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Abstract

This article considers Bayesian model selection via mean-field (MF) variational approximation. Towards this 
goal, we study the non-asymptotic properties of MF inference that allows latent variables and model 
misspecification. Concretely, we show a Bernstein–von Mises (BvM) theorem for the variational distribution 
from MF under possible model misspecification, which implies the distributional convergence of MF 
variational approximation to a normal distribution centring at the maximal likelihood estimator. Motivated by 
the BvM theorem, we propose a model selection criterion using the evidence lower bound (ELBO), and 
demonstrate that the model selected by ELBO tends to asymptotically agree with the one selected by the 
commonly used Bayesian information criterion (BIC) as the sample size tends to infinity. Compared to BIC, 
ELBO tends to incur smaller approximation error to the log-marginal likelihood (a.k.a. model evidence) due 
to a better dimension dependence and full incorporation of the prior information. Moreover, we show the 
geometric convergence of the coordinate ascent variational inference algorithm, which provides a practical 
guidance on how many iterations one typically needs to run when approximating the ELBO. These findings 
demonstrate that variational inference is capable of providing a computationally efficient alternative to 
conventional approaches in tasks beyond obtaining point estimates.
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1 Introduction

Variational inference (VI, Bishop, 2006; Jordan et al., 1999) is an effective computational method 
for approximating complicated posterior distributions arising in Bayesian statistics. An alternative 
commonly adopted approach is the Markov Chain Monte Carlo (MCMC) method (Gelfand & 
Smith, 1990; Hammersley, 2013; Hastings, 1970) based on sampling, where a Markov chain is 
carefully constructed so that its limiting distribution matches the target distribution. Despite its 
popularity, MCMC is known to suffer from a number of drawbacks, including low-sampling ef-
ficiency due to sample correlation and a lack of computational scalability to massive datasets. In 
comparison, VI turns the integration or sampling problem into an optimization problem, and can 
be orders of magnitude faster than MCMC for achieving the same approximation accuracy. More 
precisely, the target distribution in VI is approximated by the closest member in a family of tract-
able distributions via minimizing the Kullback–Leibler (KL) divergence, which is also equivalent 
to maximizing a lower bound to the logarithm of the marginal density of data, called evidence low-
er bound (ELBO). We refer the interested readers to Blei et al. (2017) for a comprehensive review 
on the history of VI development.

Among various approximating schemes, the mean-field (MF) approximation, which uses the 
approximating family consisting of all fully factorized density functions over (blocks of) the target 
random variables, is the most widely used and representative instance of VI that is conceptually 
simple yet practically powerful. The computation of MF approximation can be realized using 
the coordinate ascent variational inference (CAVI) algorithm (Bishop, 2006; Blei et al., 2017), 
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which iteratively optimizes each (block of) components in the factorization while keeping others 
fixed at their present values (see Section 2.4 for more details). CAVI resembles the classical EM 
algorithm (Dempster et al., 1977) by viewing the target random variables as the unobserved latent 
variables. In this paper, we primarily focus on MF approximation, although our development can 
be analogously extended to other approximation schemes, such as Gaussian approximation and 
hybrid schemes that further restrict components in MF to be within certain exponential families.

Despite the wide applications of variational inference over the past decades, it is until recent 
years that some general theory, trying to explain from a frequentist perspective why variational 
inference works so well, has been developed. Some earlier threads of theoretical research are most-
ly conducted in a case-by-case manner, by either explicitly analysing the fixed point equation of the 
variational optimization problem, or directly analysing the iterative algorithm for solving the op-
timization problem. Examples of such include Bayesian linear models (Hall, Ormerod, et al., 
2011; Hall, Pham, et al., 2011; Ormerod & Wand, 2012), Gaussian mixture models (GMMs) 
(Titterington & Wang, 2006; Westling & McCormick, 2015), and stochastic block models 
(SBMs) (Bickel et al., 2013; Zhang & Zhou, 2020). It is a well-known fact that many VI schemes, 
such as MF approximation, fail to capture the dependence structure and tend to underestimate the 
estimation uncertainty reflected in the Bayesian posteriors (Wang & Titterington, 2005). This ob-
servation is first theoretically illustrated by Wang and Blei (2019), where under a local asymptotic 
normality (LAN) assumption, a Bernstein–von Mises (BvM) type theorem (i.e. asymptotic normal 
approximation, Van der Vaart, 2000) is proven for the variational (approximated) posterior. 
However, the crucial LAN assumption used by Wang and Blei (2019) implicitly assumes the esti-
mation consistency for the model parameter, which still requires a case-by-case verification. In 
addition, it is not clear that how the asymptotic mean and covariance matrix implied by their 
LAN assumption relate to characteristics of the statistical model in a general sense. Wang and 
Blei (2019) further generalized the results by Wang and Blei (2019) from well-specified models 
to misspecified models.

Since VI is generally incapable of accurately approximating the target posterior distributions, an-
other line of research focuses on the estimation consistency of point estimators obtained from vari-
ational posteriors (e.g. using the expectation) under general settings. For example, a number of 
recent works (Alquier & Ridgway, 2020; Pati et al., 2018; Yang et al., 2020; Zhang & Gao, 
2020) provide general conditions under which VI leads to consistent parameter estimation; more-
over, they derive convergence rates of the point estimators that are often minimax-optimal (up to 
logarithmic terms) in both regular parametric and infinite-dimensional non-parametric models. In 
addition, some works (Alquier & Ridgway, 2020; Alquier et al., 2016; Chérief-Abdellatif & 
Alquier, 2018) derive risk bounds for VI under model misspecified settings; while Yang et al. 
(2020) also studied the risk bounds for VI with fractional posteriors. In a nutshell, this point estima-
tion consistency (first-order information) can be attributed to the heavy penalty on the tails in the KL 
divergence that forces the variational distribution to concentrate around the true parameter at the 
optimal rate; however, the local shape of the obtained variational posteriors around the true param-
eter (second-order information) can be far away from that of the true posterior (see Figure 1 for an 
illustration).

Through a more refined analysis, Han and Yang (2019) showed that under some mildly stronger 
smoothness conditions without assuming consistency, the discrepancy between a point estimator 
from MF approximation and the maximum likelihood estimator (MLE) is of higher-order com-
pared to the root-n estimation error of MLE for regular parametric models. As a consequence, 
there is essentially no loss of efficiency in using a VI point estimator for parameter estimation, 
in terms of asymptotically attaining the Cramér–Rao lower bound. In addition, they showed 
that MF variational posterior is close to a multivariate normal distribution centred at MLE 
with a diagonal precision matrix whose diagonal elements are equal to corresponding elements 
in the Fisher information at the true parameter. They further proposed a consistent variational 
weighted likelihood bootstrap method for uncertainty quantification for the MF approximation.

The overarching goal of the current paper is to carry out further methodological and theoretical 
investigations complimenting existing findings by looking into the model selection and algorith-
mic convergence aspects of MF variational approximation. While there are some existing theor-
etical results on model selection with variational inference, they either show only an oracle 
inequality for the selected model (Chérief-Abdellatif, 2019), implying that the estimation 
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performance of the selected model is not much worse than that of the true model, or use an add-
itional aggregation step to combine multiple variational models to achieve an optimal convergence 
rate (Ohn & Lin, 2021). It remains an open problem to study whether the model selected based on 
ELBO maximization is consistent; that is, whether the probability of choosing the right model 
tends to one as the sample size tends to infinity. In this paper, we propose ELBO as an alternative 
criterion for model selection, and show that it is asymptotically equivalent to the Bayesian infor-
mation criterion (BIC, Schwarz, 1978). It is well-known (Yang, 2005) that BIC, derived as an 
asymptotic approximation to the log-marginal likelihood (a.k.a. model evidence), is consistent 
in selecting the true model; while another commonly used Akaike information criterion (AIC, 
Hirotugu, 1974), equivalent to Mallows’s Cp statistic in regression analysis, is minimax-rate op-
timal for prediction but tends to overestimate the model size. In this work, we find that ELBO gen-
erally leads to a better approximation to the model evidence than BIC due to the full incorporation of 
prior information and a better dimension dependence in the approximation error. On the other 
hand, our numerical studies suggest that the proposed ELBO criterion tends to be less conservative 
than BIC in the presence of weak signals, and can achieve comparable predictive performance as AIC 
with a much more parsimonious selected model. Furthermore, we study the algorithmic convergence 
of the CAVI algorithm under regular parametric models by providing generic conditions on the ini-
tialization and step size under which CAVI exhibits geometric convergence towards the exact value 
up to the statistical accuracy of the problem. Specifically, we characterize the algorithmic conver-
gence rate under two commonly adopted updating schemes, and our result provides theoretic guid-
ance on how many iterations one typically needs to run when approximating the ELBO for model 
selection, so that the numerically selected model coincides with the theoretical one.

The rest of the paper is organized as follows. In Section 2, we review some background on the 
mean-field variational inference, present some new theoretical results on the misspecified 
Bernstein–von Mises theorem, and describe in detail the methodology of using MF approximation 
for model selection and the related computational aspects. Section 3 contains the main theoretical 
findings of the paper. Section 4 includes the numerical results. We conclude the paper with a dis-
cussion in Section 5 and leave a description of motivating examples, their theoretical consequen-
ces, high-dimensional extensions, and technical proofs to the online supplementary material, 
Appendices.

Notation. We use lower-case letters (e.g. π, p, q, …) to denote densities, and capital letters (e.g. 
Π, P, Q, …) for the associated probability measures. We use D(P ‖Q) to denote the KL divergence 
between two distributions P and Q, and H(P, Q) for the Hellinger distance.

2 Model selection via mean-field approximation and its computation

In this section, we first set up the modelling framework and review MF variational approximation 
for Bayesian inference; and then present some new theoretical results, including concentration and 
distributional convergence under possible model misspecification. Motivated by the theory, we 
propose a new criterion based on the ELBO as an alternative to the widely used BIC for model se-
lection. After that, we introduce several common variants of CAVI algorithms that implement MF 
for model selection. In online supplementary material, Appendix A, we provide some concrete mo-
tivating examples and derive the closed form of updating formulas for computing ELBO.

Figure 1. Plots of a two-dimensional posterior density and its mean-field approximation.

744                                                                                                                                          Zhang and Yang

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jrs
s
s
b
/a

rtic
le

/8
6
/3

/7
4
2
/7

6
4
2
8
2
5
 b

y
 U

n
iv

e
rs

ity
 o

f M
a
ry

la
n
d
 - C

o
lle

g
e
 P

a
rk

 u
s
e
r o

n
 2

3
 S

e
p
te

m
b
e
r 2

0
2
4

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad164#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad164#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad164#supplementary-data


2.1 Variational inference and mean-field approximation

Let Xn = (X1, . . . , Xn) denote i.i.d. random observations from some unknown underlying data 
generating distribution P0 to be estimated. Consider a parametric family {Pθ : θ ∈ Θ} that does 
not necessarily contain P0 (i.e. we allow model misspecification). In a general Bayesian frame-
work, the goal is to approximate the posterior density πn of parameter θ ∈ Θ given data Xn, which 
is obtained by combining a prior density π(θ) and data likelihood p(Xn ∣ θ),

πn(θ) := p(θ ∣ Xn) =
p(Xn ∣ θ)π(θ)

p(Xn)
, with p(Xn) =

�

Θ
p(Xn ∣ θ)π(θ) dθ 

denoting the normalization constant. In many problems such as the Gaussian mixture modelling, 
model augmentation with latent variables can greatly simplify the likelihood function evaluation; 
thereby facilitating posterior calculation. For concreteness, we consider n local latent variables 
Sn = (S1, . . . , Sn) where the ith latent variable Si ∈ S is tied with Xi for i = 1, 2, . . . , n. Under 
this setting, the marginal likelihood function of data Xn can be recovered by integrating the con-
ditional density function p(Xn ∣ Sn, θ) with respect to the latent variable distribution p(Sn ∣ θ), i.e.

p(Xn ∣ θ) =

�

Sn
p(Xn ∣ θ, sn)p(sn ∣ θ) dsn.

