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ABSTRACT: A range of three-dimensional (3D) morphologies is established in
layered thin films of a block copolymer, polystyrene-block-poly(2-vinylpyridine)
(PS-b-P2VP) (115 kg/mol, P2VP volume fraction 31.6%), by combinations of
spin coating, solvent annealing, reversible metal infiltration, and surface
modification by oxygen etching. Pt infiltrated into the cylindrical-morphology
P2VP blocks from an acid solution containing [PtCl4]2− locks the morphology of
the bottom layer during the coating and annealing of a second layer, leading to a
range of bilayered and trilayered 3D structures, including in-plane orthogonal
meshes and layered I-shape and inverted T-shape P2VP microdomains. In
contrast, unloading the metal by a KOH plus ethylenediaminetetraacetic acid
disodium salt dihydrate (Na2EDTA) solution allows chain reorganization during
subsequent layer coating and annealing, producing morphologies characteristic of
a single layer of the PS-b-P2VP. However, a short oxygen etch modifies the surface, impedes chain reorganization, and yields
multilayer structures even when the metal unloading process is performed. Metal infiltration and exfiltration combined with layering,
annealing, and oxygen etching diversify the morphologies available from the block copolymer and provide a path to localized
morphology control, expanding the toolkit for 3D nanofabrication.
KEYWORDS: self-assembly, block copolymer, 3D morphology, metal infiltration, metal exfiltration

■ INTRODUCTION
Block copolymers (BCPs) can form various periodic
morphologies by self-assembly, including lamellae, gyroids,
hexagonally packed cylinders, or spheres, making them useful
for nanofabrication and pattern transfer.1−4 BCPs are
characterized by the degree of polymerization (N), the
Flory−Huggins interaction parameter (χ), and the block
volume fraction ( f),5−7 which determine the equilibrium
bulk microdomain morphology. For BCP thin films, the
morphologies can be further modified via processing
parameters, including the surface or interface chemistry,8−10

solvent annealing,11−14 flash lamp annealing,15,16 film thick-
ness,17−19 or patterning the substrate to provide a template for
self-assembly.20−22 For example, in films of PS-b-P2VP,18

polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA),17

and polystyrene-b-poly(dimethylsiloxane) (PS-b-PDMS),19

increasing thickness promoted reorientation of cylindrical
microdomains from in-plane to out-of-plane.
Much of the work on BCP-based nanofabrication has made

use of films with 2D self-assembled structures, e.g., vertical
cylinders or lamellae, or single layers of in-plane cylinders or
spheres, where there is little structural complexity in the out-of-
plane direction.23−26 Obtaining custom 3D morphologies with
specific out-of-plane microdomain geometries widens the
opportunities for BCP-derived nanofabrication, for example,

enabling the fabrication of porous channels for photovoltaic
devices27−31 or cross-point structures for microelectronics.4,26

One strategy for creating films with 3D structural complexity
is layer-by-layer stacking of 2D films, i.e., forming a bottom
layer with one morphology, locking the structure by various
cross-linking or etching methods, and then coating and
annealing an upper layer with a different morphology.32−35

Locking of the first layer prevents disruption of its morphology
during the processing of the next layer. Examples include
alternating lamellar and cylindrical microdomains formed in
stacked PS-b-PMMA thin films after cross-linking the bottom
layer by UV irradiation32,33 and films of polystyrene-block-
poly(4-vinylpyridine) (PS-b-P4VP) that were cross-linked at
the surface by physical collisions of ions from an Ar plasma
prior to coating a second layer.34

Metal infiltration, in which pyridine-containing blocks bind
with metal precursors, locks the self-assembled structures and
leaves metal patterns after etching,36−39 making it a useful
process in the formation of 3D nanostructures. Pyridine groups
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accept protons in an acid environment and then bind with
anionic metal complexes such as [PtCl4]2− via an electrostatic
interaction,40−43 introducing metal selectively into the block.
P2VP and P4VP blocks have been used as hosts for metal
infiltration, enabling construction of 3D nanostructures.44−47

For example, multicomponent 3D meshes46 or hierarchical
dot/line patterns47 were formed via sequential metallization
and etching of stacked PS-b-P2VP or PS-b-P4VP thin films.
Exfiltrating metal from metallized BCPs unlocks the

structures, allowing the BCP to reorganize in a subsequent
annealing process or to be infiltrated by another metal.43,48

