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1 | INTRODUCTION difference in magnetization between oxygenated and deoxygenated

blood arising from patterns in cerebral blood flow. Changes in BOLD
Functional magnetic resonance imaging (fMRI) measures blood-oxy- response are treated as a proxy for changes in neurological activity.
genation-level-dependent (BOLD) contrast, which reflects the This technique remains one of the most popular for measuring brain

connectivity, mostly due to its noninvasive nature. In this article, we
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that one neural system exerts over another, which is often estimated
based on resting-state fMRI data (Friston, 2011).

Statistical approaches to modeling effective connectivity among
brain regions include dynamic causal modeling (DCM, Friston
et al., 2003), structural equation modeling (SEM, Mcintosh &
Gonzalez-Lima, 1994), Bayesian networks (BNs, Li et al., 2008;
Rajapakse & Zhou, 2007), and Granger causality (CG) modeling via
vector autoregressive (VAR) models (Granger, 1969; Roebroeck
et al., 2005). DCM and SEM are typically used as confirmatory tech-
niqgues to test predefined hypotheses about neural activity
(Friston, 2011). BNs employ directed acyclic graphs, ignoring the high
prevalence of reciprocal connections that commonly renders brain
connectivity cyclic (Friston, 2011). GC is based on the notion that
causes both precede and help predict their effects. This approach
infers effective connectivity by estimating coefficients from VAR
models. It is important to note that even though such methods allow
inference on directed connections between brain regions, causality
between fMRI signals does not translate into causality of the corre-
sponding neuronal activity (Wen et al., 2013).

VAR models have been used to estimate whole-brain connectivity
networks, where nodes represent brain regions of interest (ROls)
obtained from a parcellation of the brain. Sparsity plays an essential
role in the estimation of these models. A common approach is to
impose sparsity through an #; penalty on the VAR coefficients
(Arnold et al., 2007; Valdés-Sosa et al., 2005). For fMRI studies with
multiple subjects, Gorrostieta et al. (2012, 2013) proposed mixed-
effect VAR models that achieve group-level selection, by identifying
significant connections between ROIs that are consistent across a
group of subjects. Chiang et al. (2017) considered a supervised setting
with subjects belonging to multiple groups and employed spike-
and-slab priors to achieve sparsity in the group-level networks. To
improve the computational scalability, Kook et al. (2021) developed a
variational Bayes (VB) approach for the model of Chiang et al. (2017).
See also Wang et al. (2023) for a recently proposed VB method for an
autoregressive state-space model. While these VAR-based models
have significantly advanced the understanding of brain connectivity,
they do not account for subject heterogeneity.

In fMRI studies, it is common to measure subject-level covariates,
such as age, sex and behavioral assessment scores, in addition to the
imaging data. In recent years, many researchers have focused on
the question of how to relate subject-level covariates to the observed
imaging data (Guha & Guhaniyogi, 2021; Kundu et al., 2021; Scheffler
et al., 2019; Zhao et al., 2021). Generally speaking, external covariates
can be incorporated into the estimation of graphs by linking them to
either node values (as covariate-adjusted models) or edge strengths
(covariate-dependent). However, most of these contributions in
graphical modeling have considered the framework of undirected net-
works. In this setting, graphs can be expressed as regression models
that link the mean values of the network nodes to external covariates,
allowing the estimation of a conditional network that reflects depen-
dencies among node variables after adjusting for external covariates
(Li et al., 2012; Yin & Li, 2011). Time-varying graphs can also be con-
sidered a special case of covariate-dependent graphical models, where

the network structure is allowed to change smoothly over time (Kolar
et al.,, 2010; Zhou et al., 2010). More advanced models may allow the
external covariates to have nonlinear effects on edge strength. These
approaches build on regression settings with varying effects, or vary-
ing coefficient models (Cleveland & Grosse, 1991; Hastie &
Tibshirani, 1993). By modeling regression coefficients as a function of
a covariate, these modeling approaches allow greater flexibility than
linear regression.

In this article, we develop an analytical approach for estimating
brain connectivity networks that accounts for subject heterogeneity
by modeling the effect of covariates on the edge strengths. More spe-
cifically, we build upon the VAR framework of Chiang et al. (2017)
and Kook et al. (2021) to construct a varying-effect VAR modeling
framework that estimates group-specific brain connectivity networks
and accounts for the effects of subject-level covariates on the net-
work edges. We name our method Varying-Effects Vector AutoRe-
gression (VEVAR). Within this modeling framework, we are able to
estimate both a group-level graph structure and edge strengths as
(possibly) nonlinear functions of subject-level covariates. We achieve
this via Gaussian process priors that capture the edge strengths as
smooth functions of covariate values. We model the covariate effects
as a sum of univariate Gaussian processes, which allows for edge-
specific covariate effect selection. Additionally, we use variable selec-
tion spike-and-slab priors to determine the presence or absence of
edges. For posterior inference, we address the scalability limitations
of the existing models by implementing a VB approach (Blei
et al, 2017; Dance & Paige, 2022; Titsias & Lazaro-Gredilla, 2011).
We use simulated data to compare our method with two-stage fre-
quentist and Bayesian approaches that first estimate the networks
and then select the covariates that explain the edge strengths. Our
results show that the proposed VEVAR model does well in terms of
both group-level edge selection and covariate effect selection.

Next, we apply our method to resting-state fMRI data from chil-
dren with a history of traumatic brain injury (TBI) and healthy controls
(HCs) to characterize age and sex effects on neural circuitry. TBI is
particularly concerning because it can disrupt the typical course of
brain development and lead to cascading effects on health-related
quality of life. Furthermore, TBI outcomes are characterized by signifi-
cant heterogeneity. Consequently, statistical approaches that can
account for variability related to subject-level covariates can substan-
tially refine the sensitivity and utility of connectivity network model-
ing. Here, in addition to the estimation of the group-level
connectivities, we evaluate whether specific group-level edge connec-
tivity strengths are affected by age and sex. A unique feature of our
approach is that, unlike other methods, VEVAR allows the estimation
of group-level edges as (possibly) nonlinear functions of these covari-
ates. Our results highlight differences in the distribution of parent
nodes. They also suggest alteration in the relation of age, with peak
edge strength in children with TBI, and differences in effective con-
nectivity strength between males and females. We provide some dis-
cussion corroborating our findings.

The rest of this article is organized as follows. In Section 2, we

introduce the model and the prior construction and briefly describe

ASUDIT SuoWWO)) dANEeaL) d[qedrjdde oy £q pauIdAOS oIk SIINIE Y 2SN JO SA[NI 10J AIeIqIT duI[uQ KI[IAL UO (SUONIPUOD-PUB-SULID) /W0 KS[1m " KIeIqI[oul[uo//:sdny) Suonipuo) pue sua ], a1 39S ‘[+70¢/60/7] uo Areiqr auruQ L[ KIsIoAIuN 901y £q €997 Wqy/Z00 1 0 1/10p/wod Ka[im°Areiqrjautjuo//:sdny woiy papeojumo( ‘01 ‘#2027 ‘€610L601



REN ET AL.

