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Abstract

In multiple time series data, clustering the component profiles can identify meaningful
latent groups while also detecting interesting change points in their trajectories. Conventional
time series clustering methods, however, suffer the drawback of requiring the co-clustered units
to have the same cluster membership for all the time points in the data collection period. In
contrast to these ‘global’ clustering methods, we develop a Bayesian ‘local’ clustering method
that allows the functions to flexibly change their cluster memberships over time. We design
a Markov chain Monte Carlo algorithm to implement our method. We illustrate the method
in several real-world data sets, where time-varying cluster memberships provide meaningful
inferences about the underlying processes. These include a public health data set to showcase
the more detailed inference our method can provide over global clustering methods, and a
temperature data set to demonstrate our method’s utility as a flexible change point detection
method. Supplemental materials for this article, including R codes implementing the method,
are available online.
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1 Introduction

As technology advances, multiple time series data are being routinely collected in diverse domainsE]
Clustering such data can provide valuable insights into the underlying data-generating processes.
To give a few examples, clustering gene expression profiles can identify groups of genes co-regulating
biological processes (Song et al., 2007; Ma et al., 2008); clustering bidding behavior in online
auctions can reveal patterns associated with specific chances of obtaining items at reasonable prices
(Peng et al., 2008); clustering climate data can reveal the effects of climate change (Gorji Sefidmazgi
et all 2015); etc.

Traditional unsupervised time series clustering methods use distance measures to assign individ-
ual time series to clusters. Partitional clustering methods, such as K-means, select random series as
cluster centroids and minimize the distance between clustered series and the centroids (Watanabe,
2022). Hierarchical clustering creates a hierarchy of clusters by merging or splitting clusters based
on within-cluster similarity (Maharaj et al.,[2019). More sophisticated nonparametric approaches,
such as the functional Dirichlet process (FDP), treat each time series as a realization of a stochastic
process and induce clustering by drawing the functions from a discrete probability measure (Scarpa
and Dunson, 2014; Nguyen and Gelfand, [2014). There are also semiparametric methods where the
time series are clustered around the corresponding cluster mean curves modeled as linear combi-
nations of basis elements, and the individual series are treated as noisy realizations of the cluster
means [Song et al. (2007); Ma et al.| (2008).

Though these methods differ substantially in their implementation, they share the assumption
that each time series can only belong to one cluster. This restrictive assumption can prevent the
recovery of true local complexities, such as when groups merge together or diverge from one another.
As a hypothetical but easy-to-understand example, consider a longitudinal study tracking the body
temperature of multiple people over time. A global clustering framework could generate separate
mean profiles for healthy individuals, individuals with a fever, and individuals who transition

between health and fever. This could lead one to infer a very complex underlying process with many

IThis article concentrates specifically on the analysis of multiple time series data where each constituent series
pertains to the same variable. Such data may be obtained, e.g., as (a) multiple univariate time series from a set of
different but comparable sources over the same time period; or (b) multiple records collected from the same source
over different recurrent time cycles of the same length. The two real data sets analyzed in Section 3 of the main
paper here correspond to one each of these two scenarios.



different states affecting people’s body temperatures when in fact there are only two underlying
states. For another example, consider also the synthetic scenario shown in Figure [1| below which
mimics a real data application considered later in Section 5.1} Here, although the four latent mean
trajectories are all different from each other when viewed over the entire time domain, they are
often locally identical over smaller sub-regions. The local clustering method we propose here is
based on such local similarities and differences between the constituent time series as opposed to

global clustering based on their global behavior over the entire time domain.
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Figure 1: Simulated data (gray points) with true underlying mean functions overlaid. Group 1 is
merged with Group 4 until ¢ = 5, after which it splits off and maintains its own distinct profile
until merging with Group 3 around ¢t = 27. Group 4 begins merged with Group 1, splits off around
t = 5, then merges with Group 2 for t = [13,24] after which it splits off and maintains its own
identity for the remaining time.

A local clustering method that allows the latent mean curves to be differently clustered in
different sub-domains has many advantages over a global clustering paradigm. For multiple time
series data, where each constituent series corresponds to a different unit in the study, local clustering
can eliminate redundant clusters by allocating two units to the same local cluster when they behave
similarly and to two different local clusters when they behave differently.

This ability to locally cluster constituent time series also provides a natural framework for
detecting interesting change points for time series with recurrent cycles. A time point within

the cycles’” domain is defined to be a change point when two or more series can be seen merging



or splitting at that point. Most existing methods for change point analysis for time series with
cyclic patterns aim to identify change points such that the cycles that follow the change point are
different from the cycles before in mean or variance. They often make restrictive assumptions,
such as requiring that there be only one single change point in the entire measurement period, or
requiring that sliding windows of a fixed size be specified to divide the time series into comparable
segments, etc. (Aminikhanghahi and Cook| 2017; Reeves et al., 2007; |Li et al.,[2020). In contrast,
the local clustering method proposed here is capable of detecting change points when the cycles
deviate for only a portion of their domain. It requires minimal supervision and is able to detect
multiple change points within the cycles’ domain. To do this, we first cut the overall series at the
points of recurrence to create multiple time series, then left-align the component series and apply
our local clustering algorithm to identify dynamic changes in the cluster means. As we will see
in applications, identifying change points in this manner often provides more nuanced and more
useful information than what may be obtained using traditional methods.

