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Abstract

Understanding how the adult human brain learns novel categories is an impor-
tant problem in neuroscience. Drift-diffusion models are popular in such contexts for
their ability to mimic the underlying neural mechanisms. One such model for gradual
longitudinal learning was recently developed in [Paulon et al. (2021). Fitting conven-
tional drift-diffusion models, however, requires data on both category responses and
associated response times. In practice, category response accuracies are often the only
reliable measure recorded by behavioral scientists to describe human learning. To our
knowledge, however, drift-diffusion models for such scenarios have never been consid-
ered in the literature before. To address this gap, in this article, we build carefully on
Paulon et al. (2021), but now with latent response times integrated out, to derive a
novel biologically interpretable class of ‘inverse-probit’ categorical probability models
for observed categories alone. However, this new marginal model presents significant
identifiability and inferential challenges not encountered originally for the joint model
in [Paulon et al.| (2021). We address these new challenges using a novel projection-
based approach with a symmetry-preserving identifiability constraint that allows us
to work with conjugate priors in an unconstrained space. We adapt the model for
group and individual-level inference in longitudinal settings. Building again on the
model’s latent variable representation, we design an efficient Markov chain Monte
Carlo algorithm for posterior computation. We evaluate the empirical performance
of the method through simulation experiments. The practical efficacy of the method
is illustrated in applications to longitudinal tone learning studies.
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1 Introduction

Scientific background.

Scientific background. Categorization decisions are important in almost all as-
pects of our lives - whether it is a friend or a foe, edible or non-edible, the word /bat/
or /hat/, etc. The underlying cognitive dynamics are being actively studied through
extensive ongoing research (Smith and Ratcliff, 2004; [Heekeren et al., [2004; Gold and
Shadlen, 2007; Schall, [2001; [Purcell, 2013; |Glimcher and Fehr, [2013).

In typical multi-category decision tasks, the brain accumulates sensory evidence
in order to make a categorical decision. This accumulation process is reflected in the
increasing firing rates at local neural populations associated with different decisions.
A decision is taken when neural activity in one of these populations reaches a par-
ticular threshold level. The decision category that is finally chosen is the one whose
decision threshold is crossed first (Gold and Shadlen, 2007; Brody and Hanks, |2016).
Changes in evidence accumulation rates and decision thresholds can be induced by
differences in task difficulty and/or cognitive function (Cavanagh et al., [2011; Ding
and Gold, 2013). Decision-making is also regulated by demands on both the speed
and accuracy of the task (Bogacz et al., 2010; Milosavljevic et al., [2010).

Understanding the brain activity patterns for different decision alternatives is
a key scientific interest in modeling brain mechanisms underlying decision-making.
Statistical approaches with biologically interpretable parameters that further allow
probabilistic clustering of the parameters (Lau and Green, 2007; Wade, 2023) asso-
ciated with different competing choices can facilitate such inference, the parameters
clustering together indicating similar behavior and difficulty levels.

Drift-diffusion models. A biologically interpretable joint model for decision re-
sponse accuracies and associated response times is obtained by imitating the under-
lying evidence accumulation mechanisms using latent drift-diffusion processes racing
toward their respective boundaries, the process reaching its boundary first produc-
ing the final observed decision and the time taken to reach this boundary giving the
associated response time (Figure |1} Panel (a)) (Usher and McClelland, 2001).

The literature on drift-diffusion processes for decision-making is rather vast but is
mostly focused on simple binary decision scenarios with a single latent diffusion pro-
cess with two boundaries, one for each of the two decision alternatives (Ratcliff, |1978;
Ratcliff et al., 2016; Smith and Vickers, [1988; [Ratcliff and Rouder, 1998; Ratcliff and
McKoon, 2008). Multi-category drift-diffusion models with multiple latent processes
are mathematically more easily tractable (Usher and McClelland, 2001; Brown and
Heathcote, 2008; Leite and Ratcliff, 2010; |Dufau et al., 2012; Kim et al., 2017) but
the literature is sparse and focused only on simple static designs.
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(a) Drift-diffusion processes for tone learning when data on both
response categories and response times are available.
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(b) Drift-diffusion processes for tone learning proposed in this ar-
ticle — with additional identifiability restrictions imposed to ac-
commodate scenarios when only data on response categories are
available.

Figure 1: Drift-diffusion model for tone learning. The tones {T1, T2, T3, T4} represent the
different categories; s denotes an input category, d’ the different possible response categories,
and d the final response category. Here we are illustrating a single trial with input tone T1
(s = 1) that was eventually correctly identified (d = 1). Panel (a) shows a process whose
parameters can be inferred from data on both response categories and response times. Here,
after an initial 05 amount of time required to encode an input category s (here T1), the
evidence in favor of different possible response categories d’ accumulates according to latent
Wiener diffusion processes Wy () (red, blue, green, and purple) with drifts pugz 5. The
decision d (here T1) is eventually taken if the underlying process (here the red one) is
the first to reach its decision boundary bgs. Panel (b) shows a process with additional
identifiability restrictions (for all &’ and s, ds = 0, by s = b fixed, and 239:1 pars = do)
considered in this article which can be inferred from data on response categories alone.

Learning to make categorization decisions is, however, a dynamic process, driven
by perceptual adjustments in our brain and behavior over time. Category learning



is thus often studied in longitudinal experiments. To address the need for sophisti-
cated statistical methods for such settings, Paulon et al. (2021) developed an inverse
Gaussian distribution-based multi-category longitudinal drift-diffusion mixed model.

Data requirements and related challenges. Crucially, measurements on both
the final decision categories and the associated response times are needed to estimate
the drift and the boundary parameters from conventional drift-diffusion models, in-
cluding the work by Paulon et al. (2021). Unfortunately, however, researchers often
only record the participants’ decision responses as their go-to measure of categoriza-
tion performance, ignoring the response times (Chandrasekaran et al., 2014; Filoteo
et al.,|2010). Additionally, eliciting accurate response times can be methodologically
challenging, e.g., in the case of experiments conducted online, especially during the
Covid-19 pandemic (Roark et al., 2021), or when the response times from partici-
pants/patients are unreliable due to motor deficits (Ashby et al.,[2003). Participants
may also be asked to delay the reporting of their decisions so that delayed physiolog-
ical responses that relate to decision-making can be accurately measured (McHaney
et al.l [2021). In such cases, the reported response times may not accurately relate
to the actual decision times and hence cannot be used in the analysis. As a result,
conventional drift-diffusion analysis that requires data on both response accuracies
and response times, such as [Paulon et al.| (2021), cannot be used in such scenarios.

The research question. The main research question addressed in this article is to
see if a new class of drift-diffusion models can be designed which will allow the bio-
logically interpretable drift-diffusion process parameters to be meaningfully recovered
from data on input-output category combinations alone.

The inverse-probit model. Categorical probability models that build on latent
drift-diffusion processes can be useful in providing biologically interpretable inference
in data sets comprising input-output categories but no response times. To our knowl-
edge, however, the problem has never been considered in the literature before. We
aim to address this remarkable gap in this article.

By integrating out the latent response times from the joint inverse Gaussian drift-
diffusion model for response categories and associated response times in |Paulon et al.
(2021), we can arrive at a natural albeit overparametrized model for the response
categories. We refer to this as the ‘inverse-probit’ categorical probability model.
This inverse-probit model serves as the starting point for the methodology presented
in this article but, as we describe below, it also comes with significant and unique
statistical challenges not encountered in the original drift-diffusion model.



Statistical challenges. While scientifically desirable, unfortunately, it is also
mathematically impossible to infer both the drifts and the boundaries in the inverse-
probit model from data only on the decision accuracies. We must thus have to keep
the values of either the drifts or the boundaries fixed and focus on inferring the other.

However, even when we fix either the drift or the decision boundaries, the problem
of overparametrization persists. In the absence of response times, only the informa-
tion on relative frequencies, that is empirical probabilities of taking a decision is
available. As the total probability of observing any of the competing decisions is one,
the identifiability problem remains for the chosen main parameters of interest, and
appropriate remedial constraints need to be imposed.

Setting an arbitrarily chosen category as the reference provides a simple solution
widely adopted in categorical probability models but comes with serious limitations,
including breaking the symmetry of the problem, potentially making posterior infer-
ence sensitive to the specific choice of the reference category (Burgette and Nordheim,
2012; |Johndrow et al., 2013).

By breaking the symmetry of the problem, a reference category also additionally
makes it difficult to infer the potential clustering of the model parameters, especially
across different panels. To see this, consider a problem with dy categories, with a
logistic model for the probabilities ps » = logistic(fsa), s,d € {1 : do}, of choosing
the @' output category for the s input category. For each input category s, by
setting the s output category as a reference, e.g., by fixing 5, s = 0, one can then
cluster the probabilities of incorrect decision choices, ps s, d’ # s. However, it is not
clear how to compare the probabilities across different input categories (i.e., across
the four panels in Figure , e.g., how to test the equality of p;; and po .

