

Search under Uncertainty: Cognitive Biases and Heuristics

A Tutorial on Modeling Search Interaction using Behavioral Economics

Leif Azzopardi leifos@acm.org University of Strathclyde Glasgow, Scotland Jiqun Liu jiqunliu@ou.edu The University of Oklahoma Norman, OK, USA

ABSTRACT

Modeling how people interact with search interfaces is core to the field of Interactive Information Retrieval. While various models have been proposed ranging from conceptual (e.g., Belkin's ASK[12], Berry picking[11], Everyday-life information seeking, etc.) to theoretical (e.g., Information foraging theory[50], Economic theory[4], etc.), more recently there has been a body of working explore how people's biases and the heuristics that they take influence how they search. This has led to the development of new models of the search process drawing upon Behavioural Economics and Psychology. This half day tutorial will provide a starting point for researchers seeking to learn more about information searching under uncertainty. The tutorial will be structured into two parts. First, we will provide an introduction of the biases and heuristics program put forward by Tversky and Kahneman [59] which assumes that people are not always rational. The second part of the tutorial will provide an overview of the types and space of biases in search [6, 42], before doing a deep dive into several specific examples and the impact of biases on different types of decisions (e.g., health/medical, financial etc.). The tutorial will wrap up with a discussion of some of the practical implication for how we can better design and evaluate IR systems in the light of cognitive biases.

CCS CONCEPTS

• Information systems \rightarrow Search interfaces; Task models; Retrieval tasks and goals; • Human-centered computing \rightarrow HCI theory, concepts and models; Graphical user interfaces.

KEYWORDS

Information Retrieval, Web Search, Search Behaviour, User Models, Retrieval Strategies, Evaluation, Cognitive Bias

ACM Reference Format:

Leif Azzopardi and Jiqun Liu. 2024. Search under Uncertainty: Cognitive Biases and Heuristics: A Tutorial on Modeling Search Interaction using Behavioral Economics. In *Proceedings of the 2024 ACM SIGIR Conference on Human Information Interaction and Retrieval (CHIIR '24), March 10–14, 2024, Sheffield, United Kingdom.* ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3627508.3638297

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

CHIIR '24, March 10–14, 2024, Sheffield, United Kingdom

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM. ACM ISBN 979-8-4007-0434-5/24/03

https://doi.org/10.1145/3627508.3638297

1 INTRODUCTION

Information Seeking and Retrieval (IS&R) encompasses the processes of searching, discovering, and retrieving relevant, valuable, and trustworthy information [25]. This multifaceted journey involves various factors that impact how individuals participate in this process, influence their search behaviors, and affect their search performance. To understand IS&R comprehensively, a variety of conceptual and descriptive models have been proposed. These models, such as Bates' Berry Picking Model [11] and the IS&R framework presented by Ingwersen and Kalvero [26], provide valuable insights into the intricacies of how people browse, forage and search for information. Moreover, researchers have explored a diverse array of determinants in this field, including user characteristics, such as expertise, background, topic knowledge, and cognitive abilities. They have also investigated system functionalities, such as interface design, presentation, and quality, along with task attributes like difficulty, complexity, and topicality [33, 36]. These models and determinants collectively contribute to a deeper understanding of the dynamic nature of information seeking and retrieval, shedding light on the complex interplay between users, systems, and the information itself. However, they have been largely agnostic of the cognitive biases that impact people's IS&R behaviour.

Over the past decade there has been growing interest in understanding the influence of cognitive biases on IS&R and their consequences for information processing, knowledge acquisition, and decision-making. This concern is particularly relevant in an era marked by instant access to vast information volumes, as well as the potential exploitation of cognitive biases by search engines, content creators, and Artificial Intelligence (AI) systems [9, 14, 16].

Moreover, questions arise about the potential interaction between cognitive biases and biases present in search engines, algorithms, and content, and whether these biases may contribute to or reinforce one another, creating a "bias begets bias" cycle [9]. The amalgamation of system- and user-sided biases can mutually amplify effects, both positively and negatively [40].

As an increasing portion of the population relies on search and recommender systems for essential life decisions, such as medical, political, social, personal, and financial choices, understanding and

Figure 1: Thinking, Slow and Fast [28]: Cognitive biases [59], or simple heuristics that make us smart? [58]

mitigating the (negative) impact of cognitive biases is of considerable economic and societal significance and is also essential for building and implementing human-centered, responsible information systems [15, 43].

