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Abstract

In multiple time series data, clustering the component profiles can identify meaningful
latent groups while also detecting interesting change points in their trajectories. Conventional
time series clustering methods, however, su↵er the drawback of requiring the co-clustered units
to have the same cluster membership for all the time points in the data collection period. In
contrast to these ‘global’ clustering methods, we develop a Bayesian ‘local’ clustering method
that allows the functions to flexibly change their cluster memberships over time. We design
a Markov chain Monte Carlo algorithm to implement our method. We illustrate the method
in several real-world data sets, where time-varying cluster memberships provide meaningful
inferences about the underlying processes. These include a public health data set to showcase
the more detailed inference our method can provide over global clustering methods, and a
temperature data set to demonstrate our method’s utility as a flexible change point detection
method. Supplemental materials for this article, including R codes implementing the method,
are available online.
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1 Introduction

As technology advances, multiple time series data are being routinely collected in diverse domains.1

Clustering such data can provide valuable insights into the underlying data-generating processes.

To give a few examples, clustering gene expression profiles can identify groups of genes co-regulating

biological processes (Song et al., 2007; Ma et al., 2008); clustering bidding behavior in online

auctions can reveal patterns associated with specific chances of obtaining items at reasonable prices

(Peng et al., 2008); clustering climate data can reveal the e↵ects of climate change (Gorji Sefidmazgi

et al., 2015); etc.

Traditional unsupervised time series clustering methods use distance measures to assign individ-

ual time series to clusters. Partitional clustering methods, such as K-means, select random series as

cluster centroids and minimize the distance between clustered series and the centroids (Watanabe,

2022). Hierarchical clustering creates a hierarchy of clusters by merging or splitting clusters based

on within-cluster similarity (Maharaj et al., 2019). More sophisticated nonparametric approaches,

such as the functional Dirichlet process (FDP), treat each time series as a realization of a stochastic

process and induce clustering by drawing the functions from a discrete probability measure (Scarpa

and Dunson, 2014; Nguyen and Gelfand, 2014). There are also semiparametric methods where the

time series are clustered around the corresponding cluster mean curves modeled as linear combi-

nations of basis elements, and the individual series are treated as noisy realizations of the cluster

means Song et al. (2007); Ma et al. (2008).

Though these methods di↵er substantially in their implementation, they share the assumption

that each time series can only belong to one cluster. This restrictive assumption can prevent the

recovery of true local complexities, such as when groups merge together or diverge from one another.

As a hypothetical but easy-to-understand example, consider a longitudinal study tracking the body

temperature of multiple people over time. A global clustering framework could generate separate

mean profiles for healthy individuals, individuals with a fever, and individuals who transition

between health and fever. This could lead one to infer a very complex underlying process with many

1This article concentrates specifically on the analysis of multiple time series data where each constituent series
pertains to the same variable. Such data may be obtained, e.g., as (a) multiple univariate time series from a set of
di↵erent but comparable sources over the same time period; or (b) multiple records collected from the same source
over di↵erent recurrent time cycles of the same length. The two real data sets analyzed in Section 3 of the main
paper here correspond to one each of these two scenarios.
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di↵erent states a↵ecting people’s body temperatures when in fact there are only two underlying

states. For another example, consider also the synthetic scenario shown in Figure 1 below which

mimics a real data application considered later in Section 5.1. Here, although the four latent mean

trajectories are all di↵erent from each other when viewed over the entire time domain, they are

often locally identical over smaller sub-regions. The local clustering method we propose here is

based on such local similarities and di↵erences between the constituent time series as opposed to

global clustering based on their global behavior over the entire time domain.
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Figure 1: Simulated data (gray points) with true underlying mean functions overlaid. Group 1 is
merged with Group 4 until t = 5, after which it splits o↵ and maintains its own distinct profile
until merging with Group 3 around t = 27. Group 4 begins merged with Group 1, splits o↵ around
t = 5, then merges with Group 2 for t = [13, 24] after which it splits o↵ and maintains its own
identity for the remaining time.

A local clustering method that allows the latent mean curves to be di↵erently clustered in

di↵erent sub-domains has many advantages over a global clustering paradigm. For multiple time

series data, where each constituent series corresponds to a di↵erent unit in the study, local clustering

can eliminate redundant clusters by allocating two units to the same local cluster when they behave

similarly and to two di↵erent local clusters when they behave di↵erently.

This ability to locally cluster constituent time series also provides a natural framework for

detecting interesting change points for time series with recurrent cycles. A time point within

the cycles’ domain is defined to be a change point when two or more series can be seen merging
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or splitting at that point. Most existing methods for change point analysis for time series with

cyclic patterns aim to identify change points such that the cycles that follow the change point are

di↵erent from the cycles before in mean or variance. They often make restrictive assumptions,

such as requiring that there be only one single change point in the entire measurement period, or

requiring that sliding windows of a fixed size be specified to divide the time series into comparable

segments, etc. (Aminikhanghahi and Cook, 2017; Reeves et al., 2007; Li et al., 2020). In contrast,

the local clustering method proposed here is capable of detecting change points when the cycles

deviate for only a portion of their domain. It requires minimal supervision and is able to detect

multiple change points within the cycles’ domain. To do this, we first cut the overall series at the

points of recurrence to create multiple time series, then left-align the component series and apply

our local clustering algorithm to identify dynamic changes in the cluster means. As we will see

in applications, identifying change points in this manner often provides more nuanced and more

useful information than what may be obtained using traditional methods.

The literature on local functional clustering is sparse. To our knowledge, existing methods

are exclusively Bayesian and rely on variations and adaptations of Dirichlet process priors (Suarez

and Ghosal, 2016; Petrone et al., 2009; Nguyen and Gelfand, 2011). We propose a novel and

computationally e�cient method for local time series clustering that we call the hidden Markov

functional local clustering model (HMFLCM). The HMFLCM works in two steps. In the first

step, the data are liberally partitioned into global clusters. In the second step, the global cluster

labels are locally re-clustered using a mixed-e↵ects model. The data in each group are modeled by

flexible mixtures of quadratic B-splines. To induce local clustering across di↵erent global cluster

labels, we introduce latent cluster indicators for the basis coe�cients corresponding to each global

cluster label at each time point. These latent indicators are modeled using a hidden Markov model

(HMM) where indicators for di↵erent pseudo-covariate levels at the same time point are allowed to

take on the same value. At time points for which the latent indicators take on the same value, the

basis coe�cients for the corresponding fixed e↵ects means are equal. This results in a mechanism

where the cluster memberships as well as the number of clusters can change with time as the cluster

means merge and split o↵ as dictated by the data.