The literature on local functional clustering is sparse. To our knowledge, existing methods
are exclusively Bayesian and rely on variations and adaptations of Dirichlet process priors (Suarez
and Ghosal, 2016; Petrone et al., 2009; Nguyen and Gelfand, 2011). We propose a novel and
computationally efficient method for local time series clustering that we call the hidden Markov
functional local clustering model (HMFLCM). The HMFLCM works in two steps. In the first
step, the data are liberally partitioned into global clusters. In the second step, the global cluster
labels are locally re-clustered using a mixed-effects model. The data in each group are modeled by
flexible mixtures of quadratic B-splines. To induce local clustering across different global cluster
labels, we introduce latent cluster indicators for the basis coefficients corresponding to each global
cluster label at each time point. These latent indicators are modeled using a hidden Markov model
(HMM) where indicators for different pseudo-covariate levels at the same time point are allowed to
take on the same value. At time points for which the latent indicators take on the same value, the
basis coefficients for the corresponding fixed effects means are equal. This results in a mechanism
where the cluster memberships as well as the number of clusters can change with time as the cluster
means merge and split off as dictated by the data.

The methodology presented here is developed concurrently with the work of |Paulon et al.

(2023) and recycles some modeling techniques and ideas while also differing from them in a few key



ways in its motivation, detail, and application. The focus of [Paulon et al. (2023) is on clustering
the levels of categorical covariates to determine their local importance in longitudinal data with
homoscedastic errors. In contrast, our work focuses on clustering a fixed number of time-series
profiles with time-varying error variances in the complete absence of any covariates.

We use the HMFLCM to analyze a state-by-state Covid-19 daily case change data set to see
whether state pandemic policies produced significant differences in the viral spread. We also
demonstrate the HMFLCM’s ability to detect change points using a long-range temperature data
set from the National Climatic Data Center which measures the daily maximum temperature of
Austin, Texas from 1938 to 2021. A third example, analyzing Federal Housing Finance Agency
(FHFA) housing price index data for various metropolitan areas, is presented in the supplementary
materials. We will see that, while global clustering can recover well-defined underlying groups,
the global means can lack meaningful interpretations. By removing local redundancy and defining
clear points of divergence between group means, much more meaningful cluster profiles can emerge.

The rest of this article is organized as follows. Section |2| develops the HMFLCM. Section
outlines posterior inference tools. Section 4| describes how the HMFLCM can be used for change-
point analysis in a multiple time series setting. Section |5/ demonstrates the analytical advantages
of the HMFLCM in real-world applications. Section [6] demonstrates the accuracy of the HMFLCM
on simulated data. Section [7] contains concluding remarks. Additional details, including the choice
of hyper-parameters and Markov chain Monte Carlo (MCMC) algorithms for posterior inference,
are deferred to the supplementary materials. R codes implementing our method are also included

in the supplementary materials as separate files.

2 Functional Clustering

In this section, we develop our Hidden Markov Functional Local Clustering (HMFLCM) method.
The HMFLCM is a two-step methodology that first uses global functional clustering to generate
pseudo-covariate groupings, which are subsequently used during the local clustering step.

In our functional framework, sequentially generated data y; = (yi1,...,v.r)" for series i €
{1,...,n} are assumed to be noisy realizations of some true group mean curves plus their associated

subject-specific random effects curves. As will also be the case with our real-world examples, we



assume the data points to be measured at the common set of time points ¢t € {1,...,T}. To
simplify notation, we let ¢ denote both specific time stamps as well as generic time points in the
domain of interest [1,7]. The recovery of the underlying mean curves and the associated locally
varying clustering patterns is the primary objective of our analysis.

In this section, we first discuss our global clustering method. We then build our local clustering
mixed-effects model, describing in detail how the fixed effects, random effects, and heteroscedastic
error components are specified. In what follows, the subscript g serves to indicate model com-
ponents, parameters, and variables associated with global clustering. Likewise, the subscript ¢

signifies model components, parameters, and variables associated with local clustering.

2.1 Step 1: Global Functional Clustering

In this section, we present the methodology for the creation of a pseudo-covariate that partitions
the subjects into identifiable groups for local clustering. Specifically, we seek to partition N series
yi=1,...n into D underlying global clusters, each with a functional mean profile f, ,(¢) that describes
the average behavior of the response curve over the entire period of observation [1,7T]. Conditional
on the global cluster assignment z,, = z for subject i, we characterize each y; as an error-prone

realization of an unknown functional mean f, . observed at T" time points,
iid
(Yitl2gs = 2) = fo.2(t) + €giits  Egiin ~ Normal(0, 03,5)- (1)

We assume the errors, €4, to be independent and identically distributed to keep the model
simple and the mean profiles easily identifiable. The main purpose of this first clustering step is to
recover a liberal number of global clusters to be merged in the second local clustering stage. In all
our experiments, the global model described in Equation served that purpose sufficiently well.

Let the cluster membership variables be independently Dirichlet distributed as

2g; ~ Dir(ay, ..., ay).
We model the mean profiles f, .(t) as mixtures of quadratic B-spline bases (Figure [2)) as

Foo(t) = 002, By e ko (t),



where by(t) = {bg1(t), ..., bgx,(t)}" are a set of B-spline basis functions and 8, , = {321, Bz, } "
are a set of unknown coefficients to be estimated from the data. We choose b,(t) to be a set of
evenly spaced quadratic B-splines. Quadratic B-splines are easy to compute and are a popular
choice for modeling flexibly varying smooth functions (de Boor, [1978).

Finally, we adopt hierarchical conditionally conjugate priors on the spline coefficients and the

error variance terms

B,.~MVN(0,%,5), gz~ IW(rg0,S40), o2~ Inv-Ga(ag,, by.c)-

g,

Posterior inference is based on samples drawn using a Markov Chain Monte Carlo (MCMC) sam-
pling scheme. The full conditionals for the parameters are listed in the supplementary materials.