In the case where latent variables are of discrete type, we replace the integration above with a sum-
mation over Sn. We consider the common setting where the observation-latent variable pairs 
{(Xi, Si)}

n
i=1 are conditionally i.i.d. given θ, i.e.

p(Xn ∣ Sn, θ) =
􏽙n

i=1

p(Xi ∣ Si, θ) and p(Sn ∣ θ) =
􏽙n

i=1

p(Si ∣ θ).

For such a latent variable model, one is typically interested in making inferences using the follow-
ing joint posterior density over parameter θ and latent variables Sn,

p(θ, Sn ∣ Xn) =
p(Xn ∣ Sn, θ)p(Sn ∣ θ)π(θ)

p(Xn)
.

Unfortunately, in many problems, the normalizing constant p(Xn) involving a multivariate inte-
gration is analytically intractable and difficult to numerically approximate. VI instead searches 

for the closest distribution 􏽢q(θ, Sn) over Θ × Sn from some computationally friendly variational 
family, denoted by Γ, to approximate the joint posterior distribution by solving the following op-
timization problem:

􏽢q = argmin
q∈Γ

D
(
q( · , · ) ‖ p( · , · ∣ Xn)

􏼁
. (1) 

The following equivalent description of the objective functional above leads to an alternative way 
to interpret VI:

D
(
q( · , · ) ‖ p( · , · ∣ Xn)

􏼁
=

�

Θ×Sn
log

q(θ, sn)

p(θ, sn ∣ Xn)
q(θ, sn)dθdsn

=

�

Θ×Sn

􏼂
log p(Xn) + log q(θ, sn) − log p(Xn, θ, sn)

􏼃
q(θ, sn)dθdsn := log p(Xn) − L(q), (2) 

where L(q) =
􏽒

Θ×Sn [ log p(Xn, θ, sn) − log q(θ, sn)]q(θ, sn)dθdsn is called ELBO since it bounds the 

evidence log p(Xn) from below, due to the nonpositivity of KL divergence. The same identity also 
illustrates that VI circumvents the need to calculate the unknown normalizing constant p(Xn) since 
it only contributes to the objective functional as a constant that does not change the optimum.
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According to identity (2), ELBO L(q) equals to the evidence (i.e. log p(Xn)) if and only if q and 
p( · , · ∣ Xn) coincide. As a direct consequence, the following two statistical tasks are equivalent: (1) 
approximating the joint posterior for conducting statistical inference on (θ, Sn) and (2) approxi-
mating the evidence log p(Xn) for evaluating model goodness of fit or performing model selection. 
Computationally, we can alternatively maximize the analytically tractable ELBO functional L to 
find the best approximation to the joint posterior within the variational family Γ. In this way, we 
have turned the integration problem into an optimization problem. Although VI is not guaranteed 
to generate exact samples as MCMC does, the computational efficiency can be considerably im-
proved, as some smart choices of the variational family make the optimization problem numeric-
ally solvable and simple. Moreover, the computational speed can be further boosted by taking 
advantage of modern optimization techniques such as stochastic approximation and distributed 
computing.

In practice, a popular choice of Γ is the mean-field family that contains all fully factorized densities 
with the form q(θ, sn) =

􏽑d
j=1 qθj

(θj) ·
􏽑n

i=1 qSi
(si) for all θ ∈ Θ and sn = (s1, . . . , sn) ∈ Sn. As a rep-

resentative illustrating example, the (closest) MF approximation to the multivariate normal distribu-
tion N(μ, Θ−1) (with Θ being the precision matrix) is N(μ, [diag(Θ)]−1), where diag(A) denotes the 
diagonal matrix collecting all diagonal elements from a matrix A. In other words, the MF approxi-
mation keeps all the first-order information, while throwing away second-order interactions encoding 
the dependence structure, as we have already seen from Figure 1. A common variant relaxing the fully 
factorized MF approximation is the block MF approximation of the form q(θ, sn) = qθ(θ)qSn (sn), 
where the dependence within components of θ or Sn is preserved while that between the two blocks 
θ and Sn is neglected. For either the full or the block MF approximation, the corresponding optimiza-
tion problem can be efficiently solved by a generic coordinate ascent (Wright, 2015), whose special-
izations to MF will be introduced with more details in Section 2.4.

To interpret and understand different sources of errors due to MF approximation 
q(θ, sn) = qθ(θ)qSn (sn), we may further decompose ELBO into the following three terms 
(Yang et al., 2020):

L(q) =

�

Θ×Sn

􏽨
log

􏼈
p(sn, Xn ∣ θ)π(θ)

􏼉
− log

􏼈
qθ(θ)qSn (sn)

􏼉􏽩
qθ(θ)qSn (sn)dθdsn

=

�

Θ
log p(Xn ∣ θ)qθ(θ)dθ − D(qθ ‖ π)

􏽼����������������������􏽻􏽺����������������������􏽽
:=Lθ(qθ)

−ΔJ,
(3) 

where the first term is an integrated marginal log-likelihood function (w.r.t. the variational density 
qθ), the second term is the negative KL divergence between qθ and the prior, and the last term

ΔJ =

�

Θ
log p(Xn ∣ θ) −

�

Sn
log

p(Xn, sn ∣ θ)

qSn (sn)
qSn (sn)dsn

􏼔 􏼕
qθdθ ≥ 0 

can be interpreted as a non-negative Jensen gap introduced by approximating the marginal 
log-likelihood with a lower bound from Jensen’s inequality. In particular, Lθ(qθ), which collects 
the first two terms in Eq. (3), constitutes the ELBO associated with the objective functional 
D(q(·) ‖ πn(·)) in the variational inference of approximating the (marginal) posterior p(θ ∣ Xn) 
with variational density qθ(θ); while the extra gap ΔJ is due to the presence of latent variables 

where p(sn |Xn, θ) is approximated by a single distribution qSn (sn) for all θ ∈ Θ.
Decomposition (3) also reveals an interesting connection between the optimization of ELBO 

and the traditional regularized estimation. For example, when there is no latent variable, the 
Jensen gap term ΔJ vanishes, and maximizing the ELBO functional (3) over all density functions 
qθ over Θ becomes finding a KL divergence-regularized estimator over Γ: the first term in Eq. (3) 
reflects model goodness of fit to the data and encourages qθ to assign all its mass towards the maxi-
mizer of log-likelihood function, i.e. the maximum likelihood estimator; while the second regular-
ization term D(qθ ‖ π) avoids measure collapse as it diverges to infinity as qθ becomes close to a 
point mass measure.
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2.2 Concentration and distributional convergence

This subsection presents results about large-sample properties of posterior distributions and their 
MF variational approximations in terms of concentration towards certain point in parameter 
space Θ and convergence towards some distribution over Θ, under the frequentist perspective as-
suming {Xi}

n
i=1 to be i.i.d. from the data generating distribution P0. These results are direct gener-

alization of Han and Yang (2019) from well-specified parametric models to misspecified models. 
They also provide the cornerstone for showing the consistency of model selection based on ELBO 
in Section 3.1.

For a well-specified model where P0 = Pθ∗ for some true parameter θ∗ in parameter space Θ, it is 
known that the posterior distribution tends to contract towards θ∗ in view of the BvM theorem 
(Van der Vaart, 2000). For posterior concentration beyond parametric models, refer to Ghosal 
et al. (2000), Ghosal and Van Der Vaart (2007), and Shen and Wasserman (2001). However, 
in the context of model selection, we also need to consider candidate models that may not contain 
P0. Posterior contraction for misspecified models is formally studied by Kleijn and Van der Vaart 
(2012). More precisely, if we denote

θ∗M = argmin
θ∈ΘM

D(P0 ‖Pθ) (4) 

as the parameter associated with the ‘projection’ (relative to the KL divergence) of P0 to a generic 
(possibly misspecified) model M with parameter space ΘM. The BvM theorem under misspecifi-
cation (Kleijn & Van der Vaart, 2012) states that the posterior distribution tends to be close to a 

normal distribution centring at MLE 􏽢θmle = arg maxθ∈θMp(Xn | θ) of the assumed model M, whose 

covariance matrix is related as usual to the Fisher information matrix; and the MLE 􏽢θmle itself is 
asymptotically normal with asymptotic mean θ∗M and a sandwiched-form covariance matrix. Since 

we will fix the model M in the following analysis, we will omit the M in the subscripts in the rest of 
this subsection. For example, θ∗M will be simply denoted as θ∗, parameter space ΘM as Θ, and prior 

density πM as π.
To begin with, we make some common regularity assumptions on the prior and log-likelihood 

function following Han and Yang (2019), with some appropriate generalization to the misspeci-
fied setting.

Assumption 1 (Thickness of prior). The prior satisfies π(θ∗) > 0, and is continuously dif-
ferentiable in a neighbourhood of θ∗, with growth controlled as

log π(θ) − log π θ∗
( 􏼁􏼌􏼌 􏼌􏼌 ≤ C

(
1 + θ − θ∗‖ ‖L􏼁, 

for any θ and some positive constants (C, L).

Assumption 2 (Regularity of marginal likelihood). Let ℓ(θ; x) = log p(x | θ) be the 
log-likelihood function at a single-data point x, then: 

(a) ℓ(θ; x) has continuous mixed derivatives up to order three with re-
spect to components of θ, and the mixed derivatives have finite fourth 
moments in a neighbourhood of θ∗ under P0. Moreover, there exists a 
measurable function Z = Z(x) such that

∂3ℓ(θ; x)

∂θi∂θ j∂θk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ≤ Z(x)

(
1 + θ − θ∗‖ ‖L􏼁, for all i, j, k ∈ [d], 

and Z satisfies EP0
[esZ(X)] < ∞ for some s > 0;

(b) The information matrix V(θ∗) := EP0
[ − ∇2ℓ(θ∗, X)] is positive defin-

ite, and the covariance matrix EP0
[∇ℓ(θ∗; X)∇ℓ(θ∗; X)T] of the score 

vector ∇ℓ(θ∗; X) is invertible;
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(c) The Radon–Nikodym derivative dPθ
dPθ∗

satisfies EP0
[ dPθ

dPθ∗
] < ∞ in a 

neighbourhood of θ∗. Moreover, for any ϵ > 0 there exists a sequence 
of test functions {ϕn : n ≥ 1} such that

EPn
0
[ϕn(Xn)] ≤ exp ( − nc) and

sup
‖θ−θ∗‖≥ϵ

EPn
0

P(Xn ∣ θ)

P(Xn ∣ θ∗)
(
1 − ϕn(Xn)

􏼁􏼔 􏼕
≤ exp ( − ncϵ), 

for some constants c and cϵ.

Assumption 3 (Regularity of conditional likelihood of latent variable). The 
conditional log-likelihood function of the latent variable ℓS(θ, X; s) = 

log p(s ∣ θ, X) has continuous mixed derivatives with respect to compo-
nents of θ up to order three, and the mixed derivatives have finite fourth 
moments in a neighbourhood of θ∗ under P0. Moreover, there exists a 
measurable function Z = Z(x, s) with bounded second moment under 
P0 such that

∂3ℓ(θ, x; s)

∂θi∂θ j∂θk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ≤ Z(x, s)

(
1 + θ − θ∗‖ ‖L􏼁, for all i, j, k ∈ [d].

