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Abstract
Understanding how the adult human brain learns novel categories is an impor-

tant problem in neuroscience. Drift-di↵usion models are popular in such contexts for
their ability to mimic the underlying neural mechanisms. One such model for gradual
longitudinal learning was recently developed in Paulon et al. (2021). Fitting conven-
tional drift-di↵usion models, however, requires data on both category responses and
associated response times. In practice, category response accuracies are often the only
reliable measure recorded by behavioral scientists to describe human learning. To our
knowledge, however, drift-di↵usion models for such scenarios have never been consid-
ered in the literature before. To address this gap, in this article, we build carefully on
Paulon et al. (2021), but now with latent response times integrated out, to derive a
novel biologically interpretable class of ‘inverse-probit’ categorical probability models
for observed categories alone. However, this new marginal model presents significant
identifiability and inferential challenges not encountered originally for the joint model
in Paulon et al. (2021). We address these new challenges using a novel projection-
based approach with a symmetry-preserving identifiability constraint that allows us
to work with conjugate priors in an unconstrained space. We adapt the model for
group and individual-level inference in longitudinal settings. Building again on the
model’s latent variable representation, we design an e�cient Markov chain Monte
Carlo algorithm for posterior computation. We evaluate the empirical performance
of the method through simulation experiments. The practical e�cacy of the method
is illustrated in applications to longitudinal tone learning studies.
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1 Introduction

Scientific background.

Scientific background. Categorization decisions are important in almost all as-

pects of our lives - whether it is a friend or a foe, edible or non-edible, the word /bat/

or /hat/, etc. The underlying cognitive dynamics are being actively studied through

extensive ongoing research (Smith and Ratcli↵, 2004; Heekeren et al., 2004; Gold and

Shadlen, 2007; Schall, 2001; Purcell, 2013; Glimcher and Fehr, 2013).

In typical multi-category decision tasks, the brain accumulates sensory evidence

in order to make a categorical decision. This accumulation process is reflected in the

increasing firing rates at local neural populations associated with di↵erent decisions.

A decision is taken when neural activity in one of these populations reaches a par-

ticular threshold level. The decision category that is finally chosen is the one whose

decision threshold is crossed first (Gold and Shadlen, 2007; Brody and Hanks, 2016).

Changes in evidence accumulation rates and decision thresholds can be induced by

di↵erences in task di�culty and/or cognitive function (Cavanagh et al., 2011; Ding

and Gold, 2013). Decision-making is also regulated by demands on both the speed

and accuracy of the task (Bogacz et al., 2010; Milosavljevic et al., 2010).

Understanding the brain activity patterns for di↵erent decision alternatives is

a key scientific interest in modeling brain mechanisms underlying decision-making.

Statistical approaches with biologically interpretable parameters that further allow

probabilistic clustering of the parameters (Lau and Green, 2007; Wade, 2023) asso-

ciated with di↵erent competing choices can facilitate such inference, the parameters

clustering together indicating similar behavior and di�culty levels.

Drift-di↵usion models. A biologically interpretable joint model for decision re-

sponse accuracies and associated response times is obtained by imitating the under-

lying evidence accumulation mechanisms using latent drift-di↵usion processes racing

toward their respective boundaries, the process reaching its boundary first produc-

ing the final observed decision and the time taken to reach this boundary giving the

associated response time (Figure 1, Panel (a)) (Usher and McClelland, 2001).

The literature on drift-di↵usion processes for decision-making is rather vast but is

mostly focused on simple binary decision scenarios with a single latent di↵usion pro-

cess with two boundaries, one for each of the two decision alternatives (Ratcli↵, 1978;

Ratcli↵ et al., 2016; Smith and Vickers, 1988; Ratcli↵ and Rouder, 1998; Ratcli↵ and

McKoon, 2008). Multi-category drift-di↵usion models with multiple latent processes

are mathematically more easily tractable (Usher and McClelland, 2001; Brown and

Heathcote, 2008; Leite and Ratcli↵, 2010; Dufau et al., 2012; Kim et al., 2017) but

the literature is sparse and focused only on simple static designs.
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(a) Drift-di↵usion processes for tone learning when data on both

response categories and response times are available.

(b) Drift-di↵usion processes for tone learning proposed in this ar-

ticle – with additional identifiability restrictions imposed to ac-

commodate scenarios when only data on response categories are

available.

Figure 1: Drift-di↵usion model for tone learning. The tones {T1, T2, T3, T4} represent the

di↵erent categories; s denotes an input category, d0 the di↵erent possible response categories,
and d the final response category. Here we are illustrating a single trial with input tone T1

(s = 1) that was eventually correctly identified (d = 1). Panel (a) shows a process whose

parameters can be inferred from data on both response categories and response times. Here,

after an initial �s amount of time required to encode an input category s (here T1), the

evidence in favor of di↵erent possible response categories d0 accumulates according to latent

Wiener di↵usion processes Wd0,s(⌧) (red, blue, green, and purple) with drifts µd0,s. The

decision d (here T1) is eventually taken if the underlying process (here the red one) is

the first to reach its decision boundary bd,s. Panel (b) shows a process with additional

identifiability restrictions (for all d0 and s, �s = 0, bd0,s = b fixed, and
Pd0

d0=1 µd0,s = d0)
considered in this article which can be inferred from data on response categories alone.

Learning to make categorization decisions is, however, a dynamic process, driven

by perceptual adjustments in our brain and behavior over time. Category learning
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is thus often studied in longitudinal experiments. To address the need for sophisti-

cated statistical methods for such settings, Paulon et al. (2021) developed an inverse

Gaussian distribution-based multi-category longitudinal drift-di↵usion mixed model.

Data requirements and related challenges. Crucially, measurements on both

the final decision categories and the associated response times are needed to estimate

the drift and the boundary parameters from conventional drift-di↵usion models, in-

cluding the work by Paulon et al. (2021). Unfortunately, however, researchers often

only record the participants’ decision responses as their go-to measure of categoriza-

tion performance, ignoring the response times (Chandrasekaran et al., 2014; Filoteo

et al., 2010). Additionally, eliciting accurate response times can be methodologically

challenging, e.g., in the case of experiments conducted online, especially during the

Covid-19 pandemic (Roark et al., 2021), or when the response times from partici-

pants/patients are unreliable due to motor deficits (Ashby et al., 2003). Participants

may also be asked to delay the reporting of their decisions so that delayed physiolog-

ical responses that relate to decision-making can be accurately measured (McHaney

et al., 2021). In such cases, the reported response times may not accurately relate

to the actual decision times and hence cannot be used in the analysis. As a result,

conventional drift-di↵usion analysis that requires data on both response accuracies

and response times, such as Paulon et al. (2021), cannot be used in such scenarios.

The research question. The main research question addressed in this article is to

see if a new class of drift-di↵usion models can be designed which will allow the bio-

logically interpretable drift-di↵usion process parameters to be meaningfully recovered

from data on input-output category combinations alone.

The inverse-probit model. Categorical probability models that build on latent

drift-di↵usion processes can be useful in providing biologically interpretable inference

in data sets comprising input-output categories but no response times. To our knowl-

edge, however, the problem has never been considered in the literature before. We

aim to address this remarkable gap in this article.

By integrating out the latent response times from the joint inverse Gaussian drift-

di↵usion model for response categories and associated response times in Paulon et al.

(2021), we can arrive at a natural albeit overparametrized model for the response

categories. We refer to this as the ‘inverse-probit’ categorical probability model.

This inverse-probit model serves as the starting point for the methodology presented

in this article but, as we describe below, it also comes with significant and unique

statistical challenges not encountered in the original drift-di↵usion model.
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Statistical challenges. While scientifically desirable, unfortunately, it is also

mathematically impossible to infer both the drifts and the boundaries in the inverse-

probit model from data only on the decision accuracies. We must thus have to keep

the values of either the drifts or the boundaries fixed and focus on inferring the other.

However, even when we fix either the drift or the decision boundaries, the problem

of overparametrization persists. In the absence of response times, only the informa-

tion on relative frequencies, that is empirical probabilities of taking a decision is

available. As the total probability of observing any of the competing decisions is one,

the identifiability problem remains for the chosen main parameters of interest, and

appropriate remedial constraints need to be imposed.

Setting an arbitrarily chosen category as the reference provides a simple solution

widely adopted in categorical probability models but comes with serious limitations,

including breaking the symmetry of the problem, potentially making posterior infer-

ence sensitive to the specific choice of the reference category (Burgette and Nordheim,

2012; Johndrow et al., 2013).

By breaking the symmetry of the problem, a reference category also additionally

makes it di�cult to infer the potential clustering of the model parameters, especially

across di↵erent panels. To see this, consider a problem with d0 categories, with a

logistic model for the probabilities ps,d0 = logistic(�s,d0), s, d0 2 {1 : d0}, of choosing
the d0th output category for the sth input category. For each input category s, by

setting the sth output category as a reference, e.g., by fixing �s,s = 0, one can then

cluster the probabilities of incorrect decision choices, ps,d0 , d0 6= s. However, it is not

clear how to compare the probabilities across di↵erent input categories (i.e., across

the four panels in Figure 2), e.g., how to test the equality of p1,1 and p2,2.

Finally, while coming up with solutions for the aforementioned issues, we must also

take into consideration the complex longitudinal design of the experiments generating

the data. Whatever strategy we devise, it should be amenable to a longitudinal mixed

model analysis that ideally allows us to (a) estimate the smoothly varying longitudinal

trajectories of the parameters as the participants learn over time, (b) accommodate

participant heterogeneity, and (c) compare the estimates at di↵erent time points

within and between di↵erent input categories.

Our proposed approach. As a first step toward addressing the identifiability

issues and related modeling challenges, we keep the boundaries fixed but leave the

drift parameters unconstrained. The decision to focus on the drifts is informed by the

existing literature on such models cited above where the drifts have almost always

been allowed more flexibility. The analysis of Paulon et al. (2021) also showed that

it is primarily the variations in the drift trajectories that explain learning while the

boundaries remain relatively stable over time.