WILEY_| 3%

the proposed variational approach for inference. We also introduce
the simulation design and the empirical data. In Section 3, we assess
the performance of our proposed method against competing
approaches using simulated data and illustrate our method on resting-
state functional MRI data collected on children with a history of trau-
matic injury and HCs. Section 4 provides some interpretation of the
results and Section 5 concludes the paper with a discussion on limita-

tions and future directions.

2 | METHODS AND MATERIALS

21 | Statistical model

We describe the proposed varying-effects VAR model for simulta-
neous group- and subject-level network estimation and selection of
edge-specific covariate effects. A graphical representation of the
model is provided in Figure 1.

211 | Likelihood
We first introduce the structure of the observed data and the likeli-
hood. In our setting of interest, we observe multivariate time series
data on different groups of subjects. Specifically, let x§5> = [ E?xﬁ%}
represent the R dimensional vector of observed values for subject s at
time t, with s=1,..,n, and t=1,..,T. We assume that subjects are
classified into G groups with n={n,...,5,] indicating the group mem-
bership for each subject, where 5, =g if subject s belongs to group
g=1,...,G. Furthermore, we assume that an additional set of P fixed
covariates m=[mj,...,mp| are observed for each subject.

Within each group, we model the subject-level time series data
via a VAR model that expresses the observed values at time t as a
function of the R variables at the previous L lagged time points

(s)

= uf - BY 1), (1)

1xR  1xRL RLxR qxR

where u§5> = [xgs’_)l,x@z,...,xgs_)L] is the 1 xRL vector of concatenated
lagged measurements, B is the RLx R matrix of subject-specific
e’ ~N'(0,x®) with
E<3>:diag(§(lg),...,§£zg)) represents independent Gaussian noise. To
accommodate all T time points, we can write X = [x(zs),...,x(;)}/,
U = {u(15>,...,u<TSEL}', and E¥ = {e(f),...,e(;zl}/. We then use the vec

operator, which converts a matrix to a single column vector, and can

VAR coefficients, and, given #5,=g,

write model (1) as

xO = 1 & u® é(s> + e (2)
(T-L)Rx1 RxR (T-DxRL/ (pjRx1  (T-LRx1

where x©, g, and e are equivalent to vec(X(s)), vec(ﬂ(s)), and
vec(E“)), respectively, and ® represents the Kronecker product (Van

Loan, 2000). By writing the model in form (2), we can see that

x|, =g~ N ( (12090 20, (&)

which allows us to recognize this as a linear regression problem. The
observed values for subject s, given the group membership g, follow a
normal distribution with mean (I®U(5)>é<5> and covariance Z® |,
where | denotes the identity matrix and 2@ is an error covariance
matrix defined as above. The subject-specific coefficients
,Q(S): {ﬁ(ls),...,ﬂgfgL)R] capture the temporal relationship of variables.
This model is illustrated in the right portion of Figure 1.

2.1.2 | Varying-effects selection priors

Chiang et al. (2017) used the VAR setting (1) to model fMRI data
observed on multiple groups of subjects. In that setting, inference on
the VAR regression coefficients allows the estimation of directed net-
works, where network nodes are brain regions and an edge represents
a directional influence of one region on another (Friston, 1994). The
authors adopted a hierarchical structure on the ¢ coefficients by

Subject-level Group-level effective connectivity Group fMRI time-series
covariate membership
)
o — 773

FIGURE 1 Graphical
representation of the proposed °
model: circular nodes indicate
parameters, and square nodes . ° Subject-
represent observed data. Links level
between nodes represent direct effective
probabilistic dependence. Some ° cannechviy
hyperparameters are not shown
for clarity. Indices refer to subject,
s=1,...,n, coefficient, m(s) U®
j=1,..,(RL)R, and
group,g=1,...,G.
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assuming that they are generated from a common group-level coeffi-
cient vector /_i<g>, and imposed spike-and-slab priors on the group-level
coefficients. Here, we build upon this supervised hierarchical setting
by proposing a novel prior formulation that allows the edge strengths
of the group-level graphs to vary as functions of the covariate values.
We achieve this by imposing nonparametric spike-and-slab priors at
the group level that allow edges to be either zero or nonzero func-
tions of the covariate values. Additionally, we employ univariate
spike-and-slab priors to select covariates influencing individual edge
strengths, for each subject group. Our novel prior formulation allows
for nonlinear effects of covariates on the edge strengths of the
inferred networks and simultaneous selection of the relevant effects.
As in Chiang et al. (2017), we assume that the VAR coefficients
for each subject, ﬂj(s), are noisy realizations of a group-level network.
However, at the group level, we model the edge strengths as func-

tions of the subject-specific covariate values, m. We write

m e (B9 (m), o), (4)

1

for all subjects s such that y,=g, with j=1
We place the priors r;;g) :r;g” ~IG(agg),bég)> for 6
o) = o8 ~1G(a b for 7
for each of the G groups, that is, to find the nonzero group-level

,-»(RL)R and gfl ., G.
=0 and

=1. We seek to estimate a network

edges. We achieve this by proposing a novel discrete nonparametric
spike-and-slab prior that imposes sparsity on the networks at the
group level while modeling the nonzero edges as smooth functions of

the covariate values:

A7 (m) =12 (m) + (167 ) do(m), 5

with 51@ ~ Bernoulli(zs), where the functional notation ﬂ}@ (m) repre-
sents possible values of the VAR coefficient as a function of the
covariate values m, the “spike” &y represents a Dirac delta function,
and the notation 5].(3) =0 implies that the group-level coefficient for
group g is zero for all possible values of m. Spike-and-slab priors typi-
cally include a normal distribution as the “slab” portion (George &
McCulloch, 1997; Vannucci, 2021). We innovate on this framework,
to instead allow the strengths of the selected nonzero edges to
depend on covariate values in a nonlinear manner, as described below.
A nice result of this modeling choice is that we can obtain a set of
directed edges for each group, that is, a form of interpretable func-
tional group networks where the strengths of the included edges vary
as smooth functions of the covariate values. Our nonparametric “slab”
portion of the mixture prior (5) is defined as follows. We first incorpo-

rate the covariates as
P +Z wip i (mp (6)

with Mj3>~N(o,a§ a baseline value reflecting edge strength not
driven by covariate effects, ¢ﬁi)(mp) a univariate function dependent

on the pth covariate, and wj(f,) the corresponding weight. We then

model the functions ¢}’i) (my) via Gaussian process priors (Williams &

Rasmussen, 2006) as

9y =GP(u(-)K(-, ), @

with () =0 and covariance function K (mj,m, ) = cov(f (mpx).f (M, ),
which allows us to model nonlinear effects of the covariates on edge
strength. Finally, we impose a parametric discrete spike-and-slab prior

on the coefficients in (6) as
wys ~ N (0.63) + (1 14)b0, (8)

where 7, is the prior probability that the coefficient is nonzero, that
is, the corresponding covariate is determined to be important in esti-
mating the edge strength function, [)’}g) (m). For each edge j in group g,
formulation (6) employs P nonlinear functions, ¢;i)(mp), one for each
covariate Thus, using the spike-and-slab prior (8) on the individual

(g> s allows us to select possibly different covariates, with nonlinear
effects, for each group-level edge. We complete our model by assum-
ing priors fﬁg) ~1G(ag,be), for r=1,..,R, on the diagonal elements
of =)

The proposed modeling framework described here represents a
novel approach to inference of covariate effects on edge strength
within a VAR model that leads to the estimation of sparse networks at
the group level and the selection of key covariates that influence indi-
vidual edge strengths. Figure 2 shows an illustration of our proposed
varying-effect nonparametric selection prior. The top row shows
group-level networks, which will be estimated using the spike-
and-slab prior (5). The lower row shows the underlying group-level
function, /3}3>(m), modeled via the nonparametric slab (6) incorporating
the covariates, as a function of a single covariate, ms, and for a single
edge, j=1. Subject-level edge strengths, ﬁf)(ml), for all s such that
n, =g, are shown as points following the shape of the function
/)’(13) (m1). Notice that the edge corresponding to /)’(lg) is present in the
group-level network for g =1 but not for g=G.

