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ARTICLE INFO ABSTRACT
Editor: Deyi Hou Life Cycle Assessment (LCA) is a foundational method for quantitative assessment of sustainability. Increasing
data availability and rapid development of machine learning (ML) approaches offer new opportunities to
Keywords: advance LCA. Here, we review current progress and knowledge gaps in applying ML techniques to support LCA,
Life cycle assessment and identify future research directions for LCAs to better harness the power of ML. This review analyzes forty
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studies reporting quantitative assessment with a combination of LCA and ML methods. We found that ML ap-
proaches have been used for generating life cycle inventories, computing characterization factors, estimating life
cycle impacts, and supporting life cycle interpretation. Most of the reviewed studies employed a single ML
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method, with artificial neural networks (ANNs) as the most frequently applied approach. Both supervised and
unsupervised ML techniques were used in LCA studies. For studies using supervised ML, training datasets were
derived from diverse sources, such as literature, lab experiments, existing databases, and model simulations.
Over 70 % of these reviewed studies trained ML models with less than 1500 sample datasets. Although these
reviewed studies showed that ML approaches help improve prediction accuracy, pattern discovery and
computational efficiency, multiple areas deserve further research. First, continuous data collection and compi-
lation is needed to support more reliable ML and LCA modeling. Second, future studies should report sufficient
details regarding the selection criteria for ML models and present model uncertainty analysis. Third, incorpo-
rating deep learning models into LCA holds promise to further improve life cycle inventory and impact assess-
ment. Finally, the complexity of current environmental challenges calls for interdisciplinary collaborative
research to achieve deep integration of ML into LCA to support sustainable development.

1. Introduction

Life Cycle Assessment (LCA) is the foundational method for quanti-
tative sustainability assessment (Hellweg and Canals, 2014). LCA is a
systematic assessment approach, capable of evaluating resource con-
sumption and environmental impacts of products, as well as processes
and services over their entire lifespan. Due to their comprehensive
scope, LCA studies have been successfully applied to support technology
development, policy analyses and green business marketing. Notably,
the comprehensiveness of LCA entails extensive data collection across
the supply chain and advanced data analytics. Collating diversely
sourced big datasets over all upstream processes (i.e. resource extrac-
tion, production, and transport) as well as downstream processes (i.e.
product use and disposal), ensuring high quality of all relevant datasets,
and conducting prudent analyses are essential for credible LCAs.

Rapid developments in data generation, storage and analytics propel
increasing interests in harnessing the power of big datasets (Cooper
et al., 2013; Xu et al., 2015) and machine learning (ML) techniques to
advance LCA (Romeiko et al., 2020a; Romeiko et al., 2020b; Xu et al.,
2015). ML, a subfield of artificial intelligence, is the study of computer
algorithms that improve automatically through experience (Mitchell,
1997). ML can decipher the complexity of datasets, enable prediction,
and discover new knowledge and patterns hidden behind the datasets.
ML methods are broadly categorized into supervised learning and un-
supervised learning. Supervised learning identifies patterns that relate
variables to measured outcomes and maximizes accuracy when pre-
dicting those outcomes (James et al., 2013). For example, linear, tree-
based, distance-based, nature-inspired, neural network, and deep
learning models are frequently supervised learning approaches (Hou
et al., 2020; Naseri et al., 2020; Romeiko et al., 2020b; Slapnik et al.,
2015a; Thilakarathna et al., 2020). Unsupervised learning exploits
innate properties of the input datasets to detect trends and patterns
without explicit designating the outcome of interest (Han et al., 2011).
Unsupervised learning often includes clustering, association rules, and
dimension reduction analyses (Abdella et al., 2020; Feng et al., 2019;
Mao et al., 2019). Both learning approaches are widely and successfully
applied in a variety of disciplines such as food (Saha and Manick-
avasagan, 2021), building (Fathi et al., 2020), climate (Rolnick et al.,
2022), and public health (Santos et al., 2019).

Recent efforts have begun to explore utilizing ML to support LCA
applications (Dick et al., 2015; Marvuglia et al., 2015b; Ramakrishnan
et al., 2012; Slapnik et al., 2015b; Sousa et al., 2001; Sundaravaradan
etal., 2011). For example, ML models have been used to predict missing
life cycle inventory (Hou et al., 2020; Sundaravaradan et al., 2011),
estimate the life cycle impacts of chemicals (Song et al., 2017), and assist
in life cycle interpretation (Azari et al., 2016; Sharifa and Hammad,
2019). There are a few recent reviews summarizing the application of
ML in LCAs (Barros and Ruschel, 2020; Ghoroghi et al., 2022). Although
these reviews are valuable and insightful, they focus on either a single
sector such as building (Barros and Ruschel, 2020) or applications at
multiple scales such as building or cities/communities (Ghoroghi et al.,
2022). An in-depth review of the current applications of ML in various
LCA stages and associated merits and challenges is necessary.

Additionally, a discussion of future research directions is needed to
improve the integration of ML and LCA.

To fill in this knowledge gap, this article reviews existing publica-
tions that reported applications of ML approaches to support LCA.
Specifically, this study identifies the purposes of applying ML ap-
proaches for LCA, examines the types of ML approaches applied to
support LCA, and analyzes data sources used for ML development.
Furthermore, this article discusses the strengths and limitations of cur-
rent applications of ML in LCA, as well as future research directions for
innovating LCA methods with ML approaches.

2. Methods

Guided by PRISMA (Preferred Reporting Items for Systematic Re-
views and Meta-Analyses (Liberati et al., 2009), we followed the seven
steps outlined in Fig. 1 to identify relevant articles and conduct the re-
view. During Step 1, we identified original research articles published
during years 2010-2020 by searching the “Web of Science” and “Science
Direct” publication databases using different combinations of keywords,
including “life cycle assessment”, “life cycle analysis” and “machine
learning”. While the literature review requires a finite time frame, we
recognize the potential limitation of excluding studies published after
the review was complete in year 2021. For Step 2, we removed the re-
petitive studies from the previous step. In Step 3, we screened the arti-
cles based on their abstracts. If the abstract appeared to be irrelevant
with either LCA or ML, we removed the articles from our review. Step 4
further screened the full text of the remaining articles and removed the
articles that did not explicitly mention both LCA and ML. In step 5, those
studies that did not conduct quantitative analyses with ML and LCA were
removed. In Step 6, to expand the search, we tracked the articles, which
have cited the articles identified in Step 5 via Google Scholar. Finally
(step 7), we thoroughly evaluated these studies from both LCA and ML
perspectives.

3. Results
3.1. Articles identified following the PRISMA guideline

Table 1 summarizes the identified publications under each combi-
nation of keywords and from different databases. With the keywords
“life cycle assessment” and “machine learning”, the search yielded 26
records from web of science and 203 records from science direct. Using
the keywords “life cycle analysis” and “machine learning”, five records
were found on web of science and 93 records on science direct.
Combining the publications resulting from different keywords and da-
tabases, our initial search found 327 records. After removing duplicate
records, 305 articles were identified. After screening the abstracts of
those 305 articles, 173 articles were removed due to irrelevance to the
joint use of ML and LCA. We further screened the full manuscripts of the
remaining 132 articles, and identified that 37 articles explicitly reported
the application of both LCA and ML. Those articles excluded from this
study applied either LCA or ML alone, but neither of them. Among the
final 37 articles, 8 studies only qualitatively discussed the LCA and ML,
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and the remaining 29 studies performed quantitative analysis with LCA
and ML models. Additionally, by tracking the citations of these 29
studies, we included additional 11 articles, which also used quantitative
LCA and ML models. As a result, 40 articles that conducted quantitative
assessment with a combination of LCA and ML models were included in
our final review and analysis (Tables S1 and S2). The Table S2 provides
the details of the addressed knowledge gaps, applied LCA stages, ML
model algorithms, ML model inputs, ML model outputs, data sources,
ML validation procedures, model comparison, and study outcomes for
each article.

