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ABSTRACT

Understanding how people interact with search interfaces is core

to the �eld of Interactive Information Retrieval (IIR). While vari-

ous models have been proposed (e.g., Belkin’s ASK, Berry picking,

Everyday-life information seeking, Information foraging theory,

Economic theory, etc.), they have largely ignored the impact of cog-

nitive biases on search behaviour and performance. A growing body

of empirical work exploring how people’s cognitive biases in�uence

search and judgments, has led to the development of new models

of search that draw upon Behavioural Economics and Psychology.

This full day tutorial will provide a starting point for researchers

seeking to learn more about information seeking, search and re-

trieval under uncertainty. The tutorial will be structured into three

parts. First, we will provide an introduction of the biases and heuris-

tics program put forward by Tversky and Kahneman [60] which

assumes that people are not always rational. The second part of the

tutorial will provide an overview of the types and space of biases

in search [5, 40], before doing a deep dive into several speci�c ex-

amples and the impact of biases on di�erent types of decisions (e.g.,

health/medical, �nancial). The third part will focus on a discussion

of the practical implication regarding the design and evaluation

human-centered IR systems in the light of cognitive biases – where

participants will undertake some hands-on exercises.
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• Information systems → Search interfaces; Task models; Re-
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1 MOTIVATION AND OBJECTIVES

Interactive Information Seeking and Retrieval (IS&R) encompasses

the processes of searching, discovering, and retrieving relevant,

valuable, and trustworthy information [22]. This multifaceted jour-

ney involves various factors that impact how individuals partic-

ipate in this process, in�uence their search intentions and be-

haviours [45, 48], and a�ect their search and learning experiences

under varying tasks [44, 47, 61]. To understand ISR comprehen-

sively, a variety of conceptual and descriptive models have been

proposed. These models, such as Bates’ Berry Picking Model [8]

and the ISR framework presented by Ingwersen and Kalvero [23],

provide valuable insights into the intricacies of information seek-

ing and retrieval. Moreover, researchers have explored a diverse

array of determinants in this �eld, including user characteristics,

such as expertise, background, topic knowledge, and cognitive abil-

ities [30, 39, 46]. They have also investigated system functionalities,

such as interface design, presentation, and quality, along with task

attributes like di�culty, complexity, and topicality [29, 33]. These

models and determinants collectively contribute to a deeper under-

standing of the dynamic nature of information seeking and retrieval,

shedding light on the complex interplay between users, systems,

and the information itself. However, they have been largely agnostic

of the cognitive biases that impact people’s search behaviour.
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Figure 1: Thinking, Slow and Fast [25]: Cognitive biases [60],

or simple heuristics that make us smart? [59]

Over the past decade there has been growing interest in un-

derstanding the in�uence of cognitive biases on IS&R and their

consequences for information processing, knowledge acquisition,

and decision-making. This concern is particularly relevant in an era

marked by instant access to vast information volumes, as well as the

potential exploitation of cognitive biases by search engines, content

creators, and Arti�cial Intelligence (AI) systems [6, 11]. Moreover,

questions arise about the potential interaction between cognitive

biases and biases present in search engines, algorithms, and content,

andwhether these biasesmay contribute to or reinforce one another,

creating a “bias begets bias” cycle [6]. The amalgamation of system-

and user-sided biases can mutually amplify e�ects, both positively

and negatively [37, 41]. As an increasing portion of the popula-

tion relies on search and recommender systems for essential life

decisions, such as medical, political, social, personal, and �nancial
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choices, understanding and mitigating the (negative) impact of cog-

nitive biases is of considerable economic and societal signi�cance

and is also essential for building, implementing, and evaluating

human-centered, responsible information systems in high-stakes

decision contexts [12, 41]. Thus, this tutorial aims to bring atten-

tion to this growing body of research and applications, provide

participants with an overview of cognitive biases in search, and

facilitate the discussions on the potential opportunities, challenges,

and practical implications of research on bias-aware IS&R. With

the knowledge about human biases, we hope to provide a psycho-

logically more realistic foundation for user models, IR evaluation

measures and bias mitigation techniques in search interactions [40].

2 RELEVANCE TO SIGIR COMMUNITY

This tutorial is highly relevant to the core research interests of

the SIGIR community and can bring to the forefront the nuanced

interplay between human cognition and interactive information

retrieval (IR) systems in varying task contexts. This initiative is

not just timely but pivotal in an era where AI-assisted information

ecosystems are becoming increasingly sophisticated and integral

to societal functions. Our exploration into cognitive biases and

heuristics sheds light on the often-overlooked psychological dimen-

sions of search behaviors and o�ers a lens through which we can

re-evaluate existing IR models and systems. By delving into the

foundational theories of Tversky and Kahneman among others, and

their application in the context of IS&R, this tutorial will present

and discuss the insights regarding boundedly rational users and

their interaction and evaluation strategies. This is critical for the

development of next-generation search technologies that are not

only technologically advanced but are also attuned to the complex

tasks and cognitive processes of their users. This tutorial represents

a bridge between the computational and cognitive realms of IR,

presenting ideas and methodologies to better model, understand,

and support users’ interactions with information and IR systems.

3 SCHEDULE AND MATERIALS

The �rst half of this in-person tutorial will focus on the background

theory from cognitive psychology, and the second half will be fo-

cus on providing examples in the context of interaction modeling,

evaluation and bias mitigation. Our learning goals and referencema-

terials are available at our tutorial website: https://beiir.github.io/.