Mun et al. unloaded [PtCl4]2− from specific regions of PS-b-
P2VP thin films using aqueous HCl solution and reloaded the
P2VP blocks with [AuCl4]− to form multicomponent Au/Pt
metal patterns.48 We previously reported that unloading
[PtCl4]2− or [Fe(CN)6]3− by a KOH + Na2EDTA complexing
solution unlocked the 2D structures in PS-b-P2VP thin films
and allowed the morphology to change in a subsequent
annealing process, which enabled reversible morphology
transitions in single-layer films.43

Here, we extend this technique to produce unconventional
3D morphologies in stacked PS-b-P2VP thin films via metal
infiltration using [PtCl4]2− and metal exfiltration using a KOH
+ Na2EDTA solution. Combinations of infiltration, exfiltration,
reactive ion etching, and solvent annealing processes in bilayer
and trilayer PS-b-P2VP yield a range of structures such as
stacks of I- and T-shaped morphologies by reorientation of the

tips of vertical cylinders. The morphological control enabled by
metallization diversifies the applications of self-assembly for
nanofabrication.

■ EXPERIMENTAL METHODS
Materials. The PS-b-P2VP BCP, which has a number-average

molecular weight (Mn) of 79.0 and 36.5 kg/mol for the PS and P2VP
blocks, respectively, was purchased from Polymer Source Inc. The
material is designated as SV115 and has a polydispersity of 1.05 and
P2VP volume fraction of 31.6%. The BCP was dissolved in toluene to
prepare 1 and 1.5 wt % solutions. Na2PtCl4 was purchased from
Sigma-Aldrich and served as the metal precursor. 10 mM metal
precursor was dissolved in 9 wt % HCl aqueous solution to form the
metallization solution. A mixed aqueous solution of KOH (0.05 wt %,
purchased from EMD Chemicals Inc.) and Na2EDTA (0.5 wt %,
purchased from Sigma-Aldrich) was used as the unloading solution.

BCP Film Preparation. The set of processes used to make 2-layer
and 3-layer structures is shown in Figure 1. BCP solutions were spin-
coated on silicon wafers with native oxide at 3k rpm (1 wt %
solution), producing a film thickness of 37 ± 2 nm, and 2k rpm (1.5
wt %), forming a 61 ± 4 nm film. Two- or three-layer films were
constructed by repeating the single-layer preparation process two or
three times. The stacked films with different thickness are denoted as
x nm−y nm−z nm, where x, y, and z (if present) are the thicknesses
of first layer, second layer, and third layer, respectively.

Annealing. The thin films were annealed in a 5 cm diameter × 5
cm height cylindrical glass chamber containing 1 mL of chloroform
solvent with 7 sccm nitrogen gas flow for 15 min, reaching a swelling
ratio (the ratio of swelled thickness to as-coated thickness) of 2.8. The

Figure 1. Schematic illustration of constructing 3D structures in a PS-b-P2VP thin film. Dark blue represents the disordered film, light blue
represents the substrate, purple cylinders indicate the metallized P2VP blocks, and light purple indicates the PS matrix.
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solubility parameters for chloroform, PS, and P2VP are 18.9,49 18.4,49

and 21.2 MPa1/2,50 respectively, implying that the chloroform vapor is
PS-selective and will swell the PS block preferentially.
Metallization. To infiltrate Pt into the SV115 structure, the

metallization solution was dripped on the annealed films and held for
60 min at room temperature and then washed off using deionized
water. To unload the metal, the KOH + Na2EDTA was dripped onto
the film and left for 30 min then washed off by deionized water.
Etching. Oxygen plasma etching was carried out using a Plasma-

therm 790 reactive ion etching (RIE) system with 6 mTorr pressure,
10 sccm gas flow, and 90 W power. Surface modification (Supporting
Information Section 6) was carried out by oxygen etching for 3 s to
remove the mushroom-like protrusions of the metallized vinylpyridine
block on the surface.36,41,43 Longer oxygen etches up to 60 s were
used to remove organic components and convert Pt-infiltrated P2VP
microdomains to metal patterns for visualization by scanning electron
microscopy (SEM).
Characterization. A Zeiss Sigma HD VP SEM and a Zeiss Gemini

450 SEM were used to image the self-assembled morphologies. A
Bruker Dimension Icon atomic force microscope (AFM) was used to
scan the topography of thin films, and a Physical Electronics
Versaprobe II X-ray photoelectron spectrometer (XPS) was used to
analyze the elemental composition of the surface.