3.2. Trends in ML & LCA publications and application areas

Most of the ML & LCA articles (27 out of 40) were published between
2019 and 2020 (Fig. 2). Prior to 2018, less than 4 articles/year were
found to feature the combination of LCA and ML. These articles were
published in 22 journals across different disciplines. Among those
journals, Journal of Cleaner Production and Science of Total Environ-
ment are two major hubs for publishing LCA articles that used ML ap-
proaches. These articles cover various disciplines such as agriculture,
buildings, chemicals, energies and manufacturing processes (Fig. 2).

Science of the Total Environment 912 (2024) 168969

Table 1
Number of articles found in the search databases.

Search Databases Query # of found # of
# articles duplicated
articles
Web of “Life cycle assessment”
1 . . - 26 0
Science and “machine learning”
Web of “Life cycle analysis”
2 . . . 5 1
Science and “machine learning”
; “Lif 1 »
3 S(:,lence ife cyc e'assessme'nt 203 16
Direct and “machine learning
Science “Life cycle analysis”
4 . . . 93 5
Direct and “machine learning”

Among these application areas, agriculture is the top focus area.
Approximately 37 % of total articles discussed agricultural products or
processes. Next, 20 % of total articles discussed buildings or building
materials, and 15 % of total articles focused on chemical toxicity or
green chemistry. Approximately 10 % of total articles analyzed the en-
ergy sector, and 7 % focused on manufacturing processes.
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Fig. 1. The review process and associated articles based on the PRISMA guideline.
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Fig. 2. The number of publications/year and application areas of the reviewed studies.

3.3. Addressed knowledge gaps by applying ML in LCA

The majority of the studies (35 studies in group 1 out of total 40)
framed ML models as regression applications to predict values for the
LCAs (Table 2). The first three subgroups (subgroups 1.1, 1.2, and 1.3),
containing 23 studies, used ML models to fill in key data gaps of life
cycle inventory, characterization factors, and life cycle impact, respec-
tively. First, the life cycle inventory is lacking for emerging technologies
and products due to unavailability of measurement datasets. Six studies
utilized ML to fill in the data gaps in the life cycle inventories, as
described in subgroup 1.1. Second, the characterization factors exist
only for a small set of chemicals due to limited laboratory testing.
Therefore, seven studies in subgroup 1.2 relied on ML to determine the
missing characterization factors. Third, eight studies in subgroup 1.3
focused on applying ML models to compute life cycle impacts crop
production in regions (such as Iran), where agricultural LCAs were less
studied. Overall, ML models were applied to estimate key datasets to
enable life cycle inventory and impact assessment in the first three
subgroups.

ML models also were used to address method and application chal-
lenges of LCAs, as demonstrated in subgroups 1.4 through 1.7. First, LCA
has been criticized as a spatially and temporally coarse approach, which
limits its capability of supporting regional or time-sensitive decision
making. To address this method challenge, two studies in subgroup 1.4
used ML to improve the spatial resolutions and temporal dynamics of
agricultural life cycle impacts. Second, to aid designers in estimating the
environmental impacts of various design options, MLs were developed
as simplified and rapid surrogate models, which are more user friendly
than traditional LCA models for designers and other non-LCA experts.
Seven studies in subgroup 1.5 generated ML models based upon life
cycle impact datasets with the goal of providing rapid and accurate life
cycle assessment approaches for non-LCA experts. Third, like other
quantitative approaches, the uncertainty and sensitivity of LCA models
have been hot subjects. To contribute to this area, three studies in sub-
group 1.6 applied MLs to quantify uncertainty of LCA models, and one
additional study in the same subgroup assessed sensitivity of life cycle
impacts. Finally, the subgroup 1.7, consisting of two studies, used ML to
bridge LCA and optimization approaches, which eventually enabled
determining the optimized product designs with the best product per-
formances and lowest environmental impacts and costs.

Each of the remaining four groups include only one or two studies.
(Marvuglia et al., 2015a) was the only study in group 2, whose aim was
to reduce the input parameters for quantifying chemical characteriza-
tion factors. (Romeiko et al., 2020a) and (Zhao et al., 2019) in group 3
used ML models for feature ranking in order to determine the relative

importance of driving factors for agricultural life cycle impact estimates.
Different from the aforementioned studies, (Abdella et al., 2020) in
group 4 clustered the food sectors based on their sustainability perfor-
mances. Additionally, (Tao et al., 2018) in group 5 framed their research
questions as classification problems, and estimated environment re-
leases from chemical use based upon the chemical classes.

3.4. ML applications in various stages of life cycle assessment

Based upon the relevant LCA stages for ML applications, this review
categorized the total 40 studies into three groups (shown in Table 3). For
the first group described in Section 3.4.1, ten studies focused on utilizing
ML models in the life cycle inventory stage. For the second group
described in Section 3.4.2, 22 studies applied ML in the life cycle impact
assessment stage. For the last group described in Section 3.4.3, the
remaining eight studies applied ML to support the life cycle interpre-
tation stage.

3.4.1. ML for life cycle inventory

Depending on the scope of life cycle inventory, the ten studies in the
first group were classified into two subgroups. For the first subgroup
(subgroup 1.1), nine studies used ML to estimate the foreground life
cycle inventory. Three studies among these nine studies used ML to es-
timate environmental emissions, which directly served as part of fore-
ground life cycle inventories. Meng et al. (2019) used a linear regression
model to predict greenhouse gas emissions, non-methane hydrocarbon
and carbon monoxide from dual fuel diesel engines in oilfield opera-
tions. (Tao et al., 2018) estimated the release of organic chemicals from
the use and post-use of chemical products with an artificial neural
network (ANN) model. Nguyen et al. (2019) developed an ANN model as
a surrogate model to estimate the greenhouse gas emissions and nutrient
leaching of irrigated corn production systems at a high spatial resolution
in eastern Colorado, USA.

The other six studies within the first subgroup used ML to estimate
the product characteristics, which were fed into additional models to
estimate foreground life cycle inventory. For example, Cheng et al.
(2020a) used a random forest approach to predict biochar yields and
characteristics, which were incorporated into the LCA framework for
estimating energy use and greenhouse gas emissions of slow pyrolysis.
Similarly, Cheng et al. (2020b) developed several ML models to predict
yields and characteristics of biobased chemicals derived from hydro-
thermal treatment, and then calculated energy consumption and
greenhouse gas emissions of hydrothermal treatment processes. Liao
et al. (2020) estimated the yield of activated carbon from the biomass
feedstocks, which was fed into Aspen simulation and LCA framework to
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Table 2

Categories of knowledge gaps addressed in the reviewed studies.

Table 3

Science of the Total Environment 912 (2024) 168969

Categories of machine learning applications in various LCA stages.