Assumptions 1, 2(a), 2(b), and 3 are some standard regularity conditions made on 
the prior and log-likelihood functions for proving the BvM theorem (for well-specified 
models). Assumption 2(c) includes some additional regularity conditions and testability as-
sumptions inherited from Kleijn and Van der Vaart (2012) to address misspecified models. 
We denote the latent variable Fisher information matrix (also called missing data Fisher in-
formation matrix in the missing data/EM algorithm literature, e.g. Dempster et al., 1977), 
EP0

[ − ∇2ℓS(θ∗, X)] of ℓS as Vs(θ∗) and denote Vc(θ∗) = V(θ∗) + Vs(θ∗) as the complete data in-
formation matrix at θ∗. In this work, we only consider nonsingular models by assuming the 
nonsingularity of the Fisher information (Assumption 2(b)). The problem of model selec-
tion involving possibly singular models (e.g. mixture models, Ho & Nguyen, 2019) is 
not covered by our theory and will be left to future research. As a result, in Section 4.2
for numerical study on Gaussian mixture model, we only consider a well-specified model. 
However, we note that our assumptions are satisfied for under-specified Gaussian mixture 
models, as well as for other commonly used models such as the linear and generalized linear 
models (GLM). In these cases, the Fisher information matrix remains nonsingular even 
when the model is misspecified, as discussed in Section 4.3.

Theorem 3.1 in Kleijn and Van der Vaart (2012) states that the posterior distribution of a mis-
specified model tends to be close to a normal distribution. In this paper, we find that the MF vari-
ational distribution also contracts to a normal distribution under model misspecification. 
Following some recently developed techniques, we first include the following two results on the 
consistency and concentration of the marginal posterior of θ and its MF approximation. The first 
result is a non-asymptotic version of Theorem 3.1 in Kleijn and Van der Vaart (2012) on the con-
traction of posterior under model misspecification, which is inherited from Theorem 5.1 in Ghosal 
et al. (2000).

Lemma 1 Under Assumptions 1 to 3, for any K ≥ 1, it holds with probability at least 1 − 

CK−2 that the marginal posterior Πn of θ satisfies

Πn

(
‖θ − θ∗‖ ≥ Cε

􏼁
≤ e−Cnε2

, for all ε ≥ Kεn, (5) 

with ϵn =
C log n��

n
√ for some constant C sufficiently large.
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Using a similar variational argument as the proof of Lemma 2 in Han and Yang (2019), the 
sub-Gaussian type concentration property of the posterior p(θ |Xn) is inherited by its MF approxi-
mation 􏽢Qθ, as described by the following lemma.

Lemma 2 Suppose the posterior satisfies the sub-Gaussian tail property as displayed in 
Lemma 1. Then under the same notation as Lemma 1, there exist constants 
(C1, C2, C3) such that for any K ≥ 1, it holds with probability at least 1 − 

C1K−2 that the MF approximation 􏽢Qθ satisfies

􏽢Qθ
(

θ − θ∗‖ ‖ ≥ C2ε
􏼁

≤ e−C3nε2

, for all ε ≥ Kεn.

Intuitively, the concentration of variational distribution 􏽢Qθ is a result of the strong penalty on 
the tail difference incurred by the log density ratio log q

p in the KL divergence objective (1), which 
forces 􏽢Qθ to concentrate around the same region where the posterior p(θ |Xn) assigns most of its 
mass. Lemma 2 further leads to the following theorem on the distributional convergence of 􏽢Qθ, 
which generalizes Theorem 1 in Han and Yang (2019) from well-specified models to misspecified 
models. Note that the counterpart of Theorem 1 for well-specified models in Han and Yang (2019)
is primarily used for studying the large-sample properties of the variational mean estimator 
􏽢θVB = E􏽢Qθ

[θ]. In contrast, we extend and apply Theorem 1 to misspecified models to investigate 

the large-sample properties of the ELBO for model selection.

Theorem 1 Under Assumptions 1 to 3, there exist constants (C4, C5) and C∗ that depend 
on the model and θ∗ such that for any 1 ≤ K = O(

��
n

√
) it holds with at prob-

ability at least 1 − C4K−2 that

D
(􏽢Qθ

􏼍􏼍Q∗
VB

􏼁
≤

C5K3( log n)3

��
n

√ , 

where Q∗
VB denotes the normal distribution N(􏽢θmle, [n diag(Vc(θ∗))]−1).

As a direct consequence of this theorem, any reasonable point estimator (e.g. by taking expect-

ation) obtained from 􏽢Qθ is asymptotically the same as MLE 􏽢θmle under the mis-specified model. 

The KL divergence bound from the theorem implies an O(n−3/4) bound between the variational 

mean estimator 􏽢θVB = EQ̂θ
[θ] and the MLE 􏽢θmle by applying a transportation cost inequality. 

However, it is noteworthy that our analysis characterizing the updating dynamics of the CAVI it-

erative algorithm results in an improved error rate of ‖􏽢θVB −􏽢θmle‖ = O(n−1( log n)9/2); see online 
supplementary material, Equation (39) in the proof of Theorem 4. This suggests that there is es-
sentially no loss of statistical efficiency by using the MF approximation to obtain a point estimator 
to the model parameter as compared to the frequentist likelihood-based approaches in the misspe-
cified setting. However, as is common in the MF variational inference, uncertainty quantification 

from 􏽢Qθ can be misleading as the asymptotic covariance matrix [diag(Vc(θ∗)]−1 may drastically 
underestimate the variability in the marginal posterior of θ, whose asymptotic covariance matrix 

is [V(θ∗)]−1 (Theorem 3.1, Kleijn & Van der Vaart, 2012). The uncertainty underestimation main-
ly comes from two sources: (1) ignoring the dependence among components of θ results in the di-
agonalization of the covariance matrix and (2) ignoring the dependence between parameter θ and 
latent variables Sn results in the inclusion of the extra Vs(θ∗) term in the precision matrix, i.e. the 
inverse of the covariance matrix. In particular, if there is no latent variable, then matrix Vc appear-
ing in the Q∗

VB reduces to V.

Remark 1 (Extensions to Block MF). If we use the block mean-field approximation 
q(θ, sn) = qθ(θ)qSn (sn), which preserves the within-block dependence as de-
scribed in the previous subsection, instead of the fully factorized one as 
q(θ, sn) =

􏽑d
j=1 qθj

(θj) ·
􏽑n

i=1 qSi
(si), then Theorem 1 can be correspondingly 
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extended where the variational posterior Q∗
VB tends to be close to a normal 

with the same mean, but a different non-diagonal covariance matrix. 
Precisely, we consider the more general case of MF approximation using fac-
torized densities with K blocks whose respective sizes are d1, . . . , dK,

qθ(θ) = q1(θ1, . . . , θd1
)q2(θd1+1, . . . , θd1+d2

) . . .qK(θd−dK+1, . . . , θd).

We similarly write the complete data information matrix Vc(θ∗) in the corre-
sponding block form as

Vc(θ∗) =

V11 · · · V1K

.

.

.
.
.

.
.
.
.

VK1 · · · VKK

⎛
⎜⎝

⎞
⎟⎠, 

where Vkℓ ∈ R
dk×dℓ denotes the (k, ℓ)th block. Then 􏽢Qθ will be well- 

approximated by the normal distribution N(􏽢θmle, [nSc(θ∗)]−1) with

Sc(θ∗) =

V11 0 · · · 0
0 V22 · · · 0

.

.

.
.
.
.

.
.

.
.
.
.

0 0 · · · VKK

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠.

In the special case of block MF over parameter θ and latent variables Sn, or 
q(θ, sn) = qθ(θ)qSn (sn), the approximating normal distribution becomes 

N(􏽢θmle, (nVc)
−1), where the precision overestimation only comes from the ex-

tra latent variable information VS in decomposition Vc = V + VS. The profit 
regression example described in online supplementary material, Appendix A
uses such a block approximation.

2.3 Bayesian model selection via mean-field approximation

In the previous subsection, we discussed the large-sample behaviour of MF variational inference in 
approximating the posterior. The normal approximation Q∗

VB to 􏽢Qθ suggests that we may use 􏽢Qθ, 
or more precisely, the accompanied ELBO L(􏽢qθ ⊗􏽢qSn ), as a computationally feasible surrogate to 
the evidence log p(Xn) for performing model selection. Concretely, recall that the true data gener-
ating distribution is denoted by P0. We consider a list of candidate models {Mλ}λ∈Λ that may or 
may not contain P0. Our target is to select a most parsimonious model from {Mλ}λ∈Λ that is closer 
to P0. In our setting of parameter models, we use θMλ and ΘMλ to denote the respective parameter 
and parameter space associated with model Mλ. The size (or complexity) of a model Mλ is then the 
dimension dMλ of ΘMλ (i.e. number of parameters).

In the model selection literature, BIC (Schwarz, 1978) is a commonly used criterion function for se-
lecting the best model that balances between goodness-of-fit to data and model complexity, defined as

BIC(M) = −2􏽢ℓn(M) + dM log n, (6) 

for a generic model Mwith dM number of parameters, where 􏽢ℓn(M) = maxθM∈ΘM log p(Xn ∣ θM, M) 
denotes the maximal log-likelihood value under model M. To employ BIC for model selection, one se-
lects the model with the lowest BIC. More specifically, assume a prior distribution πMλ is imposed to 
θMλ under model Mλ, and p(Mλ) denotes the prior probability assigned to model Mλ. Using the 
Laplace approximation, it can be shown (Stoica & Selen, 2004, also see Theorem 2) that 
−BIC(Mλ)/2 provides a large-sample approximation to the logarithm of the posterior probability 
p(Xn |Mλ) of data Xn given model Mλ, i.e. the evidence of model Mλ. Therefore, minimizing BIC 
over all candidate models is asymptotically equivalent to maximizing the posterior probability 
p(Mλ |Xn) over all λ ∈ Λ, as the impact from model prior p(Mλ) is diminishing as sample size n grows.
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Since one perspective of variational inference as described in Section 2.1 is finding a best lower 
bound ELBO(M) = LM(􏽢qM) to the evidence log p(Xn |M), where LM denotes the ELBO under a 
generic model M and 􏽢qM denotes the MF approximation (i.e. solution of problem (1) that maximizes 
LM within Γ), it is natural to use ELBO(M) to approximate model evidence log p(Xn |M) to conduct 
model selection. Interestingly, we find (c.f. Section 3.1) that as the sample size n tends to infinity, mod-
el selection via maximizing the ELBO leads to the same model chosen via minimizing the BIC, which 
is also the highest posterior probability model. Since BIC is capable of consistently selecting the small-
est model containing P0 as n → ∞ (Schwarz, 1978), a property known as model selection consist-
ency, we can conclude that ELBO inherits the same model selection consistency property.

Specifically, we find a precise characterization of the gap between the exact evidence 
log p(Xn |M) and the ELBO associated with MF approximation (Theorem 2) under a large- 

sample size n, which converges to a model-dependent constant C∗(M) = 1
2 log

det(diag(Vc(θ∗M)))

det(V(θ∗M)) as 

n → ∞. In comparison, −BIC(M)/2 also provides an asymptotically constant approximation 

to the evidence, where the limiting constant is C∗
BIC(M) = − 1

2 log det(V(θ∗M)) + dM
2 log (2π) + 

log πM(θ∗M) (Theorem 2). The empirical results in Section 4 also align well with these theoretical 

findings. Consequently, approximating the evidence by ELBO does not incur significantly larger 
error than that by BIC. Moreover, since the discrepancy between the negative half of BIC and 
ELBO is of constant order while the optimality gap, i.e. the smallest difference in the BIC values 
between the optimal model and any suboptimal model will be at least of order log n in order for the 
true model to be statistically identifiable, they tend to lead to the same selected model as n → ∞.