As a next step toward establishing identifiability, we apply a ‘sum to a constant’
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condition on the drifts so that symmetry is maintained in the constrained model.

Implementation of this restriction brings in significant challenges. One possibility

is to design a prior on the constraint space, a challenging task in itself. Additionally,

posterior computation for such priors would also be extremely complicated in drift-

di↵usion models. Instead, we conduct inference with an unconstrained prior on the

drift parameters and project the samples drawn from the corresponding posterior to

the constrained space through a minimal distance mapping.

To adapt this categorical probability model to a longitudinal mixed model setting,

we then assume that the drift parameters comprise input-response-category-specific

fixed e↵ects and subject-specific random e↵ects, modeling them flexibly by mixtures of

locally supported B-spline bases (de Boor, 1978; Eilers and Marx, 1996) spanning the

length of the longitudinal experiment. These e↵ects are thus allowed to evolve flexibly

as smooth functions of time (Ramsay and Silverman, 2007; Morris, 2015; Wang et al.,

2016) as the participants get more experience and training in the decision tasks.

We take a Bayesian route to estimation and inference. Carefully exploiting condi-

tional prior-posterior conjugacy as well as our latent variable construction, we design

an e�cient Markov chain Monte Carlo (MCMC) based algorithm for approximating

the posterior, where sampling the latent response times for each observed response

category greatly simplifies the computations.

We evaluate the numerical performance of the proposed approach in extensive

simulation studies. We then apply our method to the PTC1 data set described

below. These applications illustrate the utility of our method in providing insights

into how the drift parameters characterize the rates of accumulation of evidence in

the brain evolve over time, di↵er between input-output category combinations, as

well as between individuals.

Di↵erences from previous works. This article di↵ers in many fundamental ways

from all existing works on drift-di↵usion models, including Paulon et al. (2021), where

response categories and response times were both observed and therefore the drift

and boundary parameters could be modeled jointly with no identifiability issues. In

contrast, the current work is motivated by scenarios where data on only response

categories are available, leading us to the inverse-probit categorical probability model

which, with its complex identifiability issues, brings in new unique challenges to per-

forming statistical inference, confining us only to infer the drift parameters on a

relative scale, achieved via a novel projection-based approach. The introduction and

analysis of the inverse-probit model, addressing the significant new statistical chal-

lenges posed by it, ranging across (a) identifiability issues, (b) assessment of intra and

inter-panel similarities, (c) extension to complex longitudinal mixed e↵ects settings

to accommodate the motivating applications, (d) computational implementation of

these new models, etc. are the novel contributions of this article.
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Outline of the article. Section 2 describes our motivating tone learning study.

Sections 3 and 4 develop our longitudinal inverse-probit mixed model. Section 5

outlines our computational strategies. Section 6 presents the results of simulation

experiments. Section 7 presents the results of the proposed method applied to our

motivating PTC1 study. Section 8 concludes the main article with a discussion.

Additional details, including Markov chain Monte Carlo (MCMC) based posterior

inference algorithms, are deferred to the supplementary material.

2 The PTC1 Data Set

The PTC1 (pupillometry tone categorization experiment 1) data set is obtained from

a Mandarin tone learning study conducted at the Department of Communication

Science and Disorders, University of Pittsburgh (McHaney et al., 2021). Mandarin

Chinese is a tonal language, which means that pitch patterns at the syllable level

di↵erentiate word meanings. There are four linguistically relevant pitch patterns

in Mandarin that make up the four Mandarin tones: high-flat (Tone 1), low-rising

(Tone 2), low-dipping (Tone 3), and high-falling (Tone 4). For example, the syllable

/ma/ can be pronounced using the four di↵erent pitch patterns of the four tones,

which would result in four di↵erent word meanings. Adult native English speakers

typically experience di�culty di↵erentiating between the four Mandarin tones because

pitch contrasts at the syllable level are not linguistically relevant to word meanings

in English (Wang et al., 1999, 2003). Thus, Mandarin tones are valid stimuli to

examine how non-native speech sounds are acquired, which has implications for second

language learning in adulthood. In PTC1, a group of native English-speaking younger

adults learned to categorize monosyllabic Mandarin tones in a training task. During

a single trial of training, an input tone was presented over headphones, and the

participants were instructed to categorize the tone into one of the four tone categories

via a button press on a keyboard. Corrective feedback in the form of “Correct” or

“Wrong” was then provided on screen. A total of n = 28 participants completed the

training task across T = 6 blocks of training, each block comprising L = 40 trials.

Figure 2 shows the middle 30% quantiles of the proportion of times the response to

an input tone was classified into di↵erent tone categories over blocks across di↵erent

subjects, each for the four input tones.

Pupillometry measurements were also taken during each trial. It is commonly used

as a metric of cognitive e↵ort during listening because increases in pupil diameter are

associated with greater usage of cognitive resources (Zekveld et al., 2011; Peelle, 2018;

Winn et al., 2018; Robison and Unsworth, 2019; Parthasarathy et al., 2020). One issue

with pupillary responses however is that they unfold slowly over time. In view of that,

unlike standard Mandarin tone training tasks, where the participants hear the input

tone, press the keyboard response, and are provided feedback all within a few seconds
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(Chandrasekaran et al., 2016; Reetzke et al., 2018; Llanos et al., 2020; Smayda et al.,

2015), in the PTC1 experiment, there was an intentional four-second delay from

the start of the input tone to the response prompt screen where participants made

their category decision via button press. This four-second delay allows the pupil to

dilate in response to hearing the tone and begin to return to baseline before the

participant makes a motor response to the button press. During this four-second

period, participants have likely already made conscious category decisions. As such,

the response times that are recorded in the end are not meaningful measures of their

actual decision times.

This presents a critical limitation for using these response times for further analy-

sis. Conventional drift-di↵usion analysis that requires data on response times, such as

the one presented in Paulon et al. (2021), can no longer be directly applied here. The

focus of this article is to see if the drift-di↵usion parameters can still be meaningfully

recovered from input-output tone categories alone in the PTC1 data.

We found drift-di↵usion analysis in the absence of reliable data on response times

challenging enough to merit its separate treatment presented here. Relating drift-

di↵usion parameters to measures of cognitive e↵ort such as pupillometry is another

challenging problem that we are pursuing separately elsewhere.

Figure 2: Description of PTC1 data: The proportion of times the response to an input tone

was classified into di↵erent tone categories over blocks across di↵erent subjects, each for

the four input tones (indicated in the panel headers). The thick line represents the median

performance and the shaded region indicates the corresponding middle 30% quantiles across

subjects.
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3 Inverse-Probit Model

The starting point for the proposed inverse-probit categorical probability model

follows straightforwardly by integrating out the (unobserved) response times from

the joint model for response categories and associated response times developed in

Paulon et al. (2021). The derivation of this original joint model illustrates its latent

drift-di↵usion process-based underpinnings (Figure 1, panel a). Later such construc-

tion will also be crucial in understanding the di↵usion process-based foundations of

the marginal categorical probability model modified with identifiability constraints

proposed in this article (Figure 1, panel b). We therefore present the derivation from

Paulon et al. (2021) ditto here which also keeps the main paper self-contained.

To begin with, a Wiener di↵usion process W (⌧) over domain ⌧ 2 (0,1) can

be specified as W (⌧) = µ⌧ + �B(⌧), where B(⌧) is the standard Brownian motion,

µ is the drift rate, and � is the di↵usion coe�cient (Cox and Miller, 1965; Ross

et al., 1996). The process has independent normally distributed increments, i.e.,

�W (⌧) = {W (⌧ +�⌧) �W (⌧)} ⇠ Normal(µ�⌧, �2�⌧), independently from W (⌧).

The first passage time of crossing a threshold b, ⌧ = inf{⌧ 0 : W (0) = 0,W (⌧ 0) � b},
is then distributed according to an inverse Gaussian distribution (Whitmore and

Seshadri, 1987; Chhikara, 1988; Lu, 1995) with mean b/µ and variance b�2/µ3.

Given a perceptual stimulus s and a set of decision choices d0 2 {1 : d0}, the neu-
rons in the brain accumulate evidence in favor of the di↵erent alternatives. Modeling

this behavior using latent Wiener processes Wd0,s(⌧) with unit variances, assuming

that a decision d is made when the decision threshold bd,s for the dth option is crossed

first, as illustrated in Figure 1, Panel (a), a probability model for the time ⌧d to reach

decision d is obtained as

f(⌧d | �s, µd,s, bd,s) =
bd,sp
2⇡

(⌧d � �s)
�3/2 exp


�{bd,s � µd,s(⌧d � �s)}2

2(⌧d � �s)

�
, (1)

where µd,s denotes the rate of accumulation of evidence, bd,s the decision boundaries,

and �s an o↵set representing time not directly related to the underlying evidence

accumulation processes (e.g., the time required to encode the sth signal before evidence

accumulation begins, etc.). We let ✓d0,s = (�s, µd0,s, bd0,s)T.

Joint model for (d, ⌧): Since a decision d is reached at response time ⌧ if the

corresponding threshold is crossed first, that is when {⌧ = ⌧d} \d0 6=d {⌧d0 > ⌧d}, we
have d = argmind02{1:d0} ⌧d0 . Assuming simultaneous accumulation of evidence for all

decision categories, modeled by independent Wiener processes, and termination when

the threshold for the observed decision category d is reached, the joint distribution

of (d, ⌧) is thus given by

f(d, ⌧ | s,✓) = g(⌧ | ✓d,s)
Q

d0 6=d{1�G(⌧ | ✓d0,s)}, (2)
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where, to distinguish from the generic notation f , we now use g(· | ✓) and G(· | ✓)
to denote, respectively, the probability density function (pdf) and the cumulative

distribution function (cdf) of an inverse Gaussian distribution, as defined in (1).