The methodology presented here is developed concurrently with the work of Paulon et al.

(2023) and recycles some modeling techniques and ideas while also di↵ering from them in a few key
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ways in its motivation, detail, and application. The focus of Paulon et al. (2023) is on clustering

the levels of categorical covariates to determine their local importance in longitudinal data with

homoscedastic errors. In contrast, our work focuses on clustering a fixed number of time-series

profiles with time-varying error variances in the complete absence of any covariates.

We use the HMFLCM to analyze a state-by-state Covid-19 daily case change data set to see

whether state pandemic policies produced significant di↵erences in the viral spread. We also

demonstrate the HMFLCM’s ability to detect change points using a long-range temperature data

set from the National Climatic Data Center which measures the daily maximum temperature of

Austin, Texas from 1938 to 2021. A third example, analyzing Federal Housing Finance Agency

(FHFA) housing price index data for various metropolitan areas, is presented in the supplementary

materials. We will see that, while global clustering can recover well-defined underlying groups,

the global means can lack meaningful interpretations. By removing local redundancy and defining

clear points of divergence between group means, much more meaningful cluster profiles can emerge.

The rest of this article is organized as follows. Section 2 develops the HMFLCM. Section 3

outlines posterior inference tools. Section 4 describes how the HMFLCM can be used for change-

point analysis in a multiple time series setting. Section 5 demonstrates the analytical advantages

of the HMFLCM in real-world applications. Section 6 demonstrates the accuracy of the HMFLCM

on simulated data. Section 7 contains concluding remarks. Additional details, including the choice

of hyper-parameters and Markov chain Monte Carlo (MCMC) algorithms for posterior inference,

are deferred to the supplementary materials. R codes implementing our method are also included

in the supplementary materials as separate files.

2 Functional Clustering

In this section, we develop our Hidden Markov Functional Local Clustering (HMFLCM) method.

The HMFLCM is a two-step methodology that first uses global functional clustering to generate

pseudo-covariate groupings, which are subsequently used during the local clustering step.

In our functional framework, sequentially generated data yi = (yi,1, . . . , yi,T )T for series i 2

{1, . . . , n} are assumed to be noisy realizations of some true group mean curves plus their associated

subject-specific random e↵ects curves. As will also be the case with our real-world examples, we
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assume the data points to be measured at the common set of time points t 2 {1, . . . , T}. To

simplify notation, we let t denote both specific time stamps as well as generic time points in the

domain of interest [1, T ]. The recovery of the underlying mean curves and the associated locally

varying clustering patterns is the primary objective of our analysis.

In this section, we first discuss our global clustering method. We then build our local clustering

mixed-e↵ects model, describing in detail how the fixed e↵ects, random e↵ects, and heteroscedastic

error components are specified. In what follows, the subscript g serves to indicate model com-

ponents, parameters, and variables associated with global clustering. Likewise, the subscript `

signifies model components, parameters, and variables associated with local clustering.

2.1 Step 1: Global Functional Clustering

In this section, we present the methodology for the creation of a pseudo-covariate that partitions

the subjects into identifiable groups for local clustering. Specifically, we seek to partition N series

yi=1,...,N into D underlying global clusters, each with a functional mean profile fg,z(t) that describes

the average behavior of the response curve over the entire period of observation [1, T ]. Conditional

on the global cluster assignment zg,i = z for subject i, we characterize each yi as an error-prone

realization of an unknown functional mean fg,z observed at T time points,

(yi,t|zg,i = z) = fg,z(t) + "g,i,t, "g,i,t
iid⇠ Normal(0, �2

g,"). (1)

We assume the errors, "g,i,t, to be independent and identically distributed to keep the model

simple and the mean profiles easily identifiable. The main purpose of this first clustering step is to

recover a liberal number of global clusters to be merged in the second local clustering stage. In all

our experiments, the global model described in Equation (1) served that purpose su�ciently well.

Let the cluster membership variables be independently Dirichlet distributed as

zg,i ⇠ Dir(↵g, . . . ,↵g).

We model the mean profiles fg,z(t) as mixtures of quadratic B-spline bases (Figure 2) as

fg,z(t) =
PKg

k=1 �g,z,kbg,k(t),
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where bg(t) = {bg,1(t), . . . , bg,Kg(t)}T are a set of B-spline basis functions and �g,z = {�g,z,1, . . . , �g,z,Kg}T

are a set of unknown coe�cients to be estimated from the data. We choose bg(t) to be a set of

evenly spaced quadratic B-splines. Quadratic B-splines are easy to compute and are a popular

choice for modeling flexibly varying smooth functions (de Boor, 1978).

Finally, we adopt hierarchical conditionally conjugate priors on the spline coe�cients and the

error variance terms

�g,z ⇠ MVN(0,⌃g,�), ⌃g,� ⇠ IW(⌫g,0,Sg,0), �2
g," ⇠ Inv-Ga(ag,✏, bg,✏).

Posterior inference is based on samples drawn using a Markov Chain Monte Carlo (MCMC) sam-

pling scheme. The full conditionals for the parameters are listed in the supplementary materials.

To account for the possibility of label switching, we use the posterior co-clustering probabilities

to determine the final global cluster assignments. The posterior co-clustering probability of the

global groups is empirically computed by evaluating the proportion of posterior samples which

cluster certain series together. The global cluster memberships are then treated as the levels of

a pseudo-covariate for the purpose of local clustering, in which subjects belonging to di↵erent

pseudo-covariate levels may merge into the same group at local neighborhoods in time. While it is

desirable that the global and the local groups be learned simultaneously, it is not easy to achieve

this in an aggregated posterior sampling scheme as the local groupings become di�cult to identify

when the subjects can potentially also change their global assignments in each draw.