More interestingly, a closer inspection of the two limiting constants C∗(M) and C∗
BIC(M) reveals 

that ELBO generally leads to a better approximation of the model evidence than BIC due to the full 
incorporation of prior information and a better dimension dependence in the approximation er-
ror. For example, the definition (6) of BIC completely ignores the prior contribution while 
ELBO (defined after Eq. (2)) involves an integration of log-prior, explaining the extra 
log πM(θ∗M) term in the BIC approximation error. In addition, due to the simple Laplace approxi-
mation, C∗

BIC(M) has an extra term explicitly dependent of model size dM, making BIC less accur-
ate in approximating the evidence in large or growing dimension problems; also see our numerical 
study in Section 4.3 on variable selection in GLM. Last but not least, our numerical studies in 
Section 4 suggest that ELBO tends to be less conservative than BIC in the presence of weak signals, 
and can achieve comparable predictive performance as AIC (Hirotugu, 1974) with a much more 
parsimonious selected model. Note that AIC is known to be minimax-rate optimal for prediction 
in linear regression but tends to overestimate the model size (Yang, 2005).

We conclude this section with a brief discussion on computation. Variational inference is com-
monly used when the posterior does not have an explicit form (e.g. in mixture models). In such set-
tings, the MLE required for BIC calculation also does not admit a closed-form solution. In these 
cases, the MLE can be solved numerically using the EM algorithm or approximated by the expect-
ation of the variational distribution, where the latter incurs an error of order at most O(n−1) (see the 
remark after Theorem 1). In either scenario, the computational cost for calculating the MLE (or 
BIC) is comparable to that of variational inference or CAVI, since the EM algorithm can be viewed 
as a degenerate CAVI in which the parameter component in the mean-field approximation is further 
restricted to be a point mass measure. Therefore, previous discussions (or Theorem 2) suggest that 
ELBO tends to achieve better approximation accuracy than BIC with similar computational costs 
when estimating model evidence. Additionally, a standard implementation of CAVI for computing 
the variational distribution requires O(n) computational cost per iteration due to the necessity of 
accessing the full data set. In settings where n is large, we may consider approximation methods 
such as stochastic gradient descent to reduce the per iteration computational cost (Alquier & 
Ridgway, 2020; Titsias & Lázaro-Gredilla, 2014). We would also like to note that calculating 
the BIC often requires accurately determining the effective dimension of the model. For some com-
plex models with non-trivial constraints, such as Bayesian factor models (with constraints on the 
factor loading matrix to enforce identifiability) or latent variable models like Hidden Markov mod-
els, counting this effective dimension might not be straightforward. In contrast, calculating the 
ELBO is a straightforward by-product of implementing the MF variational inference, which auto-
matically incorporates the effective dimension and eliminates the need for case-by-case analysis.
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2.4 Computation via coordinate ascent

Coordinate ascent is a natural and efficient algorithm for optimizing over densities taking a prod-
uct form as in MF approximation (1). For illustration, we focus on models without latent varia-
bles, where the mean-field family contains all factorized densities of the form 
q(θ) = q1(θ1)q2(θ2) · · ·qd(θd) for θ ∈ R

d. Otherwise, we may view the latent variables as one 
(block) coordinate of the parameter and derive the corresponding coordinate ascent algorithms. 
In general, we may also block approximation where each component is a multi-dimensional dens-
ity. The key idea of coordinate ascent is to optimize over one component of q(θ) at a time while 
fixing the others. Let q−j(θ−j) =

􏽑
ℓ≠j qℓ(θℓ) denote the joint density function of θ−j, all components 

in θ except for θj. When optimizing over the jth component qj, it would be helpful to express ELBO 
as a functional of qj,

L(qj; q−j) =

�

R
d
q(θ)

􏼈
log p(Xn, θ) − log q(θ)

􏼉
dθ

=

�

R

q j θ j

( 􏼁 �

R
d−1

q−j θ−j

( 􏼁
log p θ j ∣ θ−j, Xn

( 􏼁
dθ−j

􏼔 􏼕
dθj −

�

R

q j θ j

( 􏼁
log qj(θ j) dθ j + C(θ−j), 

where constant C(θ−j) is independent of θj. From this identify, we may explicitly solve the opti-

mizer q∗
j (θ j) := arg maxqj

L(qj; q−j) as

q∗
j θ j

( 􏼁
∝ exp

�

R
d−1

q−j θ−j

( 􏼁
log p θ j ∣ θ−j, Xn

( 􏼁
dθ−j

􏼚 􏼛
. (7) 

As is often in practice, one can recognize q∗
j above as coming from some parametric family, for 

example, certain exponential family, and determine the normalizing constant of q∗
j ; otherwise, 

either particle methods (Saeedi et al., 2017; Wang et al., 2021) can be employed to approximate 
q∗

j over R, or q j can be further restricted to some parametric family, resulting in a hybrid vari-

ational approximation. To summarize, we can apply coordinate ascent to numerically solve the 
optimization problem in MF based on Eq. (7) in an iterative manner; and the resulting method 
is known as the CAVI (Bishop, 2006) in the literature. To avoid overly aggressive moves that 
may lead to periodic oscillation or even divergence, it is customary to introduce a step size par-
ameter γ ∈ (0, 1] and define the next iterate as proportional to the weighted geometric average 

(q∗
j )

γq1−γ
j between q∗

j and current iterate qj. In particular, with full step size γ = 1, the update is 

most greedy and the coordinate ascent becomes alternating maximization. As we will show in 
our theoretical analysis in Section 3.2 and some numerical studies in Section 4, the introduction 
of a partial step size γ ∈ (0, 1) is necessary in some problems to avoid algorithmic 
nonconvergence.

In practice, two common updating schemes are utilized in CAVI, depending on whether the 
components are sequentially or simultaneously updated. In order to draw a connection with 
two well-known iterative algorithms for solving linear systems (e.g. Trefethen & Bau III, 1997), 
we will exchangeably call the followings as the Jacobi scheme and Gauss–Seidel scheme respect-
ively, at iteration t = 0, 1, . . .:

Parallel (Jacobi) update. We update all d components simultaneously based on the last iteration. 
To be more precise, we run following d updates at each iteration:

q(t+1)
j ∝ exp

�

R
d−1

q(t)
−j θ−j

( 􏼁
log p θ j ∣ θ−j, Xn

( 􏼁
dθ−j

􏼚 􏼛
, j = 1, . . . , d. (8) 

This algorithm can be run in parallel. However, the ELBO is not guaranteed to be monotonically 
decreasing in t if the full step size is used. To guarantee the convergence, we may need to take a step 
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size γ ∈ (0, 1], i.e.

q(t+1)
j ∝ exp γ

�

R
d−1

q(t)
−j θ−j

( 􏼁
log p · ∣ θ−j, Xn

( 􏼁􏼂 􏼃
dθ−j

􏼚 􏼛
[q(t)

j ]1−γ, j = 1, . . . , d. (9) 

This however may lead to a slower convergence.
Randomized sequential (Gauss–Seidel) update. We update one component at each time using 

the most recent updates of the other components. For simplicity, we focus on the randomized se-
quential update, where a component is randomly picked to be updated. Concretely, for a random 
index j(t) ∼ Unif(1, . . . , d), we compute

q(t+1)
j(t) ∝ exp

�

R
d−1

q(t)
−j(t) θ−j(t)

( 􏼁
log p θ j(t) ∣ θ−j(t), Xn

( 􏼁
dθ−j(t)

􏼚 􏼛
. (10) 

In this way, ELBO value is guaranteed to be monotonically nondecreasing in t. However, due to 
the sequential nature, we cannot utilize parallel computation techniques to reduce the run time. 
For the sequential update, we may also consider the systematic variant where the components 
are updated in a prespecified deterministic order.

Due to the numerical error, the computed ELBO value may differ from the theoretical ELBO 
value. It is therefore necessary to analyse the convergence of CAVI to guide its implementation 
in practice, particularly when applied to perform model selection. In Section 3.2, we determine 
the algorithmic convergence rate of CAVI, and study the impact of various problem characteristics 
on the rate. Most literature in CAVI convergence studies some special cases such as Gaussian mix-
ture models (Titterington & Wang, 2006; Wang & Titterington, 2005), stochastic block models 
(Mukherjee et al., 2018; Sarkar et al., 2021; Yin et al., 2020; Zhang & Zhou, 2020), and Ising 
models (Jain et al., 2018; Koehler, 2019; Plummer et al., 2020). Accessing the convergence and 
determining the accompanied rate under general settings is still an open problem.

In Section 3.2, we identify a set of suitable conditions under which the tth iteration q(t) from 
CAVI satisfies

E
􏼂
L(􏽢q) − L(q(t))

􏼃
≤ αt

E
􏼂
L(􏽢q) − L(q(0))

􏼃
+ δn 

as long as initialization q(0) is in a constant neighbourhood around the true parameter θ∗, where α is 
the algorithmic convergence rate depending on the model and the CAVI setup, and δn = 

O(( log n)3
/

��
n

√
) is the usual root-n statistical error, where the poly-log n factor in δn is due to the high- 

probability argument in our proof. This result can be interpreted as that under a warm initialization, 

the ELBO regret (the difference between the ELBO value L(􏽢q) at the optimum 􏽢q and L(q(t))) relative 
to the theoretical value has a geometric convergence towards zero up to a statistical error of the prob-

lem. Since E[L(􏽢q) − L(q(0))] has a trivial bound as O(nd), to guarantee the output ELBO value to be 
within n−c distance away from its theoretical value, our theory suggests that O(d log (nd)) iterations 
suffice (so that each component is updated O( log (nd)) times on average). Moreover, under a suitable 

metric, which will be the Hellinger distance H( · , · ), we show that the iterate q(t) at time t from CAVI 

converges towards 􏽢q at a geometric speed up to a statistical error term δ′n as

E[H(q(t),􏽢q)] ≤ C0αt/2 + δ′n, 

where the convergence rate is expected to be 
��
α

√
since the KL divergence is locally quadratic when 

expanded in H(q(t),􏽢q). This result can be used to determine the number of iterations for obtaining 
a root-n consistent point estimator based on the output of qθ from CAVI.

Another interesting finding implied by our theory is that the randomized sequential update al-
ways converges exponentially fast with full step size given a warm initialization. In contrast, in 
some examples with moderate dependence, the parallel update will converge only when a partial 
step size (i.e. γ ∈ (0, 1)) is used. However, for those step sizes under which both schemes converge, 
they tend to exhibit a similar convergence behaviour.
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3 Theoretical results

In this section, we provide the main theoretical results of this paper. In Section 3.1, we derive a 
non-asymptotic expansion of ELBO under MF approximation, and compare it with that of the 
BIC. We also build an oracle inequality, showing that the model selected by ELBO has the predic-
tion performance comparable to the best model, even in the case all candidate models are misspe-
cified and do not contain P0. In Section 3.2, we analyse the algorithmic convergence of the CAVI 
under the two aforementioned schemes, and discuss their consequences.

3.1 Model selection consistency based on ELBO

In this subsection, we show the consistency of model selection based on (penalized) ELBO. Our 
first result provides non-asymptotic expansions of ELBO and BIC for approximating the model 
evidence log p(Xn |M). Recall that θ∗M defined in Eq. (4) denotes the parameter in model M
such that Pθ∗M best approximates the true data generating distribution P0.

Theorem 2 Suppose the same assumptions of Theorem 1 to hold for a generic model M. 
There exists constants C6, C7 such that for any 1 ≤ K = O(

��
n

√
), it holds with 

probability at least 1 − C6K−2 that

􏼌􏼌ELBO(M) − log p(Xn ∣ M) + C∗(M)
􏼌􏼌 ≤

C7K3( log n)3

��
n

√ , (11) 

􏼌􏼌􏼌 −
1

2
BIC(M) − log p(Xn ∣ M) + C∗

BIC(M)
􏼌􏼌􏼌 ≤

C7K3( log n)3

��
n

√ ,

where C∗(M) =
1

2
log

det(diag(Vc(θ∗M)))

det(V(θ∗M))
, and

C∗
BIC(M) = −

1

2
log det(V(θ∗M)) +

dM
2

log (2π) + log πM(θ∗M).

