n = 10,000,μφ = 5, and error bars show the variability of each metric across 10 reps. Weights and biases were initialized by using
the alternative method, as described in Section 2.4

of accuracy, but they break down under MNAR missingness.
Our NIMIWAE method is able to adequately impute MNAR
missing values, while still imputing MCAR and MAR missing
valueswith a comparable degree of accuracy as existingmethods
geared specifically toward the ignorablemechanisms ofmissing-
ness. Additionally, we note that MissForest was able to be run
only on the n = 10,000 and p = 25 simulation case due tomem-
ory constraints, and yielded very poor imputation performance
in the MNAR case, like the other ignorably missing methods.
We also show empirically that using all p features inNIMIWAE’s
missingness network can yield reasonable performance, espe-
cially when the number of samples is large. We postulate that
thismay be due to the fact that neural networks have been shown

to generalize well despite severe overparameterization (Poggio,
Banburski, and Liao 2020). Still, the specification of a smaller
model that is closer to the truth may improve the accuracy of
imputations, especially under smaller sample sizes (Du et al.
2021).

Finally, we evaluated the compared methods when the
underlying missingness mechanism was nonlinear. Figure 4
shows the results pertaining to n = 100,000 and p = 25.
NIMIWAE’s missingness network can capture such nonlinear
dependencies between the missingness and the features, allow-
ing NIMIWAE to consistently outperform all compared meth-
ods, even under this more complex underlying missingness
mechanism.
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Figure 4. Average L1 distance between true and imputed values for missing entries (left) and percent bias of pooled coefficient estimates (right) for p = 25 features,
stratified by d, with an underlying nonlinear missingness mechanism. NIMIWAE still outperforms all methods in imputing MNAR missing values, while performing
comparably to other methods in imputing MCAR and MAR values. Here, n = 100,000,μφ = 5, and error bars show the variability of each metric across 10 reps.

3.1.3. UCI Machine Learning Datasets
Next, we analyzed how accurately these methods can impute
missing values that may be present in real data. Since we
are unable to obtain the true missing values in real datasets,
we selected 6 different completely observed datasets from the
UCI Machine Learning Repository, and simulated missing-
ness according to each mechanism as in the fully synthetic
datasets. Here, we masked half of the features, such that pmiss =
floor(0.5 ∗ p). Additional details on these datasets and how
they may be obtained can be found in Section B of the supple-
mentary materials, and the values of the hyperparameters that
were tuned can be found in Section C of the supplementary
materials.

Table 1 shows the average L1 distance between true and
imputed missing values for each of the six UCI datasets, with
each simulated mechanism of missingness. We see that NIMI-
WAE again performs best across all methods in accurately
imputingMNARmissing values. Overall,MissForest performed
best in imputing MCAR missing values in the smaller UCI
datasets, but this method was too memory-consuming to be
trained on the significantly larger hepmass and power datasets.
As in the simulated data, mean imputation is consistently one of
the least accurate methods of imputation. Also, whereas MICE
performed very well under MCAR and MAR in the simulated
data, deep learning methods like VAEAC and IMIWAE consis-
tently yield more accurate imputations here. This may be due
to the fact that MICE uses a fully conditional linear model for
imputation, it may therefore perform suboptimally when the
true relationships between features are nonlinear. Also, we see
that NIMIWAE imputes values slightly less accurately than IMI-
WAE when the missingness is MCAR or MAR, since in these
cases NIMIWAE explicitly estimates the missingness network
when it is not necessary.

3.2. Physionet 2012 Challenge Dataset

Finally, we analyzed the Physionet 2012 Challenge data using
each of the compared methods. This data consisted of 114
features of 12,000 patients after pre-processing, and the details
of the acquisition and preparation of the data can be found
in Section C of the supplementary materials. We performed a
qualitative analysis of each imputed dataset, highlighting dif-
ferences between the results of downstream regression models
fitted on mortality, assuming non-ignorable (NIMIWAE) and
ignorablemissingness (Ibrahim et al. 2005; Ibrahim andMolen-
berghs 2009). This is because, in contrast to our simulations, the
true values of the missing entries are not available to directly
assess imputation performance. Additionally, the missingness
mechanism itself is generally not “testable” by the observed
data in practice (Ibrahim, Lipsitz, and Chen 1999). Here, we
used the alternative initialization scheme of NIMIWAE, due
to the limited sample size and large dimension of the data.
Additionally, we added “supervised” versions of NIMIWAE,
IMIWAE, and MICE in our comparisons, where the response
of interest (mortality) is included with the features of the data
during training and imputation, such that the response variable
may inform the multiple imputations. After model fitting, we
pool the estimates of the fitted models on the multiply imputed
datasets, and compute standard errors across imputations.