The correctness of the overall local clustering results is dependent upon the global clustering

method’s ability to 1) correctly cluster together individuals that belong to the same global group

but also more importantly 2) separate the individuals that do not belong to the same global group

even at the expense of overestimating the number of global clusters. To illustrate this, we varied the

number of spline knot points, Kg, and the maximum allowable number of global clusters, denoted

henceforth by D, and evaluate the impact of these hyperparameters on the correctness of both the

global and local clustering in Table 3 in Section 6. Additionally, while it is not necessary to use a

B-spline mixture for the global clustering step, we find that the B-spline method produces global

clusters better suited for local clustering than alternate methods such as K-means. We evaluate the

impact of alternative global clustering methods on local clustering in the supplementary materials.

Consistent with Ruppert (2002), we found that when the smoothness is controlled by a data-
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adaptive penalty parameter, the results are robust to the choice of Kg as long as a minimum

number of knots is used. We use the Watanabe-Akaike information criterion (WAIC) (Watanabe

and Opper, 2010) as well as leave-one-out cross-validation (LOO-CV) (Gelman et al., 2014) to

choose such lower bounds.

We also found that accurate local clustering results are achieved when D is over-specified. Sim-

ilar to redundant mixture components in overfitted mixture models (Rousseau and Mengersen,

2011), superfluous latent classes become empty during the global clustering step if the Dirich-

let prior on the class proportions is su�ciently vague. Additionally, by construction, the local

clustering step can also merge redundant global clusters.

2.2 Step 2: Local Functional Clustering

A mixed-e↵ects functional clustering method was recently introduced by Paulon et al. (2023) which

performs local clustering of longitudinal functional profiles associated with di↵erent levels of an

associated observed categorical covariate. Local clustering of the fixed e↵ects was induced by

allowing portions of the di↵erent fixed e↵ects curves to merge. We adapt this method with some

simplifications to locally cluster functional time series data in the complete absence of any observed

covariate, where we instead treat the d non-empty global clusters recovered in stage one as the

levels of a categorical pseudo-covariate zg 2 Zg = {1, . . . , d}. Note that d  D by design. The

global cluster membership value of each subject is stored in the variable zg,i, which doubles as the

i-th series’ associated pseudo-covariate assignment.

With the existence of a fixed pseudo-covariate assignment, a mixed-e↵ects analysis becomes

viable. The fixed e↵ects describe the mean behavior of di↵erent pseudo-covariate levels, while the

deviations of the individuals within each group are explained by the associated random e↵ects.

The random e↵ects explain some of the variability at the individual level, allowing for smooth

fixed e↵ects recovery and meaningful fixed e↵ecting merging. This is formalized as the following

generic class of functional mixed models

(yi,t | zg,i = zg) = f`,zg(t) + u`,i(t) + "`,i,t, u`,i(t) ⇠ f`,u, "`,i,t
ind⇠ f`,",t, (2)

where f`,zg(t) is the time-varying fixed e↵ects function corresponding to pseudo-covariate level zg,

u`,i(t) are subject-specific time-varying random e↵ects with random e↵ects distribution f`,u, and
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Figure 2: An illustration of quadratic B-splines used in our method. In this figure, they are created
with internal knot points corresponding to the deciles of the observed time locations such that in
total we have K = 12 bases.

✏`,i,t are random errors with distribution f`,",t.

2.2.1 Locally Varying Fixed E↵ects

Local clustering of the fixed e↵ects is controlled by an HMM. Let the fixed e↵ects for each zg be

constructed as

f`,zg(t) =
PK`

k=1 �`,zg ,kb`,k(t), (3)

where b`(t) = {b`,1(t), . . . , b`,K`
(t)}T are a dense set of K = T + 1 quadratic B-splines with a

knot point at every observed time location t 2 {1, . . . , T}, and �`,zg = {�`,zg ,1, . . . , �`,zg ,K`
} are

unknown coe�cients to be estimated from the data. Choosing the knot points in this manner

allows the cluster mean curves f`,zg(t) for di↵erent values of zg to merge or split at every observed

time location. Thus, K = T +1 is the total number of bases and the value of f`,zg(t) at each t = k

is dependent upon the values of the {�`,zg ,k, �`,zg ,(k+1)}, each with a weight of 1/2 (Figure 3).

For two levels zg 6= z0g of the pseudo-covariate, local clustering in the fixed e↵ects is induced

if at location t, f`,zg(t) = f`,z0g(t). At other locations t0 the fixed e↵ects can be di↵erent, that

is, f`,zg(t
0) 6= f`,z0g(t

0). This is achieved by allowing elements of �`,zg and �`,z0g
to be shared

�`,zg ,k = �`,z0g ,k at some locations k but be di↵erent �`,zg ,k0 6= �`,z0g ,k
0 at the other locations k0.
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The sharing of spline coe�cients can be facilitated across any combination of pseudo-covariate

levels and is not limited to the equivalence between only two levels of zg. To facilitate such local

clustering, a set of local latent variables z(zg)`,k 2 {1, . . . , d} denoting the local cluster assignment of

a group zg at knot point k is introduced such that

{f`,zg(t) | z
(zg)
`,k = z`,k} =

PK`
k=1 �

?
`,z`,k,k

b`,k(t),

or equivalently, (�`,zg ,k | z
(zg)
`,k = z`,k) = �?

`,z`,k,k
.

(4)

Let Z`,k = {z`,k : z(zg)`,k = z`,k, zg = 1, . . . , d} and B?
`,k = {�?