The GP construction in (7) requires selecting a kernel function.
Here, we used a squared exponential (SE) of the form
K(x,x') =¢ exp( =) ) We found a length scale fixed at I=0.5 to
be sufficiently ﬂEXIble for our application. In addition, we found this
kernel to work for both continuous and categorical covariates, as
shown by our results in the simulation study presented below. Our
methodology is general and can accommodate any valid kernel func-
tion. Moreover, a common kernel does not need to be used across all
covariates or across all edges. Additional flexibility could be gained by

placing a prior on any of the hyperparameters of the kernel.

2.1.3 | Variational algorithm for scalable inference
One challenge in network estimation is the large number of parame-
ters that need to be estimated. This is particularly challenging in

Bayesian estimation, as Bayesian methods frequently rely on Markov

ASUDIT SuoWWO)) dANEeaL) d[qedrjdde oy £q pauIdAOS oIk SIINIE Y 2SN JO SA[NI 10J AIeIqIT duI[uQ KI[IAL UO (SUONIPUOD-PUB-SULID) /W0 KS[1m " KIeIqI[oul[uo//:sdny) Suonipuo) pue sua ], a1 39S ‘[+70¢/60/7] uo Areiqr auruQ L[ KIsIoAIuN 901y £q €997 Wqy/Z00 1 0 1/10p/wod Ka[im°Areiqrjautjuo//:sdny woiy papeojumo( ‘01 ‘#2027 ‘€610L601



REN ET AL.

WILEY_| ¥

Group 1 Network

Edge Strengths

-100 -0.75 -0.50 —0.25 000 025 050 075 100

K Covariate 1

Group “g” Network

0.100
0.075 °

0.050 » 3 % @
=

o o =G ¢ .
0.000 +— T e ;9 )(rp1) :

0.025

-0.025 a® * L, e " °

-0.050 s =

Edge Strengths

-0.075 * . . ¢

—-0.100

—075 050 -025 000 025 050
K Covariate 1

075 100

FIGURE 2 An example diagram of the proposed varying-effects selection prior, with an illustration of group-level edges, subject-level
coefficients, and group-level coefficient functions. The top row shows group-level networks. The lower row shows the underlying group level
function, ﬁ}g) (m), as a function of a single covariate, m4, for a single edge, j = 1. Subject-level edge strengths, /1(15) (mq), are shown as points

following the shape of the function ﬂ(lg)(ml).

chain Monte Carlo methods (Gelman et al., 2013) to sample from the
posterior. In our model formulation, complexity and computational
costs are compounded by the consideration of the covariates and the
large number of inclusion indicators we need to estimate in the non-
parametric spike-and-slab construction.

To allow the model to scale up to large data sizes, in particular
those encountered in our application setting, we implement a varia-
tional approximation method for posterior inference which dramati-
cally improves computational time. Variational schemes for linear
models that use spike-and-slab priors have been previously described
(Carbonetto & Stephens, 2012; Kook et al., 2021; Titsias & Lazaro-
Gredilla, 2011). Variational inference (VI) aims at finding an approxi-
mation of the posterior by using optimization methods. It works by
specifying a family of approximate distributions, Q, which are densi-
ties over model parameters and latent variables that depend on free
parameters @, and then seeks to find the values of ® that minimize
the Kullback-Leibler (KL) divergence between the approximate distri-

bution and the true posterior. Let Z indicate the set of model

parameters and latent variables. As discussed in Blei et al. (2017), min-
imizing the KL divergence is equivalent to maximizing the Evidence
Lower BOund (ELBO), defined as

ELBO =Ee[logp(Z,Y)] - Ee[loga(Z)], 9

with p(Z,Y) the joint distribution of Z and the data, and g(Z) the
approximate distribution. The complexity of the optimization
procedure is determined by the complexity of the variational distri-
bution. A common family of approximate distributions is the mean
field approximation, which assumes that the approximate distribu-
tion factorizes over some partition of the parameters and latent

variables as
a(2)=a(2). (10)
k

The exact parametric form of each q(Zy) is selected based on

whether Z, is continuous or discrete, and may exploit conditional
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conjugate distributions to allow for simpler derivation of the optimiza-
tion steps.

In our framework, we adopt a mean field approach and introduce
a family of approximate distributions Q(®). We follow the work of
Titsias and Lazaro-Gredilla (2011) by reparameterizing the spike-

and-slab prior in (8) through the introduction of new variables
~(3)

wE ~ N (0,0, ) and sm~zzf/"'”(1 b )17%‘" This allows us to rewrite
w® as w](i) ]p ). We then find q( |s,,,> and q( ) and model

{Vv](,go) )} jointly, accordlng to the mean field approach. The remain-

ing variational distributions are proposed as:

(o) (s
q<6fg>> Bernoulh(yg L)
q(ﬂ(S)w(s)( s)) (,J> Nj\/(uﬂ i <s>>
a(&91a# b<3>)~lc(z1, ?)
() wlaa)
ol ) 1)
o m) 355
o() <A (of )
q(sﬁ) Bernoulll( ¢)w>

where g (m) = [ﬂ;g)(m),...,ﬂgi)m(m)} is the collection of realizations
of the group-level function at subject s's covariate measurements, and
K;/;q is the covariance matrix corresponding to the kernel K(m,(f),még))
where m,(,g) = {mf;:l),...,m,ﬁf:m] for n,=g. Using a mean field family,
and the reparameterizations discussed above, we write the full
approximate distribution for all variational parameters as a product

over the approximate distributions:

o0~ T ' i)t Pl (o)
IECOINCCRTEIIED |

where O represents the parameters to be optimized. As common with
VI, these are updated via coordinate ascent VI. This algorithm is
repeated until the ELBO has converged or has changed by some mini-
mum threshold. Updates of the parameters and the parameter blocks
are outlined in the Supplementary Material.

Posterior inference based the VI algorithm results in estimates of
the group-level networks, together with estimates of the edge
strengths at the group- and subject-level, and simultaneous selection
of the covariates that are relevant to the edge strengths. After con-
vergence of the VI algorithm, we classify edge j as being present in
group g if the estimated V%J is greater than 0.5, and select covariate p
as affecting the jth edge strength in group g if the estimated yé%m s
greater than 0.5. We infer the nonzero group-level edge strength

functions by the values of u}g)+25:1;/ /pmj(p)ﬂ}g in (11) and the

subject-level edge strengths by the values of uff) in (11). We note that
variational approaches are only suitable for point estimation and do
not allow the assessment of uncertainty about the estimates. Addi-
tionally, in situations with correlated covariates, performance can be
sensitive to initializations and to the order that variables are updated,
possibly resulting in poor selection performance. Ray and Szabé (2022)
proposed a prioritized updating scheme, where the importance of the
variable is determined using a preliminary estimator. Here, we
obtained the preliminary estimator as the average of the output from
several cold starts, where each covariate is afforded the opportunity

to be the first and also the last covariate proposed.