To account for the possibility of label switching, we use the posterior co-clustering probabilities
to determine the final global cluster assignments. The posterior co-clustering probability of the
global groups is empirically computed by evaluating the proportion of posterior samples which
cluster certain series together. The global cluster memberships are then treated as the levels of
a pseudo-covariate for the purpose of local clustering, in which subjects belonging to different
pseudo-covariate levels may merge into the same group at local neighborhoods in time. While it is
desirable that the global and the local groups be learned simultaneously, it is not easy to achieve
this in an aggregated posterior sampling scheme as the local groupings become difficult to identify
when the subjects can potentially also change their global assignments in each draw.

The correctness of the overall local clustering results is dependent upon the global clustering
method’s ability to 1) correctly cluster together individuals that belong to the same global group
but also more importantly 2) separate the individuals that do not belong to the same global group
even at the expense of overestimating the number of global clusters. To illustrate this, we varied the
number of spline knot points, K, and the maximum allowable number of global clusters, denoted
henceforth by D, and evaluate the impact of these hyperparameters on the correctness of both the
global and local clustering in Table [3]in Section [l Additionally, while it is not necessary to use a
B-spline mixture for the global clustering step, we find that the B-spline method produces global
clusters better suited for local clustering than alternate methods such as K-means. We evaluate the
impact of alternative global clustering methods on local clustering in the supplementary materials.

Consistent with Ruppert (2002), we found that when the smoothness is controlled by a data-



adaptive penalty parameter, the results are robust to the choice of K, as long as a minimum
number of knots is used. We use the Watanabe-Akaike information criterion (WAIC) (Watanabe
and Opper, [2010) as well as leave-one-out cross-validation (LOO-CV) (Gelman et al., 2014) to
choose such lower bounds.

We also found that accurate local clustering results are achieved when D is over-specified. Sim-
ilar to redundant mixture components in overfitted mixture models (Rousseau and Mengersen,
2011), superfluous latent classes become empty during the global clustering step if the Dirich-
let prior on the class proportions is sufficiently vague. Additionally, by construction, the local

clustering step can also merge redundant global clusters.

2.2 Step 2: Local Functional Clustering

A mixed-effects functional clustering method was recently introduced by Paulon et al. (2023) which
performs local clustering of longitudinal functional profiles associated with different levels of an
associated observed categorical covariate. Local clustering of the fixed effects was induced by
allowing portions of the different fixed effects curves to merge. We adapt this method with some
simplifications to locally cluster functional time series data in the complete absence of any observed
covariate, where we instead treat the d non-empty global clusters recovered in stage one as the
levels of a categorical pseudo-covariate z, € Z, = {1,...,d}. Note that d < D by design. The
global cluster membership value of each subject is stored in the variable z,;, which doubles as the
1-th series’ associated pseudo-covariate assignment.

With the existence of a fixed pseudo-covariate assignment, a mixed-effects analysis becomes
viable. The fixed effects describe the mean behavior of different pseudo-covariate levels, while the
deviations of the individuals within each group are explained by the associated random effects.
The random effects explain some of the variability at the individual level, allowing for smooth
fixed effects recovery and meaningful fixed effecting merging. This is formalized as the following

generic class of functional mixed models

ind
Wit | 290 = 29) = fozg(8) Fugi(t) +erins wei(t) ~ fous  €riy ~ foets (2)

where f. (t) is the time-varying fixed effects function corresponding to pseudo-covariate level z,,

ug,i(t) are subject-specific time-varying random effects with random effects distribution f,, and



1.00-

0.75-

0.50-

Spline Value

0.25-

0.00-
0 10 20 30 40
Time

Figure 2: An illustration of quadratic B-splines used in our method. In this figure, they are created
with internal knot points corresponding to the deciles of the observed time locations such that in
total we have K = 12 bases.

€r,¢ are random errors with distribution fy ;.

2.2.1 Locally Varying Fixed Effects

Local clustering of the fixed effects is controlled by an HMM. Let the fixed effects for each z, be

constructed as

Fog () = S0t Brozy wei (), (3)

where by(t) = {bp1(t),...,bek,(t)}" are a dense set of K = T + 1 quadratic B-splines with a
knot point at every observed time location ¢ € {1,...,7T}, and By, = {Bezg1s -3 Bezy i, b are
unknown coefficients to be estimated from the data. Choosing the knot points in this manner
allows the cluster mean curves f;. (t) for different values of z, to merge or split at every observed
time location. Thus, K = T + 1 is the total number of bases and the value of f; . (f) at each t =k
is dependent upon the values of the {f., x, B, (k+1)}> each with a weight of 1/2 (Figure [3)).

For two levels z, # z, of the pseudo-covariate, local clustering in the fixed effects is induced
if at location t, fi.,(t) = frs(t). At other locations ¢’ the fixed effects can be different, that
i8, foy(t') # fo(t'). This is achieved by allowing elements of 3, and By, to be shared

Bezgk = B&ZM at some locations k but be different S, » # ﬁz,z;,k' at the other locations &’.

9



The sharing of spline coefficients can be facilitated across any combination of pseudo-covariate
levels and is not limited to the equivalence between only two levels of z,. To facilitate such local
clustering, a set of local latent variables z;g ) e {1,...,d} denoting the local cluster assignment of

a group z, at knot point k is introduced such that

z K
{foay () | 2 = 20i} = S0y By abe(),

(4)
or equivalently, (B, | zéz,f) = 20k) = By b
Let Zg,k = {Zg,k Zé l:) ZokyRg = , d} and B;k {5£ ook D20k € Zg k} The set of B- sphne

zg)>

coefficients to be estimated at location k is then Bj,. When the zé s are assigned probability

models supported on Z,, the number of local clusters, that is, the number of distinct values taken

on by the Zz (2a)g, | Z¢ |, must be less than the number of global clusters | Z,| = d. Specifically, when

z§7k) = ZM for two different levels z; and 2, of z,, the spline coefficients at location k are equal

between the groups z; and 2,. Using quadratic B-splines, there are two splines contributing the
(22

function at each time point. At time point ¢ = k, if both zézkl) = ZM and z, k)+1) = 2} (k)+1)7 the

value of the underlying fixed effects curves are equal, i.e., fy., (t) = fo.,(t). The series belonging

to the global clusters z; and z; are then co-clustered at time ¢ = k. If, on the contrary, the z, k) s

corresponding to two different levels of z, are different, the underlying curves there will also be