`,z`,k,k
: z`,k 2 Z`,k}. The set of B-spline

coe�cients to be estimated at location k is then B?
`,k. When the z(zg)`,k ’s are assigned probability

models supported on Zg, the number of local clusters, that is, the number of distinct values taken

on by the z(zg)`,k ’s, |Z`,k|, must be less than the number of global clusters |Zg| = d. Specifically, when

z(z1)`,k = z(z2)`,k for two di↵erent levels z1 and z2 of zg, the spline coe�cients at location k are equal

between the groups z1 and z2. Using quadratic B-splines, there are two splines contributing the

function at each time point. At time point t = k, if both z(z1)`,k = z(z2)`,k and z(z1)`,(k+1) = z(z2)`,(k+1), the

value of the underlying fixed e↵ects curves are equal, i.e., f`,z1(t) = f`,z2(t). The series belonging

to the global clusters z1 and z2 are then co-clustered at time t = k. If, on the contrary, the z(zg)`,k ’s

corresponding to two di↵erent levels of zg are di↵erent, the underlying curves there will also be

di↵erent.

z
(zg)

`,1 z
(zg)

`,2
. . . z

(zg)

`,K�1 z
(zg)

`,K

�
(zg)
1 �

(zg)
2

. . . �
(zg)

K�1 �
(zg)

K

y
(zg)
1 y

(zg)
2

. . . y
(zg)

K�2 y
(zg)

K�1

Figure 3: Graph of functional HMM model (4) using quadratic B-splines.

We now consider the problem of specifying probability models for the z(zg)`,k ’s and the �?
`,z`,k,k

’s

that appropriately accommodate temporal dependencies across k. The temporal evolution of the

latent local cluster indicators z(zg)`,k , k = 1, . . . , K, are modeled using HMMs as
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(z(zg)`,k | z(zg)`,k�1 = z`,k�1) ⇠ Mult(⇡(zg)
z`,k�1,1

, . . . , ⇡(zg)
z`,k�1,d

).

Hierarchical Dirichlet priors are assigned to the transition probabilities with gamma hyper-

priors on the concentration parameters

⇡ = (⇡1, . . . , ⇡d)
T ⇠ Dir(↵/d, . . . ,↵/d), ↵ ⇠ Ga(a, b).

The priors for the atoms �?
`,z`,k,k

, conditional on the z(zg)`,k ’s and the coe�cients at the previous

locations, for k = 2, . . . , K, are constructed sequentially as in Paulon et al. (2023) as

�?
`,z`,k,k

⇠

8
>>><

>>>:

Y

{z(zg)`,k�1: z2Z
(z`,k)

`,k }

Normal

✓
�?

`,k�1,z
(zg)
`,k�1

, �2
�,1

◆
if |Z(z`,k)

`,k | > 0,

Normal(µ�,0, �
2
�,0) otherwise,

where Z
(z`,k)
`,k = {zg : z(zg)`,k = z`,k} is the set of levels of zg that, at the location k, are assigned

the label z`,k. The prior in (5) centers the B-spline coe�cients around the ones ‘expressed’ at the

previous location, penalizing their first-order di↵erences. More specifically, the B-spline coe�cient

characterizing a local mean curve at knot location k+1 is encouraged to be close to the coe�cient

characterizing that same local mean curve at the previous knot point k. This helps ensure that

the fixed e↵ects curves are smooth and robust to outliers.

The coe�cients that are not associated with any levels of zg are assigned a normal prior with a

large variance �2
�,0, which we set at 5 times the variance of all data points. The initial coe�cients

are assigned non-informative flat priors as �?
1,z`,k

⇠ 1. The smoothness of the curves is controlled

by the parameter �2
�,1, which is assigned a prior, allowing it to be informed by the data. Let

�2
�,1 ⇠ C+(0, 1),

where C+(a, b) denotes a half-Cauchy distribution (Gelman, 2006; Polson and Scott, 2012) with

location parameter a and scale parameter b.

Borrowing information ‘vertically’ across subjects and ‘horizontally’ across time points, we are

able to e�ciently estimate the fixed e↵ects as seen in Section 5.
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2.2.2 Locally Varying Random E↵ects

We model the time-varying random e↵ects components u`,i(t) as

u`,i(t) =
PK`

k=1 �`,u,i,kb`,k(t),

�`,u,i ⇠ MVNK`
{0, (��2

u,aIK`
+ ��2

u,sPu)
�1},

�2
u,s ⇠ C+(0, 1), �2

u,a ⇠ C+(0, 1),

(5)

where �`,u,i = (�`,u,i,1, . . . , �`,u,i,K`
)T are series-specific spline coe�cients, and MVNK`

(µ,⌃) denotes

a K dimensional multivariate normal distribution with mean µ and covariance ⌃. We let, K` =

T +1 for the random e↵ects curves as well. We choose Pu = D
T
uDu, where the (K�1)⇥K matrix

Du is a matrix such that Du�`,u,i computes the first order di↵erences in �`,u,i.

The model thus penalizes
PK

k=1(r�`,u,i)2 = �T
`,u,iPu�`,u,i, the sum of squares of first order

di↵erences in �`,u,i (Eilers and Marx, 1996). The random e↵ects variance parameter �2
u,s models

the smoothness of the random e↵ects curves, smaller �2
u,s inducing smoother u`,i(t)’s. Additional

variations from the constant zero curve are explained by �2
u,a. The absence of random e↵ects is

signified by the limiting case �2
u,s = �2

u,a = 0.

The prior hyper-parameters of our model are listed in Section S.1 of the supplementary mate-

rials. They are all chosen to keep the priors non-informative relative to the likelihood.