Thus, this tutorial aimed to bring greater attention to this growing body of research, provide participants with an overview of cognitive biases in search, and facilitate the discussions on the potential opportunities, methodological challenges, and practical implications of research on bias-aware IS&R. Armed with the knowledge about human biases, we hoped to inspire participants to develop more psychologically valid user models and evaluation measures, as well as performing better designed user studies [42].

2 INTENDED LEARNING OUTCOMES

By the end of the tutorial, participants should be able to:

- Describe the main biases and heuristics;
- Explain the difference between rational and irrational behaviour (from behavioral economics perspective);
- Explain how different biases can impact online search behaviours and user judgments on documents;
- Generate hypotheses regarding user behaviour under different biases in search interactions and design appropriate experiments to test the hypotheses.
- Identify and mitigate cognitive biases that may impact the design, interpretation and outcome of user studies.

3 FORMAT AND SCHEDULE

The first half of the tutorial focuses on the background theory from behavioral psychology and economics, and the second half focuses on providing examples in the context of IS&R.

3.1 Session 1: Biases and Heuristics

The tutorial was structured as follows. To kick of the tutorial, an ice breaker exercise was performed to test "How biased are you?", based on standard psychological instruments used to identify different types of cognitive biases. This was a fun way to get participants actively involved in understanding the different biases and how they are measured in psychology. Next an overview of the space and spectrum of cognitive biases was presented and how they can impact information seekers (see Table 1[6, 42]). This was then followed by presenting an overview of the key (theoretical) works that led to the field of behavioral economics and the program of study on heuristics and biases:

- Expected Utility Theory and Rational Choice[60].
- Judgment under Uncertainty: Heuristics and Biases [27, 57, 59].
- Fast and Frugal Heuristics [22, 58]
- Bounded Rationality and Satisficing [56].
- Prospect Theory and Reference Dependence[29]

3.2 Session 2: Cognitive Biases in IS&R

The second part of the tutorial focuses on key works from the IS&R literature regarding impact of cognitive biases on behaviour, evaluation and experimental design, where we discussed the methodological challenges and practical implications of modeling users'

search interactions from a behavioral economics perspective [6, 42]. The following works were used as key examples based around:

- Interacting and using ranked lists (Trust and Position biases in web search due to order effects [32, 46, 64]).
- Looking for evidence to support your prior beliefs (confirmation biases in health search [1, 51, 62, 63]).
- Seeing lots of evidence that supports a particular belief (anchoring, availability, exposure, etc. in health search).
- Mitigating cognitive biases during the search process (priming and anchoring [52, 65]).
- Evaluating and assessing results (order, bandwagon and decoy effects [17] and reference dependence when judging and rating results and systems [15, 44]).

More details of the tutorial can be found at: https://beiir.github.io/.

4 BIOGRAPHY

Leif Azzopardi is a Associate Professor at the University of Strathclyde, UK, within the Department of Computer and Information Sciences. Leif specializes in modelling and measuring how people interact with search and recommendation systems using theory from economics to ecology. He has over 200 peer reviewed publications on Interactive Information Retrieval focus on how user behaviour (with over 6500 citations). Key works relevant to this tutorial include his work modelling people as economic actors [2-5, 7, 8], and his work summarizing the different cognitive biases affecting search [6]. They have given numerous invited talks on Formal Models of Information Seeking and Retrieval throughout the world and lectured at the Information Foraging Summer School (2011, 2012 and 2013) and Symposium of Future Directions in Information Access (2007-2013). He has given various tutorials at leading conferences, on for example, the Economics Models and Measures of Search (SIGIR 2019, ICTIR 2016), Modelling the Costs and Benefits of Interaction, (CHIIR CHI2019, CHIIR 2017), Simulation of Interaction (SIGIR 2016), Formal Models of Search (CIKM 2015, ICTIR 2015).

Jiqun Liu is currently an assistant professor of data science and affiliated assistant professor of psychology at the University of Oklahoma. He directs the OU human-computer interaction and recommendation (HCIR) Lab where he advises students from different backgrounds on intelligent search and recommendation, humancentered computing, and responsible AI research. His current research program focuses on the intersection of human-AI interaction, machine learning, and cognitive psychology. His work applies the knowledge learned about people interacting with information in user modeling, adaptive search and recommendation, bias mitigation and human-centered fairness evaluation. His research on bias-aware user modeling and IR evaluation received grant support from National Science Foundation (NSF) and has been published at premier venues, such as ACM SIGIR, CHIIR, CIKM, JCDL, IP&M, EMNLP, and TheWebConf. His work has also been introduced in a research monograph entitled "A Behavioral Economics Approach to Interactive Information Retrieval: Understanding and Supporting Boundedly Rational Users" by Springer Nature and presented through numerous invited talks to both academic audiences and industry practitioners.