Group ML Addressed knowledge Studies Group MLs in various LCA stages Relevant articles
# applications gaps #
1 Value Subgroup 1.1: Predicting (Meng et al., 2019), ( 1 Life cycle Subgroup Estimating (Cheng et al.,
prediction unknown life cycle Nguyen et al., 2019), ( inventory 1.1: product 2020a), (
inventory of emerging Cheng et al., 2020a), ( Estimating properties Thilakarathna
technologies or products Thilakarathna et al., foreground et al., 2020), (
2020), (Liao et al., life cycle Liao et al., 2020),
2020), (Cheng et al., inventory (Cheng et al.,
2020b), (Cornago et al., 2020b), (
2020), (Naseri et al., Cornago et al.,
2020), (Sharifa and 2020), (Naseri
Hammad, 2019) et al., 2020)
Su.bg.roup 1.2:Esti.mat.ing (Hou et al., 2020), ( o (Meng et al.,
missing characterization Slapnik et al., 2015a) Estimating 2019), (Tao
factor ’ environmental et al., 2018), (
(Kaab et al., 2019), ( releases Nguyen et al.,
Khanali et al., 2017), ( 2019)
Khoshnevisan et al., Subgroup 1.2: Estimating overall (Sharifa and
2013a), (Khoshnevisan life cycle inventory Hammad, 2019)
et al., 2013b), ( (Lee et al., 2020),
. N Khoshnevisan et al., (Romeiko et al.,
fi?:i;t?fi;iiitsugfatmg 2014a), (Khoshnevisan 2020b), (Duprez
emerging products or in et al., 2014b), (Mousavi- et al., 2019), (
understudied regions Avvala et al., 2017), ( Kaab et al.,
Pishgar-Komleh et al., 2019), (Khanali
2020b), (Duprez et al., et al., 2017), (
2019), (Vlontzosa and Khoshnevisan
Pardalosb, 2017), (Zhu et al., 2013a), (
et al., 2020), (Ozbilen Khoshnevisan
et al., 2013) et al., 2013b), (
Subgroup 1.4:Improvin, . Khoshnevisan
spatgial afld tempgral ¢ (Lee et al., 2020), ( Agriculture et al., 2014a), (
explicitness of life cycle Romeiko et al., 2020b) Khoshnevisan
impacts of agriculture et al., 2014b), (
(Ploszaj-Mazurek et al., Mousavi-Avvala
: .. 2020), (Feng et al., et al., 2017), (
f:;ir‘;:gnl,ﬁ;rg:ﬁ?g 2019), (Mao et al., zulb 8roup Pishgar-Komleh
cycle impacts for non-LCA 2019), (DAmico et al., Estimating et al., 2020D), (
experts 2019), (Asif et al., 2019), life cycle Nabavi-
(Azari et al., 2016), ( Life cycle . Pelesaraei et al.,
Song et al., 2017) 2 impact Impacts 2018), (
Subgroup 1.6:Assessing (Ecng»ct al., 2019)», ( assessment Vlontzosa and
uncertainty/sensitivity in Ziyadi and Al-Qadi, Pardalgsb, 2017)
life cycle impact estimates 2019), (Abokersha et al., (Ptoszaj-Mazurek
2020) et al., 2020), (
Sub.gr(.)up'l.7:Enabling (Azari et al., 2016), ( Feng et al.,
optimization of product . 2019), (Mao
performance, cost and Sharifa and Hammad, . et al., 2019), (
. . 2019) Building A
environmental impacts D'Amico et al.,
Reducing the input 2019), (Asif
9 Dimenﬁion paranTet(.ers for (Marvuglia et al., 2015a) et al.‘, 2019), (
reduction quantifying Azari et al.,
characterization factors 2016)
3 Feature Revealing driving factors (Romeiko et al., 2020a), Other areas (Zhu et al.,
ranking of life cycle impacts (Zhao et al., 2019) such as 2020), (Ozbilen
Estimating environmental chemicals and et al., 2013), (

4 Classification releases from chemical use  (Tao et al., 2018) hydrogen Song et al., 2017)
(value prediction) (Hou et al.,
Clustering f0f3d sectors Subgroup 2.2: Estimating 2020), (.

5 Clustering based on their (Abdella et al., 2020) characterization factors Marvuglia et al,
sustainability ’ 2015a), (Slapnik
performances (cluster) et al., 2015a)

(Azari et al.,
Subgroup 3.1:Supply chain 2016), (Sharifa
optimization and Hammad,

. . . 2019)
estimate energy use and carbon footprint of activated carbon produc- . (Romeiko et al.,
tion. Besides these three applications in chemical life cycle inventory Life cycle .SUbgmu.p 3.2:1dentifying the top 2020a), (Zhao
conducted by Cheng et al. (2020a); Cheng et al. (2020b) and Liao et al. 3 impact influential factors et al., 2019)
(2020), two studies by Thilakarathna et al. (2020) and Naseri et al. interpretation (Feng et al.,

(2020) applied ML techniques to enable the quantification of life cycle
inventories of concrete. (Thilakarathna et al., 2020) compared five ML
models to predict the compressive strength of concrete, then calculated
the embodied carbon footprint based on the developed ML model.
Naseri et al. (2020) used an ANN model to predict the compressive

Subgroup 3.3: Uncertainty and
sensitivity assessment

2019), (Ziyadi
and Al-Qadi,
2019), (
Abokersha et al.,
2020)

(continued on next page)
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Table 3 (continued)

Group MLs in various LCA stages Relevant articles

#

Subgroup 3.4: Assessing

relationships between (Abdella et al.,
sustainability indicators and 2020)
sustainability impacts

strength of concrete, which was consequently used as a sustainability
criteria along cost, energy consumption and life cycle carbon emissions
for designing sustainable concrete mix. Additionally, Cornago et al.
(2020) forecasted the hourly power generation for each energy source,
which was then fed into the LCA model for estimating carbon emissions
of energy mix.

For the second subgroup (subgroup 1.2), only one study was iden-
tified. Sharifa and Hammad (2019) developed a surrogate ANN for
estimating cost and total life cycle inventory, which includes both
foreground and background life cycle inventory.

3.4.2. ML for life cycle impact assessment

Out of the total 40 studies, 22 studies applied ML techniques in the
life cycle impact assessment stage. Based upon their focus areas, these 22
studies can be classified into two subgroups. The first subgroup (sub-
group 2.1), including most of the studies in this group (19 studies out of
22 studies), adopted ML approaches to estimate life cycle impacts of
agricultural products, buildings or energy systems. More than half of
these 19 studies focused on life cycle impacts of agriculture. For
example, Kaab et al. (2019) employed both artificial neural networks
and adaptive neuro fuzzy inference system models for predicting life
cycle environmental impacts and output energy of sugarcane production
in planted or ratoon farms. Similarly, two studies assessed life cycle
environmental impacts of strawberry (Khoshnevisan et al., 2013a) and
rice (Khoshnevisan et al., 2014b) with both artificial neural networks
and adaptive neuro fuzzy inference system models. Nabavi-Pelesaraei
et al. (2018) also used the same modeling approaches to predict energy
output and environmental impacts of paddy production. Khanali et al.
(2017) predicted the yield and life cycle environmental impacts in tea
processing units in Guilan province of Iran with an artificial neural
network model. Khoshnevisan et al. (2013a); Khoshnevisan et al.
(2014a); Khoshnevisan et al. (2013b); Khoshnevisan et al. (2014b)
assessed environmental impacts of potato, tomato and cucumber pro-
duction with adaptive neuro fuzzy inference system models. Mousavi-
Avvala et al. (2017) also used an adaptive neuro fuzzy inference system
model to estimate energy use and environmental impacts of oilseed
production. While the majority of these studies reported the spatially
generic or coarse environmental impacts, two studies utilized ML tech-
niques to compute spatially explicit environmental impacts. Romeiko
et al. (2020b) compared six ML methods for predicting spatially explicit
annual life cycle impacts of corn production in the US Midwest region
from 2000 to 2008. Lee et al. (2020) used a boosted regression tree
(BRT) model to project spatially explicit life cycle impacts of corn pro-
duction in the US Midwest region under future climate scenarios.

The second largest focus area was the built environment, with four
studies including Ploszaj-Mazurek et al. (2020), Mao et al. (2019),
D'Amico et al. (2019) and Duprez et al. (2019) adopting ML methods to
estimate life cycle impacts of buildings. For example, Ploszaj-Mazurek
et al. (2020) applied three ML models to quickly estimate total carbon
footprint of buildings and to enable the optimal architecture design
during the early design phases. Mao et al. (2019) compared regression
models for estimating life cycle carbon emissions during the building
design stage. D'Amico et al. (2019) developed ANN models for rapidly
estimating energy and life cycle environmental impacts of buildings
during early design stage. Duprez et al. (2019) developed an ANN model
to rapidly predict the global warming potential of new building design

Science of the Total Environment 912 (2024) 168969

alternatives.

In addition to agriculture and building, ML has been utilized to es-
timate life cycle impacts of chemicals, energy and mining systems. Song
et al. (2017) and Zhu et al. (2020) used ANN models to estimate life
cycle impacts of chemicals. Ozbilen et al. (2013) built a ANN model to
estimate global warming potential, acidification potential, and
hydrogen plant efficiency of nuclear-based hydrogen production sys-
tems. Pishgar-Komleh et al. (2020b) applied ANN models to calculate
life cycle energy use, greenhouse gas emission, and economic costs,
which were then fed into a multi-objective optimization model. Asif
et al. (2019) developed an ANN model to estimate the carbon footprint
of a mining system.