(12) 

Note that inequalities (11) and (12) together imply the difference between −BIC/2 and ELBO to 
be asymptotically constant as n → ∞, which we denote as

􏽥C∗(M) =
Δ

C∗(M) − C∗
BIC(M) =

1

2
log det(diag(Vc(θ∗M))) −

dM
2

log (2π) − log πM(θ∗M). (13) 

As a direct consequence of the theorem, the model selected by maximizing ELBO will lead to the 
same one that minimizes BIC, as long as the minimal BIC value is at least of order log n away from 
the second smallest value. For example, let M∗ denote the smallest model containing the data gen-
erating distribution P0. Under the model identifiability condition that any underfitted model M
not containing P0 has a strictly positive ‘KL gap’ infθ∈ΘM D(P0 ‖Pθ) ≥ ε > 0 for some ε > 0, it is 
not difficult to show (e.g. see online supplementary material, Appendix D.5) that the difference 
BIC(M) − BIC(M∗) between BIC values of M and M∗ is at least nε − dM∗ log n ≫ log n with 
high probability. On the other hand, for any overfitted model M containing P0 and having a larger 

number of parameters dM ≥ dM∗ + 1, we have that |􏽢ℓn(M) − 􏽢ℓn(M∗)| = o( log n) holds with high 
probability (see online supplementary material, Appendix D.5); this further implies 
BIC(M) − BIC(M∗) ≥ (dM − dM∗ ) log n − o( log n) ≳ log n. By combining two cases, we can con-
clude that maximizing ELBO will consistently select the best model M∗ as by minimizing the BIC 
since | − BIC(M)/2 − ELBO(M)| ≤ C for some constant C > 0 when n is sufficiently large.

Note that the same discussion in Remark 1 also applies to Theorem 2 for the block mean-field 

approximation, where the constant then becomes C∗
b(M) = 1

2 log
det(Sc(θ∗M))

det(V(θ∗M))
, which is never larger 

than the C∗(M) in Theorem 2. This observation suggests that incorporating additional structure 
in the VI is always beneficial for improving the approximation accuracy given the computation is 
still tractable. In the other situation with no latent variables, the constant becomes 

754                                                                                                                                          Zhang and Yang

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jrs
s
s
b
/a

rtic
le

/8
6
/3

/7
4
2
/7

6
4
2
8
2
5
 b

y
 U

n
iv

e
rs

ity
 o

f M
a
ry

la
n
d
 - C

o
lle

g
e
 P

a
rk

 u
s
e
r o

n
 2

3
 S

e
p
te

m
b
e
r 2

0
2
4

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad164#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad164#supplementary-data


C∗
n(M) = 1

2 log
det(diag(V(θ∗M)))

det(V(θ∗M)) , which is precisely the KL divergence between the two normal distri-

butions N(􏽢θmle, [nV(θ∗M)]−1) and N(􏽢θmle, [n diag(V(θ∗M))]−1), where the former approximates the 

posterior distribution under model misspecification (Kleijn & Van der Vaart, 2012) and the latter 

approximates the MF solution 􏽢Qθ (Theorem 1 without latent variables), respectively. This limiting 

gap C∗
n(M) will vanish if components of 􏽢θmle are asymptotically independent (e.g. the location- 

scale normal model in Section 4.1).

Remark 2 (Discussion on model selection criteria). For a Bayesian model with latent var-
iables, we have another ELBO value to use for model selection, which is the 
parameter part LθM (qθM ) in decomposition (3), or

LθM (qθM ) = L(qM) + ΔJ(qM) =

�

ΘM

log
p(Xn, θM)

qθM (θM)
qθM (θM) dθM

= log p(Xn |M) − D
(
qθM

􏼌􏼌􏼌􏼌 πn

􏼁
, 

where recall that πn denotes the marginal posterior of θ and the extra Jensen 
gap ΔJ(qM) is due to latent variables. In the proof of Theorem 2, it is shown 

that this Jensen gap asymptotically converges to a nonnegative constant 
1
2 tr([diag(Vc)]

−1Vs). Therefore, the parameter part ELBOθ(M) := LθM (􏽢qθM ) 

leads to an improved approximation to the evidence (due to a smaller gap); 
and model selections based on ELBOθ and ELBO are asymptotically equiva-
lent, and equivalent to that based on BIC. However, unlike ELBO that can 
be efficiently computed via CAVI, ELBOθ may not admit a closed form updat-
ing formula; and requires Monte Carlo methods to approximate.

Bayesian hypothesis testing can be viewed as a special instance of model selection with two can-
didate models, denoted as M0 and M1. Decisions in Bayesian hypothesis testing or model selec-
tion between two models are typically based on the so-called Bayes factor, which is defined as

B(M0, M1) =
p(Xn ∣ M0)

p(Xn ∣ M1)
.

Motivated by our general model selection procedure based on ELBO, we define the ELBO factor 
ELBO(M0) − ELBO(M1) as a computationally-efficient surrogate to the log-Bayes factor, by no-
ticing

log B(M0, M1) = log
P(Xn ∣ M0)

P(Xn ∣ M1)
= ELBO(M0) − ELBO(M1) + Op(1), 

where the second equality is due to Theorem 2. We summarize the result in the following.

Corollary 1 Suppose the assumptions of Theorem 1 hold for the two model 
candidates M0 and M1. Then we may approximate the Bayes factor 

− 1
2 B(M0, M1) := − 1

2
P(Xn∣M0)
P(Xn∣M1) based on the ELBO, as we have with 

probability at least 1 − C6K−2 that

−
log B(M0, M1)

2
− [ELBO(M0) − ELBO(M1)] − [􏽥C∗(M0) − 􏽥C∗(M1)]

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤
C7K5( log n)3

��
n

√ , 

for some constants C6, C7, and constants 􏽥C∗(Mi) ( i = 0, 1) are given by Eq. 
(13).

J R Stat Soc Series B: Statistical Methodology, 2024, Vol. 86, No. 3                                                     755

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jrs
s
s
b
/a

rtic
le

/8
6
/3

/7
4
2
/7

6
4
2
8
2
5
 b

y
 U

n
iv

e
rs

ity
 o

f M
a
ry

la
n
d
 - C

o
lle

g
e
 P

a
rk

 u
s
e
r o

n
 2

3
 S

e
p
te

m
b
e
r 2

0
2
4



Previously, we have seen that model selection based on ELBO tends to agree with that based on 
BIC when at least one of the candidate models contains P0 and it is statistically distinguishable. 
However, it is often in practice that none of the models in the list contains P0. Another common 
situation is when some signals are weak, for example, the βmin-condition (c.f. Yang et al., 2016) 
does not hold in linear regression with moderate to large number of variables; then it is 
information-theoretically impossible to select all important variables. Moreover, using a smaller 
model may lead to better prediction performance than the true model by excluding those less sig-
nificant variables; in fact, using the true model with many variables may lead to overfitting. For 
example, in the numerical study of variable selection in GLM in Section 4.3, we can see from 
the left two plots in Figure 8 that both BIC and ELBO tend to select a smaller model which turns 
out to have better prediction performance than the true model with five variables. To theoretically 
quantify the quality of the model selected via ELBO in the MF approximation in these situations, 
we prove an oracle inequality, which shows that the model selected by ELBO has prediction per-
formance comparable to the best model in the list, even all candidate models may be misspecified 
and do not contain P0.

Theorem 3 Under the same assumptions as Theorem 2, there exists some constant C0 > 0 
such that for any 1 ≤ K = O(

��
n

√
), it holds with probability at least 1 − CK−2 

that the model selected by ELBO 􏽣M = arg maxMELBO(M) satisfies

�

Θ􏽢M
D
(
P0

􏼌􏼌􏼌􏼌Pθ􏽢M
􏼁􏽢qθ􏽢M (θ􏽢M) dθ􏽢M ≤ inf

M
inf

θM∈ΘM
D
(
P0

􏼌􏼌􏼌􏼌PθM
􏼁

+
dM log n

2n

􏼚 􏼛
+

C0

n

+
CR3K3( log n)3

��
n

√ , 

where R is the total number of candidate models.

As mentioned in Section 1, Chérief-Abdellatif (2019) also proved an oracle inequality for the mod-
el selected by ELBO maximization in variational inference. However, their results apply only to 
models that do not contain latent variables, and their risk function is based on the α-Rényi diver-
gence, which is generally weaker than the KL divergence used in our results. Additionally, their result 
is stated only for α-fractional posteriors under α < 1, which requires fewer assumptions than our 
Assumptions 2 and 3. Specifically, they do not require a testing condition such as Assumption 
2(c), which is one merit of considering Bayesian fractional posteriors (Bhattacharya et al., 2019).

3.2 Convergence of CAVI algorithms

In this subsection, we address the theoretical question of analysing the convergence of CAVI algo-
rithms. The algorithmic convergence analysis provides a theoretical guidance on how many iter-
ations are required to adequately approximate ELBO to achieve model selection consistency; 
according to Theorem 2 and the related discussions, a constant numerical error approximation 
to the ELBO would suffice for this purpose. Since in the convergence analysis the model M is fixed 
throughout, we will omit all M in the subscripts when no ambiguity may arise. We let D(t) = 

D(q(t) ‖ πn) − D(􏽢q ‖ πn) be a discrepancy measure between the tth iterate q(t) from CAVI and the 
MF solution 􏽢q. Note that we also have D(t) = L(􏽢q) − L(q(t)), which is the regret of q(t) relative to 
the theoretical ELBO value achieved by 􏽢q.

Special case: Gaussian posterior without latent variables. We first consider the special case of a 
Gaussian posterior to help explain the intuition. Specifically, we assume the target posterior πn to 

be the density of N(􏽢θmle
M , [nV(θ∗M)]−1), which will be denoted by ϕn. Since our later analysis con-

cerning a general posterior πn will have a leading term related to its (asymptotic) normal approxi-

mation N(􏽢θmle
M , [nV(θ∗M)]−1), we will preserve the notation p(t)(θ1, . . . , θd) =

􏽑d
j=1 p(t)

j (θj) for the 

tth iterate in the CAVI, either the parallel or the randomized sequential update depending on 
the context, of maximizing D(p ‖ ϕn) in the MF variational inference. To simplify the notation, 

we use the shorthand notation 􏽢θ =􏽢θmle
M , V = V(θ∗M) and S = diag(V). Under this notation, the 

MF approximation is ϕ∗ := arg min p=⊗d
j=1

pj
D(p ‖ ϕn), which is the density of N(􏽢θ, (nS)−1).
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To simplify the analysis for the Gaussian posterior, let us assume the initialization p(0) to be the 
density of N(θ(0), (nS)−1) for some initial mean vector θ(0) ∈ R

d. This assumption is not overly re-
strictive. It is easy to verify that after each component in p = ⊗d

j=1pj is updated at least once with 
full step size γ = 1, all future iterates of p will follow a normal distribution with covariance matrix 
(nS)−1. Due to this reason, let us denote p(t) as the density of N(θ(t), (nS)−1). To describe the two 
updating schemes of the CAVI described in Section 2.4, let us derive the common step of updating 
one component pℓ from the following rule. Recall that the parallel scheme updates all components 
with indices ℓ = 1, 2, . . . , d in one iteration; while the randomized sequential scheme randomly 
picks one index ℓ. The common updating formula for pℓ is

p(t+1)
ℓ (θℓ) ∝ exp −

γn
2
Ep(t)

−ℓ

􏼂
(θ −􏽢θ)TV(θ −􏽢θ)

􏼃􏼐 􏼑
·
􏼂

p(t)
ℓ (θℓ)

􏼃1−γ
, 

where γ ∈ (0, 1] denotes the step size. Denote the bias at iteration t as b(t) = θ(t) −􏽢θ. Then it is 

straightforward to translate the preceding display into an updating rule for b(t) as

b(t+1)
ℓ = (1 − γ)b(t)

ℓ − γ
􏽘

k≠ℓ

Vℓk

Vℓℓ

b(t)
k
. (14) 

Parallel update applies (14) to d components simultaneously, and we may write the equivalent ma-

trix form as b(t+1) = Aγb
(t) for Aγ = (I − γS−1V). On the contrary, sequential update applies (14) to 

one component at each iteration, and we may directly study the decrease in ELBO as it is quadratic 
(c.f. online supplementary material, Appendix D.6 for more details). It is worth noting that 
the parallel and the randomized sequential schemes using the preceding updating rule 
respectively coincide with the Jacobi and the Gauss–Seidel methods (with partial step size) 
for solving the system of d linear equations Vx = 0. To analyse the convergence of the algorithm, 

let us study the evolution of the objective functional D(p(t) ‖ ϕ∗) = n
2 [b(t)]TSb(t), whose 

convergence implies the convergence of the algorithm. For the Gaussian posterior, we have 

D(t) = D(p(t) ‖ πn) − D(ϕ∗ ‖ πn) = n
2 [b(t)]TVb(t), which is equivalent to D(p(t) ‖ ϕ∗) up to some multi-

plicative constant. We summarize the result in the following lemma, whose proof is deferred to 
online supplementary material, Appendix D.6.