Marginal model for d: When the response times ⌧ are unobserved, the proba-

bility of taking decision d given the stimulus s is thus obtained from (2) by integrating

out the ⌧ as

P (d | s,✓) =
R1
�s

g(⌧ | ✓d,s)
Q

d0 6=d {1�G(⌧ | ✓d0,s)} d⌧. (3)

The construction of model (3) is similar to traditional multinomial probit/logit re-

gression models except that the latent variables are now inverse Gaussian distributed

as opposed to being normal or extreme-value distributed, and the observed category

is associated with the minimum of the latent variables in contrast to being identi-

fied with the maximum of the latent variables. We thus refer to this model as a

‘multinomial inverse-probit model’.

With data on both response categories d and response times ⌧ available, the joint

model (2) was used to construct the likelihood function in Paulon et al. (2021). In

the absence of data on the response times ⌧ , however, the inverse-probit model in

(3) provides the basic building block for constructing the likelihood function for the

observed response categories. As mentioned in the Abstract, discussed in the Intro-

duction, and detailed in Section 3.1 below, the marginal inverse-probit model (3) for

observed categories brings in many new identifiability issues and inference challenges

not originally encountered for the joint model (2) developed in Paulon et al. (2021).

Solving these new challenges for the marginal model (3) to infer the underlying drift-

di↵usion parameters ✓d0,s, for all d0, is the focus of this current article.

3.1 Identifiability Issues and Related Modeling Challenges

To begin with, we note that model (3) in itself cannot be identified from data on only

the response categories. The o↵set parameters can easily be seen to not be identifiable

since P (⌧d  ^d0⌧d0) = P {(⌧d � �)  ^d0 (⌧d0 � �)} for any �, where ^d0⌧d0 denotes the

minimum of ⌧d0 , d0 2 {1 : d0}. As is also well known in the literature, in categorical

probability models, the location and scale of the latent continuous variables are not

also separately identifiable. The following lemma establishes these points for the

inverse-probit model.

Lemma 1. The o↵set parameters �s are not identifiable in model (3). The drift and

the boundary parameters, respectively µd0,s and bd0,s, are also not separately identifiable

in model (3).

In the proof of Lemma 1 given in Appendix A, we have specifically shown

that P (d | s,✓) = P (d | s,✓?) , where the drift and boundary parameters in ✓ =
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{(µd0,s, bd0,s) ; d0 = 1, . . . , d0} and ✓? =
n⇣

µ?
d0,s, b

?
d0,s

⌘
; d0 = 1, . . . , d0

o
satisfy µ?

d0,s =

cµd0,s and b?d0,s = c�1bd0,s for some constant c > 0. The result follows by noting

that the transformation ⌧ ?d0,s = c�2⌧d0,s does not change the ordering between the

⌧d0,s’s and hence the probabilities of the resulting decisions d = argmind02{1:d0} ⌧d0 =

argmind02{1:d0} ⌧
?
d0 also remain the same. This has the simple implication that if the

rate of accumulation of evidence is faster, then the same decision distribution is ob-

tained if the corresponding boundaries are accordingly closer and conversely.

In fact, given the information on input and output categories alone, if d0 denotes

the number of possible decision categories, at most d0 � 1 parameters are estimable.

To see this, consider the probabilities P (d0 | s,✓), d0 = 1, . . . , d0, where ✓ is the

m-dimensional vector of parameters, possibly containing drift parameters and deci-

sion boundaries. Given the perceptual stimulus s as input, the probabilities satisfyPd0
d0=1 P (d0 | s,✓) = 1. Thus, the function Ps(✓) = {P (1 | s,✓), · · · , P (d0 | s,✓)}T

lie on a d0 � 1-dimensional simplex, Ps(✓) : ✓ ! �d0�1, and by the model in (3) the

mapping is continuous. Thus, it can be shown by the Invariance of Domain theorem

(see, e.g., Deo, 2018) that if Ps is injective and continuous, then the domain of Ps must

belong to Rm, where m  d0�1. Thus in order to ensure identifiablilty of {Ps(✓);✓},
we must parametrize the probability vector with at most d0 � 1 parameters.

The existing literature on drift-di↵usion models discussed in the Introduction has

traditionally put more emphasis on modeling the drifts (as their reference in the

literature as ‘drift’-di↵usion models suggests). Previous research on joint models for

response tones and associated response times in Paulon et al. (2021) also suggest that

the boundaries remain stable around a value of 2 and it is primarily the changes in the

drift rates that explain longitudinal learning. In view of this, we keep the boundaries

fixed at the constant b = 2 and treat the drifts to be the free parameters instead. In

our simulations and real data applications, it is observed that the estimates of the

drift parameters and the associated cluster configurations are not very sensitive to

small-to-moderate deviations of b around 2. In our codes implementing our method,

available as part of the supplementary materials, we allow the practitioner to choose

a value of b as they see fit for their specific application. The latent drift-di↵usion

process based with these constraints, namely �s = 0 and bd0,s = b for all d0, is shown

in Figure 1, Panel (b).

While fixing �s = 0 and bd0,s to some known constant b reduces the size of the

parameter space to d0, to ensure identifiability, we still need at least one more con-

straint on the drift parameters µ1:d0,s. In categorical probability models, the identifi-

abily problem of the location parameter is usually addressed by setting one category

as a reference and modeling the probabilities of the others (Albert and Chib, 1993;

Chib and Greenberg, 1998; Borooah, 2002; Agresti, 2018). However, posterior pre-

dictions from Bayesian categorical probability models with asymmetric constraints

may be sensitive to the choice of reference category (see Burgette and Nordheim,
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2012; Johndrow et al., 2013). Further, as also discussed in the Introduction, the goal

of clustering the drift parameters µ1:d0,s across s can not be accomplished by this

apparently simple solution.

The problem can be addressed by imposing a symmetric constraint on µ1:d0,s

instead. A symmetric identifiability constraint has been previously proposed by Bur-

gette et al. (2021) in the context of multinomial probit models, where they considered

a sum-to-zero constraint on the latent utilities. To implement the constraint, they

introduced a faux base category indicator parameter, which is assigned a discrete uni-

form prior and then learned via MCMC. Given this faux base category indicator, the

other parameters are adjusted so that the sum-to-zero restriction is satisfied. How-

ever, the introduction of a base category, even if adaptively chosen, does not facilitate

the clustering of µ1:d0,s within and across the di↵erent input categories s.

3.2 Our Proposed Approach

In coming up with solutions for these challenges, we take into consideration the com-

plex design of our motivating tone learning experiments, so that our approach is

easily extendable to longitudinal mixed model settings, allowing us to (a) estimate

the smoothly varying trajectories of the parameters as the participants learn over

time, (b) accommodate the heterogeneity between the participants, and (c) compare

between the estimates not just within but also crucially between the di↵erent panels.

Similar to the sum to zero constraint in the multinomial probit model of Bur-

gette et al. (2021), we impose a symmetric sum to a constant constraint on the drift

parameters µ1:d0,s to identify our new class of inverse-probit models, although our

implementation is quite di↵erent from theirs. To conduct inference, we start with

an unconstrained prior, then sample from the corresponding unconstrained posterior,

and finally project these samples to the constrained space through a minimal distance

mapping. Similar ideas have previously been applied to satisfy natural constraints in

other contexts. See, e.g., Dunson and Neelon (2003); Gunn and Dunson (2005).

This approach is significantly advantageous both from a modeling and a com-

putational perspective. On one hand, the basic building blocks are relatively easily

extended to complex longitudinal mixed model settings, on the other, posterior com-

putation is facilitated as this allows the use of conjugate priors for the unconstrained

parameters. Projection of the drift parameters onto the same space further makes

them directly comparable, allowing clustering within and across the panels. The pro-

jected drifts can now be interpreted only on a relative scale but such compromises

are not avoidable given the challenges we face.
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3.2.1 Minimal Distance Mapping

As the drift parameters are positive, the sum to a constant k constraint leads to the

constrained space Sk = {µ : 1Tµ = k, µj > 0, j = 1, . . . , d0} on which µ1:d0,s should

be projected. The space Sk is semi-closed, and therefore, the projection of any point

µ onto Sk may not exist. As a simple one dimensional example, let x = �1 and

S = (0, 1], then argminy2S |y � x| = 0 /2 S. Further, from a practical perspective, a

drift parameter infinitesimally close to zero makes the distribution of the associated

response times very flat which is typically not observed in real data. Therefore, we

choose a small " > 0 and project µ onto S",k = {µ : 1Tµ = k, µj � ", j =

1, . . . , d0}. We then define the projection of a point µ onto S",k through minimal

distance mapping as

µ? = ProjS",k
(µ) := {argmin⌫kµ� ⌫k : ⌫ 2 S",k} ,

where k · k is the Euclidean norm. Note that for appropriate choices of (k, "), S",k

is non-empty, closed and convex. Therefore, µ? exists and is unique by the Hilbert

projection theorem (Rudin, 1991). The solution to this projection problem comes

from the following result from Beck (2017).

Lemma 2. Let S",k be as defined above, and S" = {µ : µj � ", j = 1, . . . , d0}. Then,
ProjS",k

(µ) = ProjS"
(µ � u?1), where u? is a solution to the equation 1TProjS"

(µ �
u?1) = k.

Although the analytical form of the solution is not available, as is evident from

the above result, the solution mainly relies on finding a root u? of the non-increasing

function �(u?) = 1TProjS"
(µ � u?1) � k. We apply an algorithm based on Duchi

et al. (2008) to reach the solution. The algorithm is described in Appendix C.

3.2.2 Identifiability Restrictions

The projection approach solves the problem of identifiability and maps the probability

vector corresponding to an input tone s to the constraint space of µ1:d0,s, S",k. The

following theorem shows that the mapping from the constrained space of µ1:d0,s to the

probability vector P(µ1:d0,s) = {p1(µ1:d0,s), . . . , pd0(µ1:d0,s)}
T is injective. To keep the

ideas simple, we consider the domain of the function to be S0,k (i.e., " = 0) instead

of S",k although a very similar proof would follow if S",k were considered.