Figure 3: Graph of functional HMM model using quadratic B-splines.
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We now consider the problem of specifying probability models for the zézlj )s and the B oy S
that appropriately accommodate temporal dependencies across k. The temporal evolution of the

latent local cluster indicators zé;z,f), k=1,..., K, are modeled using HMMs as

10



(Zlg,z’g) | zé;zk?zl = ngk_l) ~ Mult<7ri’zqk),l,17 et 7W£ji),1,d)'

Hierarchical Dirichlet priors are assigned to the transition probabilities with gamma hyper-

priors on the concentration parameters

m=(m,...,mq)" ~Dir(a/d,...,a/d), a~ Ga(a,b).

)

The priors for the atoms (7, , ;, conditional on the zézkg 's and the coefficients at the previous

locations, for k =2,..., K, are constructed sequentially as in [Paulon et al. (2023) as

* 2 . (2e,1)
| | Normal (55 G ,05,1) if |3£7,~C | >0,
/6* - (Zg) . (Ze’k) 5 e k—1
Lz 1ok {zg 21 2€3, 7}

Normal(y5,0, 05, ) otherwise,

where gzlﬁ"“) = {z, : zézkg) = 2y} is the set of levels of z, that, at the location k, are assigned

the label zy . The prior in (5) centers the B-spline coefficients around the ones ‘expressed’ at the
previous location, penalizing their first-order differences. More specifically, the B-spline coefficient
characterizing a local mean curve at knot location £+ 1 is encouraged to be close to the coefficient
characterizing that same local mean curve at the previous knot point k. This helps ensure that
the fixed effects curves are smooth and robust to outliers.

The coefficients that are not associated with any levels of z, are assigned a normal prior with a
large variance Uéo, which we set at 5 times the variance of all data points. The initial coefficients
are assigned non-informative flat priors as ﬁfﬁk ~ 1. The smoothness of the curves is controlled

by the parameter 0%71, which is assigned a prior, allowing it to be informed by the data. Let
O‘g,l ~ C+(O, 1),

where C*(a,b) denotes a half-Cauchy distribution (Gelman, 2006; Polson and Scott, 2012) with
location parameter a and scale parameter b.
Borrowing information ‘vertically’” across subjects and ‘horizontally’ across time points, we are

able to efficiently estimate the fixed effects as seen in Section

11



2.2.2 Locally Varying Random Effects

We model the time-varying random effects components uy;(t) as

ugi(t) = Snt Braiwbew(t),
ﬁﬁ,u,z‘ ~ MVNKz{Ov (0-1:,(2111(2 + U;ipu)_l}a (5)
oo, ~CH0,1), oi,~CH(0,1),

where B, ; = (Bewit, - - - Beaix,)  are series-specific spline coefficients, and MV Ny, (i, ) denotes
a K dimensional multivariate normal distribution with mean g and covariance 3. We let, K, =
T +1 for the random effects curves as well. We choose P, = DI'D,,, where the (K — 1) x K matrix
D, is a matrix such that D, 3, computes the first order differences in 3,,, ;.

The model thus penalizes Z,[f:l(VBg#ﬂ-)Q = 6@T,u,iPu:3£,u,ia the sum of squares of first order

2

u,s

differences in 3,,,; (Eilers and Marx, [1996). The random effects variance parameter o, , models

the smoothness of the random effects curves, smaller o , inducing smoother u;(t)’s. Additional

S

variations from the constant zero curve are explained by ag,a. The absence of random effects is
signified by the limiting case o), , = o, , = 0.
The prior hyper-parameters of our model are listed in Section S.1 of the supplementary mate-

rials. They are all chosen to keep the priors non-informative relative to the likelihood.
2.2.3 Heteroscedastic Random Errors
We assume the errors to be independently normally distributed with time-varying variance as
erar ™ Normal{0, 02, ()} (6)
We model O'Za(t) using another smoothly varying mixture of quadratic B-splines as
02 (1) = 0t exp (Brea)boza(t),  Bye ~ MVN(0,72P,5z). (7)

Similar to the global clustering basis specification, we let b,2(t) = {b,21(t),...,bs2 x_,(t)} be a
set of quadratic B-splines with knot points corresponding the deciles of the time points. We set
K2 to the deciles of the time points to allow for flexible but smooth variance fluctuations. We

choose P,2 = D1, D,2, where the (K,2 — 1) x K,2 matrix D,2 is such that D,23,. computes the

12



first order differences in B,.. The model thus penalizes 3172 (V3,2)? = B%P,2/3,2, the sum of
squares of first order differences in 3,. (Eilers and Marx, 1996). The parameter 72 controls the
smoothness of the dynamic variance. Smaller values of 72 result in a dynamic variance curve with
a smaller range. We assign 72 a mildly informative Inv-Ga(a,z, b,2) prior but found the posterior
of og’g(t) to be fairly robust to changes in the values of 72. We show our model’s ability to correctly
recover the dynamic error variance structure of our simulation experiment in the supplementary
materials. In additional numerical experiments reported in the supplementary materials, we show
that allowing the error variance aza(t) to vary over time can significantly improve local clustering
results by safeguarding against over-fitting the fixed and the random effects. An evaluation of the
HMFLCM’s robustness, when the true error variance stays constant over time, is also presented in

the supplementary materials.