Lemma 3 (Gaussian posterior without latent variables). Suppose the true posterior is 
N(􏽢θ, (nV)−1). If the step size γ is chosen so that the α defined below belongs 
to (0, 1), then p(t) converges exponentially fast to ϕ∗:

E[D(p(t) ‖ ϕ∗)] ≤ CD(t) ≤ CαtD(0), t ≥ 1, 

for some constant α ∈ (0, 1) depending on the updating scheme. In particular, 
we have α = 1 − csγ(2 − γ)/d for the randomized sequential update; and α = 

cp(γ) for the parallel update, where

cs = max
‖b‖=1

bTVS−1Vb

bTVb
and cp(γ) = max

‖b‖=1

bT(I − γS−1V)V(I − γS−1V)b

bTVb
. (15) 

Without parallel computing, the computational complexity of d iterations of the sequential 
scheme is comparable to that of the parallel scheme. Therefore, to fairly compare the overall com-
putational complexities, we may define one iteration in the sequential scheme as d updates, whose 
effective contraction rate is then (1 − csγ(2 − γ)/d)d, which is roughly e−csγ(2−γ) for a large d. Some 
detailed comparison of the contraction rates is deferred to the end of this subsection.

Remark 3 (Necessity of partial step size). From Lemma 3, we can see that the randomized 
sequential update always converges exponentially fast with full step size, i.e. 
α < 1 for γ = 1. In fact, as α = 1 − csγ(2 − γ)/d in randomized sequential update 
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and cs > 0 due to non-singularity of V, we may prefer taking γ = 1 to obtain the 
fastest convergence rate. In contrast, the parallel update may require a partial 
step size to guarantee the convergence. This is not an artefact of our proof tech-
nique—consider the following counterexample with γ = 1: we take d = 3, V = 
1
3 I3 + 2

3 13 · 13 where I3 is the identity matrix and 13 the all-one vector. If initial-
ized at b(0) = (1, 1, 1), the parallel scheme leads to b(t) = ( − 4

3 )tb(0), and there-
fore both b(t) and the ELBO diverges.

General case I: non-Gaussian posterior without latent variables. Recall that the CAVI output at 

tth iteration for a general posterior πn is denoted as q(t), and the associated CAVI output for its 

large-sample normal approximation N(􏽢θmle
M , [nV(θ∗M)]−1) (density denoted as ϕn) is p(t). In add-

ition, the MF approximation to ϕn is N(􏽢θ, (nS)−1), whose density is denoted as ϕ∗; and 􏽢q is the 

MF approximation to πn. Recall that D(t) = D(q(t) ‖ πn) − D(􏽢q ‖ πn) = L(􏽢q) − L(q(t)) denotes the re-

gret of q(t) relative to the theoretical ELBO value achieved by 􏽢q. We prove the following theorem, 

describing the convergence of D(t) and q(t), by applying perturbation analysis for generalizing 
Lemma 3 to a general posterior.

Theorem 4 (General posteriors without latent variables). Under Assumptions 1 and 2, 
there exist positive constant C, such that if the support of initial distribution 
is in some small neighbourhood around θ∗, or supp(q(0)) ⊆ Bθ∗ (δ) = {θ : ‖θ − 

θ∗‖ ≤ δ} for some sufficiently small constant δ > 0, then we have for any 1 ≤ 

K = O(
��
n

√
) it holds with probability at least 1 − CK−2 that

E[D(t)] ≤ CαtD(0) +
CK3( log n)3

��
n

√ , t ≥ 1, (16) 

where the contraction rate α is given in Lemma 3. Moreover, under the same 
high-probability event, there exists some constant C0 depending on the ini-

tialization q(0) such that

E[H(q(t),􏽢q)] ≤ αt/2C0 + C

�������������
K3( log n)3

��
n

√

􏽳
. (17) 

The proof of the theorem is quite technical and provided in online supplementary material, 
Appendix D.7, where the expression of C0 is also included. As we can see, the general case inherits 
the same contraction rate α from the Gaussian case. However, the convergence is now only up to 
the O( log

3
(n)/

��
n

√
) statistical accuracy; and only a local geometric convergence can be proved. 

The local convergence is not an artefact of our proof, as the numerical example in Section 4.4
shows that the fast geometric convergence indeed only occurs after the iterate enters the contrac-
tion basin as a local neighbourhood around θ∗. We note that the log

3
(n)/

��
n

√
in our error bound is 

larger than the 
��������
log (n)

􏽰
/

��
n

√
error bound proved by Alquier and Ridgway (2020) for the gradient- 

based method for MF inference. However, their result is only stated for the MF approximation to 
α-fractional posteriors with α < 1, which requires fewer assumptions and tends to be technically 
less involved in proving. It would be interesting to explore if the same error bound also holds 
for the MF approximation to the usual posterior without tempering.

In view of Theorem 1, it suffices to run O(d log (nd)) iterations to guarantee model selection con-
sistency by using the approximated ELBO value produced from the CAVI algorithm. The first in-
equality in the theorem states that D(q(t) ‖ πn) converges to D(􏽢q ‖ πn) exponentially fast up to a 
statistical error term of order O( logc n/

��
n

√
). However, the convergence of D(q(t) ‖ πn) to 

D(􏽢q ‖ πn) (which is roughly equal to the constant C∗(M), up to the same statistical error) does 
not imply the convergence of q(t) to 􏽢q. Therefore, we also provide the second inequality that implies 
the convergence of q(t) towards 􏽢q, where the loss function used is the Hellinger distance. We use the 
weaker Hellinger distance to characterize the convergence of q(t) by applying the triangle inequal-
ity because KL divergence is not a metric and hence triangle inequality is not applicable.

758                                                                                                                                          Zhang and Yang

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jrs
s
s
b
/a

rtic
le

/8
6
/3

/7
4
2
/7

6
4
2
8
2
5
 b

y
 U

n
iv

e
rs

ity
 o

f M
a
ry

la
n
d
 - C

o
lle

g
e
 P

a
rk

 u
s
e
r o

n
 2

3
 S

e
p
te

m
b
e
r 2

0
2
4

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad164#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad164#supplementary-data


General case II: non-Gaussian posterior with latent variables. When there are latent variables, 
we may apply similar arguments to analyse the convergence of the CAVI algorithm. The (parallel) 
updating formula in CAVI with latent variables, for example, becomes

q(t+1)
Si

si( ) ∝ exp

�

R
d

q(t)
θ θ( ) log p si ∣ θ, Xi

( 􏼁
dθ

􏼚 􏼛
, i = 1, . . . , n,

q(t+1)
θj

(θj) ∝ exp

􏼚�

R
d−1

�

Sn
q(t+1)

Sn (sn) log p(θ |Xn, sn) dsn

􏼒 􏼓
q(t)

θ−j
(θ−j) dθ−j

􏼛
, j = 1, . . . , d.

We will follow a similar analysis based on Taylor expansions on θ, first analysing q(t+1)
Si 

by utilizing 

the concentration property of q(t)
θ and then plugging it into q(t+1)

θ j
. This perturbation analysis helps 

us identify the leading terms in the CAVI updates, resulting in a key updating formula online 
supplementary material, (45) (in Appendix D.8) describing the ‘noiseless’ case dynamic, similar 
to the updating formula (14) for the Gaussian posterior without latent variables as obtained earl-
ier. With this key updating formula, we can then proceed with the analysis as in the case without 
latent variables. First, we study the CAVI for the leading ‘noiseless’ Gaussian (or quadratic) case. 
We then employ perturbation analysis to analyse the CAVI for the original problem. The random-
ized sequential update can be interpreted and analysed in a similar way. This leads to the following 
theorem, whose proof is provided in online supplementary material, Appendix D.8. Recall that we 
used V = V(θ∗) to denote the observed data Fisher information, Vs = Vs(θ∗) for the missing data 
Fisher information, and Vc = V + Vs for the complete data Fisher information. Additionally, S 
and Sc are the diagonal matrices corresponding to the diagonal parts of V and Vc, respectively.

Theorem 5 (General posteriors with latent variables). Under Assumptions 1, 2, and 3, 
the conclusions of Theorem 4 remain true, albeit with different contraction 
rates. In particular, we have α = 1 − cs(γ)γ/d for the randomized sequential 
update; and α = cp(γ) for the parallel update, where

cs(γ) = max
‖b‖=1

bTVS−1
c (2Sc − γS)S−1

c Vb

bTVb
and

cp(γ) = max
‖b‖=1

bT(I − γS−1
c V)V(I − γS−1

c V)b

bTVb
.

By comparing the contraction rates of the CAVI algorithm with latent variables (Theorem 5) to 
those without latent variables (Theorem 4), we can observe that the presence of latent variables 
generally slows down the convergence of CAVI. Specifically, this reduction in convergence rate 
is characterized by a factor related to the ratio between the observed data information and the 
complete data information, or the matrix operator norm of S−1

c S, where diagonalization is due 
to the mean-field approximation on qθ; see the sequential update case in online supplementary 
material, Appendix D.8 for a more concrete calculation. Our convergence result for the CAVI al-
gorithm is consistent with existing findings on the algorithmic contraction rate of the EM algo-
rithm (Dempster et al., 1977)—the convergence slows down as the missing data information Vs 

increases, making the latent variables harder to learn, which in turn affects the algorithmic con-
vergence of the estimation of θ.

We end this section with a discussion on the efficiency comparison of the two updating schemes 
using an illustrating example without latent variables. We define an epoch for the sequential 
scheme to be d iterations so that each coordinate is updated once (on average for the randomized 
sequential update), and an epoch for the parallel scheme as one iteration. We compare the (aver-
aged) decrease in ELBO for the two methods after one epoch. We consider 
V = (1 − a)Id + a1d · 1T

d . For the sequential update, E[D(t)] has a relative decrease by at least 

1 − (1 −
γ(2−γ)(1−a)

d )d, which will be 1 − (1 − (1 − a)/d)d at γ = 1 after one epoch. For the parallel up-

date, we need γ((d − 1)a + 1) < 2 to avoid divergence. Taking γ = 2
(d−2)a+2 

leads to a largest relative 

decrease by 1 − (1 − 2−2a
da−2a+2

)2. When a is close to 1, we can see that the decrease from the parallel 
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update tends to be 4/d of that from the sequential update after one epoch. As a tends to zero, the 

relative decrease from the parallel update is about 1 − (da/2)2
≈ 1, which is roughly 1.58 times 

larger (better) than the 1 − e−1 decrease from the sequential update when d is large. Therefore, 
efficiency-wise, the parallel update is generally preferred in low-dependence situations (da small); 
while the sequential update is preferred in high-dependence and high-dimensional situations. 
Implementation-wise, the parallel update may benefit from parallel computing; the sequential up-
date always converges while the parallel update may need fine tuning the step size.

