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A B S T R A C T   

Teeth from the Family Bovidae that are associated with our early humans ancestors are important for recon-
structing paleoenvironments. However, age, degree of attrition, and taphonomic factors often make fossil 
identification difficult. A recent technique for classifying these teeth uses the size-and-shape of the occlusal 
surface as a summary of the surface, deriving features from this, and then using these features in machine 
learning classification algorithms. Bovid teeth have previously been classified using this method with features 
derived from coefficients of elliptical Fourier analysis (EFA). This study assesses the utility of using other shape 
representations for feature generation, specifically elastics shape analysis. Features were derived using this frame 
work for both shape only and size-and-shape (i.e. size is not considered a nuisance parameter), and those features 
were used as input for machine learning algorithms. We demonstrate that features derived elastic shape analysis 
generally outperform features derived from EFA in terms of cross validation classification accuracy. Finally, an 
application of the classification methods studied here was applied to fossils recovered from the deroofed Gla-
dysvale External deposit (GVED), Gauteng Province, South Africa. Previous analyses of GVED identified a group 
of bovids as medium sized alcelaphines (Lacruz et al., 2002). Specifically, this study reclassified 32 unbroken, 
medium sized alcelaphines looking at shape and size-and-shape. The reclassifications increased the number of 
individuals and diversity of bovids recovered from the site. The results were used to generate a more precise 
paleoenvironmental reconstruction.   

1. Introduction 

Paleoenvironmental reconstruction is an important tool in biological 
anthropology for studying early human behavior. These reconstructions 
rely on the animals associated with our fossil human ancestors. Specif-
ically, animals in the Family Bovidae (e.g. antelopes and buffalo) are 
used because of their environmental tendencies such as their habitats, 
water dependence or migration patterns (Estes, 2012). Bovids, particu-
larly isolated bovid teeth, are one of the most common fossils recovered 
from southern African sites. Thus, accurate identification of the tribe 
and/or species of bovids, based on the collected fossils, is key to effective 
paleoenvironmental reconstruction. Traditionally, researchers have 

used fossil and modern comparative collections when attempting to 
identify the bovid fossils (de Ruiter et al., 2008; Adams and Conroy, 
2005; Vrba, 1976). However, this manual process can be subjective and 
heavily depend on the human analyst. To remedy this issue, geometric 
morphometrics in conjunction with machine learning techniques have 
recently been used to automatically identify isolated bovid teeth by 
relying on the shape of the outline of the occlusal surface of these teeth, 
most often through the use of elliptical Fourier analysis (EFA) (Brophy, 
2011; Caple et al., 2017). 

In particular, Brophy et al. (2014) presents work on classifying fossil 
bovid teeth, using linear discriminant analysis (LDA) as the classification 
method, based on covariates derived from the shape of the outline of the 
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occlusal surface of the tooth via an EFA decomposition. Continuing this 
line of work, Matthews et al. (2018) again used EFA to decompose the 
shape into a collection of harmonics coefficients. These coefficients (and 
their principal components) were used as features in more complex 
machine learning classifiers such as support vector machines Cortes and 
Vapnik (1995), random forests Ho (1995); Breiman (2001), nuclear 
penalized multinomial regression Powers et al. (2018), and neural net-
works, which were all shown to outperform LDA. These machine 
learning methods have been shown to work well with features derived 
from an EFA decomposition of the shape of the occlusal surface of a 
tooth. However, the EFA decomposition of shape requires the parame-
terization of the corresponding outlines to be according to arc-length. In 
practice, due to high shape variability in the outlines of the occlusal 
surface of bovid teeth, this can result in inefficient shape representation. 
As such, it may be more suitable to allow flexible parameterizations to 
ensure more efficient matching of geometric features across bovid tooth 
shapes. 

An alternative framework for characterizing shapes without having 
to rely on EFA is elastic shape analysis (Srivastava and Klassen, 2016; 
Bharath and Kurtek, 2020). Elastic shape analysis derives shapes from 
parameterized curves by removing nuisance shape variation, i.e. trans-
lation, rotation, parameterization and global scale, via a process called 
registration. This process essentially aligns two or more shapes opti-
mally to each other with respect to the aforementioned nuisance 
transformations using a formal distance on the associated shape space. 
The shape distance can be used to compare shapes numerically and 
visually (via paths of shortest shape deformation), to compute a sample 
mean shape, and to summarize variation in a sample of shapes using 
principal component analysis. In this work, we derive shape features 
using elastic shape analysis and use them to classify bovid teeth using 
machine learning approaches. We show that allowing flexible parame-
terizations of bovid tooth outlines and performing registration to opti-
mally align them with respect to the shape distance results in improved 
classification results as compared to EFA. Full details of the elastic shape 
analysis framework can be found in Section 3.1. 

Recently, Domínguez-Rodrigo et al. (2023) performed classification 
of bovid teeth using the actual images of the teeth as input in a deep 
convolutional neural network (DCNN). Our approach uses features 
derived exclusively from the shape or size-and-shape of the outline of 
the occlusal surface of each tooth. While our primary goal in this 
manuscript and the goal in Domínguez-Rodrigo et al. (2023) are similar, 
i.e. taxonomic classification of bovid teeth, the methods used to generate 
features for use in machine learning algorithms to perform this classi-
fication are very much different. In particular, the features proposed in 
our work are based on shape (or shape-and-size) deformation vectors or 
their principal components. In both cases, the features effectively cap-
ture variation within and between classes. Furthermore, the estimated 
deformation vectors or principal directions of variation used to generate 
the PC-based features can be easily visualized and potentially inter-
preted by applied scientists, allowing them to assess which local shape 
features of the teeth are the driving factors in classification performance. 
Such visualizations and interpretations are more difficult to generate for 
image-derived DCNN features. In addition, the results reported in 
Domínguez-Rodrigo et al. (2023) are not directly comparable to the 
results presented here as the samples used for training in Domí-
nguez-Rodrigo et al. (2023) are not the same as the training samples 
used in this work. In the future, we plan to compare these two methods 
of classification using the same set of images (image-derived shapes). 