3 Posterior Inference

Posterior inference for the proposed functional mixed model framework is based on samples drawn
from the posterior using a dynamic message passing MCMC algorithm which carefully exploits
the conditional independence relationships encoded in the model. Since the levels of z, create
a partition of the data set according to the pseudo-covariate level, for different values of z,, the
latent sequences zgz") = {zéf,f),k = 1,..., K} also associate with disjoint data blocks and are
conditionally independent in the posterior. The sequences can thus be updated using separate
message-passing schemes for different values of z,. That is, the HMM update for the latent sequence
ZEZQ) corresponding to each z, is dependent only on the data and parameters associated with that
2g, leading to d conditionally independent update blocks. Details have been deferred to Section
S.2 in the supplementary materials.

Lastly, while our method is technically clustering curves, it does so by clustering the latent
variables associated with each spline coefficient at each time point, and so the latent space scales
with the number of global clusters and the number of knot points. The recursive message passing
scheme we used to implement our functional hidden Markov model grows only quadratically with

the number of global clusters and linearly with time. For the Covid-19 data set featuring 50 states

and Washington DC, each with 156 time points, analyzed in Section 3.1 below, the run time for

13



1000 global clustering iterations, and 3000 local clustering iterations on a standard desktop with

an Intel(R) Core(TM) i7-8700 3.2GHz with 16.0 GB of RAM was approximately 30 minutes.

4 Change Point Analysis via Local Clustering

The proposed local clustering method provides a principled albeit nontraditional framework for
detecting meaningful change points for time series with recurring cycles. To apply the HMFLCM,
each cycle within the larger series is treated to constitute a component in a multiple time series.
These individual series can then be locally clustered to find local change points which affect only
portions of each cycle. Here we define a time point to be a change point whenever a merging or
a splitting behavior is observed for the local mean curves associated with different global cluster
indices at that time point. More specifically, a time point t; is a change point if there are two
global clusters, without loss of generality, say z, = 1 and z, = 2, for which either fy;(t) = fo2(t)
immediately before t, but fy1(t) # fi2(t) immediately after ¢, (i.e., the mean curves split off), or
conversely fy1(t) # fio(t) immediately before to but fr1(t) = fo2(t) immediately after ¢y (i.e., the
mean curves merged together).

Alternatively, one could think of running a change point analysis on each constituent time
series separately and then clustering the resulting fits. It would however be hard to cluster the
sub-segments, especially when they do not line up. It is also not guaranteed that a change point
will be identified for any individual series in the first place. More importantly, such an analysis,
when possible, while potentially useful in many applications, would answer a different question from
the one we focus on in the applications in Section [5| Traditional change point analysis identifies
points for which the mean or variance of the entire series changes (Aminikhanghahi and Cook,
2017; Reeves et al., 2007; |Li et al.,|[2020). However, we are primarily interested in capturing the
local changes between different cycles within the same series. In particular, for recurrent events
data, where each constituent time series is defined as one iteration of a recurring cycle, we want to
find change points that occur when the trajectory changes significantly between different cycles.
In other words, we are interested in how the cycles differ from each other and where in the cycles

these differences occur, but not in the individual change points within each cycle.
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5 Applications

In this section, we discuss the results obtained by our method when applied to two real-world
data sets from two different application domains, public health and climate science. In the public
health application, we focus on demonstrating how the ability to partition data into flexible time
groups reveals interesting patterns that align with reasonable explanations arising from domain
knowledge. In the climate science application, we focus on demonstrating how local clustering can
also detect meaningful change points in the constituent trajectories, which can potentially provide

very useful information for energy engineers.

5.1 Covid-19 Data Set

This data set tracks the daily change in confirmed cases of Covid-19 in every state in the United
States plus Washington DC. The data comes from the Johns Hopkins University Center for System
Science and Engineering (JHU CSSE).

JHU CSSE collects their confirmed cases from a number of sources, including the World Health
Organization, and the U.S. Centers for Disease Control and Prevention. The confirmed cases are
tracked at the county level, so we aggregated the data to compare caseloads by state. For each
state, we use the number of new daily cases per hundred thousand people to create a comparable
rate of contagion across states.

At the time of writing of the first version of this article, there were few scientifically proven
policies for controlling the spread of the SARS-COV2 virus responsible for the Covid-19 pandemic.
As such, the daily case-load data provide a rough benchmark for the efficacy of epidemiological
policies instigated in response to the pandemic. The United States presents a uniquely interesting
case study in disease control because the patchwork, state-by-state nature of the U.S. Covid-19
response allows many different response strategies to be easily juxtaposed and compared.

Below we cluster the 51 (50 states plus Washington D.C.) temporal profiles, each collected
from January, 22nd 2020 to June, 29th 2020. We use seven latent classes for the global clustering
stage as determined by the LOO-CV metric. Table [1] lists the states belonging to each of these
global clusters. Figure [4] shows the functional means recovered by the global and local clustering

steps. The estimated posterior co-clustering probabilities in Figure [5| quantify the evolution of local
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co-clustering assignments over time.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7
Alabama Alaska Arizona Colorado Connecticut Delaware Idaho
Arkansas Hawaii Indiana Massachusetts Tllinois Kansas
California Maine Michigan New Jersey Towa Kentucky
Florida Montana Pennsylvania New York Louisiana Minnesota
Georgia Oregon South Dakota Rhode Island Maryland Missouri
Mississippi Vermont Virginia District of Columbia | Nebraska | New Hampshire
Nevada West Virginia New Mexico
North Carolina| Wyoming North Dakota
South Carolina Ohio
Tennessee Oklahoma
Texas Washington
Wisconsin

Table 1: The global clusters as found by step one of the algorithm. Each group functions as a level
of the pseudo-covariate used for local clustering. Refer to Figure @ for local clustering patterns.