Theorem 1. Let pd(µ1:d0,s) be the probability of observing the output tone d given

the input tone s and the drift parameters µ1:d0,s, as given in (3), for each d = 1 : d0.

Suppose µ1:d0,s lies on the space S0,k. Then, the function from S0,k to the space of

probabilities
�
pd(µ1:d0,s); d = 1 : d0

 
is injective.

A proof is presented in Appendix B.
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3.2.3 Conjugate Priors for the Unconstrained Drifts

From (3), given ⌧1, . . . , ⌧d0 , such that ⌧d  min {⌧1, . . . , ⌧d0}, the posterior full con-

ditional of µ1:d0,s is proportional to ⇡(n)
µ / ⇡(µ1:d0,s) ⇥

Qd0
d0=1 g (⌧d0 | µd0,s) , where

⇡(·) is the prior of µ1:d0,s. Observe that
Qd0

d0=1 g (⌧d0 | µd0,s) is Gaussian in µ1:d0,s.

A Gaussian prior on µ1:d0,s thus induces a conditional posterior for µ1:d0,s that is

also Gaussian and hence very easy to sample from. Importantly, these benefits also

extend naturally to multivariate Gaussian priors for any parameter vector �d0,s that

relates to µd0,s linearly. This will be crucial in allowing us to extend the basic build-

ing block to longitudinal functional mixed model settings in Section 4 next, where we

will be modeling time varying µd0,s(t) as flexible mixtures of B-splines with associated

coe�cients �d0,s.

3.2.4 Justification as a Proper Bayesian Procedure

Define the constrained conditional posterior distribution, ⇡̃(n)

µ̃ , of the drift parameters

µ as

⇡̃(n)

µ̃ (B | ⇣) = ⇡(n)
µ ({µ : Proj(µ) 2 B} | ⇣) , B ✓ S",k,

where ⇡(n)
µ is the unconstrained conditional posterior of µ1:d0,s, given the other vari-

ables ⇣. The analytic form of the constrained conditional posterior is not available.

Sen et al. (2018) established a proper Bayesian justification for the posterior pro-

jection approach by showing the existence of a prior ⇡̃
�
µ1:d0,s

�
on the constrained

space S",k such that the resulting posterior is the same as the projected posterior

⇡̃(n)

µ̃ . When S",k is non-empty, closed, and convex, i.e., the projection operator is

measurable, such a prior exists if the unconstrained posterior is absolutely continu-

ous with respect to the unconstrained prior (Sen et al., 2018, Corollary 1). As the

unconstrained induced prior and posterior of the drift parameters are both Gaussian,

this result holds in our case as well.

4 Extension to Longitudinal Mixed Models

In this section we adapt the inverse probit model discussed in Section 3 to complex

longitudinal design of our motivating PTC1 data set described in the Introduction.

Let si,`,t denote the input tone for the ith individual in the `th trial of block t. Likewise,

let di,`,t denote the output tone selected by the ith individual in the `th trial of block

t. Setting the o↵sets at zero, and boundary parameters to a fixed constant b, we now

13



have

P{di,`,t = d | si,`,t = s,µ(i)
1:d0,s

(t)} =

Z 1

0

g{⌧ | µ(i)
d,s(t)}

Y

d0 6=d

h
1�G{⌧ | µ(i)

d0,s(t)}
i
d⌧, (4)

where g{⌧ | si,`,t = s, µ(i)
d0,s(t) = µ} =

bp
2⇡⌧ 3/2

exp


�{b� µ⌧}2

2⌧

�
.

The drift rates µ(i)
d0,s(t) now vary with the blocks t. In addition, we accommodate

random e↵ects by allowing µ(i)
d0,s(t) to also depend on the subject index i. We let

d = {di,`,t}i,`,t, and d0 be the number of possible decision categories (T1, T2, · · · ,
Td0). The likelihood function thus takes the form

L(d | s,✓) =
d0Y

d=1

d0Y

s=1

TY

t=1

nY

i=1

LY

`=1

h
P{di,`,t | si,`,t,µ(i)

1:d0,s
(t)}

i1{di,`,t=d,si,`,t=s}
.

We reiterate that in deriving the identifiability conditions and designing their

implementation strategy in Section 3.2, we had to make sure that they would be ap-

plicable to the complex multi-subject longitudinal design of the PTC1 data set. Fol-

lowing those ideas, we model the time-varying mixed e↵ects drift parameters µ(i)
d0,s(t)

without any constraints first, then project them to the space satisfying the necessary

identifying conditions.

For the unconstrained model, we follow the outline of Paulon et al. (2021) with

necessary likelihood adjustments. The details are deferred to Section S.1 of the sup-

plementary material. We present here a general outline.

We decompose µ(i)
d0,s(t) = fd0,s(t)+u(i)

d0,s(t) where fd0,s(t) and u(i)
d0,s(t) denote, respec-

tively, fixed and random e↵ects components, which are both modeled using flexible

mixtures of B-spline bases. This allows us to cluster the fixed e↵ects for di↵erent

(d0, s) combinations with similar shapes by clustering the corresponding B-spline co-

e�cients.

Given posterior samples of fd0,s(t) and u(i)
d0,s(t), unconstrained samples of µ(i)

d0,s(t) are

obtained. For every input tone s, these unconstrained µ(i)
1:d0,s

(t)’s are then projected

to the space S",k following the method described in Section 3.2.1.

5 Posterior Inference

Posterior inference for our proposed inverse-probit mixed model is carried out using

samples drawn from the posterior using MCMC algorithm. The algorithm carefully

exploits the conditional independence relationships encoded in the model as well as

the latent variable construction of the model.

Inference can be greatly simplified by sampling the passage times ⌧1:d0 and then
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conditioning on them. However, it is not possible to generate ⌧1:d0 sequentially, e.g.,

by generating the passage time of the d-th decision choice ⌧d independently, and

that of the other decision choices from a truncated inverse-Gaussian distribution, left

truncated at ⌧d.1

We implement a simple accept-reject sampler instead which generates values from

the joint distribution of ⌧1:d0 and accepts the sample if ⌧d  ⌧1:d0 . It is fast and

produces a sample from the desired target conditional distribution. We formalize this

result in the following lemma.

Lemma 3. Let g (⌧1:d0 | µ1:d0) be the joint distribution of ⌧1:d0. Consider the following

accept-reject algorithm:

Algorithm 1 Generating the passage times ⌧1:d0 given argmind02{1:d0} ⌧d0 = d

1: Generate ⌧1:d0 from the joint distribution g (⌧1:d0 |µ1:d0).

2: Accept ⌧1:d0 if ⌧d  ⌧1:d0 .

3: Return to Step 1 otherwise.

Algorithm 1 generates samples from the conditional joint distribution of ⌧1:d0, condi-

tioned on the event ⌧d  ⌧1:d0.

Proof of Lemma 3 is provided in Appendix D.

It can be verified that the acceptance ratio of Algorithm 1 is M�1 = P (⌧d  ⌧1:d0)

(see Robert and Casella, 2004) which depends on the drift parameters alone. If the

drift parameters are ordered accordingly, so as to satisfy µd � µ1:d0 , the acceptance

ratios increase. The algorithm thus becomes faster as the sampler converges.

As noted earlier, sampling the latent inverse-gaussian distributed response times

⌧1:d0 greatly simplifies computation. Most of the chosen priors, including the priors

on the coe�cients � in the fixed and random e↵ects, are conjugate. Due to space

constraints, the details are deferred to Section S.3 in the supplementary material.

6 Simulation Studies

In this section, we discuss the results of a synthetic numerical experiment. We sim-

ulate data from a complex longitudinal design that mimics the real PTC1 data set.

1
We can see this in a simpler example. Suppose we are interested in generating a sample from the

conditional distribution of ⌧ = (⌧1, ⌧2) given d = argminj ⌧j = 1, where ⌧i ⇠ Uniform(0, 1), i = 1, 2,
independently. The conditional density of ⌧ given d = 1 is f⌧ |d(⌧1, ⌧2) = 2 if 0 < ⌧1  ⌧2 < 1,

and = 0 otherwise. However, if we draw ⌧1 from Uniform(0, 1) first and let that realization be ⌧?,
and draw ⌧2 from the truncated uniform distribution (left truncated at ⌧?), then the pdf of the

realization of (⌧1, ⌧2) is ⌧?�1
.
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Our generating model contains fixed e↵ects components attributed to di↵erent input-

response tone combinations and random components attributed to individuals.

We recall that our main objective here is to identify the similarities and di↵erences

between the underlying brain mechanisms associated with di↵erent input-response

category combinations over time while also assessing their individual heterogeneity, as

characterized by latent drift-di↵usion processes whose parameters can be biologically

interpreted. The estimation of the probability curves for di↵erent input-response

combinations, while a good indicator of our model’s fit, is not the main purpose of

this endeavor. Traditional categorical probability models, such as multinomial probit

or logit, are thus not relevant to the scientific problem we are trying to address here.

We are also not aware of any other work in the drift-di↵usion literature that attempts

to estimate the underlying parameters from category response data alone. In view of

this, we restrict our focus to evaluating the performance of the proposed biologically

meaningful longitudinal inverse-probit mixed model but do not present comparisons

with any other model.

Design. In designing the simulation scenario, we have tried to mimic our motivating

category learning data sets. We chose n = 20 as the number of participants being

trained over T = 10 blocks to identify d0 = 4 tones. For each input tone and each

block, there are L = 40 trials. We set the true µd0,s(t) values in such a way that they

are far from satisfying the constraint
P

d0=1:d0
µd0,s = k, and the decision boundary

is set to b = 2 for all (d0, s). The true drift parameters and the true probabilities,

averaged over the participants of each input-response category combination are shown

in Figure 3.