The presented research pertains to a sample of bovids recovered from 
Gladysvale, a hominin bearing site located in the Bloubank Valley of the 
Gauteng Province in the UNESCO Cradle of Humankind World Heritage 
Area, approximately 13 km northeast of the site of Sterkfontein. The 
Gladysvale cave system consists of internal deposits (GVID) from a three 
chambered cave system, and external deposits (GVED) which have been 
uncovered by erosion and collapse of the cave roof (Lacruz et al., 2002; 
Pickering et al., 2007). Hominins, fauna and an Acheulean handaxe have 

been recovered from the site (Lacruz et al., 2002; Berger et al., 1993; 
Hall et al., 2006). The deroofed Gladysvale external deposit consists of 
both calcified and decalcified deposits and dates to approximately 
578–780 Ka. (Lacruz et al., 2002). The taphonomy of the bones suggests 
the fossils were accumulated by both carnivores and porcupines. Pre-
vious analyses of the GVED decalcified deposits excavated between 
1999 and 2002 identified a group of bovid fossil teeth as medium sized 
alcelaphines (Lacruz et al., 2002). The four Bovidae Alcelaphini extant 
species considered in this research are Damaliscus dorcas, Alcelaphus 
buselaphus, Connochaetes gnou, Connochaetes taurinus; we focused on the 
taxa most commonly found in the Cradle of Humankind, South Africa in 
the Plio-Pleistocene. The teeth of these four species overlap in shape and 
size making them difficult to identify based on the fossil record. Thus, 
many researchers are forced to group these bovids into broad, ambig-
uous categories such as medium sized alcelaphines (see e.g. Berger and 
Lacruz (2003); de Ruiter et al. (2008)). The fact that these teeth are 
isolated exacerbates the issues with classification. All of these species 
existed in South Africa during the estimated date of the site (Lacruz 
et al., 2002). 

The purpose of this study is twofold: (1) to compare classification 
performance of different types of features derived using the elastic shape 
analysis framework and EFA (baseline), and (2) to use the best per-
forming approach to classify 32, unbroken medium sized alcelaphines to 
their genera/species using the form (shape and size) of the occlusal 
surface of the tooth. The presented approach is meant to be a quantifi-
able, reproducible supplement to fossil tooth identifications. Therefore, 
the reclassifications will be checked with other features of the teeth such 
as degree of hypsodonty and central cavity shape, characteristics that do 
not affect the shape of the tooth. The reclassifications can further be used 
to generate a more precise paleoenvironmental reconstruction. 

2. Data 

This study uses the database B.O.V.I.D. (Brophy and Matthews, 
2022) which includes extant bovids from 7 tribes and 20 species as re-
ported in Table 1. The training data consists of 3838 outlines of the 
occlusal surface of bovid teeth (Brophy and Matthews, 2022). There are 
six tooth types in the database: Lower Molar (LM) 1, 2 and 3, and Upper 

Table 1 
Extant bovid list from reference database.  

Tribe Species 
Alcelaphini  

Damaliscus dorcas  
Alcelaphus buselaphus  
Connochaetes gnou  
Connochaetes taurinus 

Antilopini  
Antidorcas marsupialis 

Neotragini  
Oreotragus oreotragus  
Ourebia ourebi  
Pelea capreolus  
Raphicerus campestris 

Tragelaphini  
Tragelaphus scriptus  
Tragelaphus strepsiceros  
Taurotragus oryx 

Bovini  
Syncerus caffer 

Hippotragini  
Oryx gazella  
Hippotragus equinus  
Hippotragus niger 

Reduncini  
Redunca arundinum  
Redunca fulvorufula  
Kobus leche  
Kobus ellipsiprymnus  
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Molar (UM) 1, 2 and 3. The teeth in the database are all adult teeth with 
varying degrees of wear (unworn to old). The database includes different 
wear stages in an attempt to incorporate normal biological variation (see 
Brophy and Matthews (2022) for more details). Each tooth type contains 
at least 600 outlines in the training dataset with the smallest group, 
LM3, containing 619 records, and the largest group, UM2, containing 
657 specimens. The specific sample sizes for each tooth type across the 
seven tribes considered in this study are provided in Table 2. Note that 
different tribes have different numbers of species, which is why some 
tribes have more specimens than others. Classification models will be 
trained separately for each tooth type (see Section 4). 

Fig. 1 illustrates an example of a photograph of a tooth (left) along 
with the black and white image of the segmented tooth (right). The black 
and white images of teeth were created using the lasso tool in the open- 
source GNU Image Manipulation Program (GIMP) (The GIMP Develop-
ment Team, 2019). The (x, y)-coordinates of the outlines of the 
segmented teeth were generated using the import_jpg function in the 
Momocs package (Bonhomme et al., 2014) available in R (R Core Team, 
2021). Each tooth outline was stored as a 2 ×N matrix, where N rep-
resents the number of (x, y)-coordinates along the outline. 

3. Methods 

We begin by describing the elastic shape analysis framework for 
shape and size-and-shape analysis, which is used to generate features for 
bovid tooth shape classification. We then briefly describe the EFA 
method for feature generation that is used as a baseline. Finally, we 
describe the classification methods and rules used in this work. 

3.1. Elastic shape analysis 

Each bovid tooth outline is represented as a parameterized, closed, 
absolutely continuous planar curve β : S

1→R
2; here, S1 denotes the unit 

circle, which is the natural domain of a closed curve, i.e., the start/end 
point on the curve is arbitrary and is treated as part of nuisance shape 
variation. Under this representation, there are four different types of 
nuisance shape variation: translation, scale, rotation and re- 
parameterization. When deriving shape features for classification, we 
require a distance that is invariant to these four sources of nuisance 
variability. Unfortunately, it has been documented in the statistical 
shape analysis literature that the simple L2 distance is not invariant to 
re-parameterization (see e.g. Srivastava et al. (2011)). Mio et al. (2007) 
instead propose an elastic metric for shape analysis that is invariant to 
the four aforementioned transformations, including 
re-parameterization; the name “elastic” stems from the interpretability 
of the metric as measuring changes in stretching and bending as one 
shape deforms into another. 