4 Numerical study

This section includes numerical experiments on assessing the algorithmic convergence and the per-
formance of using ELBO for model selection. Detailed descriptions about some of the considered 
examples are provided in online supplementary material, Appendix A.

4.1 Location-scale normal model

We consider the location-scale normal model N(μ, σ2) with parameter θ = (μ, σ2) as described in 
online supplementary material, Appendix A. We generate sample from N(100, 1002) with sample 
size n = 10. We take the prior as μ ∼ N(0, 1002) and σ2 ∼ IG(1/100, 1/100). To assess the conver-
gence of the CAVI algorithm, we plot the logarithms of the ELBO regret L(􏽢q) − L(q(t)) and the KL 
divergence D(q(t) ‖􏽢q) between q(t) and 􏽢q respectively versus iteration count t. Note that the poster-
ior has asymptotically independent components in this setting, so the two updating regimes lead to 
similar result, and we present sequential update for illustration. Here the optimal variational dis-
tribution 􏽢q is approximately obtained from the CAVI output after sufficiently many iterations. The 
results in Figure 2 show that both measurements are nearly linearly decreasing in the log-scale, im-
plying the geometric convergence. The two curves are nearly parallel, which implies the same con-
vergence rate. Note that the Fisher information V (equal to Vc without latent) in this example is 
diagonal. Therefore, the leading constant term of the contraction rate α from Theorem 4 vanishes 
and the remainder O(1/

��
n

√
) term characterizes the contraction rate.

In terms of the approximation accuracy of ELBO and BIC, the diagonal information matrix im-
plies that the limiting constant gap C∗(M) between evidence and ELBO equals 0, and they only 
differ by a statistical error term. On the other hand, the constant gap C∗

BIC
(M) between evidence 

(or ELBO) and −BIC/2 is generally nonzero. We can also see this difference via a numerical com-
parison, by plotting the relative approximation errors of ELBO and BIC under different sample 

sizes, defined as 
ELBO − log p(X ∣ M)

| log p(X ∣ M)| and 
−BIC/2 − log p(X ∣ M)

| log p(X ∣ M)| respectively. The evidence is 

calculated based on 106 Monte Carlo replicates. The result is included in the left panel of 
Figure 3. To assess the impact of prior information on the approximation accuracy, we run an ex-

tra simulation study by fixing the sample size n to be 10, and taking the prior as μ ∼ N(0, s2) and 

σ2 ∼ IG(s−1, s−1) with varying s over the grid exp (m) for m = 0, 0.2, . . . , 5. We report the result in 
the right panel of Figure 3. As expected, smaller s leads to larger approximation error of BIC, as 
BIC completely neglects the prior contribution in the evidence.

Figure 2. Convergence of CAVI for location-scale normal model.
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4.2 Gaussian mixture model

We consider the GMM with K = 3 clusters centred at Δ · ( − 1, 0, 1) (a detailed description is pro-
vided in online supplementary material, Appendix A). We take the gap (or cluster separation) 
Δ ∈ {1, 3, 5}, and the prior parameter σ = 2 in the i.i.d. N(0, σ2) prior for cluster centres (we 
choose relatively smaller σ so that 􏽥C∗(M0) is more distinguishable in the plot for different Δ). 
We take the sample size n over the grid ⌊exp (m)⌋ for m = 4, 4.1, . . . , 7.9, 8, and calculate 
−BIC/2 − ELBO in comparison with theoretical values 􏽥C∗(M0) = Δ2/σ2 + K( log σ2 − log K)/2. 
We first focus on the GMM with a correctly specified number of clusters K = 3. We can see the 
simulated values are fairly close to the theoretical limit 􏽥C∗(M0) from Figure 4.

We also assess the convergence of the sequential CAVI algorithm by plotting the logarithm of 
the ELBO regret and D(q(t) ‖􏽢q) under Δ ∈ {1, 3, 5}, n = 100 and σ = 10. The numerical results 
from Figure 5 show the geometric convergence of both measurements as they are nearly linearly 
decreasing in the log-scale, which is consistent to the prediction from Theorem 4. The slopes of 

Figure 3. Relative approximation error of ELBO and -BIC/2 for normal parameters, with different sample sizes or 

different prior parameters.

Figure 4. Comparison between simulated −BIC/2 − ELBO and theoretical values 􏽥C∗(M0) over three different gaps Δ. 

The dashed horizontal lines refer to theoretical values.

Figure 5. Convergence of CAVI in GMM with gap Δ = {1, 3, 5}.
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two measurements are also close under the same Δ, implying the same convergence rate. 
Moreover, since a large gap Δ leads to a lower posterior dependence, our Theorem 4 predicts a 
smaller contraction rate α (faster convergence), which is also consistent with the numerical results. 
Next, we compare the use of BIC and ELBO for evidence approximation. We consider two set-
tings: (1) prior standard deviation σ = s for s = exp (m) with m = 0, 0.2, . . . , 4 under fixed sample 
size n = 100 and (2) sample size n = ⌊exp (m)⌋ with m = 4, 4.1, . . . , 6 with fixed σ = 10. We take 
the gap Δ = 1. As we can see from Figure 6, the approximation error of BIC is quite sensitive to the 
prior choice; while the approximation of ELBO is much more accurate and stable. However, both 
approximations become accurate as we increase the sample size.

Note that GMM has degenerate Fisher information when the number of clusters K is misspeci-
fied, which leads to a slower n−1/4 rate of convergence when K is overspecified (Chen, 1995). With 
known mixing weights, the overfitted models are still degenerate. For example, the two- 
component GMM with equal weights is degenerate when true model is a single Gaussian 
(Dwivedi et al., 2020). Although our theory no longer applies in such a situation, it is still inter-
esting to compare the model selection performance based on BIC, ELBO, and the true evidence. 
For simplicity, we assume the underlying mixing weights to be known and fixed in our simulation 
setting. We set Δ ∈ {1, 3, 5}, sample size n = 100 and prior with σ = 10. The results are summar-
ized in Figure 7. As we can see, the three model selection criteria result in the same selected models 
across all settings. When the gap Δ = 1 is relatively small, all criteria select the smaller model with 
two components. As we increase the gap to Δ ∈ {3, 5}, all criteria select the true model. In terms of 
approximation accuracy for the evidence, we can see that ELBO tends to be more accurate than 
BIC, particularly for smaller models under stronger signal-to-noise ratios where the Fisher infor-
mation is nonsingular near the misspecified MLE.

4.3 Generalized linear model

In this section, we consider variable selection in probit regression as a representative instance of 
GLM, whose detailed description is deferred to online supplementary material, Appendix A. 
The simulation setting is as follows. We generate p-dim feature vectors Xi i.i.d. from N(0, Σ). 
The covariance matrix Σ(r) = (σij) ∈ R

p×p is of AR(1) structure so that σij = r|i−j|. We take 
(n, dM0

) = (1,000, 10), and the p-dim (regression) coefficient β has the five nonzero terms: 

Figure 6. Approximation errors of ELBO and BIC in GMM under Δ = 1.

Figure 7. ELBO, BIC, and evidence values versus number of components in GMM.
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βj = q j−1 · 1(j ≤ 5), j = 1, . . . , 10. The prior of β is the centred multivariate normal distribution 
with covariance matrix Σ0 = σ2IdM where σ = 10. To assess the variable selection performance, 
we compare ELBO with AIC, BIC, and the true evidence (calculated based on 104 Monte Carlo 
replicates). As we can see from Figure 8, when the signal is relatively strong (q = 0.8), all methods 
except AIC correctly select the true model; and AIC selects a larger model (with six features) when 
the dependence is strong (r = 0.8). Moreover, the AIC curve is quite flat and the discrepancy be-
tween AIC values under different models is small. Under the weak signal case (q = 0.2), although 
the proposed criterion and BIC fail to select the true model, they still select the same model as that 
based on evidence (i.e. the highest posterior model). Under all four settings, ELBO is much more 
accurate than BIC in terms of the approximation for the evidence.

In addition, to compare the numerical gaps with the theoretical constants C∗(M) and 􏽥C∗(M) 
(which together also characterize C∗

BIC(M)) in Theorem 2 and Ew. (13), Figure 9 includes their si-
mulated values for the models including 3, 5, and 7 features (recall the true model contains five 
features), respectively, with the sample size n over the grid of ⌊exp (m)⌋ for m = 5, 5.1, …, 7.9, 
8. In this study, we set q = 0.8 and r = 0.8. We estimate β∗

M for the underfitted model (with three 
features) based on 107 samples, so that the estimated 􏽢βM can be treated as β∗

M. As we can see from 
Figure 9, the simulated values are fairly close to the theoretical ones, which justifies our theory that 

Figure 8. ELBO, AIC, BIC, and evidence values versus number of variables in probit regression.

Figure 9. Comparison between simulated and theoretical values for C∗(M) and 􏽥C∗(M) under the models with 

{3, 5, 7} included variables. The dashed horizontal lines refer to theoretical values.
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evidence −ELBO and −BIC/2 − ELBO are equal to C∗(M) and 􏽥C∗(M) up to some higher-order 
terms. We note that the simulated values of C∗(M) have higher fluctuations, which might be par-
tially caused by the high variance of the Monte Carlo approximation to the evidence.

According to Theorem 2, the difference between -BIC/2 and evidence has a term proportional to 
the dimension dM, which is consistent with the trend of the gap observed from Figure 8. On the 
other hand, as we used block MF (BMFVI) for probit regression, the approximation error of 

ELBO only comes from the difference between Vc and V characterized by 12 log det(Vc)
det(V)

, which grows 

linearly in dM with slope independent of σ0. To formally demonstrate the impact of dM on ap-
proximation the evidence, we plot the approximation errors of BIC and ELBO for dM = 

5, . . . , 20 in Figure 10. In the plot, we also include the results for the fully factorized MF 

(MFVI), whose limiting approximation error 1
2 log det(diag(Vc))

det(V) tends to be more sensitive to dM

than BMFVI, as expected. We can see that ELBO with BMFVI has overall best approximation ac-
curacy, while the approximation error of BIC is the largest due to its strong dimension dependence. 
On the other hand, the ELBO from MFVI has larger approximation error than that from BMFVI, 
due to the additional independence imposed among parameter components. Therefore, we should 
take advantage of the block mean-field structure and implement BMFVI in practice whenever 
computationally tractable.

To assess the prediction performance of various criteria in the presence of weak signals (i.e. se-
lection consistency may not be achievable) in the context of Theorem 3, we consider a more chal-
lenging setting where dM0

= 100, βj = 0.8j for 1 ≤ j ≤ dM0
, and the same covariance matrix Σ(r) 

with r ∈ {0.2, 0.8} for the random feature vectors. Although now the true model includes all 
100 important features, signals decay geometrically fast; as a result, both BIC and ELBO would 
select much smaller models. Although model selection consistency does not hold under this setting, 
we use the numerical study to compare the prediction performance of model selection based on 
AIC, BIC, and ELBO. In this example, we include AIC as the benchmark corresponding to the the-
oretically minimax-optimal criterion for prediction (Hirotugu, 1974). We generate 104 data, and 
randomly select n = 200, 500, 1,000 of them as training data, and the remaining as test data. Then 
we select the model using the training data with AIC, BIC, and ELBO, and evaluate their predic-
tion performance on the test data. We compare the classification errors and logistic losses of 
ELBO and BIC evaluated on the test data. Note that the logistic loss is defined as 
−n−1

test

􏽐ntest

i=1 [yi log􏽢pi + (1 − yi) log (1 −􏽢pi)], where 􏽢pi is the fitted probability on the ith test data 
with the selected model. The logistic loss is the log-likelihood function evaluated on the test data, 
and approximates the population-level KL divergence between the true and the fitted prediction dis-
tributions up to some fixed constant. We report the average classification errors along with their 
standard deviations, and the median of logistic losses from 100 Monte Carlo replicates. From 
Table 1, the prediction accuracy of ELBO is overall comparable to AIC, and outperforms BIC. 
However, AIC tends to include more variables than ELBO for slightly reducing its classification er-
ror; while due to the tendency of overfitting the data by including too many variables, AIC may incur 
slightly larger logistic loss on the test data. Overall, ELBO seems to be a better balance between AIC 
and BIC by selecting a parsimonious model with comparable prediction accuracy as AIC.