2.2 | Simulation experiment

We use simulated data to test the performance of the proposed
model and compare results to competing approaches.

In our simulation, we considered two groups of subjects with
sample sizes 30 and 60, respectively, to assess the robustness of the
model to an unbalanced sample size setting. For each subject, we gen-

% to represent realistic fMRI signal across

erated the time series data xﬁ
ROIs over time. These data were drawn from a multivariate normal
distribution A7 (uf'BY,0?lg ), for t=2

62 =0.5. We selected R= 100 ROlIs to mirror the level of granularity

,...,200, with noise variance

commonly observed in brain network studies. This choice ensures that
our simulation represents the complex connectivity between different
brain regions. The initial time point x(15> was randomly drawn from
N(0,0.25g). We simulated the VAR coefficients B

connectivity strength and direction between different ROls, in a man-

, representing the

ner that allowed us to test a range of possible functions and covariate
associations. The time lag value was set to L =1, ensuring the simula-
tion of direct, immediate connections typical in brain networks. We
checked to make sure that the process generated only stationary time
series for each subject, and repeated the data generating process if
not. We considered six random subject-level covariates,
m = (my,...,mg), with the first five drawn from a uniform (-1,1), and
the sixth one from a Bernoulli (0.5). These covariates affect the edge
strengths within the brain connectivity network, inducing individual
differences in neural connections. Next, we generated each element
of the subject level vector of coefficients B from a A/(f(m),0.08),
with f(-) the generating function of covariates on the edge strengths
defined by setting each element B;;,), withj=1,..,RLandj =1,...R, as

follows:

if|j—J' |=0,f(-)=0.15 (i.e.,constant)

iflj—j'|=1f(-)=m,-0.25

if |j—j |=2,f(-) = (1.04m,)>*

. i.f,li_j/|:3’f('):(n.q")2 (12)

if|j—j' |=4.f(-)=0.20-sine(zm,)
if|j—J |=5f(-)=0.20-me

if|j—j |=6,f(-) =0.3my,, —0.3m,,

iflj—J |=7.f(-) = (1.04m,)°7°,
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where m, is randomly selected from the first five covariates, and mp,
and m,, refer to two randomly selected covariates from the first five
covariates. Note that m,,m,, , and m,, are randomly selected sepa-
rately for each B;i). Additionally, f(-) was rescaled to be within
[-0.2,0.2] in the case where |j—] | is equivalent to one of [2,3,4], and
within [—0.15,0.35] when |j—j'|=7, to explore scenarios with both a
nonzero mean and covariate effect. Additionally, to more easily sam-
ple stationary time series, each function was multiplied by —1 with
probability 0.5. Finally, to allow differences between the two sample
groups, while remaining mostly similar, each f(g)(') outlined above
was set to O with probability 0.2, resulting in some group-level edges
being present in one group but not the other. By not restricting our
simulation to predefined patterns, we can capture the diverse and
complex network structure observed in the brain. Furthermore, the
magnitude and variance of the edge strengths in our simulation are
designed to replicate the estimated values in previous fMRI studies
(Kook et al., 2021).

2.3 | Observational study on traumatic brain injury
We analyzed data from an fMRI study on children with a history of
TBI following a vehicle collision and HCs. Subjects were recruited
from the Emergency Department or Level 1 Pediatric Trauma Center
at the Children's Memorial Hermann Hospital, University of Texas
Health Science Center at Houston (UTHealth), between September
2011 and August 2015 (Ewing-Cobbs et al., 2019; Kook et al., 2021;
Watson et al., 2019).

2.3.1 | Participants

Participants were included in the study if they met the following
criteria: (1) injured in a vehicle accident between 8 and 15 years of
age; (2) proficiency in English or Spanish; (3) residing within a
125 mile catchment radius; (4) no prior history of major neuropsy-
chiatric disorder (intellectual deficiency or low-functioning autism
spectrum disorder [ASD]) that would complicate assessment of the
impact of injury on brain outcomes; (5) no metabolic, endocrine, or
systemic health problems (e.g., hypertension); (6) no prior
medically-attended TBI; and (7) no habitual use of steroids,
tobacco, or alcohol. The latter four criteria were assessed during
screening using a brief parent interview. A quality control evalua-
tion of all scans resulted in 70 TBI samples being selected for analy-
sis. Additionally, 50 subjects with no history of trauma were
measured as part of a HC group. Subjects were excluded for exces-
sive motion or scanner error (e.g., operator error, crack in scanner
head coil). Written informed consent was obtained from each
child's guardian and written assent was obtained from all children
in accordance with Institutional Review Board guidelines. The
demographic characteristics of the participants in the study are

shown in Table 1.

TABLE 1 Demographic information for participants. Age is
summarized as mean (range), and sex is summarized as number
(percentage).

TBI (n = 70) HC (n = 50)
Age (years) 12.54 (8.08-16.0) 12.13 (8.08-16.0)
Sex (M, %) 45 (64%) 30 (60%)
2.3.2 | Data preprocessing

The fMRI data were preprocessed using SPM12 from the Wellcome
Trust Center for Neuroimaging (http://www.fil.ion.ucl.ac.uk/spm/).
The preprocessing steps involved correcting motion through realign-
ment, correcting slice timing, separating gray matter, white matter,
and CSF, registering the data to the subject's T1-weighted MPRAGE
image and a standard space using the ICBM space template, and
smoothing with an 8 mm full-width half maximum Gaussian kernel.
The data were then screened using the Artifact Detection Tools tool-
box (Whitfield-Gabrieli et al., 2011) to eliminate volumes with exces-
sive motion. Participants with more than 15% of their volumes
affected by motion outliers were excluded from the analysis. Finally, a
3D parcellation was performed using the MarsBaR toolbox in SPM
12 and the automated anatomical labeling brain atlas, resulting in
90 ROIs excluding regions associated with the cerebellum.

2.3.3 | Previous findings

In Kook et al. (2021) and Vaughn et al. (2022), Bayesian vector-
autoregressive models were employed to identify unique effective
connectivity patterns within the default mode network in children
with TBI relative to HCs. The connectivity patterns differed according
to the severity of TBI and showed specific directional relations with
symptom profiles. Fewer post-concussion and anxiety symptoms were
associated with stronger regional effective orbitofrontal to posterior
cingulate cortex connectivity for mild TBI, whereas weaker connectiv-
ity was associated with better outcomes for more severe TBI (Vaughn
et al., 2022). These findings were similar to prior reports in adults with
TBI showing different relations of frontal lobe connectivity with out-
comes after mild TBI versus more severe TBI (Wu et al., 2015; Zhou
etal, 2012).