The second subgroup of studies (subgroup 2.2), including Hou et al.
(2020), Marvuglia et al. (2015a), and Slapnik et al. (2015a), utilized ML
to predict characterization factors (CFs) of chemicals. Hou et al. (2020)
developed ML models to estimate ecotoxicity hazardous concentrations
50 % (HC50) in USEtox to calculate chemicals' CFs. Marvuglia et al.
(2015a) carried out a thorough exploratory data analysis to identify and
select input parameters for predicting fate factors and intake fractions of
chemicals. Slapnik et al. (2015a) computed chemical CFs in Slovenian
and compared them with other European CFs.

3.4.3. ML for life cycle interpretation

ML techniques were applied to support life cycle interpretation in
four different manners. First, two studies utilized ML models to solve
optimization problems with the goal of minimizing life cycle environ-
mental impacts and economic costs. For example, Sharifa and Hammad
(2019) developed surrogate ANN for selecting near-optimal building
energy renovation methods, which considers minimizing energy con-
sumption, cost and environmental impacts as the multi-objectives. Azari
et al. (2016) used a hybrid ANN and a genetic algorithm approach to
enable optimization of building designs.

Second, two LCA studies used ML techniques to identify patterns and
drivers of life cycle impacts. Romeiko et al. (2020b) used BRT to identify
key contributors affecting the spatially and temporally explicit life cycle
impacts of soybean production. Zhao et al. (2019) used random forest to
identify the drivers for life cycle carbon footprints of herdsmen in the
typical steppe region of Inner Mongolia, China.

Third, ML models were used to understand uncertainty and sensi-
tivity of life cycle impacts in three studies. Feng et al. (2019) used an
integrated fuzzy C-means clustering and extreme learning machine to
assess the uncertainty of buildings' environmental impacts in early
design stages. Ziyadi and Al-Qadi (2019) built an ANN surrogate model
in conjunction with interval, Bayesian and model correction analysis
methods to estimate input, parameter and model uncertainty. Aboker-
sha et al. (2020) identified optimal integration of solar assisted district
heating in urban communities by using ML incorporating global sensi-
tivity analyses.

Fourth, ML models were used for classification and assessing re-
lationships between indicators and sustainability impacts. Abdella et al.
(2020) used a centroid-based clustering approach to classify the food
industries, and used a logistic regression model to assess the relationship
between the sustainability indicators and the total impacts of food
industries.

3.5. Types of ML models in LCA studies

As shown in Table 4, the unsupervised machine learning approaches
applied in LCA studies included linear models, tree-based models, neural
networks, nature-inspired optimization algorithms, distance-based
models and deep learning approaches. The linear models, such as
linear regression, logistic regression, partial least regression and
Gaussian process regression models, describe a continuous response
variable as a function of one or more predictor variables. Tree-based
models are a class of nonparametric algorithms that partition the
feature space into a number of non-overlapping regions with similar
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Table 4
Machine learning approaches used in the reviewed studies.

ML category ML subcategory ML algorithm Studies

(Thilakarathna et al.,
2020), (Romeiko et al.,
2020b), (Cheng et al.,
2020b), (Naseri et al.,
2020), (Meng et al.,
2019)

Linear regression

Linear models Logistic
regression
Partial least
squares
regression
Gaussian process (Thilakarathna et al.,
regression 2020)

(Thilakarathna et al.,

2020), (Cheng et al.,

2020b)

(Cheng et al., 2020a), (

Hou et al., 2020),(

Cheng et al., 2020b), (

Mao et al., 2019), (

Zhao et al., 2019)

(Slapnik et al., 2015a)

(Marvuglia et al.,
2015a)

Decision tree

Random forests

Tree-based Adaptive

models boosting (Hou et al., 2020)
(Hou et al., 2020), (
Ploszaj-Mazurek et al.,
Gradient 2020), (Romeiko et al.,
boosting 2020a), (Lee et al.,
2020), (Romeiko et al.,
2020b)
Extrer.ne gradient (Romeiko et al., 2020b)
boosting
(Zhu et al., 2020), (
Thilakarathna et al.,
2020), (Romeiko et al.,
2020b), (Hou et al.,
2020), (Liao et al.,
2020), (Sharifa and
Hammad, 2019), (
Ziyadi and Al-Qadi,
2019), (Cornago et al.,
2020), (Naseri et al.,
2020), (Abokersha
et al., 2020), (Mao
et al., 2019), (D'Amico
et al., 2019),(Duprez
etal., 2019), (Taoet al.,
2018), (Nguyen et al.,
2019), (Asif et al.,
2019), (Azari et al.,
2016), (Kaab et al.,
2019), (Khanali et al.,
2017), (Khoshnevisan
et al., 2013a), (
Khoshnevisan et al.,
2013b), (Nabavi-
Pelesaraei et al., 2018),
(Ozbilen et al., 2013), (
Pishgar-Komleh et al.,
2020a), (Song et al.,
2017), (Vlontzosa and
Pardalosb, 2017)
(Kaab et al., 2019), (
Khoshnevisan et al.,
2013a), (Khoshnevisan
Adaptive neuro- et al., 2014a), (
fuzzy inference Khoshnevisan et al.,
systems 2014b), (Mousavi-
Avvala et al., 2017), (
Nabavi-Pelesaraei
et al., 2018)

Supervised
learning

Artificial Neural
Network

Neural
Networks

Nature-inspired
optimization
algorithm

Water cycle

Naseri et al., 202
algorithm (Naseri et al., 2020)
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Table 4 (continued)

ML category ML subcategory ML algorithm Studies
Soccer league
competition (Naseri et al., 2020)
algorithm
(Thilakarathna et al.,
2020), (Hou et al.,
S t Vect
. uppt?r ector 2020), (Naseri et al.,
Distance-based Machine
Models 2020), (Mao et al.,
2019)
K t
r.leares (Hou et al., 2020)
neighbor
Deep Learnin Convolutional (Ptoszaj-Mazurek et al.,
P 8 neural network 2020)
Clusterin K-means (Abdella et al., 2020)
. 8 Fuzzy C-means (Feng et al., 2019)
Unsupervised e
learning Feature Principle
L component (Mao et al., 2019)
Extraction .
analysis

response values using a set of splitting rules. Nature-inspired algorithms
are a set of novel problem-solving methodologies and approaches
derived from natural processes. Distance-based Models classify queries
by computing distances between these queries and a number of inter-
nally stored exemplars. Neural networks mimic the human brain in
structure. Simple neural networks consist of an input, hidden, and
output layer. Deep learning systems are neural networks consisting of
several hidden layers arranged for convolution or recurrence. Super-
vised machine learning approaches applied in LCA studies included
clustering and feature extraction. Cluster analysis is the art of finding
groups in data, which is a branch of pattern recognition. Principle
component analysis is a versatile statistical method for reducing a cases-
by-variables data table to its essential features, called principle com-
ponents. Principle component analysis is frequently used for reducing
dimension and extracting features.

ANN was the most frequently applied ML approach, appearing in 26
studies (Table 4). Adaptive neuro-fuzzy inference systems, which was
used by six studies, ranked as the second most frequently applied ML
approach. Linear regression and random forest were adopted by five
studies, respectively. Gradient boosting regression and support vector
machine were utilized by four studies, respectively. Decision tree was
employed by two studies. Each of the rest ML approaches only appeared
in one study, respectively.