	Cognitive Biases	Domains			Search Process			
		Health	Political	Web	Querying	Examining	Judging	Sat.
	Confirmation Bias	[21] [37] [51] [53]	[30] [39] [38]	[52]	[37] [52] [53]	[61] [62]	[21] [51] [38]	
		[61] [62] [66]					[30] [39]	
Too Much	Anchoring	[41] [51]	[47] [48]	[17] [55]		[47] [48]	[17] [41] [51] [55]	
Information	Availability	[21] [51] [63]	[47] [48]			[47] [48]	[21] [51]	
	Framing Effects		[47] [48]			[47] [48]		
	Bandwagon Effects	[18] [21] [23]	[17]	[13] [34]	[34]	[13]	[17] [18] [23] [21]	
No Meaning	Exposure Effects	[21] [41] [51]	[38] [19]				[19] [21] [38] [41] [51]	
	Reinforcement Effects	[41]	[38] [19]				[19] [38] [41]	
	Decoy Effects			[17]			[17]	
Act Fast	Ambiguity Effects		[38] [30]	[17] [24] [31]		[30]	[17] [24] [31] [38]	
	Less is More			[49]				[49]
	Dunning-Kruger Effect			[20]			[20]	
	Priming Effect		[47] [48]	[35] [52] [54] [65]	[52] [65]		[47] [48] [54]	[35]
Remember	Order Effects	[10] [41] [51] [1]	[19]	[13] [32] [46] [64]		[13] [32] [46] [64] [1]	[10] [19] [41] [51]	
	Peak End Rule			[45]				[45]

Table 1: A reading list of IS&R papers investigating different cognitive biases across domains and different parts of the search process.

REFERENCES

- Mustafa Abualsaud and Mark D Smucker. 2019. Exposure and Order Effects of Misinformation on Health Search Decisions. In ROME 2019 Workshop on Reducing Online Misinformation Exposure. ACM.
- [2] Leif Azzopardi. 2011. The economics in interactive information retrieval. In SIGIR'11 - Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. 15–24. https://doi.org/10.1145/2009916. 2009093
- [3] Leif Azzopardi. 2013. Economic Models of Search. In Proceedings of the 18th Australasian Document Computing Symposium. ACM, Brisbane, Queensland, Australia 1
- [4] Leif Azzopardi. 2014. Modelling interaction with economic models of search. In SIGIR 2014 - Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 3–12. https://doi.org/ 10.1145/2600428.2602298
- [5] L. Azzopardi. 2017. Building cost-benefit models of information interactions. In CHIIR 2017 - Proceedings of the 2017 Conference Human Information Interaction and Retrieval. https://doi.org/10.1145/3020165.3022162
- [6] Leif Azzopardi. 2021. Cognitive biases in search: a review and reflection of cognitive biases in Information Retrieval. In Proceedings of the 2021 conference on human information interaction and retrieval. 27–37.
- [7] Leif Azzopardi and Guido Zuccon. 2016. An Analysis of the Cost and Benefit of Search Interactions. In Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval (Newark, Delaware, USA) (ICTIR '16). Association for Computing Machinery, New York, NY, USA, 59–68. https://doi.org/10.1145/ 2970398 2970412.
- [8] Leif Azzopardi and Guido Zuccon. 2018. Economics models of interaction. In a tutorial on modeling interaction using economics. https://global.oup.com/academic/ product/computational-interaction-9780198799610
- [9] Ricardo Baeza-Yates. 2018. Bias on the web. Commun. ACM 61, 6 (2018), 54-61. https://doi.org/10.1145/3209581
- [10] Nick Bansback, Linda C. Li, Larry Lynd, and Stirling Bryan. 2014. Exploiting order effects to improve the quality of decisions. *Patient Education and Counseling* 96, 2 (2014), 197–203. https://doi.org/10.1016/j.pec.2014.05.021
- [11] Marcia J Bates. 1989. The design of browsing and berrypicking techniques for the online search interface. Online review (1989).
- [12] Nicholas J Belkin, Robert N Oddy, and Helen M Brooks. 1982. ASK for information retrieval: Part I. Background and theory. *Journal of documentation* 38, 2 (1982), 61–71
- [13] Keith Burghardt, Tad Hogg, and Kristina Lerman. 2018. Quantifying the impact of cognitive biases in question-answering systems. In 12th International AAAI Conference on Web and Social Media. ICWSM 2018. 568-571.
- [14] Nicholas Carr. 2008. Is Google Making Us Stupid? What the Internet Is Doing to Our Brains! Yearbook of the National Society for the Study of Education 107, 2 (10 2008), 89–94. https://doi.org/10.1111/j.1744-7984.2008.00172.x
- [15] Nuo Chen, Jiqun Liu, and Tetsuya Sakai. 2023. A Reference-Dependent Model for Web Search Evaluation: Understanding and Measuring the Experience of Boundedly Rational Users. In Proceedings of the ACM Web Conference 2023. 3396– 3405.
- [16] Junghoo Cho and Sourashis Roy. 2004. Impact of Search Engines on Page Popularity. In Proceedings of the 13th International Conference on World Wide Web (WWW '04). ACM, 20–29. http://doi.acm.org/10.1145/988672.988676
- [17] Carsten Eickhoff. 2018. Cognitive biases in crowdsourcing. In WSDM 2018 -Proceedings of the 11th ACM International Conference on Web Search and Data Mining. 162–170. https://doi.org/10.1145/3159652.3159654
- [18] David Elsweiler, Christoph Trattner, and Morgan Harvey. 2017. Exploiting food choice biases for healthier recipe recommendation. In SIGIR 2017 - Proceedings