Lastly, we assess the algorithmic convergence of the two CAVI algorithms for implementing 
MFVI. We take the true model with n = 100 samples and dM0

= 10 features with β∗ = 0.1 · 110, 

Figure 10. Relative approximation errors of ELBO and -BIC/2 under weak (q = 0.2) and strong ( q = 0.8) signal 

regimes.
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and feature covariance matrix Σ = (σij)
p
i,j=1 with σij = 0.9 + 0.1 × 1(i = j). The prior standard devi-

ation is σ0 = 1 and β initialized at β(0) = 010. Figure 11 reports the logarithm of ELBO regret with 
different step sizes from parallel and randomized sequential updates. As we can see, the sequential 
update is always convergent and has faster convergence rate with a larger step size; moreover, the 
log ELBO regret has a linear decay, imply the geometric convergence of ELBO. On the contrary, 
the parallel update only converges under smaller step sizes—the ELBO converges extremely slow 
due to oscillations or even diverges to ∞ under larger or full step size (hence not presented), and 
γ = 0.8 tends to be the threshold under which CAVI converges fast without oscillations. Consistent 
with our theory, the parallel CAVI has geometric convergence for small step sizes γ = 0.2 and 0.5. 
In addition, for both updating schemes, the slope (equal to log α) of the log regret is roughly pro-
portional to the step size in absolute value (except for γ = 0.8 in the parallel update).

4.4 Community detection

In this example, we consider the model selection problem of selecting the number of communities 
in the community detection described in online supplementary material, Appendix A. We set the 
true underlying data generating SBM to have five communities. The five communities have equal 
number of members. The connectivity matrix B is generated as Bab ∼

iid
Unif(0, 0.4) if i ≠ j and 

Baa = 0.6. For candidate models, we consider K = 2, . . . , 10 communities. We take the priors 
on Bab as Beta(1,1) and on Zi as Categorical(1/K, . . . , 1/K). We calculate the ELBO using the par-
allel update in CAVI with full step size, since we find that the algorithm always converges. In terms 
of BIC, since we cannot find the exact MLE, we approximate MLE by the variational mean from 􏽢qθ 
and obtain the BIC correspondingly.

For SBM, the Fisher information is infeasible as is for MLE. However, we can visually find 
􏽥C∗(M), i.e. the gap between -BIC/2 and ELBO via the numerical differences. Note that it is no lon-
ger a ‘constant’ gap since we have growing number of parameters in SBM. We have included the 
ELBO and BIC values obtained with n = 100 and 1,000 nodes in Figure 12. Both criteria select the 
true model under both settings, but the gap between two criteria is comparable to the gap between 

Table 1. Prediction comparison among ELBO, AIC, and BIC in probit regression

r n Classification error in % Logistic loss Average model size

ELBO AIC BIC ELBO AIC BIC ELBO AIC BIC

0.2 200 21.5 (1.6) 20.7 (1.6) 24.1 (2.7) 0.421 0.430 0.451 5.2 (0.9) 7.8 (1.6) 3.6 (0.9)

500 18.8 (0.7) 18.5 (0.8) 20.0 (1.1) 0.363 0.366 0.381 7.4 (0.9) 9.8 (1.5) 5.7 (0.8)

1,000 18.0 (0.5) 17.8 (0.5) 18.7 (0.6) 0.346 0.346 0.356 8.7 (0.9) 11.2 (1.4) 7.2 (0.8)

0.8 200 13.3 (1.0) 13.0 (1.0) 14.6 (1.5) 0.276 0.282 0.289 3.8 (0.9) 4.8 (1.2) 2.7 (0.6)

500 11.4 (0.6) 11.2 (0.7) 12.5 (0.9) 0.229 0.227 0.248 5.5 (0.9) 6.9 (1.2) 4.0 (0.6)

1,000 10.7 (0.5) 10.5 (0.5) 11.3 (0.5) 0.215 0.211 0.225 7.0 (0.9) 8.6 (1.0) 5.4 (0.8)

Figure 11. ELBO convergence in probit regression under sequential and parallel updating schemes.
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different models, particularly for the overfitted model. This is due to the growing number of 
parameters.

We plot in Figure 13 the regret of ELBO versus iteration counts from both parallel and sequen-
tial CAVI algorithms under the true model, with different step sizes. We can see that two updating 
regimes have overall similar performance. The ELBO decays slowly in the first several iterations, 
and converges exponentially fast afterwards. The convergence speed (slope) is roughly propor-
tional to the step size and the two updating regimes have almost identical speed under small 
step sizes. This is consistent with our findings in Theorem 4 that CAVI has geometric convergence 
given a good initialization, as the ELBO in SBM starts to converge exponentially fast after entering 
the local contraction basin around the true parameter.

4.5 Real data application

In this section, we apply and compare the three model selection criteria, namely ELBO, AIC, and 
BIC, in four classification datasets: Adult, Taiwan Company Bankruptcy (TRB), Musk, and Car 
Insurance Claims (CIC). The first three are publicly available on the UCI machine-learning reposi-
tory, and the CIC data are available at Kaggle.

The original Adult dataset contains 14 features, including 6 continuous and 8 categorical ones. 
Instead, we use the preprocessed version on the LibSVM repository containing 123 binary features 
and 32,561 samples. The response variable is a binary one encoding whether the individual has a 
salary ≥50 K. The TRB dataset contains 95 features and 6,819 samples. We remove one constant 
feature and use the remaining to predict whether the company will go bankruptcy, based on the 
business regulations of the Taiwan Stock Exchange. Since the data are highly unbalanced as 
only 220 data points have response one (referring to bankruptcy), we repeat each of them for add-
itional 10 times so the derived dataset contains 9,019 samples. This is equivalent to a weighted 
probit regression. For the Musk dataset about molecules, we use its second version that contains 
6,598 samples and 166 features. The goal is to predict whether the molecules are musks or not. 
The original CIC dataset contains 10,000 samples and 17 features. We remove the samples 

Figure 12. ELBO and BIC from parallel CAVI in SBM.

Figure 13. ELBO and BIC from parallel CAVI in SBM with n = 1,000.
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containing missing values and apply one-hot encoding to the categorical features, and the prepro-
cessed data contain 8,149 samples and 26 features.

We compare the prediction performance in terms of classification error, logistic loss, and se-
lected model size, similar to the numerical study in Section 4.3. For each dataset, we randomly se-
lect 1,000 samples as the training data, which is used to conduct model selection with ELBO, AIC, 
and BIC. The selected models are fitted using the same 1,000 training data and evaluated on the 
remaining data as the test data. This procedure is repeated 100 times, and we report the average 
classification errors and median logistic losses, and also the average sizes of the models selected by 
different criteria. As we can see from Table 2, AIC has the overall best performance in terms of 
prediction as expected, which is consistent with the optimality of AIC in prediction accuracy 
(Yang, 2005). On the other hand, the performance of the proposed ELBO criterion tends to be 
in the between of AIC and BIC, with slightly worse prediction performance than AIC but better 
than BIC. The model size selected by ELBO also lies between AIC and BIC.

5 Conclusion

In summary, we proved a non-asymptotic BvM-type theorem for the MF variational distribution, 
stating that the variational distribution concentrates to a normal distribution centred at MLE with 
diagonal covariance matrix. Motivated by this normal approximation, we proposed a model se-
lection criterion based on ELBO, and studied the model selection consistency. We found that 
BIC, ELBO, and evidence tend to differ from each other by some constant gaps; and ELBO tends 
to provide a better approximation to evidence than BIC due to a better dimension dependence and 
the full incorporation of the prior information. To characterize prediction efficiency, we also 
proved an oracle inequality for the variational distribution from the model selected by ELBO. 
Lastly, we showed the geometric convergence of two commonly used CAVI algorithms for solving 
the optimization problem in MF approximation; and the analysis suggested that it suffices to run 
O(d log (nd)) iterations of CAVI algorithm to approximate the ELBO in order to achieve model 
selection consistency.

Next, we discuss some possible future directions. First, note that we have assumed the nonsin-
gularity of the Fisher information to develop the theory. It would be interesting to study the model 
selection based on ELBO for singular models, such as the over-specified Gaussian mixture model 
numerically examined in Section 4.2, and study the connection between ELBO and the so-called 
singular BIC as discussed by Drton et al. (2017) and Watanabe and Opper (2010). Although our 
current theory on the consistent estimation (up to a constant) of model evidence using ELBO ap-
plies only to underspecified GMM with a nonsingular Fisher information, our numerical results 
for GMM suggest that the ELBO is still capable of identifying the true model. On the theoretical 
front, for a singular model M, it is proved (see, for instance, Drton et al., 2017; Watanabe & 
Opper, 2010) that the model evidence log p(Xn|M) can be approximated by the singular BIC, 
or sBIC(M) = −􏽢ℓn(M) + λ(M) log n − [m(M) − 1] log log n up to a bounded constant. Here, 
λ(M) is called the learning rate or real log-canonical threshold of model M which summarizes 
the effective model dimensionality, and m(M) represents the multiplicity of λ(M). For regular 
models with invertible Fisher information matrices, λ(M) simplifies to dM/2 and m(M) = 1. As 
such, sBIC reduces to half of the usual BIC defined in Eq. (6). Recent work by Bhattacharya 
et al. (2020) demonstrates that the ELBO from mean-field variational inference accurately 

Table 2. Comparison between ELBO, AIC, and BIC in real data applications

Data Classification error in % Logistic loss Average model size

ELBO AIC BIC ELBO AIC BIC ELBO AIC BIC

Adult 18.6 (1.3) 18.2 (0.8) 20.0 (1.9) 0.369 0.366 0.384 7.0 (1.3) 11.0 (1.8) 3.7 (0.8)

TRB 14.9 (0.7) 14.4 (0.7) 15.5 (0.8) 0.328 0.353 0.317 5.8 (1.7) 8.7 (1.9) 3.4 (0.7)

Musk 10.2 (1.1) 8.6 (0.7) 12.2 (1.3) 0.265 0.243 0.290 10.6 (3.1) 17.7 (3.5) 5.5 (1.3)

CIC 17.0 (0.8) 16.9 (0.6) 17.9 (1.6) 0.333 0.330 0.349 10.2 (1.2) 11.0 (1.1) 8.0 (1.0)
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captures the leading λ(M) log n term for any singular model in its canonical or normal-crossing 
configuration. However, while Hironaka’s theorem in algebraic geometry guarantees the existence 
of an analytical map (or reparametrization map) for any singular model that can locally transform 
the posterior distribution into a normal-crossing form, it is typically challenging to explicitly con-
struct such an analytical map. In fact, the determination of λ(M) and m(M) for a generic singular 
model M is still an unresolved issue. As such, investigating whether the ELBO from MF variation-
al inference can recover the leading λ(M) log n term for a general singular model not in its normal- 
crossing from is an interesting question to explore. Second, in more complicated models, the latent 
variables and sample points may not be one-on-one. For example, if we treat the assignment var-
iables as latent variables instead of unknown parameters in mixed membership community mod-

els, then we have n latent variables and 
n
2

􏼒 􏼓
data. Our theories do not cover these settings and we 

also leave them to future study. Finally, it would be interesting to extend the current development 
to models with dependent latent variables, such as hidden Markov models or state space models.
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