Finally, while coming up with solutions for the aforementioned issues, we must also
take into consideration the complex longitudinal design of the experiments generating
the data. Whatever strategy we devise, it should be amenable to a longitudinal mixed
model analysis that ideally allows us to (a) estimate the smoothly varying longitudinal
trajectories of the parameters as the participants learn over time, (b) accommodate
participant heterogeneity, and (c) compare the estimates at different time points
within and between different input categories.

Our proposed approach. As a first step toward addressing the identifiability
issues and related modeling challenges, we keep the boundaries fixed but leave the
drift parameters unconstrained. The decision to focus on the drifts is informed by the
existing literature on such models cited above where the drifts have almost always
been allowed more flexibility. The analysis of Paulon et al. (2021) also showed that
it is primarily the variations in the drift trajectories that explain learning while the
boundaries remain relatively stable over time.

As a next step toward establishing identifiability, we apply a ‘sum to a constant’



condition on the drifts so that symmetry is maintained in the constrained model.

Implementation of this restriction brings in significant challenges. One possibility
is to design a prior on the constraint space, a challenging task in itself. Additionally,
posterior computation for such priors would also be extremely complicated in drift-
diffusion models. Instead, we conduct inference with an unconstrained prior on the
drift parameters and project the samples drawn from the corresponding posterior to
the constrained space through a minimal distance mapping.

To adapt this categorical probability model to a longitudinal mixed model setting,
we then assume that the drift parameters comprise input-response-category-specific
fixed effects and subject-specific random effects, modeling them flexibly by mixtures of
locally supported B-spline bases (de Boor, |[1978; |[Eilers and Marx, |1996) spanning the
length of the longitudinal experiment. These effects are thus allowed to evolve flexibly
as smooth functions of time (Ramsay and Silverman|, |2007; Morris, 2015; (Wang et al.,
2016) as the participants get more experience and training in the decision tasks.

We take a Bayesian route to estimation and inference. Carefully exploiting condi-
tional prior-posterior conjugacy as well as our latent variable construction, we design
an efficient Markov chain Monte Carlo (MCMC) based algorithm for approximating
the posterior, where sampling the latent response times for each observed response
category greatly simplifies the computations.

We evaluate the numerical performance of the proposed approach in extensive
simulation studies. We then apply our method to the PTC1 data set described
below. These applications illustrate the utility of our method in providing insights
into how the drift parameters characterize the rates of accumulation of evidence in
the brain evolve over time, differ between input-output category combinations, as
well as between individuals.

Differences from previous works. This article differs in many fundamental ways
from all existing works on drift-diffusion models, including Paulon et al. (2021), where
response categories and response times were both observed and therefore the drift
and boundary parameters could be modeled jointly with no identifiability issues. In
contrast, the current work is motivated by scenarios where data on only response
categories are available, leading us to the inverse-probit categorical probability model
which, with its complex identifiability issues, brings in new unique challenges to per-
forming statistical inference, confining us only to infer the drift parameters on a
relative scale, achieved via a novel projection-based approach. The introduction and
analysis of the inverse-probit model, addressing the significant new statistical chal-
lenges posed by it, ranging across (a) identifiability issues, (b) assessment of intra and
inter-panel similarities, (c) extension to complex longitudinal mixed effects settings
to accommodate the motivating applications, (d) computational implementation of
these new models, etc. are the novel contributions of this article.



Outline of the article. Section |2 describes our motivating tone learning study.
Sections [3] and (] develop our longitudinal inverse-probit mixed model. Section
outlines our computational strategies. Section [6] presents the results of simulation
experiments. Section [7| presents the results of the proposed method applied to our
motivating PTCI1 study. Section [8| concludes the main article with a discussion.
Additional details, including Markov chain Monte Carlo (MCMC) based posterior
inference algorithms, are deferred to the supplementary material.

2 The PTC1 Data Set

The PTC1 (pupillometry tone categorization experiment 1) data set is obtained from
a Mandarin tone learning study conducted at the Department of Communication
Science and Disorders, University of Pittsburgh (McHaney et al., 2021). Mandarin
Chinese is a tonal language, which means that pitch patterns at the syllable level
differentiate word meanings. There are four linguistically relevant pitch patterns
in Mandarin that make up the four Mandarin tones: high-flat (Tone 1), low-rising
(Tone 2), low-dipping (Tone 3), and high-falling (Tone 4). For example, the syllable
/ma/ can be pronounced using the four different pitch patterns of the four tones,
which would result in four different word meanings. Adult native English speakers
typically experience difficulty differentiating between the four Mandarin tones because
pitch contrasts at the syllable level are not linguistically relevant to word meanings
in English (Wang et al., 1999, 2003). Thus, Mandarin tones are valid stimuli to
examine how non-native speech sounds are acquired, which has implications for second
language learning in adulthood. In PTC1, a group of native English-speaking younger
adults learned to categorize monosyllabic Mandarin tones in a training task. During
a single trial of training, an input tone was presented over headphones, and the
participants were instructed to categorize the tone into one of the four tone categories
via a button press on a keyboard. Corrective feedback in the form of “Correct” or
“Wrong” was then provided on screen. A total of n = 28 participants completed the
training task across T' = 6 blocks of training, each block comprising L = 40 trials.
Figure [2 shows the middle 30% quantiles of the proportion of times the response to
an input tone was classified into different tone categories over blocks across different
subjects, each for the four input tones.

Pupillometry measurements were also taken during each trial. It is commonly used
as a metric of cognitive effort during listening because increases in pupil diameter are
associated with greater usage of cognitive resources (Zekveld et al., 2011; Peelle, 2018;
Winn et al.,|2018; Robison and Unsworth, [2019; Parthasarathy et al., 2020). One issue
with pupillary responses however is that they unfold slowly over time. In view of that,
unlike standard Mandarin tone training tasks, where the participants hear the input
tone, press the keyboard response, and are provided feedback all within a few seconds



(Chandrasekaran et al.,[2016; Reetzke et al., 2018; Llanos et al., 2020; Smayda et al.,
2015), in the PTC1 experiment, there was an intentional four-second delay from
the start of the input tone to the response prompt screen where participants made

their category decision via button press. This four-second delay allows the pupil to
dilate in response to hearing the tone and begin to return to baseline before the
participant makes a motor response to the button press. During this four-second
period, participants have likely already made conscious category decisions. As such,
the response times that are recorded in the end are not meaningful measures of their
actual decision times.

This presents a critical limitation for using these response times for further analy-
sis. Conventional drift-diffusion analysis that requires data on response times, such as
the one presented in [Paulon et al. (2021), can no longer be directly applied here. The

focus of this article is to see if the drift-diffusion parameters can still be meaningfully
recovered from input-output tone categories alone in the PTC1 data.

We found drift-diffusion analysis in the absence of reliable data on response times
challenging enough to merit its separate treatment presented here. Relating drift-
diffusion parameters to measures of cognitive effort such as pupillometry is another
challenging problem that we are pursuing separately elsewhere.
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Figure 2: Description of PTC1 data: The proportion of times the response to an input tone
was classified into different tone categories over blocks across different subjects, each for
the four input tones (indicated in the panel headers). The thick line represents the median
performance and the shaded region indicates the corresponding middle 30% quantiles across
subjects.



3 Inverse-Probit Model

The starting point for the proposed inverse-probit categorical probability model
follows straightforwardly by integrating out the (unobserved) response times from
the joint model for response categories and associated response times developed in
Paulon et al. (2021). The derivation of this original joint model illustrates its latent
drift-diffusion process-based underpinnings (Figure , panel a). Later such construc-
tion will also be crucial in understanding the diffusion process-based foundations of
the marginal categorical probability model modified with identifiability constraints
proposed in this article (Figure[l} panel b). We therefore present the derivation from
Paulon et al. (2021) ditto here which also keeps the main paper self-contained.

To begin with, a Wiener diffusion process W (1) over domain 7 € (0,00) can
be specified as W(7) = pur + 0 B(7), where B(7) is the standard Brownian motion,
i is the drift rate, and o is the diffusion coefficient (Cox and Miller, 1965; |Ross
et al., 1996). The process has independent normally distributed increments, i.e.,
AW (r) = {W(r + A7) — W(7)} ~ Normal(uAT, c*A7), independently from W ().
The first passage time of crossing a threshold b, 7 = inf{7’ : W(0) = 0, W(7") > b},
is then distributed according to an inverse Gaussian distribution (Whitmore and
Seshadri, [1987; (Chhikara, [1988; [Lu, [1995) with mean b/u and variance bo? /3.