Based on the imputed datasets from these methods, we fit
a logistic regression model with post-baseline mortality as the
binary response, with the p = 114 baseline features of this
dataset as the covariates. We report details of the covariates
with the top 10 largest effects on mortality when using the
multiply imputed datasets from the supervised non-ignorably
missing NIMIWAE model in Figure 5. We found some sig-
nificant differences in the results of the logistic regression
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Table 1. Average L1 distance between true and imputed missing values in various datasets, under different mechanisms of simulated missingness.

Dataset HIVAE Mean MICE MF MIWAE VAEAC NIMI IMI

banknote MCAR 1.62 2.00 1.63 0.95 1.37 1.32 1.49 1.19
n = 1372 MAR 2.00 2.27 2.43 1.88 2.90 1.76 1.89 1.96

MNAR 3.39 3.92 3.78 3.18 3.10 3.46 1.46 3.30
concrete MCAR 47.54 51.28 29.97 25.57 40.53 33.03 42.12 33.69
n = 1030 MAR 67.37 60.00 44.77 53.19 66.35 61.09 55.82 57.56

MNAR 59.48 95.85 68.24 79.87 76.79 70.12 47.46 74.44
hepmass MCAR 0.75 0.82 0.74 NA 0.80 0.68 0.78 0.69
n = 525,123 MAR 0.76 0.84 0.75 NA 0.84 0.72 0.72 0.71

MNAR 1.41 1.54 1.40 NA 1.36 1.30 0.99 1.36
power MCAR 0.54 0.66 0.50 NA 0.59 0.48 0.56 0.49
n = 1M MAR 0.61 0.75 0.56 NA 0.67 0.54 0.78 0.57

MNAR 0.75 1.14 0.84 NA 0.86 0.79 0.73 0.79
red MCAR 1.15 1.64 1.04 0.86 1.10 1.10 1.08 0.98
n = 1599 MAR 1.23 1.67 1.16 0.98 1.30 1.29 1.09 1.06

MNAR 2.12 3.24 2.46 2.06 1.87 2.73 0.90 1.74
white MCAR 2.14 2.61 1.97 1.60 2.18 1.93 2.16 1.88
n = 4898 MAR 2.28 2.63 1.99 1.69 2.15 2.11 1.89 1.89

MNAR 4.42 5.36 4.21 4.27 4.46 4.10 3.47 4.70

NOTE: Best imputation performance (lowest average L1) in each row is highlighted in red. Proportion of missing entries was fixed at 50% per feature, with 50% of the
features containing missingness. We see that NIMIWAE (NIMI) consistently performs best in imputing MNAR missingness, while performance of the “Ignorable” IMIWAE
(IMI) model is comparable to other methods under MCAR andMAR. AlthoughMissForest (MF) claims superiority in MCAR and someMAR cases in the smaller datasets, it
was not scalable to larger datasets like hepmass and power.

Figure 5. Table of coefficient estimates (and standard errors) of covariates with the top 10magnitudes of estimates viaNIMIWAEsup, from fitting a logistic regressionmodel
with imputed datasets from each method. Results from multiple imputation methods NIMIWAE, IMIWAE, and MICE (first six columns) are based on 50 multiply imputed
datasets, and reflect pooled coefficient estimates and standard errors. For fair comparison, we also included results from single imputation methods (last five columns).
Here, IMIWAE is the ignorable version of NIMIWAE.

based on the different imputed datasets. For example, we found
that NIMIWAEsup uncovered a stronger effect of the variables
Temp_highest, K_last and Gender compared to other methods.
These factors have been studied for their association with mor-
tality in ICU patients. Specifically, gender has been studied for
having a potentially significant effect on mortality in critically-
ill patients (Mahmood, Eldeirawi, and Wahidi 2012; Larsson
et al. 2019). Additionally, body temperature (Schell-Chaple et al.
2015) and irregular potassium levels (Tongyoo, Viarasilpa, and
Permpikul 2018) have both been known to be associated with
an increased risk of in-hospital mortality.