Unfortunately, the elastic metric is not computable in closed form 
due to its complicated nature. For efficient implementation of elastic 
shape analysis, Srivastava et al. (2011) thus propose a simplification via 
the square-root velocity function transformation as follows. The 
square-root velocity function (SRVF), q : S

1→R
2, of a curve β is defined 

as q = β̇̅̅̅̅
|β̇|

√ , where β̇ is the derivative of β and |⋅| is the Euclidean norm in 
R

2. The space of SRVFs is a subset of L2 (Robinson, 2012). Importantly, 
under the SRVF representation, the complicated elastic metric simplifies 

to the simple L2 metric, facilitating efficient shape analysis. Further-
more, nuisance variation due to translation is automatically removed 
since the SRVF is defined in terms of the derivative of the original curve 
only. Next, we will build the shape space of curves, using the SRVF 
representation, by accounting for the remaining sources of nuisance 
shape variation. In particular, we will consider two different cases of 
interest in this study: shape only and shape-and-size. We will start with 
shape-and-size, where the scale of bovid tooth outlines is not treated as 
nuisance variation (Kurtek et al., 2012). We will then shift to shape only, 
where scale variation is also removed from the representation. We refer 
the interested reader to Srivastava and Klassen (2016); Mio et al. (2007); 
Srivastava et al. (2011); Kurtek et al. (2012); Bharath and Kurtek (2020) 
for more comprehensive descriptions of these methods. 

3.1.1. Size-and-shape features 
The pre-size-and-shape space is defined as 

C =
{

q : S
1 →R

2

⃒⃒
⃒⃒
∫

S
1

q(t)|q(t)|dt= 0

}
.

Here, ∫
S

1 q(t)|q(t)|dt = 0 is the closure condition ensuring that statistical 
analysis treats bovid tooth outlines as closed curves. Next, we will remove 
variation due to rotations and re-parameterizations from the representa-
tion space. First, rotation of a curve β via a rotation matrix O ∈ SO(2) =
{O∈ R

2×2 ⃒⃒OTO = I, det(O) = 1}, given by Oβ, results in rotation of its 
SRVF: Oq. Second, re-parameterization of a curve β via a function γ ∈ Γ =
{γ : S

1 →S
1 ⃒⃒γ is orientation preserving diffeomorphism}, given by 

composition β∘γ, results in the following change in its SRVF: (q∘γ) ̅̅̇̅
γ

√ . 
Then, one can unify all possible rotations and re-parameterizations of the 
SRVF of a bovid tooth outline via the set 
[q] =

{
O(q∘γ)

̅̅̅
γ̇

√ ⃒⃒
O∈ SO(2), γ ∈Γ

}
, (1)  

which is called an equivalence class and is used as a unique represen-
tation of the shape-and-size of a bovid tooth outline. The natural shape- 
and-size distance between two bovid tooth outlines is given by 
dE([q1], [q2])=minO∈SO(2),γ∈Γ

⃦⃦
q1 − O(q2∘γ)

̅̅̅
γ̇

√ ⃦⃦
. (2)  

This is simply the L2 distance between q1 and q2 after aligning one size- 
and-shape to the other by optimizing over rotations and re- 
parameterizations. Implementation details for solving this optimiza-
tion problem can be found in Srivastava and Klassen (2016). Intuitively, 
one can think of the distance between size-and-shapes (or shapes) as the 
amount of deformation needed to go from one size-and-shape to the 
other. 

Fig. 2 demonstrates the benefits of using an elastic distance to 
quantify size-and-shape differences between bovid tooth outlines, 
wherein one accounts for rotation and re-parameterization variability, 
as compared to a non-elastic distance, wherein one accounts for rotation 
variability but fixes the parameterization to arc-length (as done in 
elliptical Fourier analysis). The top row shows the elastic size-and-shape 
deformation between two Alcelaphini specimens in this study, while the 
bottom row shows the non-elastic deformation. Notice that, in the top 
row, in the upper right portion of the tooth the indent is better main-
tained throughout the path. On the other hand, in the bottom row, this 

Table 2 
Sample sizes for each tooth type, i.e. Lower Molar (LM) and Upper Molar (UM) 1, 2 and 3, and tribe. 
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notch vanishes almost entirely in the middle of the deformation. Thus, 
the elastic size-and-shape deformation between these two specimens is 
more natural than the non-elastic one. 

The size-and-shape distance defined in Equation (2) can be used to 
define a sample mean size-and-shape as follows. Let β1, …, βn denote a 
sample of bovid tooth outlines, and q1, …, qn their corresponding SRVFs. 
The sample mean is given by 

μ̂ = argmin
q∈C

∑n

i=1

dE([q], [qi])2
. (3) 

The sample mean estimate can then be used to estimate the size-and- 
shape covariance and carry out principal component analysis (PCA). 
First, let vi = q*

i − μ̂, i = 1,…,n, where each q*
i = O*

i (qi∘γ*
i )

̅̅̅̅
γ̇*

i
√

and (O*
i ,

γ*
i ) = argmin

O∈SO(2),γ∈Γ

⃦⃦
μ̂ − O(qi∘γ)

̅̅̇̅
γ

√ ⃦⃦. Assuming that each size-and-shape q*
i is 

sampled with N points (in our implementation, we use N = 100), each vi 
is a vector in R2N after stacking of the x and y coordinates. Then, the 
sample size-and-shape covariance is given by K = 1

n−1
∑n

i=1vivT
i . To 

perform PCA, the covariance matrix is decomposed as K = UΣUT, where 
the columns of the orthonormal matrix U contain the primary directions 
of size-and-shape variation and the diagonal elements of the diagonal 
matrix Σ contain the corresponding variances. Dimension reduction of 
the size-and-shape data can be achieved by computing PC coefficients 
(lower-dimensional Euclidean coordinates of size-and-shape) as ci =

{vT
i Uj, j = 1,…, n− 1}. An example of size-and-shape PCA analysis for 

bovid teeth from the Alcelaphini tribe is shown in Fig. 3. We display the 
first three primary directions of size-and-shape variation in each row 
sampled at −1.5, −1, −0.5, 0 (size-and-shape average in red), 0.5, 1, 1.5 
standard deviations. 

The vectors v1, …, vn, as well as the PC coefficient vectors c1, …, cn 
generated from them, can be used as features in classification models. 
The vectors and PC coefficients are computed using two different 
methods resulting in four total scenarios of feature generation:  

1. Overall (OV). The bovid tooth outlines are pooled across classes and 
the overall size-and-shape mean μ̂ is computed. Each size-and-shape 
q*i (aligned to the pooled mean μ̂) is transformed into the vector vi =
q*i − μ̂. Number of features: 200.  

