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ABSTRACT

Modeling how people interact with search interfaces is core to the
field of Interactive Information Retrieval. While various models
have been proposed ranging from conceptual (e.g., Belkin’s ASK[12],
Berry picking[11], Everyday-life information seeking, etc.) to theo-
retical (e.g., Information foraging theory[50], Economic theory[4],
etc.), more recently there has been a body of working explore how
people’s biases and the heuristics that they take influence how they
search. This has led to the development of new models of the search
process drawing upon Behavioural Economics and Psychology. This
half day tutorial will provide a starting point for researchers seek-
ing to learn more about information searching under uncertainty.
The tutorial will be structured into two parts. First, we will provide
an introduction of the biases and heuristics program put forward
by Tversky and Kahneman [59] which assumes that people are not
always rational. The second part of the tutorial will provide an
overview of the types and space of biases in search [6, 42], before
doing a deep dive into several specific examples and the impact of
biases on different types of decisions (e.g., health/medical, financial
etc.). The tutorial will wrap up with a discussion of some of the
practical implication for how we can better design and evaluate IR
systems in the light of cognitive biases.
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1 INTRODUCTION

Information Seeking and Retrieval (IS&R) encompasses the pro-
cesses of searching, discovering, and retrieving relevant, valuable,
and trustworthy information [25]. This multifaceted journey in-
volves various factors that impact how individuals participate in this
process, influence their search behaviors, and affect their search per-
formance. To understand IS&R comprehensively, a variety of con-
ceptual and descriptive models have been proposed. These models,
such as Bates’ Berry Picking Model [11] and the IS&R framework
presented by Ingwersen and Kalvero [26], provide valuable insights
into the intricacies of how people browse, forage and search for
information. Moreover, researchers have explored a diverse array
of determinants in this field, including user characteristics, such
as expertise, background, topic knowledge, and cognitive abilities.
They have also investigated system functionalities, such as inter-
face design, presentation, and quality, along with task attributes
like difficulty, complexity, and topicality [33, 36]. These models and
determinants collectively contribute to a deeper understanding of
the dynamic nature of information seeking and retrieval, shedding
light on the complex interplay between users, systems, and the
information itself. However, they have been largely agnostic of the
cognitive biases that impact people’s IS&R behaviour.

Over the past decade there has been growing interest in un-
derstanding the influence of cognitive biases on IS&R and their
consequences for information processing, knowledge acquisition,
and decision-making. This concern is particularly relevant in an
era marked by instant access to vast information volumes, as well
as the potential exploitation of cognitive biases by search engines,
content creators, and Artificial Intelligence (AI) systems [9, 14, 16].

Moreover, questions arise about the potential interaction be-
tween cognitive biases and biases present in search engines, al-
gorithms, and content, and whether these biases may contribute
to or reinforce one another, creating a “bias begets bias” cycle [9].
The amalgamation of system- and user-sided biases can mutually
amplify effects, both positively and negatively [40].

As an increasing portion of the population relies on search and
recommender systems for essential life decisions, such as medical,
political, social, personal, and financial choices, understanding and
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Figure 1: Thinking, Slow and Fast [28]: Cognitive biases [59],
or simple heuristics that make us smart? [58]
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mitigating the (negative) impact of cognitive biases is of consid-
erable economic and societal significance and is also essential for
building and implementing human-centered, responsible informa-
tion systems [15, 43].

Thus, this tutorial aimed to bring greater attention to this grow-
ing body of research, provide participants with an overview of cog-
nitive biases in search, and facilitate the discussions on the potential
opportunities, methodological challenges, and practical implica-
tions of research on bias-aware IS&R. Armed with the knowledge
about human biases, we hoped to inspire participants to develop
more psychologically valid user models and evaluation measures,
as well as performing better designed user studies [42].

2 INTENDED LEARNING OUTCOMES
By the end of the tutorial, participants should be able to:

e Describe the main biases and heuristics;

e Explain the difference between rational and irrational be-
haviour (from behavioral economics perspective);

e Explain how different biases can impact online search be-
haviours and user judgments on documents;

o Generate hypotheses regarding user behaviour under dif-
ferent biases in search interactions and design appropriate
experiments to test the hypotheses.

o Identify and mitigate cognitive biases that may impact the
design, interpretation and outcome of user studies.

3 FORMAT AND SCHEDULE

The first half of the tutorial focuses on the background theory from
behavioral psychology and economics, and the second half focuses
on providing examples in the context of IS&R.

3.1 Session 1: Biases and Heuristics

The tutorial was structured as follows. To kick of the tutorial, an ice
breaker exercise was performed to test "How biased are you?", based
on standard psychological instruments used to identify different
types of cognitive biases. This was a fun way to get participants
actively involved in understanding the different biases and how
they are measured in psychology. Next an overview of the space
and spectrum of cognitive biases was presented and how they
can impact information seekers (see Table 1[6, 42]). This was then
followed by presenting an overview of the key (theoretical) works
that led to the field of behavioral economics and the program of
study on heuristics and biases:

e Expected Utility Theory and Rational Choice[60].

e Judgment under Uncertainty: Heuristics and Biases [27, 57,
59].

Fast and Frugal Heuristics [22, 58]

Bounded Rationality and Satisficing [56].

Prospect Theory and Reference Dependence[29]

3.2 Session 2: Cognitive Biases in IS&R

The second part of the tutorial focuses on key works from the IS&R
literature regarding impact of cognitive biases on behaviour, eval-
uation and experimental design, where we discussed the method-
ological challenges and practical implications of modeling users’
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search interactions from a behavioral economics perspective[6, 42].
The following works were used as key examples based around:

e Interacting and using ranked lists (Trust and Position biases
in web search due to order effects [32, 46, 64]).

e Looking for evidence to support your prior beliefs (confir-
mation biases in health search [1, 51, 62, 63]).

o Seeing lots of evidence that supports a particular belief (an-
choring, availability, exposure, etc. in health search).

e Mitigating cognitive biases during the search process (prim-
ing and anchoring‘[52, 65]).

o Evaluating and assessing results (order, bandwagon and de-
coy effects [17] and reference dependence when judging and
rating results and systems [15, 44]).

More details of the tutorial can be found at: https://beiir.github.io/.
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Table 1: A reading list of IS&R papers investigating different cognitive biases
across domains and different parts of the search process.

Cognitive Biases Domains Search Process
Health Political Web Querying Examining Judging Sat.
Confirmation Bias [21] [37] [51] [53] | [30] [39] [38] [52] [37] (52 [53] [61] [62] [21] [51] [38]
[61] [62] [66] [30] [39]
Too Much Anchoring [41] [51] [47] [48) [17] [55] [47] [48) [17] [41] [51] [55]
Information | Availability (21] [51] [63] [47] [48] [47] [48] [21] [51]
Framing Effects [47] [48] [47] [48]
Bandwagon Effects (18] [21] [23] (17] [13] [34] [34] [13] [17] [18] [23] [21]
No Meaning Exposure Effects [21] [41] [51] [38] [19] [19] [21] [38] [41] [51]
Reinforcement Effects [41] (38] [19] [19] [38] [41]
Decoy Effects 7] (17]
Act Fast Ambiguity Effects [38] [30] [17] [24] [31] [30] [17] [24] [31] [38]
Less is More [49] [49]
Dunning-Kruger Effect [20] [20]
Priming Effect [47] [48) [35] [52] [54] [65] [52] [65) [47) [48] [54] [35])
Remember Order Effects [10] [41] [51] [1] [19] [13] [32] [46] [64] [13] [32] [46] [64] [1] [10] [19] [41] [51]
Peak End Rule [45] [45]
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