■ RESULTS AND DISCUSSION
Single-Layer Film. The microdomain morphology of

SV115 depends on its thickness and solvent annealing
conditions. We previously showed that 37 nm thick films of
SV115 annealed in chloroform form a single layer of in-plane
P2VP cylinders with a periodicity of 50 nm (Figure 2a, where

the morphology of the Pt-infiltrated P2VP is revealed by
reactive ion etching in oxygen).43 The formation of in-plane
cylinders is attributed to the dominant effects of surface and
interface energy, which favor PS at the film−substrate and
film−air interface and embedded P2VP microdomains parallel
to the surface. Mushroom-like protrusions of height 1.8−4.0
nm (Figure S7b) formed on the surface above the cylindrical
microdomains after infiltrating the metal, which has been
explained as a result of the swelling of P2VP blocks in
acid.36,41,43 These protrusions are removed by the surface
modification process (3 s oxygen etch),36,41,43 which also
removes some of the organic blocks and increases the oxygen
content at the surface (Figure S8 and Table S1).
As the film thickness increases, the P2VP cylinders reorient

to the out-of-plane direction. 61 nm thick films form inverted-
T structures (Figure 2b), consisting of a layer of in-plane
cylinders adjacent to the substrate, from which perpendicular

cylinders emerge. We reported a similar structure for 200 and
485 nm thick SV115, consisting of 1−2 layers of in-plane
cylinders adjacent to the substrate transitioning to an out-of-
plane orientation throughout the rest of the film.18 The
reorientation is attributed to the gradient of solvent
concentration through the film thickness.18,19,51 In our 61
nm thick films, the perpendicular P2VP cylinders protrude
above the PS surface by 2−3 nm after metal infiltration (Figure
S7c,d). The surface modification process increases the
protrusion of the perpendicular metallized cylinders to 5−8
nm.

Stacked Films. We now demonstrate how stacking 37 and
61 nm thick films can lead to a range of two-layer
morphologies shown schematically in Figure 1. We start with
examples in which the first layer is a 37 nm thick film. The first
layer is metallized and the surface is modified by a 3 s oxygen
etch step; then a second layer of 37 or 61 nm thickness is
deposited on top, annealed, and metallized (Figure 3). The
first layer retains its in-plane cylinder morphology for both
thicknesses of the second layer.

When the second layer is 37 nm thick, it forms in-plane
cylinders preferentially oriented orthogonal to the bottom layer
of cylinders (Figure 3a,c), yielding mesh structures analogous
to those produced by both PS-b-P2VP and PS-b-PDMS
bilayers in prior work.46,52,53 Omitting the surface modification
step before coating the 37 nm second layer results in a mixture
of in-plane and out-of-plane cylinders in the upper layer, with
less preference for orthogonal arrangement (Figure S1a,c).
This is most likely a result of the protrusions formed by
metallization36,41,43 (Figure S7b) degrading the quality of the
ordering of the second layer.
If the second layer is 61 nm thick, an inverted-T morphology

consisting of in-plane cylinders connected to vertical cylinders
is formed above the lower layer of in-plane cylinders (Figure
3b,d).18 Omitting the surface modification step yields the same
morphology, though the first layer of in-plane cylinders appears
thicker (Figure S1b,d).

Figure 2. Morphology of single-layer SV115 thin films. The films are
prepared by spin coating a layer 37 or 61 nm thick then annealing,
metallization, and etching. (a) 37 nm thick film with in-plane
cylinders of period 50 nm and (b) 61 nm thick film showing out-of-
plane cylinders at the top surface. Insets in (b) show the top view and
cross section of the same sample after longer etching, revealing a layer
of in-plane cylinders at the bottom of the 61 nm thick film connecting
the bases of the out-of-plane cylinders to form inverted-T structures.