There are four true clusters in total, two for correct categorizations, S1, S2,

and two for incorrect categorizations, M1, M2, as follows: S1 = {(1, 1), (2, 2)}, S2 =

{(3, 3), (4, 4)},M1 = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 4), (4, 3)},M2 = {(1, 4), (2, 4), (3, 1), (3, 2),
(4, 1), (4, 2)}. We may interpret M1 as the cluster of di�cult alternatives, and M2 as

the cluster of easy alternatives. Thus, there are similarities in overall trajectories

of {T1, T2} and {T3, T4}, di↵erentiating between easy and hard category recognition

problems. We experimented with 50 synthetic data sets generated according to this

design.

Results. As the true drift parameters themselves do not satisfy the constraint, and

the estimated drift parameters are on the constrained space, we cannot validate our

method by its predictive performance of the drift parameters. Instead, the proposed

method is validated in terms of the estimated probabilities.

Figure 4 shows the estimated posterior probability trajectories along with the 95%

credible interval and the underlying true probability curves for every combination

(d0, s) in a typical scenario. The credible interval fails to capture the truth in two
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Figure 3: Description of the synthetic data: True values of the drift parameters averaged

over the subjects, denoted by µd0,s(t), and true probabilities P{di,`,t | si,`,t,µ
(i)
1:d0,s

(t)} aver-

aged over the subjects, denoted here by Pd0,s(t). Here T1, T2, T3, and T4 represent input

categories 1 to 4, respectively. Some of the curves overlap according to the true clustering

structure described in Section 6.

situations, when the true probability is very close to zero, or it is very close to one.

The former case corresponds to classes with very low success probability, resulting in

very few observations to estimate. The latter is underestimated as a consequence of

the former since the probabilities add up to one.
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Figure 4: Results for synthetic data: Posterior trajectories of the probabilities for each

combination of (d0, s) over blocks estimated by the proposed model. The shaded areas rep-

resent the corresponding 95% point-wise credible intervals. The thick dashed lines represent

underlying true curves some of which overlap according to the true clustering structure de-

scribed in Section 6.

The results produced by our method are mostly stable and consistent across all

synthetic data sets. There are, however, a few cases of incorrect cluster assignments,

resulting in some outliers in each boxplot. Note that if an incorrect cluster assign-

ment takes place, the probabilities of all input-response combinations are a↵ected by

that. For example, if a component of M1 is wrongly assigned to M2, then not only

the probabilities of input-output combinations in M1 and M2 are a↵ected, since the

probabilities add up to one, those of S1 and S2 are also a↵ected.

In estimating the probabilities, the overall mean squared error, i.e., the mean

squared di↵erence of the estimated and the true probabilities taking all combinations

of (d, s, i, t) into account, came out to be 0.0028. Figure 5 provides a detailed de-

scription of the estimation of the probabilities for two input categories (one from each

similarity group). As described for the individual simulation results, there are cases

of under-estimation of the probabilities which are close to one, and consequently,

over-estimation of the probabilities close to zero. However, the amount of departure

from the true probability in each case is very small which can also be seen in the
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Figure 5: Results of the synthetic data: Boxplots of the estimated probabilities over 50

simulations, and true probabilities (in red dot) of each block and for two panels, one from

each similarity group (panel T1 in the top and T3 in the bottom).

small overall MSE.

Further, the overall e�ciency in identifying the true clustering structure is vali-

dated using Rand (Rand, 1971) and adjusted Rand (Hubert and Arabie, 1985) indices.

The definitions of Rand and adjusted Rand indices are provided in Section S.6 in the

supplementary material. The average Rand and adjusted Rand indices for our pro-

posed method over 50 simulations 0.9105 and 0.8277, respectively, indicating high

overall e�cacy in correctly clustering the probability curves.
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7 Applications

Analysis of the PTC1 data set. We present here the analysis of the PTC1

data set described in Section 2 using our proposed longitudinal inverse-probit mixed

model. We first demonstrate the performance of the proposed method in estimating

the probabilities associated with di↵erent (d, s) pairs. Figure 6 shows the 95% cred-

ible intervals for the estimated probabilities for di↵erent input tones, along with the

average proportions of times an input tone was classified into di↵erent tone categories

across subjects. The latter serves as the empirical estimate of the probabilities.

We observe that except for the input-response combination (1,1) in block 3 and

some cases with a low number of data points, the 95% credible intervals include

the corresponding empirical probabilities. An explanation of the occasional under-

performance is given later in this section.

Next, we examine the clusters identified by the proposed model. Apart from

the two clusters obtained for the success combinations (d = s), three clusters are

additionally identified in the incorrect input-response combinations (d 6= s). The

clusters of success combinations are S1 = {(1, 1), (2, 2), (4, 4)} and S2 = {(3, 3)},
and of wrong allocations are M1 = {(1, 2), (1, 4), (2, 1), (2, 4), (3, 2), (4, 1), (4, 2)}, M2 =

{(1, 3), (2, 3), (3, 4), (4, 3)}, and M3 = {(3, 1)}. Figure 7 shows the input-response tone

combinations color-coded as per cluster identity, and the proportion of times each pair

of input-response tone combinations appeared in the same cluster after burnin. Fig-

ure 7 indicates that, while the clusters S1, S2,M1 are stable, there is some instability

among the other two clusters, namely M2 and M3.

Key findings. The clustering structure reveals that the low-dipping (T3) response

trajectories are di↵erent from the other three response categories. While for correct

input-output tone combinations, S2 forms a separate singleton cluster, for incorrect

combinations,M2 contains all the low-dipping trajectories, indicating their similarities

across the panels. Also for T3, faster increase of the probabilities of correct identifi-

cation, as well as faster decay of probabilities of incorrect identification indicate that

T3 is easily distinguishable from other alternatives.

On the other hand, the trajectories of high-flat (T1), low-rising (T2) and high-

falling (T4) response categories are quite similar across panels. While for correct input-

response combinations, these three form the cluster S1, the corresponding incorrect

tone combinations are clustered in M1. The slower rise of the observed empirical

probabilities for the elements in S1 and the slower decay of the same for M1 indicate

that T1, T2 and T4 are di�cult to distinguish. However, in block 3 the empirical

probabilities of correct input-response combinations di↵er moderately. While T2 and

T4 show a relative drop in the empirical probabilities at block 3, T1 shows a sudden

pick in the same. This local dissimilarity of the trajectories at block 3, leads to a

departure of the empirical probability of T1 from the estimated credible band.

Next, we consider the results concerning the estimation of the drift parameters
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Figure 6: Results for PTC1 data: Estimated probability trajectories compared with average

proportions of times an input tone was classified into di↵erent tone categories across subjects

(in dashed line). The means across subjects are indicated by thick lines and the shaded

regions indicate corresponding 95% coverage regions.

µ(i)
d0,s(t). As discussed in Section 3.2, given the identifiability constraints, the estimates

of µ(i)
d0,s(t) can only be interpreted on a relative scale. Figure 8 shows the posterior

mean trajectories and associated 95% credible intervals for the projected drift rates.

Importantly, our proposed mixed model also allows us to assess individual-specific

parameter trajectories. Figure 9 shows the posterior mean trajectories and the asso-

ciated 95% credible intervals for the drift rates µ(i)
d0,s estimated by our method for the

di↵erent success combinations (d0, s) for two participants - one with the best accuracy

averaged across all blocks, and the other with the worst accuracy averaged across all

blocks. These results suggest significant individual-specific heterogeneity. For the

well-performing participant, the drift parameters are much higher than those for the

poorly performing individual, indicating their ability to more quickly accumulate ev-

idence compared to the poorly-performing adult. These di↵erences persisted over all

blocks with a small gradual increase over time.

Analysis of benchmark data. To validate the proposed method, we also analyzed

tone learning data which, in addition to response accuracies, included accurate mea-

surements of the response times. It was previously analyzed in Paulon et al. (2021)
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Figure 7: Results for PTC1 data: Network plot of similarity groups showing the intra and

inter-cluster similarities of tone recognition problems. Each node is associated with a pair

indicating the input-response tone category, (s, d). The number associated with each edge

indicates the proportion of times the pair in the two connecting nodes appeared in the same

cluster after burnin.

using the drift-di↵usion model (2) which allowed inference on both the drift and the

boundary parameters. For our analysis with the method proposed here, however, we

ignored the response times. We observed that the estimates of the drifts produced by

our proposed methodology match well with the estimates obtained by Paulon et al.

(2021). A description of this ‘benchmark’ data set and other details of our analyses

are provided in Section S.5 of the supplementary material.

8 Discussion, Conclusion, Broader Utility, and Fu-

ture Work

Summary. In this article, we developed a novel longitudinal inverse-probit mixed

categorical probability model. Our research was motivated by category-learning ex-

periments where scientists are interested in using drift-di↵usion models to understand

how the decision-making mechanisms evolve as the participants get more training and

experience. However, unlike traditional drift-di↵usion analyses which require data on

both response categories and response times, we only had usable records of response

categories but no response times. To our knowledge, biologically interpretable latent

drift-di↵usion process-based categorical probability models had never been considered

for such scenarios in the literature before. We addressed this need. Building on a pre-

vious work on longitudinal drift-di↵usion mixed joint models for response categories
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Figure 8: Results for PTC1 data: Estimated posterior mean trajectories of the population

level drifts µd0,s(t) for the proposed model. The shaded areas represent the corresponding

95% point-wise credible intervals.

and response times but now integrating out the response times, we obtained a new

class of category probability models which we referred to here as the inverse-probit

model. We explored parameter recoverability in such models, showing, in particular,

that the o↵set parameters can not be recovered and drifts and boundaries both can

not be recovered from data only on response categories. In our analyses, we thus

focused on estimating the biologically more important drift parameters but kept the

o↵sets and the boundaries fixed. We showed that with careful domain knowledge

informed choices for the boundaries, the general trajectories of the drift parameters

can be recovered by our proposed approach even in the complete absence of response

times.