2.2.3 Heteroscedastic Random Errors

We assume the errors to be independently normally distributed with time-varying variance as

"`,i,t
ind⇠ Normal{0, �2

`,"(t)} (6)

We model �2
`,"(t) using another smoothly varying mixture of quadratic B-splines as

�2
`,"(t) =

PK�2

k=1 exp (��2,k)b�2,k(t), ��2 ⇠ MVN(0, ⌧ 2P�2). (7)

Similar to the global clustering basis specification, we let b�2(t) = {b�2,1(t), . . . , b�2,K�2 (t)} be a

set of quadratic B-splines with knot points corresponding the deciles of the time points. We set

K�2 to the deciles of the time points to allow for flexible but smooth variance fluctuations. We

choose P�2 = D
T
�2D�2 , where the (K�2 � 1) ⇥K�2 matrix D�2 is such that D�2��2 computes the

12



first order di↵erences in ��2 . The model thus penalizes
PK�2

k=1(r��2)2 = �T
�2P�2��2 , the sum of

squares of first order di↵erences in ��2 (Eilers and Marx, 1996). The parameter ⌧ 2 controls the

smoothness of the dynamic variance. Smaller values of ⌧ 2 result in a dynamic variance curve with

a smaller range. We assign ⌧ 2 a mildly informative Inv-Ga(a⌧2 , b⌧2) prior but found the posterior

of �2
`,"(t) to be fairly robust to changes in the values of ⌧ 2. We show our model’s ability to correctly

recover the dynamic error variance structure of our simulation experiment in the supplementary

materials. In additional numerical experiments reported in the supplementary materials, we show

that allowing the error variance �2
`,"(t) to vary over time can significantly improve local clustering

results by safeguarding against over-fitting the fixed and the random e↵ects. An evaluation of the

HMFLCM’s robustness, when the true error variance stays constant over time, is also presented in

the supplementary materials.

3 Posterior Inference

Posterior inference for the proposed functional mixed model framework is based on samples drawn

from the posterior using a dynamic message passing MCMC algorithm which carefully exploits

the conditional independence relationships encoded in the model. Since the levels of zg create

a partition of the data set according to the pseudo-covariate level, for di↵erent values of zg, the

latent sequences z
(zg)
` = {z(zg)`,k , k = 1, . . . , K} also associate with disjoint data blocks and are

conditionally independent in the posterior. The sequences can thus be updated using separate

message-passing schemes for di↵erent values of zg. That is, the HMM update for the latent sequence

z
(zg)
` corresponding to each zg is dependent only on the data and parameters associated with that

zg, leading to d conditionally independent update blocks. Details have been deferred to Section

S.2 in the supplementary materials.

Lastly, while our method is technically clustering curves, it does so by clustering the latent

variables associated with each spline coe�cient at each time point, and so the latent space scales

with the number of global clusters and the number of knot points. The recursive message passing

scheme we used to implement our functional hidden Markov model grows only quadratically with

the number of global clusters and linearly with time. For the Covid-19 data set featuring 50 states

and Washington DC, each with 156 time points, analyzed in Section 3.1 below, the run time for
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1000 global clustering iterations, and 3000 local clustering iterations on a standard desktop with

an Intel(R) Core(TM) i7-8700 3.2GHz with 16.0 GB of RAM was approximately 30 minutes.

4 Change Point Analysis via Local Clustering

The proposed local clustering method provides a principled albeit nontraditional framework for

detecting meaningful change points for time series with recurring cycles. To apply the HMFLCM,

each cycle within the larger series is treated to constitute a component in a multiple time series.

These individual series can then be locally clustered to find local change points which a↵ect only

portions of each cycle. Here we define a time point to be a change point whenever a merging or

a splitting behavior is observed for the local mean curves associated with di↵erent global cluster

indices at that time point. More specifically, a time point t0 is a change point if there are two

global clusters, without loss of generality, say zg = 1 and zg = 2, for which either f`,1(t) = f`,2(t)

immediately before t0 but f`,1(t) 6= f`,2(t) immediately after t0 (i.e., the mean curves split o↵), or

conversely f`,1(t) 6= f`,2(t) immediately before t0 but f`,1(t) = f`,2(t) immediately after t0 (i.e., the

mean curves merged together).

Alternatively, one could think of running a change point analysis on each constituent time

series separately and then clustering the resulting fits. It would however be hard to cluster the

sub-segments, especially when they do not line up. It is also not guaranteed that a change point

will be identified for any individual series in the first place. More importantly, such an analysis,

when possible, while potentially useful in many applications, would answer a di↵erent question from

the one we focus on in the applications in Section 5. Traditional change point analysis identifies

points for which the mean or variance of the entire series changes (Aminikhanghahi and Cook,

2017; Reeves et al., 2007; Li et al., 2020). However, we are primarily interested in capturing the

local changes between di↵erent cycles within the same series. In particular, for recurrent events

data, where each constituent time series is defined as one iteration of a recurring cycle, we want to

find change points that occur when the trajectory changes significantly between di↵erent cycles.

In other words, we are interested in how the cycles di↵er from each other and where in the cycles

these di↵erences occur, but not in the individual change points within each cycle.
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5 Applications

In this section, we discuss the results obtained by our method when applied to two real-world

data sets from two di↵erent application domains, public health and climate science. In the public

health application, we focus on demonstrating how the ability to partition data into flexible time

groups reveals interesting patterns that align with reasonable explanations arising from domain

knowledge. In the climate science application, we focus on demonstrating how local clustering can

also detect meaningful change points in the constituent trajectories, which can potentially provide

very useful information for energy engineers.

5.1 Covid-19 Data Set

This data set tracks the daily change in confirmed cases of Covid-19 in every state in the United

States plus Washington DC. The data comes from the Johns Hopkins University Center for System

Science and Engineering (JHU CSSE).

JHU CSSE collects their confirmed cases from a number of sources, including the World Health

Organization, and the U.S. Centers for Disease Control and Prevention. The confirmed cases are

tracked at the county level, so we aggregated the data to compare caseloads by state. For each

state, we use the number of new daily cases per hundred thousand people to create a comparable

rate of contagion across states.

At the time of writing of the first version of this article, there were few scientifically proven

policies for controlling the spread of the SARS-COV2 virus responsible for the Covid-19 pandemic.

As such, the daily case-load data provide a rough benchmark for the e�cacy of epidemiological

policies instigated in response to the pandemic. The United States presents a uniquely interesting

case study in disease control because the patchwork, state-by-state nature of the U.S. Covid-19

response allows many di↵erent response strategies to be easily juxtaposed and compared.