The mean profile of each group can be seen in Figure [4aj and the group memberships are listed
in Table[I] The states in Groups 2 and 7 maintain the lowest and flattest mean profiles. This may
be explained by the fact that the states in Group 2 have relatively low population densities and
states in Group 7 mostly sit in the center of the contiguous United States. The states in Group 1
have a higher average caseload but do not exhibit a large increase in cases in the month of June.
Groups 1 and 3 feature states whose caseloads increase sharply throughout June. Groups 4 and
5 contain states that had higher new case rates in April but had reduced their contagion rate by
June.

Although the information on geographical closeness was not incorporated in our model, Group 5
contains many geographically proximate states with New York at its center. This is not surprising,
given the high volume of traffic between these states, which likely contributed to their similar case
trajectories. Although the global clustering method effectively partitions states by their distinctive
overall trajectories, the local clustering results provide a clearer picture of how changes in the
pandemic policy of certain states produced different caseload trends in those states. The results
of the local clustering method lend support to the argument that many states opened nonessential
businesses prematurely, leading to a significant uptick in the spread of the virus. This conclusion is
largely consistent with medical news reports from that time (Berger,[2020). Specifically, the method
was able to identify many of the first reopened states that opened non-essential businesses on or

soon after May 1st (Lee et al., 2020). Texas, California and Florida (Group 1) saw marked increases
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Figure 4: Global versus local clustering means for the Covid-19 data set. The local clustering
mean curves support a different interpretation than the global clustering means. While both figures
display an increasing trend for Groups 1 and 3, the local clustering means show the divergence
of the Groups 1 and 3 means from their previously merged clusters in June, indicating that the
states belonging to these groups started behaving significantly differently around that time. This
information is not clear from the global clustering results alone.
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Figure 5: Results for Covid-19 Data: Co-clustering patterns changed remarkably between April
and June, 2020. While it is interesting to observe the merging changes in the fixed effects means,
posterior co-clustering probabilities such as the ones in this figure give a more quantitative picture
of how the states’ co-clustering behavior changes over time.

in confirmed cases a month after relaxing shutdown measures. Arizona (Group 3) experienced a

particularly rapid rate of increase in new cases following reopening. Considering the 2-14 day

incubation period for the SARS-COV2 virus (Center for Disease Control, 2020), the typical delay

between the implementation of a new policy and a visible, large-scale effect on the populace is
approximately one month. The dates corresponding to the divergence in group means for Groups
1 and 3 are in line with the expected lag following the implementation of their divergent reopening
policies. Our clustering results thus provide empirical evidence that premature state reopening

was an important factor contributing to the fast spread of the virus.

5.2 Austin Temperature Data Set

This data set comes from the National Oceanic and Atmospheric Administration (NOAA) and can
be accessed using the Climate Date Online tool (https://www.ncei.noaa.gov/cdo-web/search). The
data set includes the daily maximum temperature recorded at the Camp Mabry weather station

located in Austin, Texas, from January 1, 1938, to December 31, 2021. We segment the daily
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temperature series by year to form 83 yearly cycles. For simplicity, we truncate some of the series
so that there are 365 days in each year. We let D = 6 and K, = 12 for the global clustering
step. The goal is to determine if there are significant differences between the temperature series of
different years, and if so, during what parts of the year are such differences the most pronounced.

Accurate determination of change points in the temperature record is important for climate
scientists to distinguish between detectable changes in climatic trends and short-term stochastic
variations inherent in natural systems (Yu and Ruggieri, 2019). Pinpointing the changing trends in
temperature is also an important problem for the energy sector. In hotter climates such as Texas,
air conditioning energy loads make up a significant portion of overall electric grid demand. |Perez
et al. (2017) showed that AC energy use increases linearly with outdoor dry-bulb temperatures once
temperatures are higher than a critical degree. Therefore, accurate forecasting of when the outdoor
temperatures will be high is critical for electricity providers to plan their generation capacity

appropriately and avoid costly mistakes.

The results of our clustering analysis are in accordance with the globally observed warming
trend. Table [2|includes the cluster memberships for each global cluster. Though the member years
of each cluster are not all contiguous, the average of the member years in each group provides a
good heuristic for comparing the temporal order of each cluster. We see from the local clustering
patterns in Figure [6b|that temperature increases are not uniform throughout the year. During the
spring and the fall, all of the years collapse into a single cluster. Marked differences in temperature
patterns include distinctively warmer weather in January, earlier onset of warming weather in
spring, and extended hotter summers. Warmer winters are indicated by the co-clustering pattern
starting January 1st (¢ = 1, Figure , which shows Group 1 and Group 5 merged with 99%
probability. Groups 1 and 5 have the highest average membership year and correspond to the blue
line peaking above the rest of the clusters at ¢ = 1 in Figure By the 100" day of the year,
Groups 1, 3, and 5 split off from Groups 2, 4, and 6, with higher temperatures (blue line). By the

2" day of the year), Group 5 (blue) splits off from Groups 1 and 3 (magenta)

summer solstice (the 17
to form an extra hot summer cluster. Group 1 leaves Group 3 (magenta) to rejoin Group 5 (blue)
around day 225 resulting in extended high temperatures that last through autumn. These results
give a more nuanced picture of how temperatures have increased in the past few decades. Spring

temperatures rose first, followed by hotter autumns, followed by more intensely hot summers. The
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Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
1939 1940 1948 1943 1954 1968
1951 1941 1950 1945 1956 1976
1955 1942 1952 1946 2006 1979
1963 1944 1953 1947 2008 1983
1990 1957 1967 1949 2009 1997
1998 1958 1971 1959 2011
1999 1960 1980 1962 2012
2000 1961 1984 1964 2017
2005 1966 1988 1965 2020
2013 1970 1989 1969
2016 1973 1994 1972
2018 1974 1996 1977
2019 1975 2003 1981
2021 1978 2010 1982