Conclusion. Overall, when it comes to making scientific inferences about drift-

di↵usion model parameters in the absence of data on response times, our work im-

plies a mixed promise. On the downside, our work shows that the detailed interplay

between drifts and boundaries cannot be captured. On the positive side, our re-

sults also suggest that, with our carefully designed model, and the fixed value of

the boundary parameters appropriately chosen by experts, the general longitudinal

trends in the drifts can still be estimated well. Caution should still be exercised not
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Figure 9: Results for PTC1 data: Estimated posterior mean trajectories for individual

specific drifts µ(i)
d0,s(t) = exp{fd0,s(t) + u(i)C (t)} for successful identification (d0 = s) for two

di↵erent participants - one performing well (dashed line) and one performing poorly (dotted

line). The shaded areas represent the corresponding 95% point-wise credible intervals.

to over-interpret the results.

Broader utility in auditory neuroscience. The proposed model, we believe,

has significant implications for auditory neuroscience. We focused here specifically

on a pupillometry study for which the experimental paradigms need to be adapted

to prioritize slow pupillary response, rendering the behavioral response times useless.

However, as discussed in the Introduction, there could be many other situations

where usable data on response times may not be available. The proposed model

can be useful in such scenarios to understand the perceptual mechanisms underlying

auditory decision-making.

Broader utility beyond auditory neuroscience. While we focused here on

studying auditory category learning, the method proposed is applicable to other do-

mains of behavioral neuroscience research studying categorical decision-making when

the response times measurements are either not available or not reliable.
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Broader utility in statistics. On the statistical side, the projection-based ap-

proach proposed here to impose non-standard identifiability conditions and address

clustering problems within and between di↵erent panels is not restricted to inverse-

probit models introduced here. They can be easily adapted to other classes of gen-

eralized linear models such as the widely popular logit and probit models and hence

may also be of interest to a much broader statistical audience.

Future directions: The models and the analyses of the PTC1 data set presented

here excluded the pupillometry measurements themselves. An important and chal-

lenging problem being pursued separately elsewhere is to see how those measurements

relate to drift-di↵usion model parameters.

Appendix

Appendix A Proof of Lemma 1

Proof. It is easy to check that the o↵set parameters �s are not identifiable since

P (d | s, �s,µ1:d0,s,b1:d0,s) =

Z 1

�s

g(⌧ | �s, µd,s, bd,s)
Y

d0 6=d

{1�G(⌧ | �s, µd0,s, bd0,s)} d⌧

=

Z 1

0

g(⌧ | 0, µd,s, bd,s)
Y

d0 6=d

{1�G(⌧ | 0, µd0,s, bd0,s)} d⌧ = P (d | s, 0,µ1:d0,s,b1:d0,s).

Next we will show that the drift parameters and decision boundaries are not
separately identifiable, even if we fix o↵set parameters to a constant.

First note that equation (3) can also be represented as
Z 1

�s

. . .

Z 1

�s

Y

d0 6=d

g(⌧d0 | ✓d0,s)

Z ^d 6=d0⌧d0

�s

g(⌧d | ✓d,s)d⌧d
Y

d0 6=d

d⌧d0 . (A.1)

First observe that ⌧ ? = ^d0 6=d⌧d0 = ⌧ ?�1 ^ ⌧1, where ⌧ ?�1 = ^d0 6={1,d}⌧d0 . Thus the
integral above can be written as

Z 1

�s

. . .

Z 1

�s

Y

d0 6={1,d}

g(⌧d0 | ✓d0,s)

⇢Z 1

�s

g(⌧1 | ✓1,s)

Z ⌧?�1^⌧1

�s

g(⌧d | ✓d,s)d⌧d

� Y

d0 6={1,d}

d⌧d0

=

Z 1

�s

. . .

Z 1

�s

Y

d0 6={1,d}

g(⌧d0 | ✓d0,s)

⇢Z ⌧?�1

�s

g(⌧d | ✓d,s)

Z 1

⌧d

g(⌧1 | ✓1,s)d⌧1d⌧d

� Y

d0 6={1,d}

d⌧d0 .

Proceeding sequentially one can show that the integral above is the same as in (3).
Using the above we express the probability in (3) as in (A.1). As the o↵set

parameter �s is already shown to be not identifiable, we need to fix the same. Without
loss of generality, we fix the o↵set parameter at 0. The probability density function

25



of inverse Gaussian distribution, with parameters ✓d0,s = (µd0,s, bd0,s) evaluated at ⌧d0 ,
g(⌧d0 | ✓d0,s) can be obtained from (1) by replacing �s = 0 and d = d0.

Consider the transformation of ⌧d0 to ⌧ ?d0 as ⌧d0 = c2⌧ ?d0 , for some constant c > 0, and
for all d0. Further, define b?d0,s = bd0,s/c and µ?

d0,s = cµd0,s, for all d0. Then observe that

g(⌧d0 | ✓d0,s)d⌧d0 = (2⇡)�1/2b?d0,s(⌧
?
d0)

�3/2 exp
n
�(2⌧ ?d0)

�1
�
b?d0,s � µ?

d0,s⌧
?
j

�2o
d⌧ ?d0 = g(⌧ ?d0 | ✓?

d0,s)d⌧
?
d0 ,

where g(⌧ ?d0 | ✓
?
d0,s) is the pdf of inverse Gaussian distribution with parameters µ?

d0,s

and b?d0,s, evaluated at the point ⌧ ?d0 .
Applying the transformation on ⌧d0 for all d0 we get that the integral in (A.1) with

�s = 0 is same as

Z 1

0

. . .

Z 1

0

Y

d0 6=d

g(⌧ ?d0 | ✓?
d0,s)

Z ^d0 6=d⌧
?
d0

0

g(⌧ ?d | ✓?
d,s)d⌧

?
d

Y

d0 6=d

d⌧ ?d0 .

As c is arbitrary, this shows that the drifts and boundaries are not separately es-
timable.

Appendix B Proof of Theorem 1

Proof. Let P(µ1:d0,s) = {p1(µ1:d0,s), . . . , pd0(µ1:d0,s)}
T be the function, given by (4),

from S0,k to unit probability simplex �d0�1. For notational simplicity, we write
µ1:d0,s = µ = (µ1, . . . , µd0)

T. We first find the matrix of partial derivative rP with
respect to µ.

For µ 2 S0,k, 1Tµ = k, and hence the probability reduces to

pd (µ) =

�
beb

�d0

(2⇡)d0/2

Z 1

0

Z 1

⌧d

· · ·
Z 1

⌧d

|⌧ |�3/2 exp

⇢
�1

2

�
1T⌧�11+ µT⌧µ

��
d⌧�dd⌧d,

for d = 1, . . . , d0, where ⌧ = diag(⌧1, . . . , ⌧d0), and ⌧�d is the sub-vector of ⌧ exclud-
ing the d-th element. Next, di↵erentiating pd (µ) with respect to µ, we get

@pd (µ)

@µ
=

�
beb

�d0

(2⇡)d0/2

Z 1

0

Z 1

⌧d

· · ·
Z 1

⌧d

|⌧ |�3/2 (�⌧µ) exp

⇢
�1

2

�
1T⌧�11+ µT⌧µ

��
d⌧�dd⌧d,

=
h
µ1⌘2 · · · µd�1⌘2 µd⌘1 µd+1⌘2 · · · µd0⌘2

iT
,

where ⌘1 = �E {⌧1I (⌧2 > ⌧1, · · · , ⌧d0 > ⌧1) |µ}, and ⌘2 = �E {⌧2I (⌧2 > ⌧1, · · · , ⌧d0 > ⌧1) |µ},
and I(A) is the indicator function of the event A. Here the expectation is considered
under the joint distribution of (⌧1, . . . , ⌧d), which is a product of independent inverse
Gaussians. Clearly ⌘1 > ⌘2 > 0.

From the above derivation it is easy to obtain that
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rP (µ) =

2

6666664

µ1⌘1 µ2⌘2 · · · µd0⌘2

µ1⌘2 µ2⌘1 · · · µd0⌘2
...

... · · · ...

µ1⌘2 µ2⌘2 · · · µd0⌘1

3

7777775
= M

�
(⌘1 � ⌘2) I + ⌘211

T
 
,

where M = diag (µ1, . . . , µd0).
Now, suppose there exists µ and ⌫ in Sk such that µ 6= ⌫ and P (µ) = P (⌫).

Define � : [0, 1] ! Rd0 such that �(t) = µ + t (⌫ � µ), t 2 [0, 1]. Further, define
h(t) = hP (�(t))�P (µ) ,⌫ � µi, as the cross product of P (�(t))�P (µ) and ⌫�µ.
Then h(1) = h(0) = 0 under the proposition that P (µ) = P (⌫). Therefore, by
the Mean Value Theorem, as µ 6= ⌫, there exists some point c 2 (0, 1) such that
@h(t)/@t|t=c = 0. Now,

@h(t)

@t
=

d0X

d0=1

(⌫d0 � µd0)
@

@t
[pd0 {�(t)}� pd0 (µ)]

=
d0X

d0=1

(⌫d0 � µd0)

⇢
@

@�
pd0 (�)

�T @�(t)

@t

= (⌫ � µ)T rP{�(t)} (⌫ � µ)

= (⌘1 � ⌘2) (⌫ � µ)T �(t) (⌫ � µ) + ⌘2 (⌫ � µ)T M11T (⌫ � µ)

= (⌘1 � ⌘2) (⌫ � µ)T �(t) (⌫ � µ) ,

as 1T (⌫ � µ) = 0, where �(t) = diag{�(t)}.
As every component of µ and ⌫ is positive, for any c 2 (0, 1), the matrix �(c)

is positive definite. Further, as ⌘1 > ⌘2, @h(t)/@t|t=c = 0 only if µ = ⌫, which
contradicts the proposition.

Appendix C Algorithm for Minimal Distance Mapping

The problem of finding projection of a point µ onto the space Sk," is equivalent to
the following non-linear optimization problem:

minimizewkw � µk2 such that
d0X

i=1

wi = k, wi � ".