Given a perceptual stimulus s and a set of decision choices d’ € {1 : dy}, the neu-
rons in the brain accumulate evidence in favor of the different alternatives. Modeling
this behavior using latent Wiener processes Wy ¢(7) with unit variances, assuming
that a decision d is made when the decision threshold b, s for the d" option is crossed
first, as illustrated in Figure , Panel (a), a probability model for the time 74 to reach
decision d is obtained as

bds -3 {bds _,uds(Td - 53)}2
bass) = —2(1q — 0,) "2 exp | — LT 1
f(Td | 557 Hd,ss d,s) \/%(Td 65) CxXp 2(7}1 - (55) 7 ( )

where j14 s denotes the rate of accumulation of evidence, b4 the decision boundaries,
and 0, an offset representing time not directly related to the underlying evidence
accumulation processes (e.g., the time required to encode the s signal before evidence
accumulation begins, etc.). We let 0y s = (ds, ftar s, bar 5) ™

Joint model for (d,7): Since a decision d is reached at response time 7 if the
corresponding threshold is crossed first, that is when {7 = 74} Na2q {70 > 7a}, we
have d = argmingeg1.4,} 7. Assuming simultaneous accumulation of evidence for all
decision categories, modeled by independent Wiener processes, and termination when
the threshold for the observed decision category d is reached, the joint distribution
of (d, ) is thus given by

fld;715,0) =g(7 [ 045) [1asa{l = G(7 | 0a5)}, (2)



where, to distinguish from the generic notation f, we now use g(- | 8) and G(- | 9)
to denote, respectively, the probability density function (pdf) and the cumulative
distribution function (cdf) of an inverse Gaussian distribution, as defined in (1)

Marginal model for d: When the response times 7 are unobserved, the proba-
bility of taking decision d given the stimulus s is thus obtained from ([2) by integrating
out the 7 as

P(d]s,0)= [ 9(r|04s) [y {1 = G(7]0a,)}dr (3)

The construction of model is similar to traditional multinomial probit/logit re-
gression models except that the latent variables are now inverse Gaussian distributed
as opposed to being normal or extreme-value distributed, and the observed category
is associated with the minimum of the latent variables in contrast to being identi-
fied with the maximum of the latent variables. We thus refer to this model as a
‘multinomial inverse-probit model’.

With data on both response categories d and response times 7 available, the joint
model was used to construct the likelihood function in Paulon et al|(2021). In
the absence of data on the response times 7, however, the inverse-probit model in
provides the basic building block for constructing the likelihood function for the
observed response categories. As mentioned in the Abstract, discussed in the Intro-
duction, and detailed in Section below, the marginal inverse-probit model for
observed categories brings in many new identifiability issues and inference challenges
not originally encountered for the joint model developed in [Paulon et al. (2021).
Solving these new challenges for the marginal model to infer the underlying drift-
diffusion parameters @y , for all d', is the focus of this current article.

3.1 Identifiability Issues and Related Modeling Challenges

To begin with, we note that model in itself cannot be identified from data on only
the response categories. The offset parameters can easily be seen to not be identifiable
since P (174 < AgTa) = P{(14 — 0) < A (T — 9)} for any §, where Ay 7y denotes the
minimum of 74,d" € {1 : dp}. As is also well known in the literature, in categorical
probability models, the location and scale of the latent continuous variables are not
also separately identifiable. The following lemma establishes these points for the
inverse-probit model.

Lemma 1. The offset parameters o5 are not identifiable in model (@ The drift and
the boundary parameters, respectively iy s and by 5, are also not separately identifiable

i model (@)

In the proof of Lemma [I] given in [Appendix A, we have specifically shown
that P(d|s,0) = P(d| s,0%), where the drift and boundary parameters in 8 =
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{(ttar 5, b0r.5);d =1,...,dp} and 6" = {(;@75, g,’s>;d’ =1,..., do} satisfy ujy , =
cpg,s and by . = ¢ by for some constant ¢ > 0. The result follows by noting
that the transformation 7} ; = ¢ >74, does not change the ordering between the
Ta,s's and hence the probabilities of the resulting decisions d = argminge{i.4y} 7o =
arg minge(1.4,) 74 also remain the same. This has the simple implication that if the
rate of accumulation of evidence is faster, then the same decision distribution is ob-
tained if the corresponding boundaries are accordingly closer and conversely.

In fact, given the information on input and output categories alone, if dy denotes
the number of possible decision categories, at most dy — 1 parameters are estimable.
To see this, consider the probabilities P(d' | s,0), d = 1,...,dy, where 6 is the
m-~dimensional vector of parameters, possibly containing drift parameters and deci-
sion boundaries. Given the perceptual stimulus s as input, the probabilities satisfy

29:1 P(d' | 5,0) = 1. Thus, the function P,(8) = {P(1 | 5,0),--- ,P(dy | 5,0)}*
lie on a dy — 1-dimensional simplex, P,(0) : @ — A%~! and by the model in the
mapping is continuous. Thus, it can be shown by the Invariance of Domain theorem
(see, e.g., Deol |2018) that if P; is injective and continuous, then the domain of Py must
belong to R™, where m < dy— 1. Thus in order to ensure identifiablilty of {P;(0); 6},
we must parametrize the probability vector with at most dy — 1 parameters.

The existing literature on drift-diffusion models discussed in the Introduction has
traditionally put more emphasis on modeling the drifts (as their reference in the
literature as ‘drift’-diffusion models suggests). Previous research on joint models for
response tones and associated response times in Paulon et al. (2021) also suggest that
the boundaries remain stable around a value of 2 and it is primarily the changes in the
drift rates that explain longitudinal learning. In view of this, we keep the boundaries
fixed at the constant b = 2 and treat the drifts to be the free parameters instead. In
our simulations and real data applications, it is observed that the estimates of the
drift parameters and the associated cluster configurations are not very sensitive to
small-to-moderate deviations of b around 2. In our codes implementing our method,
available as part of the supplementary materials, we allow the practitioner to choose
a value of b as they see fit for their specific application. The latent drift-diffusion
process based with these constraints, namely d, = 0 and by ; = b for all d’, is shown
in Figure [1] Panel (b).

While fixing d, = 0 and by s to some known constant b reduces the size of the
parameter space to dy, to ensure identifiability, we still need at least one more con-
straint on the drift parameters p, 4, .. In categorical probability models, the identifi-
abily problem of the location parameter is usually addressed by setting one category
as a reference and modeling the probabilities of the others (Albert and Chib)| |1993;
Chib and Greenberg, 1998; Borooah, 2002; |Agresti, |2018). However, posterior pre-
dictions from Bayesian categorical probability models with asymmetric constraints
may be sensitive to the choice of reference category (see Burgette and Nordheim,
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2012; |Johndrow et al., 2013). Further, as also discussed in the Introduction, the goal
of clustering the drift parameters p,.,4 , across s can not be accomplished by this
apparently simple solution.

The problem can be addressed by imposing a symmetric constraint on py.4
instead. A symmetric identifiability constraint has been previously proposed by |Bur-
gette et al.|(2021) in the context of multinomial probit models, where they considered
a sum-to-zero constraint on the latent utilities. To implement the constraint, they
introduced a fauz base category indicator parameter, which is assigned a discrete uni-
form prior and then learned via MCMC. Given this faux base category indicator, the
other parameters are adjusted so that the sum-to-zero restriction is satisfied. How-
ever, the introduction of a base category, even if adaptively chosen, does not facilitate
the clustering of gy, o within and across the different input categories s.

3.2 Our Proposed Approach

In coming up with solutions for these challenges, we take into consideration the com-
plex design of our motivating tone learning experiments, so that our approach is
easily extendable to longitudinal mixed model settings, allowing us to (a) estimate
the smoothly varying trajectories of the parameters as the participants learn over
time, (b) accommodate the heterogeneity between the participants, and (c¢) compare
between the estimates not just within but also crucially between the different panels.

Similar to the sum to zero constraint in the multinomial probit model of Bur-
gette et al. (2021), we impose a symmetric sum to a constant constraint on the drift
parameters g4 , to identify our new class of inverse-probit models, although our
implementation is quite different from theirs. To conduct inference, we start with
an unconstrained prior, then sample from the corresponding unconstrained posterior,
and finally project these samples to the constrained space through a minimal distance
mapping. Similar ideas have previously been applied to satisfy natural constraints in
other contexts. See, e.g., Dunson and Neelon (2003); Gunn and Dunson (2005).

This approach is significantly advantageous both from a modeling and a com-
putational perspective. On one hand, the basic building blocks are relatively easily
extended to complex longitudinal mixed model settings, on the other, posterior com-
putation is facilitated as this allows the use of conjugate priors for the unconstrained
parameters. Projection of the drift parameters onto the same space further makes
them directly comparable, allowing clustering within and across the panels. The pro-
jected drifts can now be interpreted only on a relative scale but such compromises
are not avoidable given the challenges we face.