3 | RESULTS

3.1 | Simulation results

We fit our proposed model by setting parameters 7, =7;=0.1 for
the selection priors on covariate effects and group-level edges,
respectively. We also set ¢,, = 1 as the variance of the slab in (8) and
6, =1 as the variance of the baseline in (6). For the priors on the vari-
ance of the subject-level edge strengths, that is, ag) ~IG(agg),bég))
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TABLE 2

Simulation study: Results of competing methods and VEVAR for group-level edge selection and covariate effect selection,

evaluated using true positive rate (TPR), false positive rate (FPR), Matthew's correlation coefficient (MCC), F1 score, and accuracy (Acc). GC
indicates Granger causality, and VEVAR-S1 refers to the VEVAR model without covariate effects. GC-LASSO employs LASSO to select covariates
affecting edge strengths estimated by GC, while GC-plsmselect utilizes the method described in Ghosal and Kormaksson (2019). VEVAR-S1-SS
applies the spike-and-slab approach from Carbonetto and Stephens (2012) for selecting covariates impacting edge strengths in VEVAR-S1. Bold

values denote the best performance for each metric.

Group 1 Group 2
TPR FPR MCC F1 ACC TPR FPR MCC F1 ACC
Edge selection
GC .373 .060 .339 407 874 456 .064 400 467 .881
VEVAR-S1 .560 .003 711 .707 .947 .633 .018 692 716 .942
VEVAR 935 .029 .852 .863 962 999 .039 .859 .868 965
Covariate effect selection
GC-LASSO 275 .030 .190 204 .950 276 .022 220 .236 964
GC-plsmselect 364 127 .099 .098 .863 .359 .105 115 112 .884
VEVAR-S1-SS .693 .020 .532 527 974 .780 .025 .546 .528 971
VEVAR .879 .000 936 .935 .998 .998 .000 .999 .999 .999

and 6(1g) ~IG (a(lg),b(f)), we imposed vague priors by setting
do =ay =2 and by = b, = 1. Similarly, for the prior on the variance of
the time series data x, that is, £¢ ~ IG(ag,b;), we set a; =2,b; = 1. For
the kernel of the Gaussian process, we set length-scale I=0.5 and
output variance ¢2 = 1. A sensitivity analysis of the parameter choices
is provided in Section 3.1.2. We executed our simulations on a Mac-
Book Pro with an M1 chip. The running time ranged from 12 to 16 h,
according to the convergence speed of the VI algorithm for the differ-

ent replicated datasets.

3.1.1 | Comparative performance

Table 2 provides results for group-level edge selection and for covari-
ate effect selection, averaged over 25 replicated datasets, in terms of
true positive rate (TPR), false positive rate (FPR), Matthew's correla-
tion coefficient (MCC), F1 score, and accuracy (Acc). Specifically, the

metrics are defined as

TP
TPR= 5
FP
PR TN’
Mec - TP x TN—FP x FN
(TP+FP)(TP+FN)(TN + FP)(TN+ FN)’
2P
2TP+ FP+FN’
ACC:&
TP+TN+FP+FN’

where TP, TN, FP, and FN denote the number of true positives, true
negatives, false positives and false negatives, respectively. In the
same table, we report results from alternative approaches. Since we
are not aware of other methods that achieve simultaneous group-

level edge selection and covariate effect selection, we considered

two-stage approaches that, at the first stage, estimate the networks
and at the second stage select the covariates that explain the edge
strengths. For one approach, at the first stage, that is, group-level
edge selection, we considered a traditional GC model. GC
(Granger, 1969) is a statistical hypothesis test to assess whether one
time series can predict another time series. Here, it estimates
subject-level VAR coefficients via ordinary least squares and then
performs group-level inference through one-sample t tests. Nonzero
group-level edges were identified by thresholding p-values with false
discovery rate control at the .05 level. At the second stage, that is,
covariate effect selection, we regressed the subject-level strengths
estimated via the GC method on the covariates and performed selec-
tion using LASSO (Tibshirani, 1996) (GC-LASSO), which identifies lin-
ear covariate effects, and plsmselect (Ghosal & Kormaksson, 2019)
(GC-plsmselect), which fits generalized additive models with flexible
penalties, allowing for linear and smooth covariate effects. We also
considered a second two-stage approach, obtained by considering at
the first stage model (6) with the GP component removed and only
an intercept term included. The resulting model, which we call
VEVAR-S1, estimates subject- and group-level networks without
accounting for covariate effects. At the second stage, we regressed
the estimated subject-level coefficients on the covariates and per-
formed variable selection via the model of Carbonetto and Stephens
(2012) (VEVAR-S1-SS), which uses mixture priors on the regression
coefficients to perform variable selection. Given the relatively low
FPRs for edge selection using GC and VEVAR-S1, we performed
selection at the second stage by using all estimated edges rather
than only the selected ones.

Results from Table 2 show that our proposed VEVAR model does
well in terms of all performance measures, for both group-level edge
selection and covariate effect selection. For edge selection, VEVAR
does considerably better than the other methods in all metrics, with
only slightly higher FPRs compared to VEVAR-S1. This is because the
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FIGURE 3

TABLE 3 Simulation study: Results of the proposed VEVAR
method, showing true positive rates (TPRs) of group-level edge
selection for each of the underlying functions in Formula (12), which
were used to generate the VAR coefficients. The results, averaged
over all replicated datasets, indicate that all functions were recovered
relatively well for both linear and nonlinear functions.

TPR by generating function

li-jl= 1 2 3 4 5 6 7
Groupl 944 909 807 873 999 989  1.00
Group2 100 100 999 100 100 100 1.00

inclusion of covariate effects introduces more variability while
improving the edge selection. For covariate effect selection, we see
again that VEVAR performs the best across all metrics.

Unlike competing methods, VEVAR allows the estimation of
group-level edges as (possibly) nonlinear functions of the
covariate values. Figure 3 provides true and estimated subject-level
edge strengths and group-level functions, for one of the simulated
datasets, and Table 3 shows TPRs for each of the underlying func-
tions in (12) that we used to generate the VAR coefficients, aver-
aged over all replicated datasets. All functions were recovered
relatively well for both linear and nonlinear functions and the
estimated edge strengths were close to the true simulated values.
For example, the average MSEs across selected edges generated by
function 1 were 0.0034 and 0.0027 for the two groups, respec-
tively, and those for function 3 were 0.0054 and 0.0043, respec-
tively. As expected, it was more difficult to recover complex
functions for the group with a smaller sample size, though the
performance was generally good. It is also worth noting that the
categorical covariate effects were selected correctly at a high rate,

as seen in column 5.

Simulation study: True and estimated edge strengths and group-level functions. Gray points represent simulated subject-level
edge strengths and gray lines represent the true group-level functions. Blue points represent estimated subject-level edge strengths and blue
lines indicate the estimated group-level functions.

3.1.2 | Sensitivity analysis

We investigated the sensitivity to the key parameter choices that
determine the sparsity of the model, that is z5 and 4. We also consid-
ered sensitivity to the choice of ¢2, the variance of the GP kernel. We
used the same simulation setting as outlined above, but with smaller
networks (R=10) for computational convenience. Parameters were
varied one at a time keeping the others fixed at the values specified in
the simulation as described above, and the reported results were
averaged across 25 replicated datasets. Results from this sensitivity
analysis are shown in Table 4, for both network edge selection and
covariate effect selection. The parameter s can be interpreted as the
prior probability of a group-level VAR coefficient being nonzero. As rs
increases, so does the number of selected edges. As expected, this
parameter had no influence on the selection of the covariate effects.
Parameter 7, represents the prior probability of a covariate being
selected as relevant for a certain edge strength. As z, increases so
does the number of selected covariate effects. This in turn causes a
slight increase in the number of selected edges. Despite this increase,
the performance results remain pretty stable. The parameter 62 repre-
sents the variance of the GP kernel. As shown in Table 4, the numbers
of selected edges and selected covariate effects increase as o2
increases, but this trend could be the opposite for data with different
scales. A general trend that can be noticed in all results is that the
inference is more robust to parameter selection for groups with larger

sample sizes.