Duchi et al. (2008, Algorithm 1) provides a solution to the problem of projection of a
given point µ onto the space Sk," for " = 0, which is modified for any given " below.
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Algorithm 2

INPUT: A vector µ, and a pair (k, ").

1: Sort µ into µ? such that the elements of µ? are in descending order.

2: Find ⇢ = max
n
j : µ?

j � j�1
⇣Pj

l=1 µ
?
l � k

⌘
> "

o
.

3: Define ✓ = ⇢�1
nPj

l=1 µ
?
l � k + (k � ⇢)"

o
.

OUTPUT: w such that wi = max {µi � ✓, "}.

Appendix D Proof of Lemma 3

Proof. We consider the unconditional distribution of ⌧1:d0 , given the parameters
µ1:d0 as the proposal distribution, g. Clearly, the proposal distribution g and
the target conditional joint distribution f satisfies f(⌧1:d0 |µ1:d0)/g(⌧1:d0 |µ1:d0)  M ,
where M�1 = P (⌧d  ⌧1:d0). Therefore, for any random sample U ⇠ U(0, 1),
f(⌧1:d0 |µ1:d0) � MUg(⌧1:d0 |µ1:d0) if the sample satisfies the condition ⌧d  ⌧1:d0 ,
and f(⌧1:d0 |µ1:d0) < MUg(⌧1:d0 |µ1:d0) otherwise. Hence by Lemma 2.3.1 of Robert
and Casella (2004), the algorithm above produces samples from the target distribu-
tion.

Supplementary Materials

The supplementary materials detail the choice of the prior hyper-parameters, the

MCMC algorithm used to sample from the posterior and some performance diagnos-

tics, and the analysis of a real benchmark data set. Separate files additionally include

R programs implementing the longitudinal inverse-probit mixed model developed in

this article and the PTC1 data set analyzed in Section 7.
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SUPPLEMENTARY MATERIAL S.2

S.1 Modelling the Drift Parameters

S.1.1 Functional Fixed E↵ects

We model the fixed e↵ects functions fx(t) using flexible mixtures of B-spline bases (de Boor,
1978) that allow them to smoothly vary with time t while also depending locally on the
indexing variable x as

fx(t) =
PK

k=1 �x,kBk(t) = B(t)�x. (S.1)

HereB(t) = {B1(t), . . . , BK(t)} are a set of known locally supported basis functions spanning
[1, T ], �x = (�x,1, . . . , �x,K)T are associated unknown coe�cients to be estimated from the
data. Allowing the �x’s to flexibly vary with x can generate widely di↵erent shapes for
di↵erent input-response category combinations.

Towards clustering the fixed e↵ects curves, we introduce a set of latent variables zx for
each input-response category combination x with a shared state space {1, . . . , zmax} and as-
sociated coe�cient atoms �?

z = (�?
z,1, . . . , �

?
z,K)

T, we let

(�x | zx = z) = �?
z, implying {fx(t) | zx = z} = f ?

z (t) =
PK

k=1 �
?
z,kBk(t), (S.2)

To probabilistically cluster the �x’s, we next let

zx ⇠ Mult(⇡z) = Mult(⇡1, . . . , ⇡zmax),

⇡z ⇠ Dir(↵/zmax, . . . ,↵/zmax).
(S.3)

We next consider priors for the atoms �?
z. We let

�?
z ⇠ MVNK{µ�,0, (�

�2
a IK + ��2

s P)�1}, (S.4)

where MVNK(µ,⌃) denotes a K dimensional multivariate normal distribution with mean
µ and covariance ⌃ and P = DTD, where the (K � 1) ⇥ K matrix D is such that D�
computes the first order di↵erences in �. The model thus penalizes

PK
k=1(r�?

z,k)
2 = �TP�,

the sum of squares of first order di↵erences in �(i)
u (Eilers and Marx, 1996). The variance

parameter �2
s models the smoothness of the functional atoms, smaller �2

s inducing smoother
f ?
z (t)’s. Additional departures from µ�,0 are explained by the other variance component �2

a.
We assign half Cauchy priors on the variance parameters as

�2
s ⇠ C+(0, 1), �2

a ⇠ C+(0, 1).

S.1.2 Functional Random E↵ects

We allow di↵erent random e↵ects u(i)
C (t) and u(i)

I (t) for correct (C) (when d = s) and incor-
rect (I) (when d 6= s) identifications, respectively, as

u(i)
d,s(t) = u(i)

C (t) when d = s, u(i)
d,s(t) = u(i)

I (t) when d 6= s.



SUPPLEMENTARY MATERIAL S.3

Suppressing the subscripts to simplify notation, we model the time-varying random e↵ects
components u(i)(t) as

u(i)(t) =
PK

k=1 �
(i)
u,kBk(t) = B(t)�(i)

u ,

�(i)
u ⇠ MVNK{0, (��2

u,aIK + ��2
u,sP)�1},

(S.5)

where �(i)
u = (�(i)

1,u, . . . , �
(i)
K,u)

T are subject-specific spline coe�cients. We assign non-
informative half-Cauchy priors on the variance parameters as

�2
u,s ⇠ C+(0, 1), �2

u,a ⇠ C+(0, 1).

S.2 Prior Hyper-parameters and Initialization

The random e↵ects of the inverse-probit mixed model are all initialized at zero. The variance
and smoothing parameters are initially set to 0.1 each. The location parameter of the prior
on �?

z, µ�,0 is set to (1, . . . , 1). This choice of �?
z would set the expected value of µ(i)

x (t) to
1, which is supported empirically. The value of the parameter ↵ is set to 1.

S.3 Posterior Inference

Posterior inference for the longitudinal drift-di↵usion mixed model, described in Section 3 in
the main paper, is based on samples drawn from the posterior using an MCMC algorithm.
The algorithm carefully exploits the conditional independence relationships encoded in the
model as well as the latent variable construction of the model. Sampling the latent inverse-
Gaussian distributed response times, in particular, greatly simplifies computation.

In what follows, ⇣ denotes a generic variable that collects all other variables not explicitly
mentioned, including the data points. Also, p0 will sometimes be used as a generic for a prior
distribution without explicitly mentioning its hyper-parameters. The notation x is used to
abbreviate (d0, s). The sampler for the inverse-probit mixed model of Section 3 iterates
between the following steps.

1. Sampling ⌧ (i,l)1:d0
(t): Suppose the i-th individual selects the output tone d, in the t-th block,

l-th trial, given the input tone s. Then ⌧ (i,l)1 (t), . . . , ⌧ (i,l)d0
(t) is generated as in Algorithm 1

(see Section 4) from the joint distribution of ⌧ (i,l)1 (t), . . . , ⌧ (i,l)d0
(t) given µ(i)

1,s(t), . . . , µ
(i)
d0,s

(t),
followed by an accept-reject step.

2. Updating the components of fixed e↵ects fx(t):

(a) The latent variable zx, indicating the group identities of �x, follows multinomial
distribution with zmax labels and probabilities P (zx = z|⇣), z = 1, . . . , zmax a pos-
teriori. The probability P (zx = z|⇣) / ⇡z ⇥ lz, where lz is the likelihood of �x
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evaluated at �z. Let L? be the set of all trials corresponding to input-output tones
x = (s, d) for i-th individual and t-th block, and n(i)

x (t) be the cardinality of L?.

Furthermore, let ⌧ (i)x (t) =
P

l2L? ⌧
(i,l)
x (t), ⌧x(t) =

P
i ⌧

(i)
x (t), and nx(t) =

P
i n

(i)
x (t).

A little algebra shows that the likelihood of �x is Gaussian with variance matrix

⌃�,x =
�P

t ⌧x(t)B(t)TB(t)
 �1

, and mean vector µ�,x = ⌃�,x {
P

t B(t)Mx(t)}, where
Mx(t) = 2nx(t) �

P
i u

(i)
x (t)⌧ (i)x (t). Therefore, lz is the Gaussian likelihood with mean

µ�,x and variance ⌃�,x, evaluated at �z.

(b) Let Nz =
P

x 1(zx = z), z = 1, . . . , zmax, where 1(·) is the indicator function. Then the
conditional posterior of ⇡z is Dirichlet with parameters ↵/zmax+N1, . . . ,↵/zmax+Nzmax .

(c) The full conditional posterior distribution of the coe�cient atoms �?
z is Gaussian with

variance-covariance matrix ⌃?
�,z and µ?

�,z, where ⌃?,�1
�,z =

P
x:zx=z ⌃

�1
�,x + ⌃�1

�,0, and

µ?
�,z = ⌃?

�,z

⇥P
x:zx=z ⌃

�1
�,xµ�,x +⌃�1

�,0µ�,0

⇤
, where ⌃�1

�,0 = (��2
a IK + ��2

s P).

3. Updating the components of random e↵ects: We use the generic notation U
to indicate the correct (C, i.e., d = s) or incorrect (I, i.e, d 6= s) cases. Define

⌧ (i)U (t) =
P

x:x2U ⌧ (i)x (t), n(i)
U (t) =

P
x:x2U n(i)

x (t), f⌧ (i)U (t) =
P

x:x2U ⌧ (i)x (t)fx(t), ⌃�1
U,0 =

��2
U,aIK + ��2

U,sP, and ⌃(t)�1
U =

P
t ⌧

(i)
U (t)B(t)TB(t). The conditional posterior of �(i)

U is

Gaussian with covariance ⌃(i)
U,post =

⇣
⌃�1

U,0 +⌃(i)�1
U

⌘�1

, and location parameter µ(i)
C =

⌃(i)
U,post⌃

(i)�1
U

hP
t

n
2n(i)

U (t)� f⌧ (i)U (t)
o
B(t)

i
, respectively.

4. Updating the precision and smoothing parameters: The precision and smooth-
ness parameters involved in the fixed e↵ects part are �2

a and �2
s , and those involved in the

random e↵ects part are �U,a and �2
U,s, U = C, I. We update these variance components

using Metropolis-Hastings algorithm with log-normal proposal distributions centered on the
previous sample values.