2. Individual (I). Bovid tooth outlines within each class g are used to 
compute individual size-and-shape means μ̂g. Each size-and-shape q*i 
is registered to each class mean μ̂g and transformed into the vector 
vig. Then, the vectors vig, g = 1, …, G, are used as features. Number of 
features: G × 200.  

3. PC Overall (OV-PC). This approach is the same as OV, but with an 
additional step of dimension reduction to size-and-shape PC co-
efficients. Number of features: n − 1. 

Fig. 1. Example of a color photo (left) and black and white image (right) from the B.O.V.I.D. database. The specimen is an upper second molar (UM2) Alcelaphus 
buselaphus, National Museum Bloemfontein (NMB) 12264. 

Fig. 2. Paths of minimal shape deformation between two teeth from A. buselaphus: DSCN 2871 and DSCN4796. The deformation in the top row was generated using 
elastic size-and-shape analysis while the bottom row presents a non-elastic deformation (parameterization fixed to arc-length). 
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4. Individual (I-PC): This approach is the same as I, but with an addi-
tional step of dimension reduction to size-and-shape PC coefficients 
for each class g. Number of features: G × (n − 1). 

The set of generated size-and-shape features will generically be denoted 
by X and indexed with a superscript when necessary to distinguish 
which method of feature generation was used (e.g. XOV, XI, etc.). 

3.1.2. Shape features 
Feature generation based on shape only proceeds in similar fashion 

to the size-and-shape case with a few modifications. Throughout this 
section, we use the same notation as in the previous one. The pre-shape 
space is defined as 

C =
{

q : S
1 →R

2

⃒⃒
⃒⃒
∫

S
1

q(t)|q(t)|dt= 0, ‖q‖2 = 1

}
.

The second constraint restricts attention to unit length curves, and the 
pre-shape space is now a subset of the unit sphere in L2. The shape of a 
bovid tooth outline is again defined via an equivalence class as given in 
Equation (1). Due to the unit length constraint, the shape distance is 
defined using the shortest great circle arc on C as 
dE([q1], [q2]) =minO∈SO(2),γ∈Γ cos−1

(〈
q1,O(q2∘γ)

̅̅̅
γ̇

√ 〉)
,

where 〈⋅, ⋅〉 is the L2 inner product. 
Given bovid tooth outlines β1, …, βn, with corresponding SRVFs q1, 

…, qn, the shape distance can be used to define the sample mean shape μ̂ 

in the same fashion as in Equation (3). Since C is a non-linear space, 
PCA is carried out in a local linear approximation called the tangent 
space. In particular, each shape q*i = O*i (qi∘γ*i )

̅̅̅̅̅
γ̇*

i
√

, where (O*i , γ*i ) =

argmin
O∈SO(2),γ∈Γ

⃦⃦
μ̂ − O(qi∘γ)

̅̅̇̅
γ

√ ⃦⃦, is transformed into a vector vi in the linear 
tangent space at the shape mean μ̂ using the inverse-exponential map, 
which is closely related to the defined shape distance dE: 

vi = exp−1
μ̂

(
q*

i

)
= ηi

sin(ηi)
(
q*

i − cos(ηi)μ̂
)
,

where ηi = dE([μ̂], [qi]). PCA is then carried out in this tangent space 
using vi and the same procedure as described in Section 3.1.1. 

Just as with size-and-shape, the shape only derived vectors v1, …, vn 
and the PC coefficients c1, …, cn can be used as features in classification 
models. We use the same four settings for feature generation: OV, I, OV- 
PC, and I-PC. 

3.1.3. Elliptical Fourier analysis (EFA) features 
In past studies, bovid tooth shape classification was performed using 

features generated via elliptical Fourier analysis (EFA) (Matthews et al., 
2018). As described earlier, this method requires the bovid tooth out-
lines to be parameterized with respect to arc-length. We briefly describe 
this approach to feature generation and include it in our study as a 
baseline to compare the classification performance using features 
derived via the elastic shape (-and-size) analysis framework. 

EFA decomposes closed curves into a series of ellipses. As before, let 
β : S

1→R
2 denote an absolutely continuous, parameterized closed curve 

representing the outline of a bovid tooth. Further, let βx and βy represent 
the x and y coordinate functions of β. Then, EFA applies the following 
decomposition to βx and βy: 

βx(t) =A0 +
∑H

h=1

ah cos(ht) +
∑H

h=1

bh cos(ht), and  

βy(t) =C0 +
∑H

h=1

ch cos(ht) +
∑H

h=1

dh cos(ht),

where H is the number of harmonics used, A0 and C0 are constants, and 
ah, bh, ch, dh are the amplitudes associated with the h-th harmonic. The 
collection of these amplitudes, as well as principal components derived 
from them, can then be used as input features for classification methods. 
The full set of EFA amplitudes and principal components is denoted by 
XEFA; the number of features in XEFA is 4 ×H + number of PCs. In this 
particular study, H = 15 with 30 PCs resulting in 90 total features. EFA 
with and without scale normalization are both considered here to 
compare to the elastic size-and-shape and shape only settings. EFA was 
implemented using the efourier function in the package Momocs 
(Bonhomme et al., 2014) in R (R Core Team, 2021). 

3.2. Classification 

The features, whose generation methods were described in the pre-
ceding sections, are then used as predictors in machine learning classi-
fiers. Regardless of the features used, we are interested in classification 
at two taxonomic levels: tribe and species. 

Specifically, we are interested in estimating the following probabil-
ities 
π
(
yt

i = gt
⃒⃒
X
)

and π
(
ys

i = gs
⃒⃒
X
)
,

where yt
i and ys

i are the tribe and species labels for the i-th observation, 

Fig. 3. The three primary PC directions of variation (top row to bottom row) for teeth from the Alcelaphini tribe. The mean size-and-shape is shown in red in each 
row. The three shapes to the left and right of the mean show size-and-shapes that are 0.5, 1, and 1.5 standard deviations from the mean in the negative and positive 
direction, respectively. 
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gt = 1, …, Gt and gs = 1, …, Gs, Gt and Gs are the number of unique tribes 
and species, respectively, and X is a set of features derived from one of 
the methods described in the preceding sections. 