3.1 Detailed Schedule

Part 1 - Session 1: Biases and Heuristics (1.5h). To kick o� the tuto-

rial, we will �rst organize a "How biased are you?" activity, where

we will hand out some standard survey questions known to reveal

cognitive biases, as a fun way to get participant actively engaged in

understanding di�erent biases and re�ecting on the possible impact

of biases in information search, IR evaluation, and decision-making.

Then, we will introduce the �ndings and implications on the

role of cognitive biases in judgment and decision-making under

uncertainty from classical behavioural experiments [e.g. 24, 58].

Part 2 - Session 2: Cognitive Biases in Search and Evaluation (1.5h).

After the co�ee break, we will do a deep dive into the role and

impact of human cognitive biases in search interactions, document

judgments, and whole-session evaluation in IS&R, and discuss the

methodological challenges and practical implications of modeling

search interactions from a behavioral economics perspective [5, 40].

• Cognitive Biases in Query Formulation [54, 67].

• Biases in Evaluation of Search Engine Result Pages (SERPs) [50].

• Biases, in-situ Evaluation and Retrospective Evaluation [12, 43].

• Biases in Health Information Search [53, 64, 65].

• Study Design and Methodological Challenges.

After introducing IS&R research on cognitive biases, we will

ask participants to discuss in groups and propose relevant open

questions, theoretical and methodological challenges, and possible

practical applications they have in mind. During the discussions,

we will also o�er Table 1 as a checklist for tutorial participants

to look up relevant papers under di�erent domains and phases of

search processes in order to facilitate their discussions.

Part 2 (cont) - Session 3: Bias Mitigation Strategies (1.5h). After lunch

break, we will discuss the approaches and techniques applied to

mitigating human cognitive biases in information judgments and

decision-making. Our presentation will cover relevant research

from IR, Recommender Systems as well as broader HCI �elds on

both explicit interventions (e.g. recommendation, re-ranking) and

reminders and implicit nudging on interfaces [10, 14].

Part 3 - Session 4: Cognitive Biases and GenIR (1.5h). Large lan-

guage models (LLM) are able to generate customized human-like

responses to users’ prompts, tasks, and preferences [62], and thus

may cause harmful behavioral impacts when the responses trigger

and reinforce users’ existing biases. After co�ee break, we will �rst

discuss the potential opportunities and challenges in understanding

cognitive biases in human-AI interactions and mitigating the risks

of cognitive behavioral manipulation in Generative IR.

Then, we will organize breakout group discussions and match

each group with a speci�c subtopic under the theme of session

4. Each group will discuss speci�c research questions under the

subtopic and collaborate on designing one or two user studies or

experiments that can answer some of the proposed questions.
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ACM SIGIR, CHIIR, CIKM, IP&M, EMNLP, and TheWebConf. His

work has also been introduced in a research monograph entitled
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Table 1: A breakdown of IS&R papers investigating di�erent cognitive biases

across domains and di�erent parts of the search process.

.

Cognitive Biases Domains Search Process

Health Political Web Querying Examining Judging Sat.

Con�rmation Bias [19] [34] [53] [55] [26] [36] [35] [54] [34] [54] [55] [63] [64] [19] [53] [35]

[63] [64] [68] [26] [36]

Too Much Anchoring [38] [53] [50] [51] [15] [57] [50] [51] [15] [38] [53] [57]

Information Availability [19] [53] [65] [50] [51] [50] [51] [19] [53]

Framing E�ects [50] [51] [50] [51]

Bandwagon E�ects [16] [19] [20] [15] [9] [31] [31] [9] [15] [16] [20] [19]

No Meaning Exposure E�ects [19] [38] [53] [35] [17] [17] [19] [35] [38] [53]

Reinforcement E�ects [38] [35] [17] [17] [35] [38]

Decoy E�ects [15] [13, 15]

Act Fast Ambiguity E�ects [35] [26] [15] [21] [27] [26] [15] [21] [27] [35]

Less is More [52] [52]

Dunning-Kruger E�ect [18] [18]

Priming E�ect [50] [51] [32] [54] [56] [67] [54] [67] [50] [51] [56] [32]

Remember Order E�ects [7] [38] [53] [1] [17] [9] [28] [49] [66] [9] [28] [49] [66] [1] [7] [17] [38] [53]

Peak End Rule [42] [42]

Springer Nature and presented through numerous invited talks to

both academic audiences and tech industry practitioners.

Leif Azzopardi is a Associate Professor at the University of Strath-

clyde within the Department of Computer and Information Sciences.

Leif specializes in modelling and measuring how people interact

with search and recommendation systems using theory from eco-

nomics to ecology. He has over 200 peer reviewed publications on

Interactive Information Retrieval focus on howuser behaviour (with

over 7,000 citations). Key works relevant to this tutorial include

his work modelling people as economic actors [2–4] and his work

summarizing the di�erent cognitive biases a�ecting search [5]. He

has given numerous invited talks on Formal Models of Information

Seeking and Retrieval throughout the world and lectured at the

Information Foraging Summer School (2011, 2012 and 2013) and

Symposium of Future Directions in Information Access (2007-2013).

He has given various tutorials at leading conferences, such as the

EconomicsModels andMeasures of Search (SIGIR 2019, ICTIR 2016),

Modelling the Costs and Bene�ts of Interaction, (CHIIR CHI2019,

CHIIR 2017), Simulation of Interaction (SIGIR 2016), Formal Models

of Search (CIKM 2015, ICTIR 2015).
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