5. Estimation of probability: For each (s, i, t), we calculate the probability of selecting

the d-th response in the following way: Let g{· | µ(i)
d0,s(t)} be the pdf of inverse Gaussian

distribution of the form (1) with parameters �s = 0, bd0,s = 2 and µd0,s = µ(i)
d0,s(t). We

generate M = 2000 independent samples ⌧m = [⌧1,m, . . . , ⌧d0,m]
T , m = 1, . . . ,M , where ⌧d0,m

is generated independently from g{· | µ(i)
d0,s(t)}. Among these M independent samples, the

proportion of occurrences of {⌧d,m  ^d0=1:d0⌧d0,m} is considered as the estimated probability
of selecting dth response.

The results reported in this article are all based on 5, 000 MCMC iterations with the
initial 2, 000 iterations discarded as burn-in. The remaining samples were further thinned by
an interval of 5. We programmed in R. The codes are available as part of the supplementary
material. A ‘readme’ file, providing additional details for a practitioner, is also included in
the supplementary material. In all experiments, the posterior samples produced very stable
estimates of the population and individual level parameters of interest. MCMC diagnostic
checks were not indicative of any convergence or mixing issues.
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S.4 MCMC Diagnostics

This section presents some convergence diagnostics for the MCMC sampler described in the
main manuscript. The results presented here are for the PTC1 data set. Diagnostics for the
simulation experiments and the benchmark data were similar and hence omitted.

Figure S.1: Analysis of PTC1 data: Trace plots (top) and auto-correlation plots (bottom) of the

individual drift rates µ(1)
1,1(t) corresponding to the success categorization of tone T1 evaluated at

each of the training blocks. In each panel, the solid red line shows the running mean. Results for

other drift parameters were very similar.

Figure S.1 shows the trace plots and auto-correlation of some individual level parameters
at di↵erent training blocks. These results are based on the MCMC thinned samples. As
these figures show, the running means are very stable and there seems to be no convergence
issues. Additionally, the Geweke test (Geweke, 1992) for stationarity of the chains, which
formally compares the means of the first and last part of a Markov chain, was also performed.
If the samples are drawn from the stationary distribution of the chain, the two means are
equal and Geweke statistic has an asymptotically standard normal distribution. The results
of the test, reported in Table S.1, indicate that convergence was satisfactory.
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t = 1 t = 2 t = 2 t = 2 t = 2 t = 2

Geweke statistics -1.233 -0.392 -0.678 -0.136 0.440 0.339

p-value 0.217 0.695 0.498 0.892 0.660 0.734

Table S.1: Geweke statistics and associated p-values assessing convergence of the of the
individual level drift parameters µ(1)

1,1(t) corresponding to the success categorization of tone
T1 evaluated at each of the training blocks. Results for other drift parameters were very
similar.

S.5 Analysis of Benchmark Data

Description of the data. The data set we consider next is a multi-day longitudinal
speech category training study reported previously in Reetzke et al. (2018) and analyzed
previously in Paulon et al. (2021). In this study, n = 20 participants were trained to learn 4
tones, namely, high-level (T1), low-rising (T2), low-dipping (T3), or high-falling (T4) tone,
respectively. The trials were administered in blocks, each comprising 40 categorization trials.
Participants were trained across several days, with five blocks on each day. On each trial,
participants indicated the tone category they heard via button press on a computer keyboard.
Following the button press, they were given corrective feedback. The data consist of tone
responses and associated response times for di↵erent input tones for the 20 participants. We
focus here on the first two days of training (10 blocks in total) as they exhibited the steepest
improvement in learning as well as the most striking individual di↵erences relative to any
other collection of blocks.

Analysis. We first demonstrate the performance of the proposed method in estimating the
probabilities associated with di↵erent (d, s) pairs. Figure S.2 shows the 95% credible intervals
for the estimated probabilities for di↵erent input tones along with the average proportions
of times an input tone was classified into di↵erent tone categories across subjects.

Observe that, except in situations with a very small number of data points the 95%
credible intervals include the empirical probabilities. Further, the estimated credible region
is narrow enough implying high precision of the inference.

Next, consider the clustering results. We obtained two clusters each in pairs of success
combinations (d = s) and in the wrong allocations (d 6= s). The clusters of success com-
binations are S1 = {(1, 1), (3, 3)} and S2 = {(2, 2), (4, 4)}, and that in wrong allocations are
M1 = {(1, 2), (2, 1), (2, 3), (3, 2), (4, 1), (4, 2)}, and M2 = {(1, 3), (1, 4), (2, 4), (3, 1), (3, 4), (4, 3)}.
The network plot in Figure S.3 shows the stability of the clusters over the MCMC iterations.

From an overall perspective, the trajectory of ‘High-level’ (T1) and ‘Low-dipping’ (T3)
are similar with two wrong allocations from M2 and one from M1, and that of ‘Low-rising’
(T2) and ‘High-failing’ (T4) are similar with two wrong allocations from M1 and one from
M2. These similarities in the overall trajectories of {T1, T3} and {T2, T4} were also noted by
Paulon et al. (2021).

Next, we consider the estimation of the underlying drift parameters µ(i)
d0,s(t). Due to

the identifiability constraints, the estimates of µ(i)
d0,s(t) can only be observed on a relative
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Figure S.2: Results for the benchmark data: Estimated probability trajectories compared with

average proportions of times an input tone was classified into di↵erent tone categories across sub-

jects (in dashed line). High-flat tone responses are shown in red; low-rising in blue; low-dipping in

green; and high-falling in purple.

scale. Figure S.4 shows the posterior mean trajectories and associated 95% credible intervals
for the projected drift rates estimated by our method for di↵erent combinations of (d0, s).
In comparison with the previous analysis of Paulon et al. (2021), the trajectories of our
estimated drift rates show significant similarity throughout.

Figure S.5 shows the posterior mean trajectories and associated 95% credible intervals
for the drift rates µ(i)

d0,s(t) for the di↵erent correct combinations (d0, s) with d0 = s for two
participants - the one with the best accuracy averaged, and the one with the worst accuracy
averaged across all blocks. For the well-performing participant, the drift trajectories increase
rapidly and for the poorly performing candidate, on the other hand, the drift trajectories
increase very slowly. Once again, in spite of the limitation of inferring on a relative scale, the
relative di↵erences of the best and worst performing participants across blocks show great
similarity with the inference of Paulon et al. (2021).
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Figure S.3: Results for the benchmark data: Network plot of similarity groups showing the intra

and inter-cluster similarities. Each node is associated with a pair indicating the input-response

tone category (s, d). The number associated with each edge indicates the proportion of times the

pair in the two connecting nodes appeared in the same cluster after burning.

S.6 Rand and Adjusted Rand Indices

Rand Index. Given a set of n objects S = {s1, . . . , sn}, let U = {U1, . . . , UR} and V =
{V1, . . . , VC} represent two di↵erent partitions of the objects in S such that [R

i=1Ui = S =
[C

j=1Vj and Ui \ Ui0 = ; = Vj \ Vj0 for 1  i 6= i0  R and 1  j 6= j0  C. Rand index
estimates the similarity between the allocations of S in U and V.

Let a be the number of pairs of objects that are placed in the same partition in U and the
same partition in V, and b be the number of pairs of objects that are in di↵erent partitions
of U, as well as in di↵erent partitions of V. Here a and b can be interpreted as agreements
in U and V, and the total number of pairs is

�
n
2

�
. The Rand index (Rand, 1971) is

RI = (a+ b)/

✓
n

2

◆
.

The Rand index lies between 0 and 1. When the two partitions agree perfectly, the RI takes
the value 1.

Adjusted Rand Index. The expected value of the Rand index of two random partitions
does not take a constant value. The adjusted Rand index (Hubert and Arabie, 1985) assumes
generalized hypergeometric distribution as the model of randomness, and makes a base and
scale change of the quantity (a+ b), defined above, so that the resultant quantity is bounded
by [�1, 1] and has expected value 0 under completely random allocation.

Let ni,j be the number of object that are both in ith partition of U and jth partition of
V, ni and nj be the total number of components in ith partition of U, and jth partition of
V, respectively.
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Figure S.4: Results for the benchmark data: Estimated posterior mean trajectories of the popu-

lation level drifts µd0,s(t) for the proposed model. The shaded areas represent the corresponding

95% pointwise credible intervals. Parameters for the high-flat tone response category are shown in

red; low-rising in blue; low-dipping in green; and high-falling in purple.

The expression a+ d can be simplified to a linear transformation of
P

i,j

�
ni,j

2

�
. Further,

under the generalized hypergeometric model, it can be shown that

E

2

4
X

i,j

✓
nij

2

◆3

5 =

2

4
X

i

✓
ni

2

◆X

j

✓
nj

2

◆3

5 /

✓
n

2

◆
.

Therefore, scaled the di↵erence of linear transformed (a + b) and its expectation is the
adjusted Rand index, defined as:

ARI =

P
i,j

�
ni,j

2

�
�
hP

i

�
ni

2

�P
j

�
ni,j

2

�i
/
�
n
2

�

1
2

hP
i

�
ni

2

�
+
P

j

�
nj

2

�i
�
hP

i

�
ni

2

�P
j

�
nj

2

�i
/
�
n
2

� .

The expected value of ARI index is zero and the range is [�1, 1]. Like the RI, the ARI also
takes the value 1, when the two partitions agree perfectly.
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Figure S.5: Results for the benchmark data: Estimated posterior mean trajectories for individual

specific drifts µ(i)
d0,s(t) = exp{fd0,s(t) + u(i)C (t)} for correct identification (d0 = s) for two di↵erent

participants - one performing well (dashed line) and one performing poorly (dotted line). The

shaded areas represent the corresponding 95% point-wise credible intervals. Parameters for the

high-flat tone response category are shown in red; low-rising in blue; low-dipping in green; and

high-falling in purple.