11



3.2.1 Minimal Distance Mapping

As the drift parameters are positive, the sum to a constant k constraint leads to the
constrained space Sy = {p : 1" ="k, pu; >0, j=1,...,do} on which p,g , should
be projected. The space Sy, is semi-closed, and therefore, the projection of any point
@ onto S, may not exist. As a simple one dimensional example, let x+ = —1 and
S = (0,1}, then argminyes |y — x| = 0 ¢ S. Further, from a practical perspective, a
drift parameter infinitesimally close to zero makes the distribution of the associated
response times very flat which is typically not observed in real data. Therefore, we
choose a small ¢ > 0 and project p onto S = {p : 1T =k, p; > ¢, j =
1,...,do}. We then define the projection of a point g onto S through minimal
distance mapping as

p" = Projs_, (u) := {argminy [|p —v[| : v € S},

where || - || is the Euclidean norm. Note that for appropriate choices of (k,¢), Sk
is non-empty, closed and convex. Therefore, p* exists and is unique by the Hilbert
projection theorem (Rudin, [1991). The solution to this projection problem comes
from the following result from Beck (2017).

Lemma 2. Let S, be as defined above, and S; = {p:p; >¢, j=1,...,do}. Then,
Projs_, (1) = Projs (p — u*1), where u* is a solution to the equation 1"Projs (p —
u*l) = k.

Although the analytical form of the solution is not available, as is evident from
the above result, the solution mainly relies on finding a root u* of the non-increasing

function ¢(u*) = 1"Projs (pu — u*1) — k. We apply an algorithm based on [Duchi
et al|(2008) to reach the solution. The algorithm is described in |[Appendix C.

3.2.2 Identifiability Restrictions

The projection approach solves the problem of identifiability and maps the probability
vector corresponding to an input tone s to the constraint space of .4, ., Scr. The
following theorem shows that the mapping from the constrained space of p;.4,  to the
probability vector P (g4, o) = {P1(H1.4y.5)s - - - > Pdo (H1.a,,5)} - 18 injective. To keep the
ideas simple, we consider the domain of the function to be Sy (i.e., € = 0) instead
of S i although a very similar proof would follow if S, j, were considered.

Theorem 1. Let py(pty.4, ) be the probability of observing the output tone d given
the input tone s and the drift parameters p, 4, 5, as given in @, for each d =1 : d,.
Suppose .4,  lies on the space Syr. Then, the function from Soy to the space of
probabilities {pa(py.q,);d =1:do} is injective.

A proof is presented in
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3.2.3 Conjugate Priors for the Unconstrained Drifts

From , given 7, ..., 74, such that 7, < min{r,..., 74}, the posterior full con-
o T(prag) X TT8 9 (7 | pas) . where
m(-) is the prior of p,, .. Observe that Hg?zlg(m/ | tars) is Gaussian in poy.g -
A Gaussian prior on ;.4 o thus induces a conditional posterior for p,, ; that is

ditional of p,, ; is proportional to 7

also Gaussian and hence very easy to sample from. Importantly, these benefits also
extend naturally to multivariate Gaussian priors for any parameter vector 3, , that
relates to 4 s linearly. This will be crucial in allowing us to extend the basic build-
ing block to longitudinal functional mixed model settings in Section {4 next, where we
will be modeling time varying uq s(t) as flexible mixtures of B-splines with associated
coefficients B .

3.2.4 Justification as a Proper Bayesian Procedure

Define the constrained conditional posterior distribution, i ), of the drift parameters
u as

frg> (B|¢) =y, ({m:Proj(u) € B} [¢), BC Sy

(n)
where 7 W

is the unconstrained conditional posterior of .4 ., given the other vari-
ables . The analytic form of the constrained conditional posterior is not available.
Sen et al.| (2018) established a proper Bayesian justification for the posterior pro-
jection approach by showing the existence of a prior 7 (/J’l:do,s) on the constrained
space S. such that the resulting posterior is the same as the projected posterior
#™ When S. ;. is non-empty, closed, and convex, i.e., the projection operator is
measurable, such a prior exists if the unconstrained posterior is absolutely continu-
ous with respect to the unconstrained prior (Sen et al., 2018, Corollary 1). As the
unconstrained induced prior and posterior of the drift parameters are both Gaussian,

this result holds in our case as well.

4 Extension to Longitudinal Mixed Models

In this section we adapt the inverse probit model discussed in Section |3 to complex
longitudinal design of our motivating PTC1 data set described in the Introduction.
Let s; ¢+ denote the input tone for the it" individual in the ¢*" trial of block ¢. Likewise,
let d; o denote the output tone selected by the it" individual in the ¢** trial of block
t. Setting the offsets at zero, and boundary parameters to a fixed constant b, we now

13



have

f«@mt:d|sM¢=wauﬁh4w}=ié glr L Y TT [1 - 6tr 1l 0} dr, (@)

d'#d

SW4>M—ﬂQQWP&¥£}

The drift rates ug) (t) now vary with the blocks ¢. In addition, we accommodate

where g{7 | si¢+ =

random effects by allowing ,u() (t) to also depend on the subject index i. We let
d = {dis+}ies, and dy be the number of possible decision categories (T1, T2,
Tdy). The likelihood function thus takes the form

do do T n L 1{d; ¢,t=d,s40,¢=5}
£(d|s.6) = [ TITTTITI [Ptdice | see 0] .
d=1 (=1

s=1 t=1 i=1

We reiterate that in deriving the identifiability conditions and designing their
implementation strategy in Section [3.2] we had to make sure that they would be ap-
plicable to the complex multi-subject longitudinal design of the PTC1 data set. Fol-
lowing those ideas, we model the time-varying mixed effects drift parameters ug)ys(t)
without any constraints first, then project them to the space satisfying the necessary
identifying conditions.

For the unconstrained model, we follow the outline of [Paulon et al. (2021) with
necessary likelihood adjustments. The details are deferred to Section S.1 of the sup-
plementary material We present here a general outline.

We decompose ud, (t) = fars(t )—i—ud,) (t) where fy s(t) and ug,zs(t) denote, respec-
tively, fixed and random effects components, which are both modeled using flexible
mixtures of B-spline bases. This allows us to cluster the fixed effects for different
(d', s) combinations with similar shapes by clustering the corresponding B-spline co-
efficients.

Given posterior samples of fy 4(f) and ug,)s(t), unconstrained samples of ,ug,)s(t) are

obtained. For every input tone s, these unconstrained uﬁllo’s(t)’s are then projected
to the space S, following the method described in Section [3.2.1.

5 Posterior Inference

Posterior inference for our proposed inverse-probit mixed model is carried out using
samples drawn from the posterior using MCMC algorithm. The algorithm carefully
exploits the conditional independence relationships encoded in the model as well as
the latent variable construction of the model.

Inference can be greatly simplified by sampling the passage times 7.4, and then

14



conditioning on them. However, it is not possible to generate 7.4, sequentially, e.g.,
by generating the passage time of the d-th decision choice 7; independently, and
that of the other decision choices from a truncated inverse-Gaussian distribution, left
truncated at 74!

We implement a simple accept-reject sampler instead which generates values from
the joint distribution of 7.4, and accepts the sample if 7; < 7.4, It is fast and
produces a sample from the desired target conditional distribution. We formalize this
result in the following lemma.

Lemma 3. Let g (714, | f1.4,) be the joint distribution of T1.q4,. Consider the following
accept-reject algorithm:

Algorithm 1 Generating the passage times 7.4, given argmingei.4,) 7¢v = d

1. Generate 7.4, from the joint distribution ¢ (7.4, |ft1.4, )-
2: Accept 1.4, if 74 < 1.4y

3: Return to Step 1 otherwise.

Algorithm |1] generates samples from the conditional joint distribution of Ti.q,, condi-
tioned on the event 74 < Ty.4,.-

Proof of Lemma |3|is provided in |[Appendix D\

It can be verified that the acceptance ratio of Algorithm is M = P (15 < 711.4,)
(see Robert and Casella, 2004) which depends on the drift parameters alone. If the
drift parameters are ordered accordingly, so as to satisfy pg > p1.4,, the acceptance
ratios increase. The algorithm thus becomes faster as the sampler converges.

As noted earlier, sampling the latent inverse-gaussian distributed response times
T1.d, greatly simplifies computation. Most of the chosen priors, including the priors
on the coefficients 3 in the fixed and random effects, are conjugate. Due to space
constraints, the details are deferred to Section S.3 in the supplementary material.

6 Simulation Studies

In this section, we discuss the results of a synthetic numerical experiment. We sim-
ulate data from a complex longitudinal design that mimics the real PTC1 data set.

'We can see this in a simpler example. Suppose we are interested in generating a sample from the
conditional distribution of 7 = (7, 72) given d = argmin; 7; = 1, where 7; ~ Uniform(0,1), i = 1,2,
independently. The conditional density of 7 given d = 1 is frg(m1,72) = 2if 0 <7 < 70 < 1,
and = 0 otherwise. However, if we draw 7 from Uniform(0, 1) first and let that realization be 7*,
and draw 7o from the truncated uniform distribution (left truncated at 7*), then the pdf of the
realization of (11, 72) is 7¥71.

15



Our generating model contains fixed effects components attributed to different input-
response tone combinations and random components attributed to individuals.