Most studies used a single ML method. Only 14 out of 40 used more
than one ML method. Among these 14 studies, 10 studies compared
various ML methods to determine the most accurate and rapid ML.
Overall, these comparative studies suggest distinct ML methods perform
the best for varied studies. Four studies, including Khoshnevisan et al.
(2013a); Khoshnevisan et al. (2014a); Khoshnevisan et al. (2013b);
Khoshnevisan et al. (2014b) and Mousavi-Avvala et al. (2017), found
Adaptive neuro-fuzzy inference systems (ANFIS) had the highest pre-
dictive accuracy. In contrast, Thilakarathna et al. (2020), Duprez et al.
(2019), Kaab et al. (2019) and Pishgar-Komleh et al. (2020b) reported
that ANN provided the highest predictive accuracy instead. Two studies
found random forest outperformed other models. For example, (Hou
et al., 2020) found that random forest performed best among K nearest
neighbor, support vector machine, neural network, random forest,
adaptive boosting, and gradient boosting machine. Consistent with Hou
et al. (2020), Cheng et al. (2020b) also found that random forest gave
the best performance. In contrast, Romeiko et al. (2020b) identified
gradient boosting regression tree as the most accurate and rapid option,
compared with linter regression, support vector machine, ANN, random
forest, and extreme gradient boosting. (Naseri et al., 2020) found that
the water cycle algorithm performed better than the other five ML
methods. (Mao et al., 2019) found that support vector machine ranked
as the best performing model. Additionally, Thilakarathna et al. (2020),
Romeiko et al. (2020b), Cheng et al. (2020b) and Naseri et al. (2020)
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found that the linear model showed the poorest fit for the data.
3.6. Sources and sample sizes of datasets for ML models in LCA studies

The largest cluster of studies utilized LCA simulations as training sets
for ML. Romeiko et al. (2020a) and Lee et al. (2020) used outputs from
process-based LCA modeling along with climate, soil and farming
practices information. D'Amico et al. (2019) and Feng et al. (2019)
generated training datasets by coupling building information and
process-based LCA modeling. (Zhao et al., 2019) used process-based LCA
modeling datasets based on a survey. The publications by Kaab et al.
(2019), Khanali et al. (2017), Mousavi-Avvala et al. (2017), and Nabavi-
Pelesaraei et al. (2018), used life cycle modeling results along with
survey information as training datasets. Pishgar-Komleh et al. (2020b)
trained the ANN model with process-based LCA modeling results, which
used questionnaires to compile life cycle inventory. Azari et al. (2016)
and Ozbilen et al. (2013) used process-based LCA modeling results as
training datasets. Additionally, Abdella et al. (2020) used outputs from
input-output LCA modeling.

Besides using LCA simulated datasets, sector-specific, sensitivity and
optimization models also provided training datasets for ML techniques.
For example, Ploszaj-Mazurek et al. (2020) used Grasshopper scripts to
generate training datasets for ML in the building sector. Abokersha et al.
(2020) used the TRNSYS model simulations as training datasets in the
energy sector. The training datasets are from the process-based DayCent
agroecosystem simulation model in Nguyen et al. (2019)'s study.
(Duprez et al., 2019) used datasets generated from sensitivity analysis
for ML model training. Sharifa and Hammad (2019) generated training
datasets from a multi-objective optimization model.

Existing LCA databases were frequently used as major sources of
datasets for training ML models, as demonstrated by six studies,
including Zhu et al. (2020), Hou et al. (2020), Marvuglia et al. (2015a),
Slapnik et al. (2015a), Song et al. (2017) and Tao et al. (2018). For
example, Zhu et al. (2020) supplied ecoinvent v3.5 database and a
ReCiPe model to provide training datasets. Hou et al. (2020) and Mar-
vuglia et al. (2015a) used the USEtox v2.11 database. Slapnik et al.
(2015a) used the characterization factor database from the ReCiPe 1.08
model. Song et al. (2017) relied on the ecoinvent database. Tao et al.
(2018) obtained training datasets from the European Union's specific
environmental release categories, which included chemical release
factors to environmental compartments (indoor air, outdoor air,
wastewater and soil) for chemicals in different products.

The datasets used for training ML models can also originate from
literature and lab/field experiments. Five studies, including Thilakar-
athna et al. (2020), Liao et al. (2020), Cheng et al. (2020a), Ziyadi and
Al-Qadi (2019), and Naseri et al. (2020), used literature reported values.
Moreover, Cheng et al. (2020b) relied on both literature values and lab
experiments. Meng et al. (2019) used a combination of literature, field
testing, and public datasets. Furthermore, Asif et al. (2019) collected
field datasets from different equipment and mining activities. Some
studies, including Vlontzosa and Pardalosb (2017), didn't specify the
training datasets.

The sample size of the datasets used for these ML training ranged
from 64 to 21,656. The median value of the sample size is 538. Only five
studies had over 5000 samples. For example, Romeiko et al. (2020a);
Romeiko et al. (2020b) had around 5000 samples for soybean LCAs.
Romeiko et al. (2020b) and Lee et al. (2020) used around 8000 samples
for corn LCAs. Duprez et al. (2019) used 5000, 10,000 and 15,000
samples for three different ML models, respectively. Nguyen et al.
(2019) reported the largest sample size of 21,656. Overall, the majority
of LCA studies (over 70 %) relied on a small number of datasets (less
than 1500) for training the ML models.
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3.7. ML model training and evaluation

3.7.1. ML model training and evaluation methods

Before applying a ML model to generate LCI, conduct impact
assessment or assist with life cycle interpretation, it is critical to ensure
the ML model can provide satisfactory prediction. Two model training
and evaluation strategies are used in the reviewed studies (Table 5 and
Fig. S1). The first strategy is the holdout method, in which the available
datasets are divided into two groups: training and testing. A ML model is
trained with the training dataset and tested on the testing dataset. The
second strategy is cross-validation, which divides the entire dataset into
two groups: (1) training and validation dataset and (2) testing dataset.
The training and validation dataset is used to deterring the optimal ML
model structure and parameter settings, while the testing dataset pro-
vides independent assessment of ML performance to decide if the
training ML model is capable to provide satisfactory results.

One-fold cross validation was the most popular approach, which was
used by twelve studies. The hold-out method was the second most
popular approach, which was employed by nine studies. Following one-
fold cross validation and hold-out methods, ten-fold cross validation was
the third most popular approach, which was adopted by seven studies.
Apart from ten-fold cross validation, other multi-folds validation ap-
proaches were also used, including three-fold and five-fold validation
approaches. Three-fold validation approach was used by two studies,
and five-fold cross validation was used by only one study. Moreover,
three studies employed either Monte Carlo cross-validation or leave-one
out validation approaches, which are variants of multi-fold cross vali-
dation approaches. For example, Meng et al. (2019) used the Monte
Carlo cross-validation, in which a prescribed proportion of the training
and validation dataset is randomly selected as training dataset and the
rest is used for validation. Furthermore, two studies used the cross-
validation method, but didn't explicitly mention the details such as the
number of folds. Additionally, five studies didn't provide details

Table 5
Training datasets used for machine learning in the reviewed studies.

Groups  Training databases Studies

(Romeiko et al., 2020a), (Lee et al.,
2020), (Romeiko et al., 2020b), (
D'Amico et al., 2019), (Feng et al.,
2019), (Zhao et al., 2019) (Kaab

et al., 2019), (Khoshnevisan et al.,
2013a), (Khoshnevisan et al.,
2013b), (Khoshnevisan et al.,
2014a), (Khoshnevisan et al.,
2014b), (Khanali et al., 2017), (
Mousavi-Avvala et al., 2017), (
Nabavi-Pelesaraei et al., 2018) (
Pishgar-Komleh et al., 2020b), (
Azari et al., 2016) (Ozbilen et al.,
2013), (Abdella et al., 2020)
(Ptoszaj-Mazurek et al., 2020), (
Abokersha et al., 2020), (Nguyen
etal., 2019), (Duprez et al., 2019), (
Sharifa and Hammad, 2019)

(Zhu et al., 2020), (Hou et al.,
2020), (Marvuglia et al., 2015a), (
Slapnik et al., 2015a), (Song et al.,
2017), (Tao et al., 2018), (Zhu

et al., 2020), (Hou et al., 2020), (
Marvuglia et al., 2015a), (Slapnik
et al., 2015a), (Song et al., 2017), (
Tao et al., 2018)

(Thilakarathna et al., 2020), (Liao
etal., 2020), (Cheng et al., 2020a), (
Ziyadi and Al-Qadi, 2019), (Naseri
et al., 2020), (Cheng et al., 2020b),
(Meng et al., 2019), (Asif et al.,
2019), (Vlontzosa and Pardalosb,
2017)

1 LCA modeling outputs

2 Other modeling outputs (i.e.
sector-specific, sensitivity,
optimization modeling outputs)

3 Existing LCA databases (i.e.
ecoinvent)

4 Literature and lab experiment
datasets
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regarding model validation, so it was impossible to classify these five
studies.

