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ABSTRACT

Modeling how people interact with search interfaces is core to the

�eld of Interactive Information Retrieval. While various models

have been proposed ranging from conceptual (e.g., Belkin’s ASK[12],

Berry picking[11], Everyday-life information seeking, etc.) to theo-

retical (e.g., Information foraging theory[50], Economic theory[4],

etc.), more recently there has been a body of working explore how

people’s biases and the heuristics that they take in�uence how they

search. This has led to the development of new models of the search

process drawing upon Behavioural Economics and Psychology. This

half day tutorial will provide a starting point for researchers seek-

ing to learn more about information searching under uncertainty.

The tutorial will be structured into two parts. First, we will provide

an introduction of the biases and heuristics program put forward

by Tversky and Kahneman [59] which assumes that people are not

always rational. The second part of the tutorial will provide an

overview of the types and space of biases in search [6, 42], before

doing a deep dive into several speci�c examples and the impact of

biases on di�erent types of decisions (e.g., health/medical, �nancial

etc.). The tutorial will wrap up with a discussion of some of the

practical implication for how we can better design and evaluate IR

systems in the light of cognitive biases.

CCS CONCEPTS

• Information systems → Search interfaces; Task models; Re-

trieval tasks and goals; • Human-centered computing → HCI

theory, concepts and models; Graphical user interfaces.
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1 INTRODUCTION

Information Seeking and Retrieval (IS&R) encompasses the pro-

cesses of searching, discovering, and retrieving relevant, valuable,

and trustworthy information [25]. This multifaceted journey in-

volves various factors that impact how individuals participate in this

process, in�uence their search behaviors, and a�ect their search per-

formance. To understand IS&R comprehensively, a variety of con-

ceptual and descriptive models have been proposed. These models,

such as Bates’ Berry Picking Model [11] and the IS&R framework

presented by Ingwersen and Kalvero [26], provide valuable insights

into the intricacies of how people browse, forage and search for

information. Moreover, researchers have explored a diverse array

of determinants in this �eld, including user characteristics, such

as expertise, background, topic knowledge, and cognitive abilities.

They have also investigated system functionalities, such as inter-

face design, presentation, and quality, along with task attributes

like di�culty, complexity, and topicality [33, 36]. These models and

determinants collectively contribute to a deeper understanding of

the dynamic nature of information seeking and retrieval, shedding

light on the complex interplay between users, systems, and the

information itself. However, they have been largely agnostic of the

cognitive biases that impact people’s IS&R behaviour.

Over the past decade there has been growing interest in un-

derstanding the in�uence of cognitive biases on IS&R and their

consequences for information processing, knowledge acquisition,

and decision-making. This concern is particularly relevant in an

era marked by instant access to vast information volumes, as well

as the potential exploitation of cognitive biases by search engines,

content creators, and Arti�cial Intelligence (AI) systems [9, 14, 16].

Moreover, questions arise about the potential interaction be-

tween cognitive biases and biases present in search engines, al-

gorithms, and content, and whether these biases may contribute

to or reinforce one another, creating a “bias begets bias” cycle [9].

The amalgamation of system- and user-sided biases can mutually

amplify e�ects, both positively and negatively [40].

As an increasing portion of the population relies on search and

recommender systems for essential life decisions, such as medical,

political, social, personal, and �nancial choices, understanding and
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Figure 1: Thinking, Slow and Fast [28]: Cognitive biases [59],

or simple heuristics that make us smart? [58]
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mitigating the (negative) impact of cognitive biases is of consid-

erable economic and societal signi�cance and is also essential for

building and implementing human-centered, responsible informa-

tion systems [15, 43].

Thus, this tutorial aimed to bring greater attention to this grow-

ing body of research, provide participants with an overview of cog-

nitive biases in search, and facilitate the discussions on the potential

opportunities, methodological challenges, and practical implica-

tions of research on bias-aware IS&R. Armed with the knowledge

about human biases, we hoped to inspire participants to develop

more psychologically valid user models and evaluation measures,

as well as performing better designed user studies [42].