We recall that our main objective here is to identify the similarities and differences
between the underlying brain mechanisms associated with different input-response
category combinations over time while also assessing their individual heterogeneity, as
characterized by latent drift-diffusion processes whose parameters can be biologically
interpreted. The estimation of the probability curves for different input-response
combinations, while a good indicator of our model’s fit, is not the main purpose of
this endeavor. Traditional categorical probability models, such as multinomial probit
or logit, are thus not relevant to the scientific problem we are trying to address here.
We are also not aware of any other work in the drift-diffusion literature that attempts
to estimate the underlying parameters from category response data alone. In view of
this, we restrict our focus to evaluating the performance of the proposed biologically
meaningful longitudinal inverse-probit mixed model but do not present comparisons
with any other model.

Design. In designing the simulation scenario, we have tried to mimic our motivating
category learning data sets. We chose n = 20 as the number of participants being
trained over T' = 10 blocks to identify dy = 4 tones. For each input tone and each
block, there are L = 40 trials. We set the true p4 5(t) values in such a way that they
are far from satisfying the constraint ), _,.; pts = k, and the decision boundary
is set to b = 2 for all (d’,s). The true drift parameters and the true probabilities,
averaged over the participants of each input-response category combination are shown
in Figure [3|

There are four true clusters in total, two for correct categorizations, Sj, Ss,
and two for incorrect categorizations, Mj, My, as follows: Sy = {(1,1),(2,2)}, S2 =
[(3,3), (4,0}, My = {(1,2), (1,3), (2,1), (2.3), (3,4), (4,3)}, Ma = {(1,4),(2,4), (3, 1), (3,2),
(4,1),(4,2)}. We may interpret M; as the cluster of difficult alternatives, and M, as
the cluster of easy alternatives. Thus, there are similarities in overall trajectories
of {11, Ty} and {T3,T,}, differentiating between easy and hard category recognition
problems. We experimented with 50 synthetic data sets generated according to this
design.

Results. As the true drift parameters themselves do not satisfy the constraint, and
the estimated drift parameters are on the constrained space, we cannot validate our
method by its predictive performance of the drift parameters. Instead, the proposed
method is validated in terms of the estimated probabilities.

Figure 4|shows the estimated posterior probability trajectories along with the 95%
credible interval and the underlying true probability curves for every combination
(d',s) in a typical scenario. The credible interval fails to capture the truth in two
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Figure 3: Description of the synthetic data: True values of the drift parameters averaged
over the subjects, denoted by piq 5(t), and true probabilities P{d; ¢+ | S; ¢+, ,ugl:)do’ ()} aver-
aged over the subjects, denoted here by Py 4(t). Here T1, T2, T3, and T4 represent input
categories 1 to 4, respectively. Some of the curves overlap according to the true clustering
structure described in Section @

situations, when the true probability is very close to zero, or it is very close to one.
The former case corresponds to classes with very low success probability, resulting in
very few observations to estimate. The latter is underestimated as a consequence of
the former since the probabilities add up to one.
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Figure 4: Results for synthetic data: Posterior trajectories of the probabilities for each
combination of (d’, s) over blocks estimated by the proposed model. The shaded areas rep-
resent the corresponding 95% point-wise credible intervals. The thick dashed lines represent
underlying true curves some of which overlap according to the true clustering structure de-
scribed in Section @

The results produced by our method are mostly stable and consistent across all
synthetic data sets. There are, however, a few cases of incorrect cluster assignments,
resulting in some outliers in each boxplot. Note that if an incorrect cluster assign-
ment takes place, the probabilities of all input-response combinations are affected by
that. For example, if a component of M; is wrongly assigned to Ms, then not only
the probabilities of input-output combinations in M; and M, are affected, since the
probabilities add up to one, those of S; and Sy are also affected.

In estimating the probabilities, the overall mean squared error, i.e., the mean
squared difference of the estimated and the true probabilities taking all combinations
of (d,s,1,t) into account, came out to be 0.0028. Figure |5 provides a detailed de-
scription of the estimation of the probabilities for two input categories (one from each
similarity group). As described for the individual simulation results, there are cases
of under-estimation of the probabilities which are close to one, and consequently,
over-estimation of the probabilities close to zero. However, the amount of departure
from the true probability in each case is very small which can also be seen in the
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Figure 5: Results of the synthetic data: Boxplots of the estimated probabilities over 50
simulations, and true probabilities (in red dot) of each block and for two panels, one from
each similarity group (panel 77 in the top and 73 in the bottom).

small overall MSE.

Further, the overall efficiency in identifying the true clustering structure is vali-
dated using Rand (Rand,[1971) and adjusted Rand (Hubert and Arabiel [1985) indices.
The definitions of Rand and adjusted Rand indices are provided in Section S.6 in the
supplementary material. The average Rand and adjusted Rand indices for our pro-
posed method over 50 simulations 0.9105 and 0.8277, respectively, indicating high
overall efficacy in correctly clustering the probability curves.
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7 Applications

Analysis of the PTC1 data set. We present here the analysis of the PTC1
data set described in Section [2| using our proposed longitudinal inverse-probit mixed
model. We first demonstrate the performance of the proposed method in estimating
the probabilities associated with different (d, s) pairs. Figure @ shows the 95% cred-
ible intervals for the estimated probabilities for different input tones, along with the
average proportions of times an input tone was classified into different tone categories
across subjects. The latter serves as the empirical estimate of the probabilities.

We observe that except for the input-response combination (1,1) in block 3 and
some cases with a low number of data points, the 95% credible intervals include
the corresponding empirical probabilities. An explanation of the occasional under-
performance is given later in this section.

Next, we examine the clusters identified by the proposed model. Apart from
the two clusters obtained for the success combinations (d = s), three clusters are
additionally identified in the incorrect input-response combinations (d # s). The
clusters of success combinations are S; = {(1,1),(2,2),(4,4)} and S2 = {(3,3)},
and of wrong allocations are M; = {(1,2),(1,4),(2,1),(2,4),(3,2),(4,1),(4,2)}, My =
{(1,3),(2,3),(3,4), (4,3)}, and M3 = {(3,1)}. Figure [7| shows the input-response tone
combinations color-coded as per cluster identity, and the proportion of times each pair
of input-response tone combinations appeared in the same cluster after burnin. Fig-
ure [7|indicates that, while the clusters Sy, Sy, M, are stable, there is some instability
among the other two clusters, namely M, and Ms.

Key findings. The clustering structure reveals that the low-dipping (73) response
trajectories are different from the other three response categories. While for correct
input-output tone combinations, S, forms a separate singleton cluster, for incorrect
combinations, My contains all the low-dipping trajectories, indicating their similarities
across the panels. Also for T3, faster increase of the probabilities of correct identifi-
cation, as well as faster decay of probabilities of incorrect identification indicate that
T5 is easily distinguishable from other alternatives.

On the other hand, the trajectories of high-flat (7}), low-rising (7%) and high-
falling (7)) response categories are quite similar across panels. While for correct input-
response combinations, these three form the cluster S;, the corresponding incorrect
tone combinations are clustered in M;. The slower rise of the observed empirical
probabilities for the elements in S; and the slower decay of the same for M; indicate
that Ty, T; and Ty are difficult to distinguish. However, in block 3 the empirical
probabilities of correct input-response combinations differ moderately. While T, and
T, show a relative drop in the empirical probabilities at block 3, T} shows a sudden
pick in the same. This local dissimilarity of the trajectories at block 3, leads to a
departure of the empirical probability of T} from the estimated credible band.

Next, we consider the results concerning the estimation of the drift parameters

20



High-flat Low-rising

=
- Low-dipping High-falling
o 1.00-
0.75-
0.50- =
7
z
0.25- i
0.00° .
1 2 3 4 5 6 1 2 3 4 5 6

Response tone: = High-flat = Low-rising = Low-dipping = High-falling

Figure 6: Results for PTC1 data: Estimated probability trajectories compared with average
proportions of times an input tone was classified into different tone categories across subjects
(in dashed line). The means across subjects are indicated by thick lines and the shaded
regions indicate corresponding 95% coverage regions.

,ug,)js(t). As discussed in Section given the identifiability constraints, the estimates

of ug)’s(t) can only be interpreted on a relative scale. Figure [§ shows the posterior
mean trajectories and associated 95% credible intervals for the projected drift rates.

Importantly, our proposed mixed model also allows us to assess individual-specific
parameter trajectories. Figure [0 shows the posterior mean trajectories and the asso-
ciated 95% credible intervals for the drift rates ug)vs estimated by our method for the
different success combinations (d’, s) for two participants - one with the best accuracy
averaged across all blocks, and the other with the worst accuracy averaged across all
blocks. These results suggest significant individual-specific heterogeneity. For the
well-performing participant, the drift parameters are much higher than those for the
poorly performing individual, indicating their ability to more quickly accumulate ev-
idence compared to the poorly-performing adult. These differences persisted over all
blocks with a small gradual increase over time.