The splits between training, validation, and testing datasets were
often sampled randomly, and the corresponding shares varied across
studies. The studies using the hold-out methods divided total datasets
for training and validation purposes, whose training datasets repre-
sented 10 % to 85 % of total datasets. For example, (Abdella et al., 2020)
had 65 % and 35 % for training and validation, respectively. Two
studies, authored by Sharifa and Hammad (2019) and Azari et al. (2016)
increased the training ratio to 70 %. Mousavi-Avvala et al. (2017) used
80 % and 20 % for training and validation ratios, respectively. D'Amico
etal. (2019) and Tao et al. (2018) had the largest training ratio of 85 %
among these hold-out studies. Additionally, Nguyen et al. (2019) varied
the proportion from 10 % to 70 % with an increment of 20 %.

The studies using cross-validation approaches divided total datasets
into training, validation and testing subsets. For the studies using cross-
validation approaches, the most frequently used splitting ratio was 70
%, 15 % and 15 % for training, validation and testing, respectively. Nine
studies used this popular splitting ratio including seven one-fold cross
validation studies, and one three-fold cross validation and one study
which didn't detail folds of cross-validation. Other cross-validation
studies varied this popular splitting ratio by +15 %. Song et al. (2017)
allocated the highest fraction of the dataset for training (ca. 85 %) and
the least fraction for testing (ca. 5 %). Mao et al. (2019) had the lowest
fraction of the datasets for training (ca. 60 %) and highest fraction for
testing (ca. 20 %). In general, the reported training and validation
datasets combined represent 70 %-90 % of the total, and the testing
dataset represents less or equal to 20 %. Additionally, it is worth noting
that fourteen of the total forty reviewed studies did not report the split
between training, validation and testing datasets.

3.7.2. ML model training and evaluation metrics

A wide range of metrics have been used to evaluate ML model per-
formance (Table 6). As most of the ML applications aim to map an array
of inputs to continuous response variables, metrics that measure the
correlation or difference between predicted and observed response
variables are most often used. First, the coefficient of determination
(Rz), root mean square error (RMSE) and Mean absolute percentage
error were found to be the three most frequently used metrics. R% ranked
as the most frequently used metric, which appeared in 31 studies. RMSE
used by 18 studies was the second most frequently used metric (Table 7).
Mean absolute percentage error adopted by 12 studies was the third
most frequently used metric. Moreover, the derivatives of these three
most popular metrics were also used to evaluate the predictive accuracy,
including mean square error, mean absolute error (MAE), correlation
coefficient (R), coefficient of variance, root relative square error,
normalized root mean square error (NRMSE), and percentage of data
whose mean absolute percentage error is less than 30 % (E30). Slightly
different from the aforementioned metrics, Feng et al. (2019) examined
whether the observations fall within the ML model predicted 95 % in-
terval. Abdella et al. (2020) used Akaike information criterion to eval-
uate the accuracy of predicted categorical membership. Furthermore,
different metrics were used to evaluate model performance in classifi-
cation problems. For example, Tao et al. (2018) used Precision, recall,
and F1 score to assess the accuracy of distribution (in percent) of
chemicals related to different endpoints. Last, two studies conducted by
Ziyadi and Al-Qadi (2019) and Zhao et al. (2019) didn't mention the
performance metrics.

The number of evaluation metrics used in these studies varied from
one to six. The majority of studies used one metric (15 studies, 37.5 %)
or two metrics (13 studies, 32.5 %). For example, studies conducted by
Ploszaj-Mazurek et al. (2020), Romeiko et al. (2020a), Lee et al. (2020),
Liao et al. (2020), Sharifa and Hammad (2019), Marvuglia et al.
(2015a), Cornago et al. (2020), and Azari et al. (2016) used either R? or
MSE. Eight studies used three metrics. Additionally, studies performed
by Naseri et al. (2020) and Mao et al. (2019) used five or more metrics,
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Table 6
Model training and validation approaches employed by different studies.

Group Model training and validation Studies

# approaches

1 Hold-out (Abdella et al., 2020), (Liao et al.,
2020), (Sharifa and Hammad,
2019), (D'Amico et al., 2019), (
Tao et al., 2018), (Nguyen et al.,
2019), (Azari et al., 2016), (
Khoshnevisan et al., 2014b), (
Mousavi-Avvala et al., 2017)
(Zhu et al., 2020), (Feng et al.,
2019), (Cornago et al., 2020), (
Asif et al., 2019), (Kaab et al.,
2019), (Khanali et al., 2017), (
Khoshnevisan et al., 2013b), (
Khoshnevisan et al., 2013b), (
Pishgar-Komleh et al., 2020b), (
Pishgar-Komleh et al., 2020a), (
Song et al., 2017), (Vlontzosa
and Pardalosb, 2017)

(Romeiko et al., 2020b), (Duprez
et al., 2019)

(Hou et al., 2020)

(Cheng et al., 2020a), (
Thilakarathna et al., 2020), (
Romeiko et al., 2020a), (Lee

et al., 2020), (Cheng et al.,
2020Db), (Slapnik et al., 2015a), (
Mao et al., 2019)

2 Cross- One fold

validation

three folds
five folds

ten folds

M 1 -
onte Carlo cross (Meng et al., 2019)

validation
leave-one out cross- (Marvuglia et al., 2015a), (Naseri
validation et al., 2020)

Mentioned cross-
validation, but no
specific details

(Abokersha et al., 2020), (
Khoshnevisan et al., 2013a)

(Ptoszaj-Mazurek et al., 2020), (
Ziyadi and Al-Qadi, 2019), (Zhao
et al., 2019), (Khoshnevisan

et al., 2014a), (Khoshnevisan

et al., 2014b)

No details regarding model
validation

including coefficient of determination (Rz), correlation coefficient (R),
root mean square error (RMSE), mean absolute error (MAE), mean
square error (MSE), normalized root mean square error (NRMSE), co-
efficient of variance of the RMSE, and percentage of data whose mean
absolute percentage error is less than 30 % (E30).

The reported ML model performance varies widely across studies or
application purposes of the same ML model. For example, (Romeiko
et al., 2020a) achieved R? from 0.64 to 0.78 for predicting life cycle
global warming, eutrophication and acidification impacts. (Hou et al.,
2020) achieved R? of 0.63 for predicting hazardous concentrations for
ecotoxicity. Liao et al. (2020) reached 0.971 for predicting total AC
yield. Even with the same inputs, the ML model trained by Mousavi-
Avvala et al. (2017) had RMSE and MAE larger than 10 when applied to
predict output energy, but had RMSE and MAE less than 1 for predicting
the benefit to cost ratio. These results clearly show the substantial
variability in the cases applying ML models to support LCA.

4. Discussion
4.1. Merits of applying ML in LCA

ML models present unique merits such as capabilities of enabling
accurate prediction, discovering complex patterns, and efficiently
analyzing large datasets. First, the majority of the reviewed LCA studies
relied on ML's high predictive accuracy to fill in the missing values for
life cycle inventories or impacts (Tables 2 and 3). Since the data char-
acterizing these emerging products/technologies often doesn't exist,
building predictive models based upon characteristics of existing
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Table 7

Model performances and associated metrics.