- of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. 575–584. https://doi.org/10.1145/3077136.3080826
- [19] Robert Epstein and Ronald E. Robertson. 2015. The search engine manipulation effect (SEME) and its possible impact on the outcomes of elections. *Proceedings* of the National Academy of Sciences (PNAS) 112, 33 (2015), E4512–E4521. https: //doi.org/10.1073/pnas.1419828112
- [20] Ujwal Gadiraju and Stefan Dietze. 2017. Improving learning through achievement priming in crowdsourced information finding microtasks. In LAK '17: Proceedings of the Seventh International Learning Analytics & Knowledge Conference. 105–114. https://doi.org/10.1145/3027385.3027402
- [21] Amira Ghenai, Mark D. Smucker, and Charles L.A. Clarke. 2020. A think-aloud study to understand factors affecting online health search. In CHIIR 2020 - Proceedings of the 2020 Conference on Human Information Interaction and Retrieval. 273–282. https://doi.org/10.1145/3343413.3377961
- [22] Gerd Gigerenzer. 2018. The Bias Bias in Behavioral Economics. Review of Behavioral Economics 5, 3-4 (2018), 303–336. https://doi.org/10.1561/105.00000092
- [23] Christopher G. Harris. 2019. Detecting cognitive bias in a relevance assessment task using an eye tracker. In ETRA '19: Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications. 1–5. https://doi.org/10.1145/3314111. 3319824
- [24] Samuel Ieong, Nina Mishra, Eldar Sadikov, and Li Zhang. 2012. Domain Bias in Web. In WSDM 2012 - Proceedings of the 5th ACM International Conference on Web Search and Data Mining. ACM, 413–422.
- [25] Peter Ingwersen and Kalervo Järvelin. 2005. The Turn: Integration of Information Seeking and Retrieval in Context (The Information Retrieval Series). Springer-Verlag New York, Inc.
- [26] Peter Ingwersen and Kalervo Järvelin. 2005. The Turn: Integration of Information Seeking and Retrieval in Context (The Information Retrieval Series). Springer-Verlag New York, Inc.
- [27] Daniel Kahneman. 2003. Maps of bounded rationality: Psychology for behavioral economics. American economic review 93, 5 (2003), 1449–1475.
- 28] Daniel Kahneman. 2017. Thinking, fast and slow.
- [29] Daniel Kahneman and Amos Tversky. 1979. Prospect Theory: An Analysis of Decision under Risk. Econometrica 47, 2 (1979), 263–291.
- [30] Markus Kattenbeck and David Elsweiler. 2019. Understanding credibility judgements for web search snippets. Aslib Journal of Information Management 71, 3 (2019), 368–391. https://doi.org/10.1108/AJIM-07-2018-0181
- [31] Gabriella Kazai, Nick Craswell, Emine Yilmaz, and S. M.M. Tahaghoghi. 2012. An analysis of systematic judging errors in information retrieval. In Proceedings of the 21st ACM international conference on Information and knowledge management. 105–114. https://doi.org/10.1145/2396761.2396779
- [32] Mark T. Keane, Maeve O'Brien, and Barry Smyth. 2008. Are people biased in their use of search engines? *Commun. ACM* 51, 2 (2008), 49–52. https://doi.org/10.1145/1314215.1314224
- [33] Diane Kelly. 2009. Methods for Evaluating Interactive Information Retrieval Systems with Users. Foundations and Trends in Information Retrieval 3 (2009), 1–224.
- [34] Diane Kelly, Amber Cushing, Maureen Dostert, Xi Niu, and Karl Gyllstrom. 2010. Effects of popularity and quality on the usage of query suggestions during information search. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, Vol. 1. 45–54. https://doi.org/10.1145/1753326.1753334
- [35] Diane Kelly, Chirag Shah, Cassidy R. Sugimoto, Earl W. Bailey, Rachael A. Clemens, Ann K. Irvine, Nicholas A. Johnson, Weimao Ke, Sanghee Oh, Anezka Poljakova, Marcos A. Rodriguez, Megan G. Van Noord, and Yan Zhang. 2008. Effects of performance feedback on users' evaluations of an interactive IR system. IIIX'08: Proceedings of the 2nd International Symposium on Information Interaction in Context (2008), 75–82. https://doi.org/10.1145/1414694.1414712