Below we cluster the 51 (50 states plus Washington D.C.) temporal profiles, each collected

from January, 22nd 2020 to June, 29th 2020. We use seven latent classes for the global clustering

stage as determined by the LOO-CV metric. Table 1 lists the states belonging to each of these

global clusters. Figure 4 shows the functional means recovered by the global and local clustering

steps. The estimated posterior co-clustering probabilities in Figure 5 quantify the evolution of local
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co-clustering assignments over time.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7
Alabama Alaska Arizona Colorado Connecticut Delaware Idaho
Arkansas Hawaii Indiana Massachusetts Illinois Kansas
California Maine Michigan New Jersey Iowa Kentucky
Florida Montana Pennsylvania New York Louisiana Minnesota
Georgia Oregon South Dakota Rhode Island Maryland Missouri

Mississippi Vermont Virginia District of Columbia Nebraska New Hampshire
Nevada West Virginia New Mexico

North Carolina Wyoming North Dakota
South Carolina Ohio

Tennessee Oklahoma
Texas Washington

Wisconsin

Table 1: The global clusters as found by step one of the algorithm. Each group functions as a level
of the pseudo-covariate used for local clustering. Refer to Figure 4b for local clustering patterns.

The mean profile of each group can be seen in Figure 4a and the group memberships are listed

in Table 1. The states in Groups 2 and 7 maintain the lowest and flattest mean profiles. This may

be explained by the fact that the states in Group 2 have relatively low population densities and

states in Group 7 mostly sit in the center of the contiguous United States. The states in Group 1

have a higher average caseload but do not exhibit a large increase in cases in the month of June.

Groups 1 and 3 feature states whose caseloads increase sharply throughout June. Groups 4 and

5 contain states that had higher new case rates in April but had reduced their contagion rate by

June.

Although the information on geographical closeness was not incorporated in our model, Group 5

contains many geographically proximate states with New York at its center. This is not surprising,

given the high volume of tra�c between these states, which likely contributed to their similar case

trajectories. Although the global clustering method e↵ectively partitions states by their distinctive

overall trajectories, the local clustering results provide a clearer picture of how changes in the

pandemic policy of certain states produced di↵erent caseload trends in those states. The results

of the local clustering method lend support to the argument that many states opened nonessential

businesses prematurely, leading to a significant uptick in the spread of the virus. This conclusion is

largely consistent with medical news reports from that time (Berger, 2020). Specifically, the method

was able to identify many of the first reopened states that opened non-essential businesses on or

soon after May 1st (Lee et al., 2020). Texas, California and Florida (Group 1) saw marked increases
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(a) Global clusters
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(b) Local clusters with 95% credible intervals

Figure 4: Global versus local clustering means for the Covid-19 data set. The local clustering
mean curves support a di↵erent interpretation than the global clustering means. While both figures
display an increasing trend for Groups 1 and 3, the local clustering means show the divergence
of the Groups 1 and 3 means from their previously merged clusters in June, indicating that the
states belonging to these groups started behaving significantly di↵erently around that time. This
information is not clear from the global clustering results alone.
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Figure 5: Results for Covid-19 Data: Co-clustering patterns changed remarkably between April
and June, 2020. While it is interesting to observe the merging changes in the fixed e↵ects means,
posterior co-clustering probabilities such as the ones in this figure give a more quantitative picture
of how the states’ co-clustering behavior changes over time.

in confirmed cases a month after relaxing shutdown measures. Arizona (Group 3) experienced a

particularly rapid rate of increase in new cases following reopening. Considering the 2-14 day

incubation period for the SARS-COV2 virus (Center for Disease Control, 2020), the typical delay

between the implementation of a new policy and a visible, large-scale e↵ect on the populace is

approximately one month. The dates corresponding to the divergence in group means for Groups

1 and 3 are in line with the expected lag following the implementation of their divergent reopening

policies. Our clustering results thus provide empirical evidence that premature state reopening

was an important factor contributing to the fast spread of the virus.

5.2 Austin Temperature Data Set

This data set comes from the National Oceanic and Atmospheric Administration (NOAA) and can

be accessed using the Climate Date Online tool (https://www.ncei.noaa.gov/cdo-web/search). The

data set includes the daily maximum temperature recorded at the Camp Mabry weather station

located in Austin, Texas, from January 1, 1938, to December 31, 2021. We segment the daily
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temperature series by year to form 83 yearly cycles. For simplicity, we truncate some of the series

so that there are 365 days in each year. We let D = 6 and Kg = 12 for the global clustering

step. The goal is to determine if there are significant di↵erences between the temperature series of

di↵erent years, and if so, during what parts of the year are such di↵erences the most pronounced.

Accurate determination of change points in the temperature record is important for climate

scientists to distinguish between detectable changes in climatic trends and short-term stochastic

variations inherent in natural systems (Yu and Ruggieri, 2019). Pinpointing the changing trends in

temperature is also an important problem for the energy sector. In hotter climates such as Texas,

air conditioning energy loads make up a significant portion of overall electric grid demand. Perez

et al. (2017) showed that AC energy use increases linearly with outdoor dry-bulb temperatures once

temperatures are higher than a critical degree. Therefore, accurate forecasting of when the outdoor

temperatures will be high is critical for electricity providers to plan their generation capacity

appropriately and avoid costly mistakes.

The results of our clustering analysis are in accordance with the globally observed warming

trend. Table 2 includes the cluster memberships for each global cluster. Though the member years

of each cluster are not all contiguous, the average of the member years in each group provides a

good heuristic for comparing the temporal order of each cluster. We see from the local clustering

patterns in Figure 6b that temperature increases are not uniform throughout the year. During the

spring and the fall, all of the years collapse into a single cluster. Marked di↵erences in temperature

patterns include distinctively warmer weather in January, earlier onset of warming weather in

spring, and extended hotter summers. Warmer winters are indicated by the co-clustering pattern

starting January 1st (t = 1, Figure 6b), which shows Group 1 and Group 5 merged with 99%

probability. Groups 1 and 5 have the highest average membership year and correspond to the blue

line peaking above the rest of the clusters at t = 1 in Figure 6b. By the 100
th

day of the year,

Groups 1, 3, and 5 split o↵ from Groups 2, 4, and 6, with higher temperatures (blue line). By the

summer solstice (the 172nd day of the year), Group 5 (blue) splits o↵ from Groups 1 and 3 (magenta)

to form an extra hot summer cluster. Group 1 leaves Group 3 (magenta) to rejoin Group 5 (blue)

around day 225 resulting in extended high temperatures that last through autumn. These results

give a more nuanced picture of how temperatures have increased in the past few decades. Spring

temperatures rose first, followed by hotter autumns, followed by more intensely hot summers. The
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Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
1939 1940 1948 1943 1954 1968
1951 1941 1950 1945 1956 1976
1955 1942 1952 1946 2006 1979
1963 1944 1953 1947 2008 1983
1990 1957 1967 1949 2009 1997
1998 1958 1971 1959 2011
1999 1960 1980 1962 2012
2000 1961 1984 1964 2017
2005 1966 1988 1965 2020
2013 1970 1989 1969
2016 1973 1994 1972
2018 1974 1996 1977
2019 1975 2003 1981
2021 1978 2010 1982