Analysis of benchmark data. To validate the proposed method, we also analyzed
tone learning data which, in addition to response accuracies, included accurate mea-

surements of the response times. It was previously analyzed in [Paulon et al. (2021)
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Figure 7: Results for PTC1 data: Network plot of similarity groups showing the intra and
inter-cluster similarities of tone recognition problems. Each node is associated with a pair
indicating the input-response tone category, (s,d). The number associated with each edge
indicates the proportion of times the pair in the two connecting nodes appeared in the same
cluster after burnin.

using the drift-diffusion model which allowed inference on both the drift and the
boundary parameters. For our analysis with the method proposed here, however, we
ignored the response times. We observed that the estimates of the drifts produced by
our proposed methodology match well with the estimates obtained by Paulon et al.
(2021). A description of this ‘benchmark’ data set and other details of our analyses
are provided in Section S.5 of the supplementary material.

8 Discussion, Conclusion, Broader Utility, and Fu-

ture Work

Summary. In this article, we developed a novel longitudinal inverse-probit mixed
categorical probability model. Our research was motivated by category-learning ex-
periments where scientists are interested in using drift-diffusion models to understand
how the decision-making mechanisms evolve as the participants get more training and
experience. However, unlike traditional drift-diffusion analyses which require data on
both response categories and response times, we only had usable records of response
categories but no response times. To our knowledge, biologically interpretable latent
drift-diffusion process-based categorical probability models had never been considered
for such scenarios in the literature before. We addressed this need. Building on a pre-
vious work on longitudinal drift-diffusion mixed joint models for response categories
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Figure 8: Results for PTC1 data: Estimated posterior mean trajectories of the population
level drifts p14 5(t) for the proposed model. The shaded areas represent the corresponding
95% point-wise credible intervals.

and response times but now integrating out the response times, we obtained a new
class of category probability models which we referred to here as the inverse-probit
model. We explored parameter recoverability in such models, showing, in particular,
that the offset parameters can not be recovered and drifts and boundaries both can
not be recovered from data only on response categories. In our analyses, we thus
focused on estimating the biologically more important drift parameters but kept the
offsets and the boundaries fixed. We showed that with careful domain knowledge
informed choices for the boundaries, the general trajectories of the drift parameters
can be recovered by our proposed approach even in the complete absence of response
times.

Conclusion. Overall, when it comes to making scientific inferences about drift-
diffusion model parameters in the absence of data on response times, our work im-
plies a mixed promise. On the downside, our work shows that the detailed interplay
between drifts and boundaries cannot be captured. On the positive side, our re-
sults also suggest that, with our carefully designed model, and the fixed value of
the boundary parameters appropriately chosen by experts, the general longitudinal
trends in the drifts can still be estimated well. Caution should still be exercised not
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Figure 9: Results for PTC1 data: Estimated posterior mean trajectories for individual
specific drifts ug,)s(t) = exp{faos(t) + u(é) (t)} for successful identification (d' = s) for two
different participants - one performing well (dashed line) and one performing poorly (dotted

line). The shaded areas represent the corresponding 95% point-wise credible intervals.

to over-interpret the results.

Broader utility in auditory neuroscience. The proposed model, we believe,
has significant implications for auditory neuroscience. We focused here specifically
on a pupillometry study for which the experimental paradigms need to be adapted
to prioritize slow pupillary response, rendering the behavioral response times useless.
However, as discussed in the Introduction, there could be many other situations
where usable data on response times may not be available. The proposed model
can be useful in such scenarios to understand the perceptual mechanisms underlying
auditory decision-making.

Broader utility beyond auditory neuroscience. While we focused here on
studying auditory category learning, the method proposed is applicable to other do-
mains of behavioral neuroscience research studying categorical decision-making when
the response times measurements are either not available or not reliable.
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Broader utility in statistics. On the statistical side, the projection-based ap-
proach proposed here to impose non-standard identifiability conditions and address
clustering problems within and between different panels is not restricted to inverse-
probit models introduced here. They can be easily adapted to other classes of gen-
eralized linear models such as the widely popular logit and probit models and hence
may also be of interest to a much broader statistical audience.

Future directions: The models and the analyses of the PTC1 data set presented
here excluded the pupillometry measurements themselves. An important and chal-
lenging problem being pursued separately elsewhere is to see how those measurements
relate to drift-diffusion model parameters.

Appendix

Appendix A Proof of Lemma

Proof. Tt is easy to check that the offset parameters §, are not identifiable since

P(d ’ 87557ﬂ'1;d0757b1:d0,s) - / (T | 55’/~Ld57bds H {1 - 7_ | 587/'Ld'57bd' )}dT
Os d'+d

= / (T | 0 ,U/ds’bds H {1 - T ‘ O ,udfs,bd/ )}dT = P(d ’ 8707M1:d0,57b11d0,8>'
0 d'#d
Next we will show that the drift parameters and decision boundaries are not
separately identifiable, even if we fix offset parameters to a constant.
First note that equation can also be represented as

Ndstd T
/ / H g Tdr ‘ gd/ / Td | Ods dry H drgr. (A.l)

d4d d'#d
First observe that 7* = Agza7y = 75 A 71, where 7%, = Ag,ay7a. Thus the
integral above can be written as

TEIATL
/ / H 9(1a | O s) {/ g(m | 0175)/ (74| 045) de} H At
S 58

d'#{1,d} d'#{1,d}
1 )
/ / H g Td | Od’ {/ (Td | Od’s)/ g(Tl | 017S)d7'1d7'd} H de/.
O @A{1d} 7d d'#A{1.d}

Proceeding sequentially one can show that the integral above is the same as in .
Using the above we express the probability in (3) as in . As the offset

parameter J, is already shown to be not identifiable, we need to fix the same. Without

loss of generality, we fix the offset parameter at 0. The probability density function
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of inverse Gaussian distribution, with parameters 04 s = (far s, bar,s) evaluated at 7,
(74 | B4 ) can be obtained from by replacing §, = 0 and d = d'.

Consider the transformation of 7 to 7 as 74 = ¢*7}}, for some constant ¢ > 0, and
for all d’. Further, define by, ;= by o/c and p, , = cpa s, for all d'. Then observe that

- * *\— *\— * * * 2 * * * *
97 | 80 )dra = (2m) 205 (7)™ exp {=(275) " Wy — 1)’ } i = 97 | O )i

where g(7} | 0 ;) is the pdf of inverse Gaussian distribution with parameters ;i
and by , evaluated at the point 7.

Applymg the transformation on 74 for all d’ we get that the integral in - A1) with
0s = 0 is same as

/\d/#de/
/ / H 9(1y 1 0% ) / g(75 1 0,)dr] H dr}.
0 d'#d d'#d

As c is arbitrary, this shows that the drifts and boundaries are not separately es-
timable. O

Appendix B Proof of Theorem

Proof. Let P(pty.q, ) = {P1(M1.y.5) - - - > Pdo(H1.,,5)} - be the function, given by @,
from Sy to unit probability simplex A%~ For notational simplicity, we write
Pigys = = (pi1, ... pa,)". We first find the matrix of partial derivative VP with
respect to p.

For p € Sy, 17 = k, and hence the probability reduces to

(beb)d0 oo oo oo 5 1
_ ) 32 expd —= (17711 + p” dr_ad
palh) <2w>do/2/0 / / " eXp{ A “‘)} T

for d=1,...,dy, where 7 = diag(7y, ..., 7q,), and T_g4 is the sub-vector of T exclud-

ing the d-th element. Next, differentiating p, (p) with respect to wu, we get

Ipa (1) =3/2 | T

T = 27r d0/2 / / / |7~ / (—Tp)exp —5 (1 1+ p T/J,) dT _qd7y,
- [umz o Md-1Tl2 M Batit2 o Mdo772] )

wheren = —E{nl(rn >, -, 74, >71)|p},and e = —E{rl (1o > 71, ;74 > 71) |1},

and I(A) is the indicator function of the event A. Here the expectation is considered

under the joint distribution of (7, ..., 74), which is a product of independent inverse

Gaussians. Clearly 7, > 1 > 0.
From the above derivation it is easy to obtain that
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VP (p)=| , Tl =M ) I+ 11"}
| ATl f2T2 o fdo T |

where M = diag (u1, . . ., fd, )-

Now, suppose there exists p and v in S such that p # v and P (u) = P (v).
Define « : [0,1] — R% such that v(t) = p+t (v —p), t € [0,1]. Further, define
h(t) = (P (y(t)) — P (p),v — pu), as the cross product of P (y(t)) — P (u) and v — p.
Then h(1) = h(0) = 0 under the proposition that P (p) = P (v). Therefore, by
the Mean Value Theorem, as p # v, there exists some point ¢ € (0,1) such that
Oh(t)/ot|,_, = 0. Now,

Oh(t &0 0
T = 3 o) g (0} 1)
- do 9 T gry(t)
= d’z (var — par) {%pd' (7)} ot
(v — )" VP{v(t)} (v — )
(m =) (v =) T(t) (v = p) +m2 (v — )" M11T (v — p)
(m—m) (v =)' T{) (v —p),
as 17 (v — p) = 0, where I'(¢) = diag{~(t)}.
As every component of p and v is positive, for any ¢ € (0, 1), the matrix I'(c)

is positive definite. Further, as n; > m,, 0h(t)/0t|,_. = 0 only if p = v, which
contradicts the proposition. O]

Appendix C Algorithm for Minimal Distance Mapping

The problem of finding projection of a point p onto the space S is equivalent to
the following non-linear optimization problem:

minimizey |w — p||? such that Zwi =k, w; > e.
i=1
Duchi et al. (2008, Algorithm 1) provides a solution to the problem of projection of a
given point p onto the space Sj . for ¢ = 0, which is modified for any given € below.
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Algorithm 2

INPUT: A vector u, and a pair (k,¢).