- [36] Diane Kelly and Cassidy Sugimoto. 2013. A Systematic Review of Interactive Information Retrieval Evaluation Studies, 1967-2006. Journal of the American Society for Information Science and Tech. 64, 4 (2013), 745-770.
- [37] Alla Keselman, Allen C. Browne, and David R. Kaufman. 2008. Consumer Health Information Seeking as Hypothesis Testing. Journal of the American Medical Informatics Association 15, 4 (2008), 484–495. https://doi.org/10.1197/jamia. M2449
- [38] Silvia Knobloch-Westerwick, Benjamin K. Johnson, and Axel Westerwick. 2015. Confirmation bias in online searches: Impacts of selective exposure before an election on political attitude strength and shifts. Journal of Computer-Mediated Communication 20, 2 (2015), 171–187. https://doi.org/10.1111/jcc4.12105
- [39] Juhi Kulshrestha, Motahhare Eslami, Johnnatan Messias, Muhammad Bilal Zafar, Saptarshi Ghosh, Krishna P. Gummadi, and Karrie Karahalios. 2017. Quantifying search bias: Investigating sources of bias for political searches in social media. In Proceedings of the ACM Conference on Computer Supported Cooperative Work, CSCW. 417–432. https://doi.org/10.1145/2998181.2998321
- [40] Sanna Kumpulainen and Hugo Huurdeman. 2015. Shaken, not steered: The value of shaking up the search process. CEUR Workshop Proceedings 1338 (2015), 1–4.
- [41] Annie Y.S. Lau and Enrico W. Coiera. 2007. Do People Experience Cognitive Biases while Searching for Information? Journal of the American Medical Informatics Association 14, 5 (2007), 599–608. https://doi.org/10.1197/jamia.M2411
- [42] Jiqun Liu. 2023. A Behavioral Economics Approach to Interactive Information Retrieval: Understanding and Supporting Boundedly Rational Users. Vol. 48. Springer Nature.
- [43] Jiqun Liu. 2023. Toward A Two-Sided Fairness Framework in Search and Recommendation. In Proceedings of the 2023 Conference on Human Information Interaction and Retrieval. 236–246.
- [44] Jiqun Liu and Fangyuan Han. 2020. Investigating reference dependence effects on user search interaction and satisfaction: A behavioral economics perspective. In Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval. 1141–1150.
- [45] Jiqun Liu and Fangyuan Han. 2020. Investigating Reference Dependence Effects on User Search Interaction and Satisfaction: A Behavioral Economics Perspective. In SIGIR 2020 - Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 1141–1150. https://doi.org/ 10.1145/3397271.3401085
- [46] Jamie Murphy, Charles Hofacker, and Richard Mizerski. 2006. Primacy and Recency Effects on Clicking Behavior. Journal of Computer-Mediated Communication 11, 2 (2006), 522–535. https://doi.org/10.1111/j.1083-6101.2006.00025.x
- [47] Alamir Novin and Eric Meyers. 2017. Making Sense of Conflicting Science Information: Exploring bias in the search engine result page. In Proceedings of the 2017 conference on conference human information interaction and retrieval. 175–184. https://doi.org/10.1145/3020165.3020185
- [48] Alamir Novin and Eric M Meyers. 2017. Four Biases in Interface Design Interactions BT Design, User Experience, and Usability: Theory, Methodology, and Management. In Proceedings of 6th International Conference of Design, User Experience, and Usability. Springer International Publishing, Cham, 163–173.
- [49] Antti Oulasvirta, Janne P Hukkinen, and Barry Schwartz. 2009. When more is less: the paradox of choice in search engine use. In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval. ACM, Boston, MA, USA, 516–523. https://doi.org/10.1145/1571941.1572030
- [50] Peter Pirolli and Stuart Card. 1999. Information foraging. Psychological Review 106 (1999), 643–675.