2014 1985
2015 1986
1987
1991
1992
1993
1995
2001
2002
2004
2007
Mean = 1991.93 | Mean = 1961.67 | Mean = 1982.13 | Mean =1974.19 | Mean =1999.22 | Mean = 1980.60

Table 2: Global clusters in the Austin temperature data found by our method. Local clusters
subsequently found by our method are shown in Figure

results of this analysis suggest that energy companies should plan for hotter temperatures to begin
earlier in the year, and for summer temperatures to persist for longer. Temperatures in early spring
and late autumn/early winter appear to have a wider variance than temperatures in the middle of
the year. However, it appears that the dynamic error variance of the HMFLCM was able to absorb
the heterogeneity, allowing the fixed effects means to merge into one cluster during portions of the
year where temperatures have a wide spread. This could be indicative of the fact that while these
portions of the year experience more variable temperature changes within a year, there is not a

systematic change between earlier and later years.

In both real-world examples, global clustering produced well-fitted but somewhat obfuscated
results while the local clustering results allowed us to draw more precise conclusions. In particular,
the Covid-19 local clustering results are able to provide time-specific cluster-changing behavior,

lending some credibility to the argument that the hasty reopening of the economy led to the
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Figure 6: Global versus local clustering means for the daily maximum temperature of Austin data
set. The data are segmented by year to form comparative units. The global clustering results show
that there is a general warming trend, but the local clustering results are able to pinpoint what
portions of the year are experiencing the largest degree of change.

proliferation of cases. Likewise, the Austin temperature data results demonstrate the ability of our

approach to find interesting change points in the data. However, both applications discussed here
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Figure 7: Results for Austin temperature data: Co-clustering patterns show distinct co-clustering
profiles in winter (t=1) versus summer (t=172).

involve highly complex dynamics influenced by many unobserved factors and our results must not
be over-interpreted as definitive evidence in favor of our drawn conclusions over other plausible
alternatives. For instance, it would have been interesting to also be able to incorporate a-priori
known cross-constituent dependency patterns in the model (e.g., the geographical proximity of
the states in the Covid-19 data set, or the proximity in time of different years in the Austin
temperature data set) which could potentially provide even more meaningful clustering patterns
and inferences. Particularly for the Covid-19 data set, it would have also been more rigorous to work
with a likelihood function that accommodates zero inflation. Such adjustments are however not
straightforward, both from a modeling and a computational perspective, and are left as directions

for future work.

6 Simulation Studies

In this section, we evaluate the performance of our local clustering method on a simulated data set
that mimics the latent mean trajectories seen in the Covid-19 data set. As described in Equation
, each y;; is the summation of one of the four mean functions shown in Figure , an individual-

specific random effects curve and a Gaussian error with time-varying variance (see Figure S.3 in
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the supplementary materials). We simulated five constituent time series for each mean function.

We compare the performance of our local clustering method to three other methods - partitional
K-means clustering, divisive hierarchical clustering (DHC), and spectral clustering (Maharaj et al.,
2019, Chapter 3). The data are generated with random effects and noise, which can make it difficult
for traditional clustering methods to properly align the different series during clustering. To ensure
that these comparison methods are not at a disadvantage, we use dynamic time warping to improve
the shape-matching ability of partitional clustering, and a shape-based distance metric (Paparrizos
and Gravano, [2015) to measure the similarity between the constituent time series to be used in
hierarchical clustering. We implemented the dynamic time-warped K-means clustering using the
tsclust function from the dtwclust package in R. DHC is implemented using the hclust package
in R. We also included a spectral clustering method in our comparisons, implemented using the
Spectrum package in R.

We evaluated the performance of these methods in a variety of simulation scenarios. In Ta-
ble , we report the average point-wise root-mean-squared error (RMSE) between the true data-
generating cluster means and the cluster centroids found by the other methods, and between the
true data-generating cluster means and the local cluster means estimated by our method. Addition-
ally, we report the posterior co-clustering error, defined as Lo-norm of the difference between the
true co-clustering matrix and the estimated co-clustering matrix. For each time point ¢, we define
the estimated subject-level co-clustering matrix MY = ((m; ;)), where, for i < N,j < N,i # j,
m;; is the probability that y; and y; belong to the same group. The proposed HMFLCM consis-
tently substantially outperformed the other methods.

The results of these experiments exhibit the HMFLCM’s ability to recover the true underlying
mean functions and associated clustering patterns with great accuracy. For the global clustering
first stage of our approach, we initiated the MCMC algorithm with D = 6 allowable latent classes.
In simulation experiments, our proposed approach substantially outperforms the competitors which
generates extra clusters, leading to many mistakes in co-clustering the component series. See,
for example, Figure |8] which shows the estimates obtained by the K-means method, our most
robust competitor. By allowing for local clustering while also accounting for unit-specific random
effects, the proposed HMFLCM method is able to produce much better results. We see that

while the K-means method is able to capture the overall shapes of the time series trajectories, it

23



20-

15-

5 %
W‘A}\ SR
0- P B
0 10 20 30 40
Time

mm Group 1 Group 3 === Group 5
Group 2 == Group 4 Group 6

Figure 8: Results obtained by the K-means method for simulated data generated with time-varying
error variance. Global means recovered with D = 6 clusters. While the cluster centroids picked
out by the K-means model match the general shapes of the data-generating functions, the overall
profiles are jagged and include extraneous groups in the bottom clusters.

produced a few redundant global clusters, and the estimated cluster mean curves are quite ‘pointy’
as well. In contrast, Figure [J shows that the HMFLCM is able to identify and eliminate the extra
groups obtained by the global clustering method. The estimated local mean curves are also very
smooth. Additionally, the resultant co-clustering pattern between groups is in agreement with the
underlying truth with a high degree of accuracy across all time points. Figures S.4, 5.5, and S.8 in
the supplementary materials illustrate that our method is also able to recover the true underlying
individual-specific curves very well.