Tribe modeling is performed directly using a training dataset of 
bovid tooth outlines and the corresponding tribe memberships. How-
ever, since species are nested within tribes, species classification 
modeling is performed conditionally on tribe. Specifically, we aim to 
estimate 
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where the superscripts s and t denote species and tribe, respectively. In 
practice, this means that we must fit Gt + 1 classification models: one 
model for species classification conditional on each tribe gt = 1, …, Gt, 
and one model for tribe classification. Note that when performing 
classification of the species, we use the means of tribes (and not species) 
to define the feature sets X. This is done for two main reasons: (1) there 
are 20 species as opposed to only seven tribes resulting in higher 
computational efficiency, and (2) the sample size in each species class 
tends to be very small. 

The three machine learning classification methods considered in this 
study were random forests (RF) (Ho, 1995; Breiman, 2001), support 
vector machines with a linear kernel (SVM-L) and support vector ma-
chines with a radial kernel (SVM-R) (Cortes and Vapnik, 1995). 

Random forest uses a collection of classification trees to generate a 
final class prediction. Each tree produces its own classification decision 
and is estimated using a bootstrapped sample of the data. The resulting 
collection of decisions is then pooled together to obtain a final classifi-
cation decision based on the forest of trees. In this work, we used the 
default values of the parameters provided by the randomForest 
package (Liaw and Wiener, 2002). Specifically, each forest contained 
500 trees and the number of variables randomly sampled at each split 
was the square root of the number of available features. No additional 
hyperparameters were tuned during the training stage. 

SVMs perform classification by constructing linear boundaries in the 
feature space. However, since it is often difficult to find good boundaries 
in the original feature space, a transformed feature space is often 

considered. Different transformations of the feature space are generated 
in practice by choosing different kernel functions. We consider both a 
linear and a radial kernel. In both cases, during the training stage, the 
cost parameter C is tuned over a grid of values ranging from 10−1 to 103. 
In addition, in the SVM with a radial kernel, the parameter γ which 
controls the spread of the kernel is tuned over a grid of values from 10−3 

to 103. 
Further details about the random forest and SVM classifiers can be 

found in James et al. (2023). All classification was performed in the R 
programming language (R Core Team, 2021), with random forests 
implemented using the R package randomForest (Liaw and Wiener, 
2002) and SVMs implemented using the R package e1071 (Meyer et al., 
2023). Classification performance is always estimated using five-fold 
cross validation, i.e., four folds are used for training the machine 
learning model with one fold used for testing. The final evaluation of 
classification performance is an average across the five testing folds. 

4. Tribe and species classification results 

We report and describe tribe and species classification results based 
on shape and size-and-shape features separately. In each case, we 
consider five different types of feature sets, (1) EFA, (2) I, (3) OV, (4) 
OV-PC and (5) I-PC, and three different types of classification models, 
(1) RF, (2) SVM-L and (3) SVM-R. hroughout this section, we use five- 
fold cross-validation to compute classification performance. 

4.1. Tribe classification: shape features 

Fig. 4 shows results of classifying bovid tooth outlines at the tribe 
level, stratified by tooth type, using shape features. Nearly uniformly, 
SVM-R yields the highest classification accuracy. These findings are 
similar to those reported in Matthews et al. (2018), which also identified 
SVM-R as the best classification method when using EFA features. 
Overall, RF classification performance is almost completely dominated 
by SVM-L and SVM-R performance. 

When comparing across different feature generation approaches, 
method I, based on elastic shape analysis, tends to yield the highest 

Fig. 4. Shape Features: Tribe classification accuracy for six different tooth types (LM1, LM2, LM3, UM1, UM2, UM3) based on five different methods of feature 
generation (EFA, I, OV, I-PC, OV-PC) and three classification models (RF, SVM-L, SVM-R). Note that EFA generates non-elastic shape features while the other four are 
feature sets derived using elastic shape analysis. 
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classification accuracy. For SVM-R, method I yields the highest accuracy 
for four out of the six tooth types. Further, SVM-R using method I for 
feature generation is the only classification method with accuracy above 
80% for all tooth types (LM1: 84.7%, LM2: 86.2%, LM3: 84.7%, UM1: 
88.1%, UM2: 88.4%, UM3: 83.5%). Comparing methods I and OV, 
method I generally, though not always, yields slightly higher classifi-
cation accuracy. Exceptions include classification for LM2, where OV 
performs as well as or better for all three methods considered here (RF-I: 
84.6% vs. RF-OV: 84.6%, SVM-L-I: 84.7% vs. SVM-L-OV: 86.4%, SVM-R- 
I: 86.2% vs. SVM-R-OV: 88.3%), and random forest for UM1 (RF-I: 
84.7% vs. RF-OV: 84.9%) and LM3 (RF-I: 76.7% vs. RF-OV: 76.9%). 
While this is not surprising since method I generates a larger feature set 
than method OV, the observed performance differences are small. The 
methods I-PC and OV-PC, which use PC coefficients as features, gener-
ally perform worse than their non-PC counterparts I and OV. Finally, 
EFA features yield highly variable performance across classification 
models and tooth types. In most cases, EFA feature-based classification 
accuracy is lower than classification accuracy via features generated 
using elastic shape analysis. However, for LM3, EFA features perform 
quite well (RF-EFA: 84.3%, SVM-L-EFA: 81.7%, and SVM-R-EFA: 
86.87%) and tend to outperform elastic shape analysis-based features. 
Based on the totality of these results, we conclude that the best classi-
fication accuracy is attained by SVM-R with shape features generated 
using method I. 

While tribe classification accuracy is generally greater than 80% and 
often near 90%, it is not uniform across different tribes and tooth types. 
Fig. 5 shows the classification accuracy for each tribe when using SVM-R 
as the classification model with features generated via method I. Tribe 
Alcelaphini appears to be the easiest to classify, with classification ac-
curacy at or above 94% across all tooth types (ranging from 94.1% for 
LM1 to 99.1% for UM1). Classification performance for tribes Neotragini 
and Tragelaphini is also very good across all tooth types, with accuracies 
generally falling between 85% and 90% with the exception of UM2 
(Neotragini: 94%, Tragelaphini: 91.5%). Classification accuracy for the 
other four tribes behaves differently with much more variation across 
the six tooth types; the worst performances were observed in Bovini 
(UM2: 38.5% sample size of 26; LM3: 62.5%, sample size of 24; UM3: 
62.5%, sample size of 24; UM1: 64%, sample size of 25), Hippotragini 
(LM3: 61.5%), and Antilopini (UM3: 63.3%). However, it is notable that 

tribe Bovini has the smallest sample size across all tribes. We addition-
ally provide ROC curves in Fig. 6, which can be used for a detailed 
assessment of specificity and sensitivity across the seven tribes. As 
before, we use SVM-R as the classification model with method I to 
generate shape features. 