- [51] Frances A. Pogacar, Amira Ghenai, Mark D. Smucker, and Charles L.A. Clarke. 2017. The positive and negative influence of search results on people's decisions about the efficacy of medical treatments. In ICTIR 2017 - Proceedings of the 2017 ACM SIGIR International Conference on the Theory of Information Retrieval. Association for Computing Machinery, Inc, 209–216. https: //doi.org/10.1145/3121050.3121074
- [52] Suppanut Pothirattanachaikul, Takehiro Yamamoto, Yusuke Yamamoto, and Masatoshi Yoshikawa. 2020. Analyzing the effects of "people also ask" on search behaviors and beliefs. In Proceedings of the 31st ACM Conference on Hypertext and Social Media, HT 2020. 101–110. https://doi.org/10.1145/3372923.3404786
- [53] Suppanut Pothirattanachaikul, Yusuke Yamamoto, Takehiro Yamamoto, and Masatoshi Yoshikawa. 2019. Analyzing the effects of document's opinion and credibility on search behaviors and belief dynamics. In *International Con*ference on Information and Knowledge Management, Proceedings. 1653–1662. https://doi.org/10.1145/3357384.3357886
- [54] Falk Scholer, Diane Kelly, Wan Ching Wu, Hanseul S. Lee, and William Webber. 2013. The effect of threshold priming and need for cognition on relevance calibration and assessment. SIGIR 2013 - Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (2013), 623–632. https://doi.org/10.1145/2484028.2484090
- [55] Milad Shokouhi, Ryen W. White, and Emine Yilmaz. 2015. Anchoring and adjust-ment in relevance estimation. In SIGIR 2015 Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. 963–966. https://doi.org/10.1145/2766462.2767841
- 963–966. https://doi.org/10.1145/2766462.2767841
 [56] Herbert A Simon. 1972. Theories of bounded rationality. *Decision and organization* 1 (1972), 161–176.
- [57] Richard H Thaler. 2016. Behavioral economics: Past, present, and future. American economic review 106, 7 (2016), 1577–1600.
- [58] Peter M Todd and Gerd Gigerenzer. 2000. Précis of "Simple heuristics that make us smart". Behavioral and brain sciences 23, 5 (2000), 727–741.
- [59] Amos Tversky and Daniel Kahneman. 1974. Judgment under Uncertainty: Heuristics and Biases. Science 185, 4157 (1974), 1124–1131. https://doi.org/10.1126/science.185.4157.1124
- [60] John Von Neumann and Oskar Morgenstern. 2007. Theory of games and economic behavior (60th Anniversary Commemorative Edition). Princeton university press.
- [61] Ryen W White. 2013. Beliefs and Biases in Web Search. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. Dublin, Ireland, 3–12.
- [62] Ryen W. White. 2014. Belief dynamics in web search. Journal of the Association for Information Science and Technology 65, 11 (2014), 2165–2178. https://doi.org/ 10.1002/asi.23128
- [63] Ryen W. White and Eric Horvitz. 2013. Captions and biases in diagnostic search. ACM Transactions on the Web 7, 4 (2013). https://doi.org/10.1145/2486040
- [64] Mingda Wu, Shan Jiang, and Yan Zhang. 2012. Serial position effects of clicking behavior on result pages returned by search engines. In CIKM '12: Proceedings of the 21st ACM international conference on Information and knowledge management. ACM, 2411–2414. https://doi.org/10.1145/2396761.2398654
- [65] Yusuke Yamamoto and Takehiro Yamamoto. 2018. Query priming for promoting critical thinking in web search. CHIIR 2018 - Proceedings of the 2018 Conference on Human Information Interaction and Retrieval 2018-March (2018), 12–21. https://doi.org/10.1145/3176349.3176377
- [66] Yan Zhang. 2012. Consumer health information searching process in real life settings. In Proceedings of the ASIST Annual Meeting, Vol. 49. https://doi.org/10. 1002/meet.14504901046