Groups

Model performance metrics

Studies

Regression
Related
metrics

Coefficient of determination
®%

Correlation coefficient (R)

Adjusted R-square (R-adj)

Root mean square error
(RMSE)

Mean absolute percentage
error (MAPE)

Mean square error (MSE)

Mean absolute error (MAE)

Coefficient of variation (CV)

(Cheng et al., 2020a), (Ptoszaj-
Mazurek et al., 2020), (Zhu

et al., 2020), (Thilakarathna
et al., 2020), (Romeiko et al.,
2020a), (Lee et al., 2020), (
Abdella et al., 2020), (
Romeiko et al., 2020b), (Hou
et al., 2020), (Liao et al.,
2020), (Cheng et al., 2020b), (
Marvuglia et al., 2015a), (
Naseri et al., 2020), (
Abokersha et al., 2020), (Mao
et al., 2019), (D'Amico et al.,
2019), (Meng et al., 2019), (
Duprez et al., 2019), (Nguyen
etal., 2019), (Asifetal., 2019),
(Kaab et al., 2019), (Khanali
et al., 2017), (Khoshnevisan
et al., 2013a), (Khoshnevisan
et al., 2013b), (Khoshnevisan
et al., 2014b), (Mousavi-
Avvala et al., 2017), (Pishgar-
Komleh et al., 2020b), (
Ozbilen et al., 2013), (Pishgar-
Komleh et al., 2020a), (Song
et al., 2017), (Vlontzosa and
Pardalosb, 2017)

(Romeiko et al., 2020b), (
Slapnik et al., 2015a), (Naseri
et al., 2020), (Khoshnevisan
et al., 2014a), (Vlontzosa and
Pardalosb, 2017)

(Abokersha et al., 2020)
(Cheng et al., 2020a), (Zhu

et al., 2020), (Thilakarathna
et al., 2020), (Hou et al.,
2020), (Cheng et al., 2020b), (
Naseri et al., 2020), (D'Amico
et al., 2019), (Meng et al.,
2019), (Duprez et al., 2019), (
Nguyen et al., 2019), (Khanali
et al., 2017), (Khoshnevisan
et al., 2013a), (Khoshnevisan
et al., 2013b), (Khoshnevisan
et al., 2014a), (Khoshnevisan
et al., 2014b), (Mousavi-
Avvala et al., 2017), (Pishgar-
Komleh et al., 2020b), (
Pishgar-Komleh et al., 2020a)
(Cornago et al., 2020), (
Abokersha et al., 2020), (Mao
et al., 2019), (Meng et al.,
2019), (Kaab et al., 2019), (
Khanali et al., 2017), (
Khoshnevisan et al., 2013a), (
Khoshnevisan et al., 2014a), (
Khoshnevisan et al., 2014b), (
Pishgar-Komleh et al., 2020b),
(Pishgar-Komleh et al.,
2020a), (Song et al., 2017)
(Romeiko et al., 2020b), d(
Sharifa and Hammad, 2019), (
Naseri et al., 2020), (Asif et al.,
2019), (Azari et al., 2016), (
Vlontzosa and Pardalosb,
2017)

(Thilakarathna et al., 2020), (
Naseri et al., 2020), (Mao

et al., 2019), (Khoshnevisan
et al., 2013b), (Mousavi-
Avvala et al., 2017)
(Abokersha et al., 2020), (Mao
et al., 2019)
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Table 7 (continued)

Groups Model performance metrics Studies
Akaike inf¢ i iteri
(Alzz) e information criterion (Abdella et al., 2020)
Whether the observation fall
within the ML model (Feng et al., 2019)
predicted 95 % interval
Percentage of data whose
mean absolute percentage (Naseri et al., 2020)
error is less than 30 % (E30)
Root relati
(ISI({)S];)e ative square error (Slapnik et al., 2015a)
Normalized root mean
Mao et al., 2019
square error (NRMSE) (Mao et al., )
isi Ta 1., 201
Classification Precision (Tao et al., : 018)
related metrics recall (Tao et al., 2018)
F1 score (Tao et al., 2018)

products provides an alternative means for generating life cycle in-
ventory. For example, Cheng et al. (2020a) applied ML to estimate
biochar characteristics in order to compile a life cycle inventory. Meng
etal. (2019) used ML approach to fill in data gaps for life cycle inventory
of dual fuel technology. Meanwhile, the merit of high predictive accu-
racy also led to success of estimating life cycle impacts of alternative
building designs and future agricultural production. For example,
Ploszaj-Mazurek et al. (2020) and D'Amico et al. (2019) predicted
environmental impacts of buildings with various design characteristics.
Lee et al. (2020) used historical life cycle impacts to predict life cycle
impacts of corn under future climate scenarios.

Second, ML provides novel insights towards drivers and patterns of
environmental performances, which aids decision makers in forming
solutions capable of improving environmental performances. For
example, Hou et al. (2020) identified key influential factors for chemical
toxicity. Romeiko et al. (2020b) ranked the importance of soil, weather
and farming practices for spatially and temporally explicit life cycle
impacts. Abdella et al. (2020) assessed quantitative and qualitative re-
lationships between the sustainability indicators and the total sustain-
ability impact of food industries. These findings reveal the underlying
drivers causing environmental damages and assist in designing targeted
intervention strategies capable of mitigating environmental damages.

Finally, compared with traditional process-based models, ML models
showed faster execution, and flexible integration into other simulation
platforms (i.e. optimization platforms). Such advantages allow ML
models to rapidly complete a high number of simulation runs, therefore
making ML models affordable for a range of computationally intensive
tasks such as optimization, uncertainty and sensitivity assessment.
Several studies used ML as surrogate models to generate life cycle im-
pacts fed into optimization models, since ML surrogate models can
rapidly provide accurate estimates, and be easily integrated into opti-
mization platforms. For example, Sharifa and Hammad (2019) and Azari
et al. (2016) utilized ML to support optimization tasks. Nguyen et al.
(2019) used ML and optimization approaches to suggest management
options for agricultural landscape. Similarly, uncertainty and sensitivity
assessments are computationally intensive jobs too. ML surrogate
models served as ideal approaches to efficiently and accurately carry out
many simulations for uncertainty and sensitivity assessment, which can
be difficult for traditional process-based models.

4.2. Challenges of applying ML in LCA

4.2.1. Lack of data

Lack of training datasets presents a major bottleneck for applying ML
in LCA. Most of these reviewed studies used a small sample size, which is
less than 1500 datasets for training ML models. Usually, a larger sample
size rewards a more representative and accurate ML model. A few
studies with over 5000 samples relied on simulation data generated by
other models, often process-based models, to provide training datasets.



X.X. Romeiko et al.

The computation burden for generating large training datasets could
restrain the adoption of ML models, especially when the computing
infrastructure is not available for expensive process-based modeling
simulations. Additionally, although ecoinvent and other LCA databases
are growing, their sizes remain smaller than the ML's databases in other
disciplines such as earth and public health sciences. Ecoinvent v3.9, one
of the largest LCI commercial databases, currently contains more than
18,000 industrial or agricultural processes covering around 3300
distinct products and is about 350 MB (The Ecoinvent Association). In
comparison, the accumulated volume of remote sensing data obtained
from satellite, airborne, unmanned aerial vehicles and ground-based
instruments by 2020 has reached ~1.3 EB, and this number will keep
increasing with the expansion of observation capacities and spatial
temporal resolutions (Li et al., 2023). In healthcare, it was estimated
that a single patient generates close to 80 megabytes/year in imaging
and electronic medical record data (Suter-Crazzolara, 2018). Overall,
the availability of high-quality training datasets remains a challenge for
applying ML in LCAs.

4.2.2. Lack of detailed description about model selection and evaluation

The discussion of ML selection is limited. Most of these studies didn't
mention sufficient details about the algorithm's selection and imple-
mentation. While most of these surveyed studies report results for a
single ML algorithm, the readers would benefit from learning why the
specific algorithm was chosen and how the choice was made.

There is also a lack of guidelines for model training. It's worth noting
that tradeoffs between computational efficiency and accuracy exist
among the choices of model training approaches. The holdout method is
simpler than cross-validation and only requires one iteration of model
training, making it computationally inexpensive relative to cross-
validation. However, the holdout method could yield highly variable
testing results, as the division of the dataset into training and testing
samples are arbitrary. Although the one-fold cross-validation splits the
entire dataset into three groups, which include the testing dataset that
was not used for training and validation model performance, it shares
the same weakness resulting from not fully using the data from the
training and validating dataset. The computational efficiency of the
hold-out and one-fold cross-validation is desired when the sample data
size is large and a long time is required for model training. However,
given that the sample size of the reviewed studies is generally less than
5000, the use of multi-fold cross-validation is preferred to fully employ
the information from the available data. Despite the number of folds of
cross-validation that could influence ML training and testing perfor-
mance (Zhang et al., 2009), most of the studies did not examine the
effects of the number of folds. It is suggested conducting multiple trials
with cross-validation with different trials and reporting such informa-
tion to help future applications to determine optimal number of folds of
cross-validation to achieve reliable ML model predictions.