2014 1985
2015 1986

1987
1991
1992
1993
1995
2001
2002
2004
2007

Mean = 1991.93 Mean = 1961.67 Mean = 1982.13 Mean =1974.19 Mean =1999.22 Mean = 1980.60

Table 2: Global clusters in the Austin temperature data found by our method. Local clusters
subsequently found by our method are shown in Figure 4b.

results of this analysis suggest that energy companies should plan for hotter temperatures to begin

earlier in the year, and for summer temperatures to persist for longer. Temperatures in early spring

and late autumn/early winter appear to have a wider variance than temperatures in the middle of

the year. However, it appears that the dynamic error variance of the HMFLCM was able to absorb

the heterogeneity, allowing the fixed e↵ects means to merge into one cluster during portions of the

year where temperatures have a wide spread. This could be indicative of the fact that while these

portions of the year experience more variable temperature changes within a year, there is not a

systematic change between earlier and later years.

In both real-world examples, global clustering produced well-fitted but somewhat obfuscated

results while the local clustering results allowed us to draw more precise conclusions. In particular,

the Covid-19 local clustering results are able to provide time-specific cluster-changing behavior,

lending some credibility to the argument that the hasty reopening of the economy led to the
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(b) Local clusters with 95% credible intervals

Figure 6: Global versus local clustering means for the daily maximum temperature of Austin data
set. The data are segmented by year to form comparative units. The global clustering results show
that there is a general warming trend, but the local clustering results are able to pinpoint what
portions of the year are experiencing the largest degree of change.

proliferation of cases. Likewise, the Austin temperature data results demonstrate the ability of our

approach to find interesting change points in the data. However, both applications discussed here
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Figure 7: Results for Austin temperature data: Co-clustering patterns show distinct co-clustering
profiles in winter (t=1) versus summer (t=172).

involve highly complex dynamics influenced by many unobserved factors and our results must not

be over-interpreted as definitive evidence in favor of our drawn conclusions over other plausible

alternatives. For instance, it would have been interesting to also be able to incorporate a-priori

known cross-constituent dependency patterns in the model (e.g., the geographical proximity of

the states in the Covid-19 data set, or the proximity in time of di↵erent years in the Austin

temperature data set) which could potentially provide even more meaningful clustering patterns

and inferences. Particularly for the Covid-19 data set, it would have also been more rigorous to work

with a likelihood function that accommodates zero inflation. Such adjustments are however not

straightforward, both from a modeling and a computational perspective, and are left as directions

for future work.

6 Simulation Studies

In this section, we evaluate the performance of our local clustering method on a simulated data set

that mimics the latent mean trajectories seen in the Covid-19 data set. As described in Equation

(2), each yit is the summation of one of the four mean functions shown in Figure 1, an individual-

specific random e↵ects curve and a Gaussian error with time-varying variance (see Figure S.3 in
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the supplementary materials). We simulated five constituent time series for each mean function.

We compare the performance of our local clustering method to three other methods - partitional

K-means clustering, divisive hierarchical clustering (DHC), and spectral clustering (Maharaj et al.,

2019, Chapter 3). The data are generated with random e↵ects and noise, which can make it di�cult

for traditional clustering methods to properly align the di↵erent series during clustering. To ensure

that these comparison methods are not at a disadvantage, we use dynamic time warping to improve

the shape-matching ability of partitional clustering, and a shape-based distance metric (Paparrizos

and Gravano, 2015) to measure the similarity between the constituent time series to be used in

hierarchical clustering. We implemented the dynamic time-warped K-means clustering using the

tsclust function from the dtwclust package in R. DHC is implemented using the hclust package

in R. We also included a spectral clustering method in our comparisons, implemented using the

Spectrum package in R.

We evaluated the performance of these methods in a variety of simulation scenarios. In Ta-

ble 3, we report the average point-wise root-mean-squared error (RMSE) between the true data-

generating cluster means and the cluster centroids found by the other methods, and between the

true data-generating cluster means and the local cluster means estimated by our method. Addition-

ally, we report the posterior co-clustering error, defined as L2-norm of the di↵erence between the

true co-clustering matrix and the estimated co-clustering matrix. For each time point t, we define

the estimated subject-level co-clustering matrix M
N⇥N = ((mi,j)), where, for i  N, j  N, i 6= j,

mi,j is the probability that yi and yj belong to the same group. The proposed HMFLCM consis-

tently substantially outperformed the other methods.

The results of these experiments exhibit the HMFLCM’s ability to recover the true underlying

mean functions and associated clustering patterns with great accuracy. For the global clustering

first stage of our approach, we initiated the MCMC algorithm with D = 6 allowable latent classes.

In simulation experiments, our proposed approach substantially outperforms the competitors which

generates extra clusters, leading to many mistakes in co-clustering the component series. See,

for example, Figure 8 which shows the estimates obtained by the K-means method, our most

robust competitor. By allowing for local clustering while also accounting for unit-specific random

e↵ects, the proposed HMFLCM method is able to produce much better results. We see that

while the K-means method is able to capture the overall shapes of the time series trajectories, it
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Figure 8: Results obtained by the K-means method for simulated data generated with time-varying
error variance. Global means recovered with D = 6 clusters. While the cluster centroids picked
out by the K-means model match the general shapes of the data-generating functions, the overall
profiles are jagged and include extraneous groups in the bottom clusters.

produced a few redundant global clusters, and the estimated cluster mean curves are quite ‘pointy’

as well. In contrast, Figure 9 shows that the HMFLCM is able to identify and eliminate the extra

groups obtained by the global clustering method. The estimated local mean curves are also very

smooth. Additionally, the resultant co-clustering pattern between groups is in agreement with the

underlying truth with a high degree of accuracy across all time points. Figures S.4, S.5, and S.8 in

the supplementary materials illustrate that our method is also able to recover the true underlying

individual-specific curves very well.