4.2. Tribe classification: size-and-shape features 

Fig. 7 displays classification results at the tribe level stratified by 
tooth type based on size-and-shape features. As expected, including 
tooth size information as part of the feature generation process improves 
classification accuracy. As in the case of shape features, it appears that 
size-and-shape features from elastic shape analysis generally outperform 
EFA-based non-elastic features. This provides further evidence for the 
value in using elastic shape analysis to generate features for classifica-
tion. Interestingly, in this case, OV-PC features generally yield highest 
classification accuracies across classification models and tooth types. 
Further, RF is much more competitive as compared to SVM-L and SVM- 
R. Pooling results across all six tooth types, RF with OV-PC features 
classified 3350 out of 3838 teeth correctly (87.29%); using shape fea-
tures only, 2675 out of 3838 (69.70%) teeth were classified correctly 
using RF with OV-PC features. This is quite different from what was 
observed when shape features, without size information, were used for 
classification; SVM-R with features generated using method I generally 
performed the best (SVM-R-I: 86.0%). 

Fig. 8 shows classification accuracy across different tribe and tooth 
types. As before, classification rates corresponding to tribes Alcelaphini 
(LM1: 95.8%, LM2: 98.4%, LM3: 99.2%, UM1: 98.2%, UM2: 94.9%, 
UM3: 91.7%) and Bovini (LM1: 52.0%, LM2: 73.1%, LM3: 79.2%, UM1: 
28.0%, UM2: 19.2%, UM3: 16.7%) are generally the highest and lowest, 
respectively. Notably, size-and-shape features yield a considerable 
improvement in classification accuracy for tribe Hippotragini, which is 
the tribe containing the largest tooth size on average. Based on shape 
features generated via method I and using SVM-R, classification rates 
were as high as 84.5% for UM2 and as low as 61.5% for LM3. Incor-
porating size information improved classification accuracy of Hippo-
tragini to a low of 78.5% for UM3 and a high of 93.7% for UM1. 
Additionally, with the exception of Bovini, all tooth types and tribes 
have classification rates above 75%, which was not the case when only 

Fig. 5. Shape Features: Tribe classification accuracy, stratified by different tribes, using SVM-R as the classification model and method I for shape feature generation.  
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shape features were used for classification. We also provide ROC curves 
in Fig. 9 for each of the seven tribes. As before, we use SVM-R as the 
classification model with method I to generate shape features. 

4.3. Species classification: shape features 

We repeated all classification experiments at the species level. Given 
the larger number of species relative to tribes (20 vs. 7), we expect lower 
classification rates in this case than what was seen for tribe classifica-
tion. Based on Fig. 10, we observe similar patterns when classifying 

species to those we saw for tribe classification. SVM-R with shape fea-
tures generated using method I attains the highest classification accu-
racy for three out of the six tooth types (LM1, UM2 and UM3); this is the 
only combination of classification model and feature generation method 
that yields classification rates above 65% for all tooth types (LM1: 
69.9%, LM2: 71.0%, LM3: 68.7%, UM1: 72.3%, UM2: 71.9%, UM3: 
66.7%). Similar to the tribe classification experiments, features gener-
ated using elastic shape analysis tend to outperform EFA-based non- 
elastic features. 

Fig. 6. Shape Features: ROC curves for tribe classification for six different tooth types (LM1, LM2, LM3, UM1, UM2, UM3), using SVM-R as the classification model 
and method I for shape feature generation. 

Fig. 7. Size-and-shape Features: Tribe classification accuracy for six different tooth types (LM1, LM2, LM3, UM1, UM2, UM3) based on five different types of feature 
generation (EFA, I, OV, I-PC, OV-PC) and three classification models (RF, SVM-L, SVM-R). Note that EFA generates non-elastic size-and-shape features while the other 
four are feature sets derived using elastic shape analysis. 
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4.4. Species classification: size-and-shape features 

Fig. 11 displays species classification accuracy when size-and-shape 
features are used. As in the case of tribe classification, we observe a 
general improvement across tooth types when preserving size informa-
tion in feature generation. For example, the overall species classification 
accuracy with SVM-R and feature generation method I using shape 
versus size-and-shape features improved from 70.1% to 75.7%. The 
difference is even more pronounced when using the best performing 
species classification model: RF with feature generation method OV-PC. 

In this case, the classification rate based on shape features was 56.7% 
whereas using size-and-shape information yields a classification accu-
racy of 88.5%. Not only is the RF with features generated using OV-PC 
the best overall, it is also the best in terms of accuracy in all 6 tooth 
types (LM1: 88.8%, LM2: 91.2%, LM3: 87.3%, UM1: 88.6%, UM2: 
87.2%, UM3: 88.0%). Another notable observation in the results for size- 
and-shape vs size is that when using size-and-shape, the feature gener-
ation methods using PC’s (i.e. OV-PC and I-PC) perform better in terms 
of accuracy than the non-PC based procedures (EFA: 62.7%, I: 77.7%, 
OV: 77.1%, I-PC: 81.7%, OV-PC: 88.5%). This is the opposite of what 

Fig. 8. Size-and-shape Features: Tribe classification accuracy, stratified by different tribes, using SVM-R as the classification model and method I for 
feature generation. 

Fig. 9. Size-and-shape Features: ROC curves for tribe classification for six different tooth types (LM1, LM2, LM3, UM1, UM2, UM3), using SVM-R as the classification 
model and method I for size-and-shape feature generation. 
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was observed when using shape only. 
Finally, as seen throughout the classification experiments, non- 

elastic EFA-based features generally yield worse classification accu-
racy than the elastic shape analysis-based features. 