2 INTENDED LEARNING OUTCOMES

By the end of the tutorial, participants should be able to:

• Describe the main biases and heuristics;

• Explain the di�erence between rational and irrational be-

haviour (from behavioral economics perspective);

• Explain how di�erent biases can impact online search be-

haviours and user judgments on documents;

• Generate hypotheses regarding user behaviour under dif-

ferent biases in search interactions and design appropriate

experiments to test the hypotheses.

• Identify and mitigate cognitive biases that may impact the

design, interpretation and outcome of user studies.

3 FORMAT AND SCHEDULE

The �rst half of the tutorial focuses on the background theory from

behavioral psychology and economics, and the second half focuses

on providing examples in the context of IS&R.

3.1 Session 1: Biases and Heuristics

The tutorial was structured as follows. To kick of the tutorial, an ice

breaker exercise was performed to test "How biased are you?", based

on standard psychological instruments used to identify di�erent

types of cognitive biases. This was a fun way to get participants

actively involved in understanding the di�erent biases and how

they are measured in psychology. Next an overview of the space

and spectrum of cognitive biases was presented and how they

can impact information seekers (see Table 1[6, 42]). This was then

followed by presenting an overview of the key (theoretical) works

that led to the �eld of behavioral economics and the program of

study on heuristics and biases:

• Expected Utility Theory and Rational Choice[60].

• Judgment under Uncertainty: Heuristics and Biases [27, 57,

59].

• Fast and Frugal Heuristics [22, 58]

• Bounded Rationality and Satis�cing [56].

• Prospect Theory and Reference Dependence[29]

3.2 Session 2: Cognitive Biases in IS&R

The second part of the tutorial focuses on key works from the IS&R

literature regarding impact of cognitive biases on behaviour, eval-

uation and experimental design, where we discussed the method-

ological challenges and practical implications of modeling users’

search interactions from a behavioral economics perspective[6, 42].

The following works were used as key examples based around:

• Interacting and using ranked lists (Trust and Position biases

in web search due to order e�ects [32, 46, 64]).

• Looking for evidence to support your prior beliefs (con�r-

mation biases in health search [1, 51, 62, 63]).

• Seeing lots of evidence that supports a particular belief (an-

choring, availability, exposure, etc. in health search).

• Mitigating cognitive biases during the search process (prim-

ing and anchoring‘[52, 65]).

• Evaluating and assessing results (order, bandwagon and de-

coy e�ects [17] and reference dependence when judging and

rating results and systems [15, 44]).

More details of the tutorial can be found at: https://beiir.github.io/.
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Table 1: A reading list of IS&R papers investigating di�erent cognitive biases

across domains and di�erent parts of the search process.

.

Cognitive Biases Domains Search Process

Health Political Web Querying Examining Judging Sat.

Con�rmation Bias [21] [37] [51] [53] [30] [39] [38] [52] [37] [52] [53] [61] [62] [21] [51] [38]

[61] [62] [66] [30] [39]

Too Much Anchoring [41] [51] [47] [48] [17] [55] [47] [48] [17] [41] [51] [55]

Information Availability [21] [51] [63] [47] [48] [47] [48] [21] [51]

Framing E�ects [47] [48] [47] [48]

Bandwagon E�ects [18] [21] [23] [17] [13] [34] [34] [13] [17] [18] [23] [21]

No Meaning Exposure E�ects [21] [41] [51] [38] [19] [19] [21] [38] [41] [51]

Reinforcement E�ects [41] [38] [19] [19] [38] [41]

Decoy E�ects [17] [17]

Act Fast Ambiguity E�ects [38] [30] [17] [24] [31] [30] [17] [24] [31] [38]

Less is More [49] [49]

Dunning-Kruger E�ect [20] [20]

Priming E�ect [47] [48] [35] [52] [54] [65] [52] [65] [47] [48] [54] [35]

Remember Order E�ects [10] [41] [51] [1] [19] [13] [32] [46] [64] [13] [32] [46] [64] [1] [10] [19] [41] [51]

Peak End Rule [45] [45]
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