Figure 6 shows the imputed values of two variables that
had significantly different missingness rates in surviving versus
deceased patients, FiO2_last and RespRate_last. Imputed values
from each of themethods are shown in the boxplots on the right,
and the rates of missingness in the deceased versus surviving
patients for each variable are shown on the left. We found
that a larger proportion of entries of FiO2_last and a smaller
proportion of entries of RespRate_last were observed in the sur-
viving patients than in the deceased patients. Of themethods we
used to impute values of FiO2_last, we found thatNIMIWAEsup
andNIMIWAEunsup imputed values were generally smaller than

those from other methods. We also found that the supervised
and unsupervised IMIWAE models yielded similar values to
HIVAE, MIWAE, and MICE. These are all ignorably missing
methods, and may not impute accurate values when the miss-
ingness is MNAR. MissForest and VAEAC imputed values of
FiO2 that were significantly higher than the observed mean,
and values of RespRate that were significantly lower than the
observed mean. Some studies have shown that abnormally high
or low respiratory rates may be associated with higher mor-
tality in critically-ill patients (Strauß et al. 2014; Ljunggren
et al. 2016), suggesting that the missing values of RespRate_last,
which were more prevalent in deceased patients, may have truly
been further away from the normal range of 12–20. Addition-
ally, Esteban (2002) found that higher levels of administered
FiO2 were associated linearly with higher mortality. Thus, the
missing values of FiO2_last, which were more prevalent in sur-
viving patients, may have been lower than the observed values.
This suggests that the mechanism of missingness of FiO2_last
and RespRate_last may be non-ignorable, since NIMIWAE
imputed more realistic values for these variables according
to the mortality rates of patients with missingness in these
variables.
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Figure 6. (left) Proportion of non-missing observations of FiO2_last (top) and RespRate_last (bottom) in surviving and deceased ICU patients, and (right) imputed values
of non-missing entries by HIVAE, supervised and unsupervised versions of the ignorable NIMIWAE (IMs, IMu), MissForest (MF), supervised and unsupervised versions of
MICE (MICEs, MICEu), MIWAE, supervised and unsupervised versions of NIMIWAE (NIMs, NIMu), and VAEAC. The mean of the observed values is given by the red horizontal
line.

4. Discussion
In this article we introduce NIMIWAE, one of the first meth-
ods to handle up to MNAR patterns of missingness in the
VAE/IWAE class of methods, to address complex patterns of
missingess observed in the Physionet EHRdata. Using statistical
simulations, we show thatNIMIWAEperformswell in imputing
missing features underMNAR, and has reasonable performance
under the MCAR and MAR settings. Performance in imput-
ing MCAR and MAR missingness can be further improved
in NIMIWAE by using the ignorable version of this model
(IMIWAE), where we omit the missingness network. We also
found that the results of the analysis on the Physionet data
are highly dependent on the choice of missingness model,
which specifies the assumption of the missingness mechanism.
However, NIMIWAE is able to impute missing values well in
simulations regardless of the underlying missingness mecha-
nism, flexibly modeling the mechanism using a deeply-learned
neural network. The NIMIWAE-imputed dataset resulted in

more realistic imputed values with respect to what we may
expect in the Physionet Challenge patients, since NIMIWAE
takes into account possible non-ignorable missingness in the
data. Additionally, the NIMIWAE architecture learns a lower-
dimensional representation of the data, which can be used for
tasks such as patient subgroup identification or visualization of
data.

Learning algorithms that can be applied to EHR data like the
Physionet Challenge dataset can be valuable tools that clinicians
can use to aid decisions in hospital settings and understand
patterns within these health records. For example, properly han-
dling missingness in EHRs when imputing the missing entries
can improve the performance of prediction algorithms that can
assess risk of death or other outcomes of interest, like disease.
Informative missingness is a common problem in analyzing
EHRdata, and accounting for suchmissingness can be helpful in
obtaining accurate, unbiased estimates of the true missing val-
ues.We note that althoughwe have used ourNIMIWAEmethod
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primarily to analyze the Physionet 2012Challenge dataset, it can
more generally be applied to settings where one wishes to train
a VAE when missingness is present among input features.

Supplementary Materials

Supplementary Materials: Contains details of the NIMIWAE algorithm
in Section A, additional simulation results and computational details in
Sections B, and links and details of analyzed datasets in Section C. (pdf)

R-package for NIMIWAE: R-package NIMIWAE containing code to per-
form the diagnostic methods described in the article. The package can
also be found athttps://www.github.com/DavidKLim/NIMIWAE. (GNU
zipped tar file)

Code for Reproducibility: Repository of code to reproduce all results,
tables, and figures in the article. This repository can also be found at
https://www.github.com/DavidKLim/NIMIWAE_Paper. (GNU zipped
tar file)
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