We also test the local clustering method’s sensitivity to hyperparameters by varying D from 3
to 7 (Dye = 4), and varying the global clustering knot locations to correspond to the quantiles,
septiles, and deciles of the time points K, = 6, K, =9, and K, = 12, respectively. Table [3| shows
that our proposed local clustering method produces vastly superior results compared to other global
clustering methods. Our local clustering method is also fairly robust to the specification of K,. The
local clustering method naturally achieves the best results when the allowable number of global
groups is equal to the true number of groups, D = Dy, but allowing D > D;,.,. achieves better

results than allowing D < Dy... In contrast to the K-means clustering, the performance of the
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local clustering method does not deteriorate as D increases. Thus, we recommend choosing a large

initial D when using our method.

Mean Point-wise RMSE
Local Clustering K-means DHC Spectral
K,=6 K,=9 K,=12
D=3| 021 0.21 0.21 0.67 1.58 0.73
D=4| 014 0.14 0.14 0.65 3.19 0.30
D=5| 0.14 0.14 0.14 0.61 2.97 0.62
D=6/| 0.14 0.14 0.14 0.63 2.80 0.90
D=7| 014 0.14 0.14 0.65 2.68 0.97
Mean Co-clustering Error
Local Clustering K-means DHC Spectral
K,=6 K,=9 K,=12
D=3]| 6.19 6.19 6.19 4.41 11.87 6.59
D=4]| 140 1.40 1.40 5.52 8.45 4.27
D=5| 191 1.91 1.91 5.36 7.56 5.13
D=6| 191 1.91 1.91 5.60 7.01 5.59
D=7| 191 1.91 1.91 6.14 6.29 6.21

Table 3: Average point-wise RMSE and co-clustering error for K-means clustering, divisive hier-
archical clustering (DHC), spectral clustering, and our proposed local clustering method. For our
approach, we varied the number of total global groups D as well as the number of knots K, used
in the global clustering stage. The local clustering naturally performs best when D = Dy, = 4,
and better when D > Dy, than when D < Dy,.,.. Allowing D to be over-specified however does
not negatively impact the results of the local clustering significantly.

The results of some additional simulation experiments and some additional graphical summaries

are presented in Sections S.3 and S.4 in the supplementary materials.

7 Discussion

In this article, we proposed a two-stage method, HMFLCM, for locally clustering functional time
series data. Previously existing methods for clustering multiple time series data require that the
cluster membership of each component remains the same for the entirety of the data collection
period. HMFLCM combines B-spline mixtures with HMMs through the use of an intermediary
pseudo-covariate to perform local clustering of multiple time series data, where the cluster mem-
bership of each constituent time series, and hence also the total number of clusters, can vary with

time. Using the HMFLCM, a constituent time series is able to separate from its original cluster
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Figure 9: Results obtained by the proposed HMFLCM for simulated data generated with time-
varying error variance. Panel (a): Results obtained by the first-stage global clustering method with
D = 6 initial clusters. Note that the trajectories recovered for the later time points were particularly
inaccurate. Group 6 was empty and is therefore not included in the subsequent local clustering
step. Panel (b): Results obtained by the final-stage local clustering method. The issues with global
clustering were mostly rectified by co-clustering the wayward units with correct groupings at every
time point, which resulted in the merger of Groups 2 and 3, effectively eliminating the additional
extraneous group obtained in the global clustering step. In addition, the true underlying merging
and splitting behavior of the group means were also accurately recovered. Compared to K-means
clustering, the cluster means recovered here are also much smoother.
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and form its own unique mean if it begins to behave very differently from its original cluster. Con-
versely, a time series may merge with a pre-existing cluster if its behavior changes to match the
trajectory represented by that cluster. While this ability is in and of itself a novel contribution,
our method also offers the additional advantage of increasing the interpretability of the clusters. In
all three real-world data examples considered in the main article and the supplementary material,
the local clustering results offered evidence for conclusions that would be difficult to draw looking
only at global clustering results. Being able to locally merge redundant clusters allows for a quan-
titative assertion of equivalence between clusters. Similarly, the divergence of a new cluster from a
pre-existing cluster indicates that a significant change has occurred. The posterior co-cluster prob-
abilities provide a metric of uncertainty for both possibilities. Overall, we believe our proposed
method is a nice addition to the arsenal of statistical methods available for scientific research with
multiple time series data. The method, however, makes no assumption on the long-term behavior
of the data dynamics such as stationarity, etc. It is thus not suited to make long-term predictions
which are nevertheless not very meaningful in settings where local complexities are present.
Avenues of future research include local clustering strategies that preclude the need for a sep-
arate first stage for global clustering. In addition, we are considering extensions to allow auto-
correlated errors, incorporate a-priori known cross-constituent dependency patterns, etc. We are
also actively working on extensions to local clustering models with functional domains in higher

dimensional spaces, e.g., for spatial and spatiotemporal data, etc.

Supplementary Materials

The supplementary materials detail the choice of hyper-parameters and the MCMC algorithm used
to sample from the posterior. We also include additional figures demonstrating the local clustering
method’s ability to recover individual-specific curves. The data for our simulation experiment can
be accessed as a separate csv file from the online supplementary materials accompanying this paper.
R codes implementing and demonstrating the methods developed in this article are also included in
the online supplementary materials. Manuals for the codes and a ReadMe file providing additional
details on how data should be formatted for compatibility with our codes are also included.
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