3.2 | Results from observational study on TBI

We are interested in estimating group-level connectivity networks

and evaluating whether specific edge strengths are affected by
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Simulation study: Sensitivity analysis to assess model robustness by varying key parameters and observing their effects on

performance metrics. The metrics evaluated are true positive rate (TPR), false positive rate (FPR), Matthew's correlation coefficient (MCC), F1
score, and accuracy (Acc). We focus on the parameters z; and x4, which determine the sparsity of the model, and o2, the variance of the GP
kernel. This analysis helps identify how the model's performance depends on specific input variables.

Network edge selection

Group 1 Group 2
TPR FPR McCC F1 Acc TPR FPR MCC F1 Acc
Varying zs
A1 .733 .000 .636 .845 .798 .998 .010 .988 .997 .996
5 .892 460 450 .881 814 1.00 626 .550 .907 .846
.9 1.00 1.00 .000 871 772 1.00 1.00 .000 .862 .758
Varying
A1 .733 .000 .636 .845 .798 .998 .010 .988 .997 .996
5 .821 .001 739 .901 .868 1.00 .018 .988 .997 .995
9 .931 .000 876 .964 .948 .999 .016 .987 .996 .996
Varying 62
A1 487 .000 429 .653 .609 .928 .018 .857 .959 .940
.5 .651 .000 .787 .786 .957 .998 .008 976 .978 .994
1 .733 .000 .636 .845 .798 .998 .010 .988 .997 .996
Covariate effect selection
Group 1 Group 2
TPR FPR MCC F1 Acc TPR FPR MCC F1 Acc
Varying zs
1 .535 .000 .707 .692 .943 979 .002 .981 .983 .996
.5 .525 .000 .701 .687 941 .981 .001 .984 .985 .996
9 .522 .000 .697 .683 .940 .981 .002 .982 0.984 0.996
Varying
A1 .535 .000 .707 .692 .943 .979 .002 .981 .983 .996
.5 .706 .000 .824 .827 .965 .999 .003 .987 .988 .997
9 .882 .000 931 .936 .985 .999 .004 .985 .987 .997
Varying 62
A1 160 .000 .370 271 .895 .864 .003 .906 915 .980
5 420 .000 .602 .575 .873 .923 .002 976 .978 .994
1 .535 .000 .707 692 .943 .979 .002 .981 .983 .996

covariates of age and sex. For the application of the proposed model,
we rescaled the continuous covariate (age) so that the min and max
values were —1 and 1. Putting covariates on the same scale is com-
monly done with GP priors, as it allows the use of the same length
scale parameter in the GP kernel function across all covariates. We
fitted the model to the TBI and HC data using the same parameter
settings as outlined in the simulation study, with minor adjustments.
Due to the different scale of the fMRI data, we set z,=0.9,
a§ =0.01, and adjusted the variance of the GP kernel function to be
0.5 to better identify the effects of covariates. This prior specification
allows us to achieve the expected level of sparsity in brain networks
and covariate space and to identify only the most significant

connections, therefore retaining interpretability and focusing on the

most relevant brain regions and covariates. We are cautious to avoid
over-fitting, which could lead to a model too finely tuned to the data.
Therefore, the selection of the model is a balance between achieving
a sparse, interpretable network and maintaining general applicability.
When fitting the model, we use the ELBO to determine the conver-
gence of the VB algorithm.

Estimated group-level networks for the two groups, TBI and HC,
are shown in Figure 4, with shared edges in red. The number of
selected edges is 419 for the HC group and 405 for the TBI group,
with 182 overlapping edges between the two groups and with the HC
group having more parent nodes than the TBI group in the left frontal
lobe regions and right temporal gyrus regions. We conducted t tests

to compare the estimated subject-level edge strengths between the
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FIGURE 4 Application: Estimated connectograms for HC and TBI groups. Arcs indicate group-level edges (self-connections are not drawn)
and node sizes are representative of the number of connected edges, including incoming, outgoing and self-connections. Edges in red are shared
between the two groups. The number of selected edges is 419 for the HC group and 405 for the TBI group, with 182 overlapping edges between
the 2 groups. The HC group has more parent nodes than the TBI group in the left frontal lobe regions and right temporal gyrus regions.
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FIGURE 5 Application: (Top) Group-level edges affected by age. An arc between ROls indicates that the group-level edge is selected and
influenced by the covariate “age,” with more edges exhibiting age dependence in the HC group. Self-connections not shown. (Bottom) Subject-
level edge strength estimates and the resulting estimated function of the covariate “age” values. Only four of the most interesting estimated
effect functions are shown. Notably, the effective connectivity between the left and right supplementary motor areas in the HC group displays a
nonlinear, inverted U-shaped response to increasing age, initially decreasing then increasing, with a pivot at around 11 years old.
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FIGURE 6 Application: (Top) Group-level edges affected by sex. An arc between ROlIs indicates that the group-level edge is selected and
influenced by the covariate “sex,” with edges in red shared between the two groups and more sex-dependent edges in the HC group. Self-
connections not shown. (Bottom) Subject-level edge strength estimates and the resulting estimated function of the covariate “sex” values. Only
four of the most interesting estimated effect functions are shown, indicating how edge strengths vary with sex. For example, there is a stronger
connectivity in the TBI group between the left triangular part of the inferior frontal gyrus and the left inferior temporal gyrus for males compared

to females.

HC and TBI groups. Our analysis revealed that among the overlapping
edges, 154 out of 182 showed significant differences between the
two groups. Furthermore, for edges selected in one group but not in
the other one, over 95% of these edges exhibited statistically signifi-
cant differences in edge strength.

Examining the results further, networks displayed in Figures 5
and 6 show the selected edge strengths that are affected by age and
sex, respectively. From these plots, we see that both age and sex have
an influence on the edge strength function for both HC and TBI
groups, with more edges in the HC group exhibiting a covariate
dependence than in the TBI group. While fewer edges were evident
for the TBI group compared to HC, in the TBI group age, and to a
lesser extent sex, selectively influenced edges of the left putamen. At
a more granular level, our inference reveals how edge strengths
change as a function of each covariate. This is illustrated in the bot-
tom parts of Figures 5 and 6, for a few of the most interesting esti-
mated patterns of dependence. For example, in the TBI group, we
observe stronger effective connectivity between the left triangular
part of the inferior frontal gyrus and the left inferior temporal gyrus
for males compared to females. A table with all selected edges and
estimated covariate effect functions can be found in the Supplemen-
tary Material, together with plots of the estimated covariate effects

for common edges in two groups. Broadly, we see that the model

TABLE 5 Application: Results of competing methods and VEVAR
for numbers of edges that are influenced by covariates. Note that
these results include self-connections within the networks.