Despite the studies reporting a wide range of metrics, there is a lack
of widely accepted criteria for determining whether a ML performance is
satisfactory for regression problems. As values for RMSE, MSE, and MAE
are highly dependent on the units of the response variables, it is difficult
to directly compare those metrics across studies or set a uniform stan-
dard to determine if the performance of a ML model is satisfactory. As
such, it is suggested that dimensionless metrics such as R, R?, NRMSE,
MRE, MAPE are more feasible for comparing ML performance across
studies/applications. Note that, the use of dimensionless metrics does
not guarantee a fair comparison between ML performance across prob-
lems, as different application cases have different inputs and require
different levels of accuracy. Therefore, likely the criteria used to deter-
mine if a ML model performs satisfactorily vary case by case.

4.2.3. Model uncertainty

Most of the reviewed studies didn't consider the uncertainty
embedded in ML training datasets and models. Many studies used ML as
a surrogate model for prediction, optimization and uncertainty
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assessment. While these studies are valuable contributions, ML in-
troduces additional uncertainty to the existing LCA model structure due
to uncertainty of training datasets and diverse model choices (i.e. al-
gorithms and training/validation procedures). Assessing the uncertainty
of ML models is challenging and only was briefly discussed in two of
these studies. For example, Romeiko et al. (2020b) focused on the un-
certainty introduced by training algorithms. Nguyen et al. (2019)
mentioned the uncertainty of ML algorithms, but didn't provide any
quantitative assessment. None of these studies comprehensively
analyzed the uncertainty associated with data, algorithm and model
structure.

4.3. Future research directions in fusing ML and LCA

4.3.1. Build or access high-quality large datasets

Both ML and LCA approaches require extensive amounts of data for
establishing the models. The lack of datasets is a major bottleneck for
applying ML in LCA. It's worth noting that the LCA communities have
been developing large databases under various initiatives. For example,
The Life Cycle Initiative hosted by the United Nation Environmental
Programme built the Global LCA Data Access network (GLAD), which is
the largest directory of LCA datasets from independent LCA database
providers around the world (UN Environment Programme, 2023).
Although GLAD doesn't directly host databases, it supports LCA data
accessibility by redirecting the users to the data providers and enables
data interoperability. Federal LCA commons led by US governmental
labs is positioned to serve as a central point of access to a collection of
data repositories for LCA studies at no cost (Federal LCA Commons,
2022). European Commission's Life Cycle Data Network provides a
globally usable infrastructure for the publication of quality assured LCA
dataset from different organizations (European Commission, 2023).
Despite these valuable efforts, further expansion of databases will be
necessary to support the integration of ML and LCA.

Meanwhile, the big datasets generated by various industries provide
new opportunities for ML and LCA. For example, the newly generated
big data in agriculture can lead to innovative integration of ML and LCA
in several stages of food supply chains. During the agricultural pro-
duction stage, the adoption of sensors at farms provides large volume
spatially and temporally explicit soil, climate, crop and emission data-
sets (Wolfert et al., 2017), which can serve as data foundation for the
integrated ML and LCA for understanding the spatial and temporal
heterogeneity of environmental impacts and designing mitigating stra-
tegies. During the transportation stage, the use of sensor monitoring
humidity, temperature, light, and microbiological and product quality
in transit is useful for the food industry in rescheduling, recalling, or
redesigning supply chain logistics (Bhutta and Ahmad, 2021;
Maksimovi¢ et al., 2015). During the food consumption stage, integra-
tion of Al and LCA may analyze food consumption behaviors and per-
ceptions and elucidate environmental health impacts of food
consumption at multiple scales (Samad et al., 2022). Overall, harnessing
the existing big datasets in various industries and expanding the LCA
databases for integrated Al and LCA may be fruitful research directions.

4.3.2. Robust modeling selection

Comparisons between two or more models are recommended in
order to determine the most suitable ML models. Multiple-fold cross-
validation is preferable in order to make full use of the available datasets
for model training and validation, particularly when the sample size isn't
too large. Additionally, stratified cross-validation is recommended to
counteract the imbalance of available datasets. It is worth noting that
imbalanced data is not unusual in ML. The distribution of the available
data may not represent well the full spectrum of the true data. In those
cases, the stratified cross-validation (Diamantidis et al., 2000; Zeng and
Martinez, 2000) could ensure that each of the multiple folds data groups
contains comparable fractions of the data, which belong to different
target classes for classification problems, or ranges of response variables
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for prediction problems.

Whereas it is difficult to establish a uniform guideline to assess ML
model performance, it is still useful to have an accepted model evalua-
tion reporting procedures (e.g., which metrics should be used and what
are the cut-off thresholds for satisfactory performance). Such informa-
tion provides a benchmark regarding the general expected performance
of a ML model for a certain type of problems. This information will also
help ML model users to decide if additional time and resources should be
invested to train different ML models or collecting new data to improve
model performance. As different metrics measure different aspects of the
goodness of fit, it is suggested using multiple metrics, instead of only
one. In addition to regression problems, for the studies that address
distribution, uncertainty, and classification problems (Abdella et al.,
2020; Feng et al., 2019; Tao et al., 2018), it is also suggested to use and
report a common set of dimensionless metrics that could be compared
across studies or application purposes.

4.3.3. More detailed information about ML applications and uncertainty
evaluation

Future studies are recommended to report necessary details about
ML model selection, evaluation and uncertainty. Model selection and
evaluation are important aspects of ensuring reliable model outcomes to
aid in solving real world problems. However, they often receive less
attention than the ML algorithms themselves. It is important to consider
the breadth of techniques and evaluate multiple techniques in order to
select the right approach for the applications.

Additionally, caution should be paid to assess model uncertainty
when applying ML to LCA. Understanding model uncertainty is neces-
sary for understanding potential biases of modeling results and avoiding
misinterpreting modeling results for decision making. However, most of
the reviewed studies haven't evaluated model uncertainty. Meanwhile,
many new ML methods have been developed to model uncertainty such
as Bayesian deep learning, combination of fuzzy logic with neural net-
works, rough set theory and imprecise probability (Abdar et al., 2021).
We recommend future studies to consider these methods to evaluate
model uncertainty in integrated ML and LCA models.

4.3.4. Exploring new ML models

Future LCA studies should consider integration with new ML models.
Specifically, deep learning may open new territories in LCA applica-
tions. The existing work has shown the initial success of integrating ML
methods to improve life cycle inventory, impact assessment and inter-
pretation. Most of these studies utilized ANN. In recent years, however,
deep learning has elevated the potential for learning with ANN to new
heights. Thus, deep learning methods may also be very fruitful within
LCA. Deep learning is based on standard ANN algorithms but utilizes
much larger and deeper networks trained on big datasets. The deep
learning enables discovering the intricate structure in large datasets and
disentangling complex features. Deep learning methods have been
highly effective in areas such as image classification, speech recognition,
anomalies detection, new material discovery, and other complex prob-
lems. Integrating LCA with deep learning may enable incorporating
nontraditional data sources such as images to life cycle inventory and
may aid in discovering new patterns of life cycle impacts.

5. Conclusions

This review analyzed forty peer-reviewed articles that reported the
joint use of ML and LCA for quantitative sustainability assessment. ML
has aided in advancing life cycle inventory, life cycle impact assessment
and interpretation due to its capabilities of accurately predicting values,
discovering hidden patterns and improving computational efficiency.

This review also revealed challenges of applying ML in LCAs. First,
although ML training datasets were derived from diverse sources (pri-
marily from model simulations), the size of training datasets is relatively
small. Moreover, while a variety of ML models were used, there is still a
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lack of detailed model description and established guidelines regarding
which metrics and the standards should be used to judge if the perfor-
mance of a ML model is satisfactory. Furthermore, uncertainty analysis
associated with ML predictions are rarely analyzed.

These findings led to the following suggestions including: (1)
continuous data collection and compilation for supporting reliable ML
and LCA modeling; (2) reporting sufficient details regarding the selec-
tion criteria for ML models and presenting model uncertainty analysis;
and (3) exploring new ML models in LCA studies; and (4) deep inte-
gration of ML into various LCA stages to solve the complex environ-
mental sustainability challenges.
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