1: Sort p into p* such that the elements of p* are in descending order.
2: Find p = max{j 0 — g1 ( gzl,ul* — k) > 8}.

3: Define 6 = p~! { T =k (k- p)e}.

OUTPUT: w such that w; = max {u; — 6,¢}.

Appendix D Proof of Lemma

Proof. We consider the unconditional distribution of 7y.4,, given the parameters
[1.4, as the proposal distribution, g. Clearly, the proposal distribution ¢ and
the target conditional joint distribution f satisfies f(71.q0|1t1:d0)/9(T1.do | 01:00) < M,
where M~! = P (75 <Ty.q,). Therefore, for any random sample U ~ U(0,1),
f(Trdo | 1:ag) = MUG(T1.a0|pt1:0,) if the sample satisfies the condition 74 < 7.4,
and f(Tragltt1.dy) < MUG(T1.40|p01:0,) Otherwise. Hence by Lemma 2.3.1 of Robert
and Casella (2004), the algorithm above produces samples from the target distribu-
tion. O

Supplementary Materials

The supplementary materials detail the choice of the prior hyper-parameters, the
MCMC algorithm used to sample from the posterior and some performance diagnos-
tics, and the analysis of a real benchmark data set. Separate files additionally include
R programs implementing the longitudinal inverse-probit mixed model developed in
this article and the PTC1 data set analyzed in Section
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S.1 Modelling the Drift Parameters

S.1.1 Functional Fixed Effects

We model the fixed effects functions f,(¢) using flexible mixtures of B-spline bases (de Boor,
1978) that allow them to smoothly vary with time ¢ while also depending locally on the
indexing variable x as

Here B(t) = {Bi(t), ..., Bk(t)} are a set of known locally supported basis functions spanning
[1,T), B, = (Bet,---,Bex)’ are associated unknown coefficients to be estimated from the
data. Allowing the 3,’s to flexibly vary with x can generate widely different shapes for
different input-response category combinations.

Towards clustering the fixed effects curves, we introduce a set of latent variables z, for
each input-response category combination = with a shared state space {1,..., zymax } and as-

sociated coefficient atoms 3% = (8%,,..., 3% x)T, we let

By | 2 = 2) = B, implying {f(t) | 20 = 2} = f2(t) = X4y B2, Be(t), (5:2)
To probabilistically cluster the 3,’s, we next let

Zy Mult(ﬂz) - Mult(ﬂ.17 st 77szax)7

(S.3)
7, ~ Dir(a/Zmax, - - -, @/ Zmax)-
We next consider priors for the atoms 35. We let
B% ~ MVNg{pg0. (0,1 +0,°P) 7'}, (S.4)

where MVNg (u, ) denotes a K dimensional multivariate normal distribution with mean
p and covariance ¥ and P = DD, where the (K — 1) x K matrix D is such that D3
computes the first order differences in 3. The model thus penalizes Z,I::l(VB;k)Q =3P,
the sum of squares of first order differences in ,BS) (Eilers and Marx, [1996). The variance
parameter o2 models the smoothness of the functional atoms, smaller o2 inducing smoother
f2(t)’s. Additional departures from ps , are explained by the other variance component o7.
We assign half Cauchy priors on the variance parameters as

o2~ C*0,1), 0o2~CH0,1).

S.1.2 Functional Random Effects

We allow different random effects ug) (t) and ugi)(t) for correct (C) (when d = s) and incor-
rect (I) (when d # s) identifications, respectively, as

u) () =ud(t) whend=s, ul)(t)=ul’(t) whend#s.
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Suppressing the subscripts to simplify notation, we model the time-varying random effects
components u((t) as

W (1) = Y0, B Belt) = B(1)BY,

. (S.5)
BY ~ MVNgA{0, (0,21 + 0, 2P) "'},
where 55}') = ( yi,,ﬁ%)u)T are subject-specific spline coefficients. We assign non-

informative half-Cauchy priors on the variance parameters as

o, ~C"0,1), op,~C"(0,1).

S.2 Prior Hyper-parameters and Initialization

The random effects of the inverse-probit mixed model are all initialized at zero. The variance
and smoothing parameters are initially set to 0.1 each. The location parameter of the prior
on B, pg, is set to (1,...,1). This choice of @] would set the expected value of ) (t) to
1, which is supported empirically. The value of the parameter « is set to 1.

S.3 Posterior Inference

Posterior inference for the longitudinal drift-diffusion mixed model, described in Section 3 in
the main paper, is based on samples drawn from the posterior using an MCMC algorithm.
The algorithm carefully exploits the conditional independence relationships encoded in the
model as well as the latent variable construction of the model. Sampling the latent inverse-
Gaussian distributed response times, in particular, greatly simplifies computation.

In what follows, ¢ denotes a generic variable that collects all other variables not explicitly
mentioned, including the data points. Also, pg will sometimes be used as a generic for a prior
distribution without explicitly mentioning its hyper-parameters. The notation x is used to
abbreviate (d’,s). The sampler for the inverse-probit mixed model of Section 3 iterates
between the following steps.

1. Sampling Tl(zdl(? (t): Suppose the i-th individual selects the output tone d, in the ¢-th block,

I-th trial, given the input tone s. Then 7" (t),... ,T(%’l) (t) is generated as in Algorithm 1
(see Section 4) from the joint distribution of Tl(i’l)(t), . ,Téé’l) (t) given ,ug?g(t), . ,M((i?’s(t),
followed by an accept-reject step.

2. Updating the components of fixed effects f,(t):

(a) The latent variable z,, indicating the group identities of 3,, follows multinomial
distribution with zy.x labels and probabilities P(z, = z|{), z = 1,..., Zmax & POs-
teriori. The probability P(z, = z|{) « 7w, X [,, where [, is the likelihood of 3,
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evaluated at B,. Let L* be the set of all trials corresponding to input-output tones
r = (s,d) for z'th individual and tth block, and ng)(t) be the cardinality of L*.

Furthermore, let 7. (£) = Y e 80 (), 7(t) = 3,7 (1), and n,(t) = 3,0l (1).
A little algebra shows that the likelihood of B, is Gaussian with variance matrix
Y50 = {>, Tx(lf)B(t)TB(t)}_l, and mean vector pg, = Xg. {>°, B(t)M.(t)}, where
My(t) = 2n,(t) — >, ul) (t)ngi) (t). Therefore, [, is the Gaussian likelihood with mean
Mg, and variance Xg ., evaluated at 3, .

(b) Let N, = > 1(2y = 2), 2 =1,..., Zmax, where 1(-) is the indicator function. Then the
conditional posterior of 7, is Dirichlet with parameters o/ zyax+ N1, - - ., @/ Zmax + IV,

max *

(c) The full conditional posterior distribution of the coefﬁcient atoms B3} is Gaussian with
variance-covariance matrix 33 and pf ., where Zﬁz = D s Zﬂm + 2507 and

“’ﬁ,z - 2*,2 [Zx:zx:z Eﬂ,m#’,@,x + 26,0""’5, } where 2,8%) - ( aQIK + O 2P)

3. Updating the components of random effects: We use the generic notation U
to indicate the correct (C, ie., d = ) or incorrect (I, ie, d 7é ) cases. Define

(1) = Lower T (), ni (1) = ZmeU V(@) ST = Cawer T (0ult), Sy =
O'UQIK + 0U2P and E -1 = >, TU ( )B(t)TB(t). The conditional posterior of 68) i

N1 ,
Gaussian with covariance Eé)post = (2(}0 —1—28)71) , and location parameter Ng) =

Eg?postiig)fl [Zt {Qng) (t) — ng (t)} B(t)}, respectively.

4. Updating the precision and smoothing parameters: The precision and smooth-
ness parameters involved in the fixed effects part are o2 and o2, and those involved in the
random effects part are oy, and 012],8, U = C,I. We update these variance components
using Metropolis-Hastings algorithm with log-normal proposal distributions centered on the

previous sample values.