Covariate effect selection

HC TBI

Age Sex Age Sex
GC-LASSO 7 23 12 7
GC-plsmselect 55 95 273 105
VEVAR-51-SS 2 51 42 17
VEVAR 26 96 9 75

does well in capturing different functional shapes as well as capturing
functions of categorical and continuous data.

We also compared our findings with three other methods: GC-
LASSO, GC-plsmselect, and VEVAR-S1-SS. GC selected 1324 edges
for the HC group and 1645 edges for the TBI group, with 101 and
171 overlapping edges with our methods, respectively. VEVAR-S1
selected 398 edges for the HC group and 362 edges for the TBI
group, with 215 and 233 overlapping edges with our methods, respec-
tively. We note that, as there is no ground truth from real data, the

number of selected edges simply illustrates the relative sparsity of
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TABLE 6 Application: Sensitivity analysis. Total numbers of
selected edges and number of selected edges that are influenced by
age and sex.

Sensitivity analysis

HC TBI
Total Age Sex Total Age Sex
Varying rs
A1 419 26 96 405 9 75
5 458 37 88 434 13 64
9 527 26 92 507 10 65
Varying
A1 353 24 89 282 13 53
5 391 29 89 381 13 58
9 419 26 96 405 9 75
Varying 62
A1 324 13 128 440 14 146
.5 419 26 96 405 9 75
243 28 47 179 7 36

the inferred networks. However, the primary focus of our method lies
in its ability to incorporate significant covariates directly into the esti-
mation of edge strengths, thereby enhancing our understanding of
individual variability in brain connectivity. Results for covariate effect
selections are shown in Table 5. Unlike GC, which provides a single
estimation for the whole group, our approach allows for a nuanced
analysis that can differentiate and track changes across various demo-
graphic and developmental stages. Furthermore, GC-LASSO and
VEVAR-S1-SS are limited to identifying only linear effects of covari-
ates, while VEVAR can handle nonlinear effects. Although GC-
plsmselect is capable of handling nonlinear effects, the simulation
study results showed that GC-plsmselect had a significantly high FPR,
which may explain the larger number of selected edges with covariate
effects seen in Table 5. Finally, it is also worth mentioning that the
two-stage methods GC-LASSO, GC-plsmselect and VEVAR-S1-SS
may select edges with covariate effects that were not selected in the

first stage, which may not be relevant to the study.

3.2.1 | Sensitivity analysis

Results from the sensitivity analysis for the application conducted on
the parameters s, 74, and 62 are shown in Table 6. Consistent with
the findings from the simulation study, an increase in the value of z;
was observed to correspond to an increase in the number of selected
edges. This parameter had no impact on the selection of covariate
effects. An increase in the value of z, led to a rise in the number of
selected effects for the binary covariate (sex), while having a limited
effect on continuous covariate (age). This increase resulted in an over-
all increase in the number of selected edges, as we also observed in
the simulation study. For the TBI group, our observations revealed a

negative relationship between 62 and the number of selected edges
associated with covariates. On the other hand, for the HC group with
a smaller sample size, no clear trends were observed for the total
number of selected edges and the number of selected edges associ-
ated with age. This highlights the need for careful selection of the &2
parameter as it can be impacted by both the scales of covariates and
the estimated edge strengths. While there are variations in the covari-
ates selected under different parameter settings, the majority of the
covariate effects that are identified tend to overlap, and the relation-
ships between effective connectivity and the covariates remain rela-

tively consistent.

4 | DISCUSSION

We have developed VEVAR, a novel extension of a Bayesian VAR
model, and examined its ability to characterize group differences in
effective network connectivity while simultaneously evaluating the
potentially nonlinear impact of covariates on network edges. Using
simulated data sets, VEVAR outperformed other competing
approaches in terms of group-level edge selection as well as in covari-
ate effect selection. We then applied VEVAR to assess its utility in
characterizing subject and group-level connectivity network edge
strengths using resting state fMRI data from a clinical sample of chil-
dren with TBI and HC. Further, we estimated the effects of age and
sex covariates on the group-level edge strengths. The groups differed
in the distribution of parent nodes, which were fewer in children with
TBI compared to controls. Age effects were largely nonlinear and
influenced edges predominantly in healthy children, suggesting alter-
ation in the relation of age with peak edge strength in children with
TBI. Group-level edges were also affected by sex; effective connectiv-
ity strength was higher in more edges in males than in females.
VEVAR has major potential to generate refined analyses of network-
level data while clarifying potentially nonlinear relations with diverse
covariates.

Unlike traditional methods that assume constant edge strengths
across the group, VEVAR offers a flexible estimation of network edges
that vary with covariate values, which is particularly advantageous in
scenarios where edge strengths are potentially related to covariates
in a nonlinear fashion. For group-level edge selection, VEVAR can
model the edge strength as a dynamic function influenced by covari-
ates, rather than as a static feature. In cases where competing
methods might overlook an edge due to averaging effects (where the
mean edge strength across subjects is zero), VEVAR retains the ability
to detect these edges because it accounts for the covariate-driven
variability in edge strength. In the simulation study, we compared per-
formances to two-stage approaches that estimate the networks at the
first stage and then select the covariates that explain the edge
strengths at the second stage. We found that VEVAR does well in
terms of all performance measures considered, for both group-level
edge selection and covariate effect selection. For covariate effect
selection, we saw again that VEVAR performs the best across all met-

rics, demonstrating superior accuracy and sensitivity in identifying the
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true effects of covariates on network connectivity, likely due to its
capability to model both linear and nonlinear relationships between
covariates and edge strengths. One may raise a concern about com-
paring VEVAR to other methods for covariate selection, as it was
shown that other models did not do well in selecting group-level net-
works. However, upon examining the subject level edge strength esti-
mates, both GC and VEVAR-S1 gave estimates that were close to the
underlying values used to simulate the data, minimizing our concern
about this causing the difference in performance.

When applying VEVAR to data from the resting state fMRI study,
our findings revealed that in the HC group the left frontal lobe regions
and right temporal gyrus regions have more parent nodes than the
corresponding nodes in the TBI group. These findings are consistent
with those from other analytical approaches and reflect a consensus
on the vulnerability of structural and functional connectivity in the
frontal and temporal regions following TBI (Botchway et al., 2022;
Johnson et al., 2011; Vaughn et al., 2022; Ware et al., 2022; Watson
et al., 2019). Furthermore, the TBI group showed higher edge strength
in the connectivity of the right temporal pole with the right-sided
striatal and limbic structures, including the putamen, amygdala and
hippocampus. This may reflect the reduced top-down regulation of
limbic structures noted after TBI (Ewing-Cobbs et al., 2019). Regional
hyperconnectivity has been reported in children and adults across the
spectrum of TBI severity and chronicity (Caeyenberghs et al., 2017).
Hyperconnectivity, especially in the default mode network, has been
linked to better task performance in several studies (Grossner
et al, 2019; Lancaster et al., 2019; Palacios et al., 2017; Stephens
et al., 2018; Venkatesan & Hillary, 2019). Although hyperconnectivity
is often viewed as a compensatory mechanism, the potential long-
term metabolic costs have not been established (Hillary &
Grafman, 2017).