Figure 3. Morphology of two-layer metallized films prepared by spin
coating a 37 nm layer of SV115 and then annealing, metallization, and
a 3 s surface modification etch, followed by coating a second layer of
37 or 61 nm then annealing and metallization. (a) 37 nm−37 nm top
view, (b) 37 nm−61 nm top view with an inset revealing the in-plane
cylinders of the upper layer after a longer etching time, (c) 37 nm−37
nm cross section, and (d) 37 nm−61 nm cross section. Dashed arrows
indicate the bottom layer of in-plane cylinders, and solid arrows
indicate the upper layer cylinders.
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We now consider cases where the first layer is 61 nm thick,
annealed, metallized, and treated with a surface modification
etch. The first layer exhibits inverted T structures. A second
layer of 37 nm thickness exhibits a majority of in-plane
cylinders with some out-of-plane cylinders (Figure 4a,c). Most

of the in-plane cylinders from the second layer lie between the
tops of the vertical cylinders of the first layer, but some lie
directly above the vertical cylinders. (A similar morphology is
produced if the surface modification step is omitted before
coating the second layer; Figure S2a−c.) In the cross section
(Figures 4c and S2d) we see that the first layer morphology has
been modified by addition of the second layer. A bridging layer
formed across the top of the vertical cylinders, converting the
inverted-T into an I-shaped cross section. Above this we
observe the in-plane cylinders of the 37 nm thick second layer.
Figure S2b,c further reveals the underlying morphology of

the 61 nm thick first layer by removing the second layer using
60 s etching: we observe in-plane cylinders at the bottom of
the lower layer with vertical cylinders emerging from them, and
fragments of the cylinders of the top layer remain. Hence the
61 nm−37 nm film consists of I-shaped structures from the
first layer surmounted by in-plane cylinders from the second
layer.
Next, we describe the 61 nm−61 nm structure shown in

Figure 4b,d, prepared with a surface modification step before
the second layer. The lower layer produced an I-shaped
structure similar to that seen in the 61 nm−37 nm sample, and
the upper layer forms an inverted-T structure. Without the
surface modification step (Figure S2e,f), the morphology is
similar, but the vertical cylinders of the upper layer are less
uniformly oriented in the out-of-plane direction.
Applying a third 61 nm layer leads to a structure where the

bottom two layers form the I-shaped structures and the top
layer forms the inverted T structure (Figure 5a,b). Without the
surface modification steps, the structure is poorly ordered and
the cylinder orientations vary (Figure S3a,b).
These examples show that the inverted-T structure of a

metallized 61 nm thick layer is converted to an I-shaped
structure when an upper layer is coated and annealed on top;

i.e., processing the second layer produces a bridging layer
above the vertical cylinders of the first layer. To understand the
mechanism for this morphology development, we examine the
effects of spin-coating and annealing of a homo-PS layer (30
nm thick) on the 61 nm thick metalized inverted-T structure.
The solvent annealing by itself has no effect on the metallized
61 nm layer (Figure S4a). However, application of the homo-
PS layer leads to the formation of Pt-infiltrated cylinders
parallel to the interface with homo-PS, connecting the vertical
cylinders of the lower layer (Figure S4b). We describe this
reorganization as “tip bending” because it reorients the tops of
the vertical cylinders of the first layer into in-plane features.
The PS top-coat layer is assumed to interdiffuse with the upper
layer of the PS majority block and facilitate reorientation of the
upper regions of the Pt-infiltrated P2VP microdomains, even
though the mobility of the P2VP chains is reduced by the
infiltrated metal. We hypothesize that a top layer of PS-b-P2VP
BCP has a similar effect, forming in-plane cylinders that bridge
the vertical cylinders and producing the I-shaped structures
seen in Figure 4c,d.

Effects of Metal Exfiltration. The presence or absence of
Pt in the P2VP microdomains of the first layer affects the
morphology of the stacked films. A KOH + Na2EDTA solution
is used to remove metal from the P2VP microdomains,
“unlocking” the microdomains and enabling annealing-induced
changes to the morphology.43 Once the metal is removed, the
film can readily interdiffuse with a second film coated on top of
it. For example, if a region of the metallized 37 nm thick film
with in-plane cylinders is unlocked by removing the Pt, then a