5. Reclassification of Gladysvale alcelaphines 

In the previous sections, we found that the SVM-R classification 

model with shape or size-and-shape features generated using the I and 
OV methods performed well in the tribe and species classification tasks. 
We now use these methods for classification of medium-sized alcela-
phine teeth recovered from GVED. We report classifications at the tribe 
and species level for both shape and size-and-shape generated features. 
For each specimen, the probability of belonging to each taxa was esti-
mated and each tooth was classified to the taxa with the highest 
probability. 

Fig. 10. Shape Features: Species classification accuracy for six different tooth types (LM1, LM2, LM3, UM1, UM2, UM3) based on five different types of feature 
generation (EFA, I, OV, I-PC, OV-PC) and three classification models (RF, SVM-L, SVM-R). Note that EFA generates non-elastic size-and-shape features while the other 
four are feature sets derived using elastic shape analysis. 

Fig. 11. Size-and-shape Features: Species classification accuracy for six different tooth types (LM1, LM2, LM3, UM1, UM2, UM3) based on five different types of 
feature generation (EFA, I, OV, I-PC, OV-PC) and three classification models (RF, SVM-L, SVM-R). Note that EFA generates non-elastic size-and-shape features while 
the other four are feature sets derived using elastic shape analysis. 
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Table 3 shows the number of different fossil tooth types considered in 
this study. With 12 out of 32 (37.5%) of our fossil specimens, the most 
common tooth type in this sample is the third lower molar (LM3). The 
second upper molar (UM2) is the least common tooth type with only 2 
out of 32 (6.25%). Overall, our sample includes 21 lower molars and 11 
upper molars. 

We use the same data as in previous sections to generate shape and 
shape-and-size feature sets using the I and OV methods. The features are 
then used to train an SVM-R classifier. We also generate the same types 
of features for the 32 fossils and use them in the trained SVM-R classi-
fication model to predict their tribe and species. We consider shape and 
shape-and-size separately. 

5.1. Reclassification with shape features 

Table 4 lists the reclassifications of the medium sized alcelaphines 
from GVED using shape features. In their original classification, these 
teeth were determined to all likely be alcelaphines, and so it is expected 
that the most common predicted tribe should be Alcelaphini. Indeed, 
that is what is observed. Using shape features generated via method I, 27 
of the 32 (84.38%) fossil teeth were classified as Alcelaphini. Using OV- 
based features, 26 out of 32 (81.25%) of the fossil teeth were classified 
as Alcelaphini. Recall that method I outperformed method OV in the 
previous tribe classification experiments, which is also consistent with 
what is observed here. When fossil teeth were not classified as Alcela-
phini, they were most commonly classified as Hippotragini (6.25% and 
9.38% for methods I and OV, respectively). No teeth were classified to 
either Bovini or Antilopini with method I, and with method OV no teeth 
were classified to Bovini. This could be the result of the much lower 
training sample sizes in these two tribe classes. 

Table 5 shows the species level classifications of the GVED teeth 
using shape features. Most of the teeth were classified as one of the four 
species in Alcelaphini, as expected. Four other species are represented 
including Oryx gazella, Ourebia ourebi, Taurotragus oryx, and Tragelaphus 
scriptus. Note that the total number of teeth classified to each tribe is not 
consistent across Tables 4 and 5 This is due to the fact that the teeth were 
classified to a tribe or species based on the highest probability. Thus, a 
tooth could have the highest probability of belonging to a tribe, but the 
highest species probability does not necessarily need to belong to that 
same tribe, though in a vast majority of cases it did. 

5.2. Reclassification with size-and-shape features 

Table 6 provides tribe level fossil reclassification results when size- 
and-shape features are used. Using both size and shape is more infor-
mative when trying to identify teeth in the fossil record. 31 of the 32 
teeth were identified as Alcelaphini when features were generated using 
method I; 28 of the 32 teeth were identified as Alcelaphini when features 
were generated using method OV. When size-and-shape features were 
used to identify species, one specimen was identified as D. dorcas, 
15 as A buselaphus, 7 as C gnou and 6 as C taurinus. The results of the 
study increase the number of D. dorcas and C. taurinus identified and add 
the alcelaphines A. buselaphus and C. gnou (Tables 4 and 6; Lacruz et al. 
(2002)). These species are not atypical for the area. The aforementioned 
article identified Connochaetes sp. indet. According to Brink (2005), 
C. taurinus and C. gnou can be difficult to identify based on isolated teeth 
especially since they were closer in size in the past. In addition, C. gnou 

was recovered from the site of Cornelia-Uitzoek, an older site in the Free 
State Province which dates to 1.07–0.99 Ma (Brink, 2005; Brink et al., 
2012) and from a geographically closer site in the Gauteng Province, 
Haasgat, dating to at least the mid-to late-Pleistocene (Adams, 2012). 
Alcelaphus buselaphus was identified from the internal Gladysvale de-
posits in the original announcement paper by Berger et al. (1993) but 
not from the younger GVED deposits (Lacruz et al., 2002). The first 
appearance date for this taxa is from Bodo Locality 1, Ethiopia at 0.6 Ma 
(Vrba, 1997). In South Africa, this taxa was recovered from the site of 
Florisbad which dates to 300-100 Ka. in the Free State (Brink, 1987) but 
not in the Gauteng Province until 88-62 Ka at Plovers Lake (Brophy 
et al., 2014). However, other researchers have identified medium-sized 
alcelaphines from older sites in Gauteng that could potentially be 
A. buselaphus (e.g. (de Ruiter et al., 2008; Vrba, 1997)). Regardless, the 
recognition of this taxa in the Gladysvale external deposits would push 
back the first appearance date in the Gauteng Province. 

Lacruz et al. (2002) found an NISP and MNI of 1 cf Oryx gazella while 
this study identified an NISP and MNI of 2 teeth as O. gazella. These teeth 
have an incipient goat fold which is consistent with Hippotragini and 
O. gazella (Gentry and Gentry, 1978b, 1978a). Contrary to Gentry and 
Gentry (1978b,a), basal pillars are variable on mandibular Hippotragini 
teeth (Brophy and Matthews, 2022) so their absence is not an issue. 