Both age and sex significantly impacted edge strength in HC and
TBI groups. In particular, we identified a higher count of edges in the
HC group. Edges in the HC group that were influenced by age primar-
ily connected left inferior temporal to bilateral frontal and temporal-
parietal regions. These anterior and posterior association areas are
among the later-developing brain regions. Reduced connectivity in
these edges following TBI may reflect vulnerability of these connec-
tions among regions that develop rapidly during early to late adoles-
cence. We also identified a distinct influence of these demographic
factors, particularly age, on the left putamen edges in the TBI group.
DTI tractography has previously identified the putamen as a structural
hub in children with a history of TBI but not in an age matched HC
group (Caeyenberghs et al., 2012). Moreover, frontal-striatal (including
putamen and caudate) network disruption is evident following pediat-
ric TBI (Watson et al., 2019). Of the few studies examining functional
connectivity changes after pediatric TBI, only one evaluated the influ-
ence of age and sex on connectivity metrics. In a sample of children
with mild TBI, Onicas et al. (2024) found that by 3-6 months after
injury, global clustering was reduced in superior parietal and occipital
regions in adolescents as well as in females experiencing persistent
symptoms relative to orthopedic injury. Although our sample con-

tained a broad spectrum of TBI severity, our findings converge to

indicate vulnerability of adolescents and females to disruption of spe-
cific connectivity metrics. Current findings elucidate the functional
implication of striatal injury and characterize how patient characteris-
tics, in this case, age or sex, might strengthen or attenuate the impact
of injury on striatal brain networks.

The effective connectivity between the left supplementary motor
area and right supplementary motor area for the HC group have
shown an interesting nonlinear, inverted U shape as age increases,
first decreasing and then increasing. The trends of the estimated
effective connectivities with respect to age change at around 11 years
old for the HC group while the trends change at around 13 years old
for the TBI group. Importantly, our approach does not constrain asso-
ciations between covariates and edge strength to a nonlinear function
but instead allows for discovery of the pattern of influence of the
covariate to be detected. Developmental profiles showing inverted
U-shapes are consistently reported in brain morphometry via regional
volume or thickness of cortical gray matter and are broadly inter-
preted to reflect initial overly abundant synaptic production and the
subsequent synaptic pruning (Giedd et al., 1999, 2006; Gogtay
et al., 2004). Although functional profiles corresponding to an inverted
U during childhood and adolescence are established in the literature,
it is to a lesser degree relative to the morphometric literature. Nota-
bly, the pattern of inverted U in brain functioning, even in develop-
ment, is most often associated with an increase in expertise or skill
(often in language/reading domains), such that learning initially trig-
gers an increase (the rise in the inverted U) with the falling end of the
U associated with experience, and ultimately expertise, see Perkins
and Jiang (2019).

Despite its importance as a biological variable, few imaging stud-
ies have examined how sex may affect connectivity metrics. In our
results, many group-level edges were influenced by sex. Except for
bilateral temporal pole regions, very few edges were shared in females
and males. Relations also differed by group. In the TBI group,
females had higher effective connectivity than males in both temporal
poles. Males had a unique pattern wherein edges originating in multi-
ple bilateral structures converged in the left putamen. Effective con-
nectivity in males in the HC group was higher in multiple bilateral
regions impacting bilateral mid- and inferior temporal regions while
females had higher connectivity in edge strengths affecting left tem-
poral regions. We note that there could be other confounding factors,
such as head size, influencing the observed sex differences in brain
connectivity. Given that we do not have head size data, we cannot
conclusively link the correlations directly to sex. Therefore, our results
should be viewed as indicative of a correlation between sex and spe-
cific brain connectivity patterns, rather than conclusive evidence of
sex-based differences. Additional studies should examine the relation
of connectivity metrics and covariate effects with cognitive and
behavioral outcomes to more fully elucidate specific brain-behavior
relations.

There are several aspects of the proposed model that allow the
practitioner added flexibility. For example, as previously discussed,
the GP kernel can differ across datasets, edges, or covariates. In both

the simulation and case study application, the covariates used were
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subject-specific measurements, constant across edges and nodes.
The model, however, could easily be adjusted to accommodate
covariates specific to a subset of edges or groups. Alternatively,
covariates whose values vary at each node or edge could be consid-
ered. Finally, while the current model formulation relies on the group
subject memberships to be known, unsupervised settings could also
be considered via nonparametric priors such as the Dirichlet process.
This would lead to broader applications and potentially further

insights into the data.

5 | CONCLUSION

In this article, we have proposed VEVAR, an analytical approach for
estimating brain connectivity networks that accounts for subject het-
erogeneity. We have employed a hierarchical Bayesian VEVAR model
to identify connectivity networks for different groups of subjects,
allowing for dependence of the connection strength on covariate
values. We have designed a sparse prior to identify key connections
within each group and subsets of edges with strengths affected by
the covariates. Our novel nonparametric spike-and-slab prior includes
a “slab” portion as a function mapping possible covariate values to
coefficient values. Additionally, we have assumed a weighted mixture
of Gaussian process priors on this function, to allow modeling of (pos-
sibly) nonlinear effects and selection of relevant covariates. We have
estimated the proposed model using VI, which has allowed for appli-
cation to large-scale data. The model has been shown to perform bet-
ter than competing two-stage approaches on simulated data, in both
network discovery and covariate selection. We have applied our
method to resting-state fMRI data on children with a history of TBI
and HCs to estimate group-level connectivity networks and evaluate
whether specific edge strengths are affected by age and sex. The
identified differences in effective connectivity network patterns
between TBI and HC groups, along with the influence of age and sex,
have provided valuable insights into the complexity of brain function-
ing after TBI. Furthermore, TBI as a case study application, where
effects of age are evaluated within effective connectivity networks,
highlights the promise of the proposed approach for evaluating devel-
opmental and aging effects in a breadth of disorders impacting the
brain. For future studies, extensions to longitudinal data may provide
valuable insights into connectivity changes over an extended period
after TBI.

Broadly, VEVAR contributes to the current understanding of
brain mechanisms by identifying functionally connected brain
regions, enabling researchers to characterize information flow within
and between brain networks. Moreover, VEVAR determines the
directionality of functional connections between brain regions, offer-
ing insights into how specific cognitive functions like memory, atten-
tion, language, and decision-making are temporally implemented
within overlapping brain networks. In the context of development,
VEVAR advances understanding by tracking the development of
neural networks from infancy through adolescence and into adult-

hood. By observing changes in connectivity patterns over time,

researchers can identify sensitive developmental periods and map
the integration of different brain regions. VEVAR in brain connectiv-
ity research has been implemented to provide crucial insights into
altered neural circuits associated with injuries such as TBI (Kook
et al.,, 2021; Vaughn et al., 2022). This method is poised for similar
use in neurodevelopmental disorders like ASD (Hanson et al., 2013;
Rolls et al., 2020), dyslexia (Di Pietro et al., 2023), or attention deficit
hyperactivity disorder (Kumar et al., 2021), where effective connec-
tivity findings suggest that differences in the connectivity patterns in
individuals with developmental disorders compared to typically
developing individuals. Moreover, VEVAR facilitates the comparison
of connectivity profiles between typically developing individuals and
those affected by these disorders while controlling for nuisance vari-
ables. This enables analyses that may identify aberrant developmen-
tal trajectories and potential biomarkers for early diagnosis and

intervention.
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