We also test the local clustering method’s sensitivity to hyperparameters by varying D from 3

to 7 (Dtrue = 4), and varying the global clustering knot locations to correspond to the quantiles,

septiles, and deciles of the time points Kg = 6, Kg = 9, and Kg = 12, respectively. Table 3 shows

that our proposed local clustering method produces vastly superior results compared to other global

clustering methods. Our local clustering method is also fairly robust to the specification ofKg. The

local clustering method naturally achieves the best results when the allowable number of global

groups is equal to the true number of groups, D = Dtrue, but allowing D > Dtrue achieves better

results than allowing D < Dtrue. In contrast to the K-means clustering, the performance of the
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local clustering method does not deteriorate as D increases. Thus, we recommend choosing a large

initial D when using our method.

Mean Point-wise RMSE
Local Clustering K-means DHC Spectral

Kg = 6 Kg = 9 Kg = 12
D = 3 0.21 0.21 0.21 0.67 1.58 0.73
D = 4 0.14 0.14 0.14 0.65 3.19 0.30
D = 5 0.14 0.14 0.14 0.61 2.97 0.62
D = 6 0.14 0.14 0.14 0.63 2.80 0.90
D = 7 0.14 0.14 0.14 0.65 2.68 0.97

Mean Co-clustering Error
Local Clustering K-means DHC Spectral

Kg = 6 Kg = 9 Kg = 12
D = 3 6.19 6.19 6.19 4.41 11.87 6.59
D = 4 1.40 1.40 1.40 5.52 8.45 4.27
D = 5 1.91 1.91 1.91 5.36 7.56 5.13
D = 6 1.91 1.91 1.91 5.60 7.01 5.59
D = 7 1.91 1.91 1.91 6.14 6.29 6.21

Table 3: Average point-wise RMSE and co-clustering error for K-means clustering, divisive hier-
archical clustering (DHC), spectral clustering, and our proposed local clustering method. For our
approach, we varied the number of total global groups D as well as the number of knots Kg used
in the global clustering stage. The local clustering naturally performs best when D = Dtrue = 4,
and better when D � Dtrue than when D < Dtrue. Allowing D to be over-specified however does
not negatively impact the results of the local clustering significantly.

The results of some additional simulation experiments and some additional graphical summaries

are presented in Sections S.3 and S.4 in the supplementary materials.

7 Discussion

In this article, we proposed a two-stage method, HMFLCM, for locally clustering functional time

series data. Previously existing methods for clustering multiple time series data require that the

cluster membership of each component remains the same for the entirety of the data collection

period. HMFLCM combines B-spline mixtures with HMMs through the use of an intermediary

pseudo-covariate to perform local clustering of multiple time series data, where the cluster mem-

bership of each constituent time series, and hence also the total number of clusters, can vary with

time. Using the HMFLCM, a constituent time series is able to separate from its original cluster
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Figure 9: Results obtained by the proposed HMFLCM for simulated data generated with time-
varying error variance. Panel (a): Results obtained by the first-stage global clustering method with
D = 6 initial clusters. Note that the trajectories recovered for the later time points were particularly
inaccurate. Group 6 was empty and is therefore not included in the subsequent local clustering
step. Panel (b): Results obtained by the final-stage local clustering method. The issues with global
clustering were mostly rectified by co-clustering the wayward units with correct groupings at every
time point, which resulted in the merger of Groups 2 and 3, e↵ectively eliminating the additional
extraneous group obtained in the global clustering step. In addition, the true underlying merging
and splitting behavior of the group means were also accurately recovered. Compared to K-means
clustering, the cluster means recovered here are also much smoother.
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and form its own unique mean if it begins to behave very di↵erently from its original cluster. Con-

versely, a time series may merge with a pre-existing cluster if its behavior changes to match the

trajectory represented by that cluster. While this ability is in and of itself a novel contribution,

our method also o↵ers the additional advantage of increasing the interpretability of the clusters. In

all three real-world data examples considered in the main article and the supplementary material,

the local clustering results o↵ered evidence for conclusions that would be di�cult to draw looking

only at global clustering results. Being able to locally merge redundant clusters allows for a quan-

titative assertion of equivalence between clusters. Similarly, the divergence of a new cluster from a

pre-existing cluster indicates that a significant change has occurred. The posterior co-cluster prob-

abilities provide a metric of uncertainty for both possibilities. Overall, we believe our proposed

method is a nice addition to the arsenal of statistical methods available for scientific research with

multiple time series data. The method, however, makes no assumption on the long-term behavior

of the data dynamics such as stationarity, etc. It is thus not suited to make long-term predictions

which are nevertheless not very meaningful in settings where local complexities are present.

Avenues of future research include local clustering strategies that preclude the need for a sep-

arate first stage for global clustering. In addition, we are considering extensions to allow auto-

correlated errors, incorporate a-priori known cross-constituent dependency patterns, etc. We are

also actively working on extensions to local clustering models with functional domains in higher

dimensional spaces, e.g., for spatial and spatiotemporal data, etc.

Supplementary Materials

The supplementary materials detail the choice of hyper-parameters and the MCMC algorithm used

to sample from the posterior. We also include additional figures demonstrating the local clustering

method’s ability to recover individual-specific curves. The data for our simulation experiment can

be accessed as a separate csv file from the online supplementary materials accompanying this paper.

R codes implementing and demonstrating the methods developed in this article are also included in

the online supplementary materials. Manuals for the codes and a ReadMe file providing additional

details on how data should be formatted for compatibility with our codes are also included.
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