Specimen GV8654 reclassified as a Tragelaphini and Tragelaphus 
strepsiceros (Fig. 12). The outline of this tooth resembles a tragelaphine 
in that it has a strong separation between the lobes and an outgrowth on 
the distal side of the protocone (mesial lobe), possibly the incorporation 
of a small basal pillar. Regardless of the outline, the tooth exhibits 
characteristics consistent with alcelaphines including semi-complicated 
central cavities and hypsodonty, features that do not affect the overall 
shape of the occlusal surface of the tooth (Gentry and Gentry, 1978b, 
1978a). The tooth would also be on the small end of the range for a 
T. strepsiceros. Thus, we would consider this tooth an Alcelaphini. We 
also note that this approach is meant to be a quantifiable supplement to 
identifying bovids in the fossil record where ambiguity exists, and not 
the sole method. 

The newly identified specimens increase the diversity of fossils 
recovered from Gladysvale (Table 7). The four alcelaphine species tend 
to prefer secondary grasslands, short to medium in length (Estes, 2012). 
Secondary grasses exist where there is minimal woody growth (Reed, 
1996). Oryx gazella favor open grasslands/savannah with minimal bush 
cover for hiding. These habitat requirements are consistent with the 
other species since D. dorcas, A. buselaphus, and C. gnou tend to avoid 
woodlands while C. taurinus requires some shade. The identification of 
tragelaphines from the site (Lacruz et al., 2002) also confirm that there is 
some vegetational coverage in the vicinity. The high water dependence 
of D. dorcas and C. taurinus, as well as other species previously identified 
from the site (e.g. Hippotragus), suggest a nearby water source (Estes, 

Table 3 
Breakdown of tooth type for the 32 Gladysvale fossils. LM and UM 
are lower and upper molars, respectively.   

LM UM 
1 5 3 
2 4 2 
3 12 6  

Table 4 
Shape Features: Tribe level classifications of the Gladysvale fossil teeth using 
shape features generated via elastic shape analysis (I and OV) and classification 
method SVM-R.  

Method Type Alcelaphini Hippotragini Neotragini Tragelaphini 
I LM1 2 1 0 2 

LM2 4 0 0 0 
LM3 11 0 1 0 
UM1 2 0 1 0 
UM2 2 0 0 0 
UM3 6 0 0 0 
Total 27 1 2 2 

OV LM1 1 2 0 2 
LM2 3 1 0 0 
LM3 11 0 1 0 
UM1 3 0 0 0 
UM2 2 0 0 0 
UM3 6 0 0 0 
Total 26 3 1 2  
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2012). Thus, the bovid identifications support a paleoenvironment that 
likely consisted of open edaphic and secondary grasslands that grade 
into bush cover with a local water source. As Lacruz et al. (2002) dis-
cussed, it is probable that the excavated fossils represent more than a 
single environmental event, due to cycles of glacial and interglacial 
events during the Pleistocene in this region. Further research will be 
required to identify if multiple habitats may have been sampled. 

6. Conclusions 

Accurately and objectively identifying the taxonomic classification 
of fossil Bovidae teeth is of much import in paleoenvironmental recon-
struction. Biological anthropologists commonly use the shape of the 
occlusal surface of specimens to inform their classifications. In the past, 
when full shapes have been observed elliptical Fourier analysis has been 
used to derive features for machine learning classification models 
(Matthews et al., 2018). In this manuscript, a different framework for 
representing shapes, the square root velocity framework, was explored 
for its efficacy in deriving features for classification models. Several 
methods for deriving features as well as several different machine 
learning models were considered for comparison. We conclude that the 
feature derivation method referred to here as method I is the best option 
and the top performing model was a support vector machine with a 
radial kernel when considering only shape, and this was true for both 
tribe and species classification. The choice of SVM with a radial kernel as 
the best choice for a classifier is consistent with the finding of Matthews 
et al. (2018), which used a different method of feature creation, spe-
cifically EFA. We note that while SVM with a radial kernal and method I 
is best in most cases, there were rare instances where EFA actually did 
outperform features derived using the elastic shape analysis framework, 
though in most cases the results were essentially no different or worse. 

When size-and-shape features are considered, we observe less vari-
ability between the accuracy of different classification methods and 
methods of feature generation when classifying at the tribe level. With 
tribe classification, the best performing method was RF with OV-PC used 
for feature creation, though the improvement over other combinations is 
smaller than was observed for shape features. Species classification with 
size-and-shape features based on the random forest slightly outperforms 
the SVM methods considered here, which is the reverse of what was 
observed for shape features. Finally, feature generation with EFA was 
never better than the other methods of feature generation and often quite 
worse. As a result, one of our main recommendations is that researchers 
who are using shape or size-and-shape features to perform classification 
use the elastic shape analysis framework for feature generation. 

Table 5 
Shape Features: Species level classifications of the Gladysvale fossil teeth using features generated via elastic shape analysis (I and OV) and 
classification method SVM-R. 

Table 6 
Size-and-shape Features: Tribe level classifications of the Gladysvale fossil teeth 
using features generated via elastic shape analysis (I and OV) and classification 
method SVM-R.  

Method Type Alcelaphini Hippotragini Reduncini Tragelaphini 
I LM1 5 0 0 0 

LM2 4 0 0 0 
LM3 12 0 0 0 
UM1 2 0 0 1 
UM2 2 0 0 0 
UM3 6 0 0 0 
Total 31 0 0 1 

OV LM1 3 1 0 1 
LM2 4 0 0 0 
LM3 12 0 0 0 
UM1 2 0 1 0 
UM2 1 1 0 0 
UM3 6 0 0 0 
Total 28 2 1 1  

Fig. 12. Fossil GV8654 reclassified as tragelaphine due to its outline, but the 
semi-complicated central cavities and hyposodonty of the tooth suggest it is an 
alcelaphine. 
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Since SVM-R performed well in both shape and size-and-shape set-
tings, we applied this model with feature generation methods I and OV 
to medium sized alcelaphine fossil specimens from the GVED. When 
only shape was considered, 18 and 14 out of 32 teeth were classified as 
Alcelaphini when using feature generation methods I and OV, respec-
tively. When size-and-shape was used, 31 and 28 out of the 32 teeth 
were classified as Alcelaphini, respectively. The reclassified teeth sup-
port and refine the previous paleoenvironmental reconstruction. The 
reconstructed environment is consistent with other sites in the area 
dating to a similar time frame. In the future, we plan to apply these 
methods to more fossils at additional sites. 
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