5. Estimation of probability: For each (s,i,t), we calculate the probability of selecting
the d-th response in the following way: Let g{- | ,ug,)’s(t)} be the pdf of inverse Gaussian

distribution of the form (1) with parameters 6; = 0, by s = 2 and pg s = ,ug,) (t). We
generate M = 2000 independent samples 7., = [T, - - . ,Tdo’m]T, m=1,..., M, where 7¢ ,

is generated independently from g{- | ,u((;;)’ J(t)}. Among these M independent samples, the
proportion of occurrences of {74, < Ag—1.4,Ta'm } is considered as the estimated probability
of selecting d*" response.

The results reported in this article are all based on 5,000 MCMC iterations with the
initial 2, 000 iterations discarded as burn-in. The remaining samples were further thinned by
an interval of 5. We programmed in R. The codes are available as part of the supplementary
material. A ‘readme’ file, providing additional details for a practitioner, is also included in
the supplementary material. In all experiments, the posterior samples produced very stable
estimates of the population and individual level parameters of interest. MCMC diagnostic
checks were not indicative of any convergence or mixing issues.
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S.4 MCMC Diagnostics

This section presents some convergence diagnostics for the MCMC sampler described in the
main manuscript. The results presented here are for the PTC1 data set. Diagnostics for the
simulation experiments and the benchmark data were similar and hence omitted.
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Figure S.1: Analysis of PTC1 data: Trace plots (top) and auto-correlation plots (bottom) of the
individual drift rates u(llz (t) corresponding to the success categorization of tone Tj evaluated at
each of the training blocks. In each panel, the solid red line shows the running mean. Results for

other drift parameters were very similar.

Figure shows the trace plots and auto-correlation of some individual level parameters
at different training blocks. These results are based on the MCMC thinned samples. As
these figures show, the running means are very stable and there seems to be no convergence
issues. Additionally, the Geweke test (Geweke, |1992) for stationarity of the chains, which
formally compares the means of the first and last part of a Markov chain, was also performed.
If the samples are drawn from the stationary distribution of the chain, the two means are
equal and Geweke statistic has an asymptotically standard normal distribution. The results
of the test, reported in Table indicate that convergence was satisfactory.
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t=1|t=2 | t=2 | t=2 |t=2|t=2
Geweke statistics | -1.233 | -0.392 | -0.678 | -0.136 | 0.440 | 0.339
p-value 0.217 | 0.695 | 0.498 | 0.892 | 0.660 | 0.734

Table S.1: Geweke statistics and associated p-values assessing convergence of the of the
individual level drift parameters ,uﬁ (t) corresponding to the success categorization of tone
Ty evaluated at each of the training blocks. Results for other drift parameters were very
similar.

S.5 Analysis of Benchmark Data

Description of the data. The data set we consider next is a multi-day longitudinal
speech category training study reported previously in Reetzke et al.| (2018) and analyzed
previously in [Paulon et al|(2021). In this study, n = 20 participants were trained to learn 4
tones, namely, high-level (T1), low-rising (T2), low-dipping (T3), or high-falling (T4) tone,
respectively. The trials were administered in blocks, each comprising 40 categorization trials.
Participants were trained across several days, with five blocks on each day. On each trial,
participants indicated the tone category they heard via button press on a computer keyboard.
Following the button press, they were given corrective feedback. The data consist of tone
responses and associated response times for different input tones for the 20 participants. We
focus here on the first two days of training (10 blocks in total) as they exhibited the steepest
improvement in learning as well as the most striking individual differences relative to any
other collection of blocks.

Analysis. We first demonstrate the performance of the proposed method in estimating the
probabilities associated with different (d, s) pairs. Figureshows the 95% credible intervals
for the estimated probabilities for different input tones along with the average proportions
of times an input tone was classified into different tone categories across subjects.

Observe that, except in situations with a very small number of data points the 95%
credible intervals include the empirical probabilities. Further, the estimated credible region
is narrow enough implying high precision of the inference.

Next, consider the clustering results. We obtained two clusters each in pairs of success
combinations (d = s) and in the wrong allocations (d # s). The clusters of success com-
binations are S; = {(1,1),(3,3)} and Sy = {(2,2),(4,4)}, and that in wrong allocations are
My = {(1,2),(2,1),(2,3),(3,2), (4,1), (4,2)}, and My = {(1,3),(1,4), (2,4), (3,1), (3,4), (4,3)}.
The network plot in Figure shows the stability of the clusters over the MCMC iterations.

From an overall perspective, the trajectory of ‘High-level’ (7}) and ‘Low-dipping’ (73)
are similar with two wrong allocations from M, and one from M, and that of ‘Low-rising’
(T3) and ‘High-failing’ (7)) are similar with two wrong allocations from A; and one from
M. These similarities in the overall trajectories of {71,735} and {T%,T,} were also noted by
Paulon et al. (2021).

Next, we consider the estimation of the underlying drift parameters ug)s(t). Due to

the identifiability constraints, the estimates of ,ug,)s(t) can only be observed on a relative
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Figure S.2: Results for the benchmark data: Estimated probability trajectories compared with
average proportions of times an input tone was classified into different tone categories across sub-
jects (in dashed line). High-flat tone responses are shown in red; low-rising in blue; low-dipping in
green; and high-falling in purple.

scale. Figure shows the posterior mean trajectories and associated 95% credible intervals
for the projected drift rates estimated by our method for different combinations of (d', s).
In comparison with the previous analysis of [Paulon et al. (2021), the trajectories of our
estimated drift rates show significant similarity throughout.

Figure shows the posterior mean trajectories and associated 95% credible intervals
for the drift rates ,u((j,{s(t) for the different correct combinations (d',s) with d’ = s for two
participants - the one with the best accuracy averaged, and the one with the worst accuracy
averaged across all blocks. For the well-performing participant, the drift trajectories increase
rapidly and for the poorly performing candidate, on the other hand, the drift trajectories
increase very slowly. Once again, in spite of the limitation of inferring on a relative scale, the
relative differences of the best and worst performing participants across blocks show great
similarity with the inference of [Paulon et al. (2021).




SUPPLEMENTARY MATERIAL S.8

M1
M2
S1
S2

o . & @

Figure S.3: Results for the benchmark data: Network plot of similarity groups showing the intra
and inter-cluster similarities. Each node is associated with a pair indicating the input-response
tone category (s,d). The number associated with each edge indicates the proportion of times the
pair in the two connecting nodes appeared in the same cluster after burning.

S.6 Rand and Adjusted Rand Indices

Rand Index. Given a set of n objects S = {s1,...,8,}, let U ={U,...,Ug} and V =
{Vi,...,Vc} represent two different partitions of the objects in S such that UZ U; = S =
UJCZIVj and UyNUy =0 =V;NVyforl <i#4id <Rand1<j#j <C. Rand index
estimates the similarity between the allocations of S in U and V.

Let a be the number of pairs of objects that are placed in the same partition in U and the
same partition in 'V, and b be the number of pairs of objects that are in different partitions
of U, as well as in different partitions of V. Here a and b can be interpreted as agreements
in U and V, and the total number of pairs is (g) The Rand index is

RI = (a+b)/(g‘).

The Rand index lies between 0 and 1. When the two partitions agree perfectly, the RI takes
the value 1.

Adjusted Rand Index. The expected value of the Rand index of two random partitions
does not take a constant value. The adjusted Rand index (Hubert and Arabie, |1985) assumes
generalized hypergeometric distribution as the model of randomness, and makes a base and
scale change of the quantity (a+b), defined above, so that the resultant quantity is bounded
by [—1, 1] and has expected value 0 under completely random allocation.

Let n; ; be the number of object that are both in " partition of U and j partition of
V, n; and n; be the total number of components in " partition of U, and j partition of
V, respectively.
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Figure S.4: Results for the benchmark data: Estimated posterior mean trajectories of the popu-
lation level drifts pg 5(t) for the proposed model. The shaded areas represent the corresponding
95% pointwise credible intervals. Parameters for the high-flat tone response category are shown in
red; low-rising in blue; low-dipping in green; and high-falling in purple.

The expression a + d can be simplified to a linear transformation of Z ( ) Further,
under the generalized hypergeometric model, it can be shown that

|29~ [EGT )6

l?]

Therefore, scaled the difference of linear transformed (a + b) and its expectation is the
adjusted Rand index, defined as:

S () - [2()2("”)]/(;) |
é[z«"wz - [Z = )] /)

ARI =

The expected value of ARI index is zero and the range is [—1,1]. Like the RI, the ARI also
takes the value 1, when the two partitions agree perfectly.
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Figure S.5: Results for the benchmark data: Estimated posterior mean trajectories for individual
specific drifts ,u((;) S(t) = exp{fas(t) + u(é) (t)} for correct identification (d' = s) for two different
participants - one performing well (dashed line) and one performing poorly (dotted line). The
shaded areas represent the corresponding 95% point-wise credible intervals. Parameters for the
high-flat tone response category are shown in red; low-rising in blue; low-dipping in green; and
high-falling in purple.