Figure 4. Morphology of two-layer metallized films. The films are
prepared by spin coating a 61 nm layer of SV115 and then annealing,
metallization, and surface modification, followed by coating a second
layer of 37 or 61 nm then annealing and metallization. (a) 61 nm−37
nm top view, (b) 61 nm−61 nm top view with insets showing the
structure after a longer etching time, (c) 61 nm−37 nm cross section,
and (d) 61 nm−61 nm cross section. Dashed arrows indicate the
cylinders of the first layer, and solid arrows indicate the second layer
cylinders. Figure 5. Morphology of three-layer metallized films. The films are

prepared by spin coating a 61 nm layer of SV115, then annealing and
metallization, and then repeating the following sequence twice:
surface modification, coating a layer of 61 nm, annealing and
metallization. (a) Top view with inset showing a sample after a longer
etching time. (b) Cross section.
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second 37 nm layer is coated on top and annealed, the two
layers merge to form an inverted-T structure (Figure S5a,c).
This morphology is the same as that formed from a single-layer
74 nm thick film and differs from the orthogonal in-plane
cylinder morphology found in the bilayer when the first layer is
metallized (Figures 3,c and S1a,c). Similarly, coating a second
61 nm layer on a 61 nm layer from which the metal was
removed leads to one inverted-T structure with longer out-of-
plane cylinders (Figure S5b,d), instead of the I-shaped plus
inverted-T structures shown in Figure 4b,d.
The short etch process used to modify the surface of the first

layer prevents metal removal from unlocking the morphology.
In other words, a process consisting of spin coating, annealing,
metallization, surface modification, and unloading of a first
layer and then spin coating, annealing, and metallization of a
second layer produces the same final structure as if the
unloading step had been omitted. The surface modification
process removes some of the organic components from the top
surface (Figure S7d,e)36,54,55 and modifies the surface
chemistry.56−59 XPS results (Figure S8 and Table S1) show
an increase in surface oxygen content (3.89% to 22.22%) and
reduction in the ratios of C:O (1:0.05 to 1:0.32) and Cl:Pt
(1:0.29 to 1:1.01) after surface modification, suggesting that
both the polymer and the infiltrated metal are oxidized.
The surface oxidation and possible cross-linking caused by

the surface modification process prevent reorganization of the
microdomains during the processing of the second layer, even
if an unloading step is used. This is illustrated further in Figure
S6 which shows the structure of two layer films in which the
first layer was annealed, metallized, surface modified, and then
exfiltrated. This yields the same final structure as a process
without the exfiltration step. For example, a 37 nm−37 nm film
(Figure S6a,c) produced the same mesh structure as found
without the unloading step (Figure 3a,c),46 and a 61 nm−61
nm film (Figure S6b,d) produced the I-shaped structure in the
first layer and inverted-T structure in the second layer, the
same as Figure 3b,d. The significance of this result is that the
surface modification etch process is readily applied to specific
regions of the film by masking or lithography,48,60,61 prior to a
global exfiltration process, allowing local control of 3D
morphologies within the film.
Interconnected in-plane and out-of-plane cylinders, includ-

ing I-shaped structures and inverted-T structure, may be useful
for the fabrication of metallization for integrated circuits and
cross-point memory devices4,26 and photovoltaic devices.62,63

In addition to these interconnected structures, reversible metal
infiltration achieves morphological and functional diversity in
different regions, expanding the toolbox for nanofabrication.

■ CONCLUSIONS
This work demonstrates multilayer 3D structure design in PS-
b-P2VP stacked thin films constructed by sequential layer-by-
layer self-assembly. Two distinct processes have been identified
to lock the structures in the bottom layer when another layer is
coated and annealed, so that the layers form distinct 3D
structures instead of merging to form a morphology character-
istic of a single thicker layer. The first of these processes is a
reversible metal infiltration process using an acid solution of a
metal salt. Metal infiltration preserves the morphology of the
lower layer of microdomains when a second layer is applied,
although metallized vertical cylinders in the lower layer
undergo tip bending, a reorganization of the top surface to
produce in-plane bridging features, creating a I-shaped

morphology. Unloading the metal by KOH + Na2EDTA
unlocks the structure of the bottom layer, which then merges
with the upper layer to form inverted-T structures during a
subsequent annealing process. The second process that locks
the lower layer morphology is an (irreversible) surface
modification using a short oxygen etch. Surface modification
alters the chemical composition and topography of the
metallized microdomains and locks the metallized micro-
domain structure even when a metal unloading process is
carried out. By combining these methods, films with separate
regions of multilayered structures and merged single-layer
structures could be made by locally masking the surface,
performing a surface modification etch, removing the mask,
and then carrying out an unloading process over the entire
surface. The surface-modified areas will form multilayer
microdomains, whereas the masked areas will form merged
structures. Etching-induced surface modification and reversible
metal infiltration offer a suite of tools for creating 3D
nanostructures from block copolymers.
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