Science of the Total Environment 949 (2024) 175037

Contents lists available at ScienceDirect

Science orre
Environment

Science of the Total Environment

ELSEVIER journal homepage: www.elsevier.com/locate/scitotenv

Check for

Comparing life cycle environmental impacts of food access and e
consumption pre- and during COVID 19 in New York State’s Capital Region

Tianhong Mu “, Beth Feingold b Akiko Hosler ¢, Christine Bozlak ¢ Jiacheng Chen “, Roni Neff®,
Mariana Torres Arroyo”, Peter Crasto Donnelly Natasha Pernlcka Stacy Pettlgrewg
Victor Russak ', Peyton Yourch Xiaobo Xue Romeiko ™

@ Department of Enviro [ and inable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
b Department of Environmental Health Sciences, University at Albany, State University of New York, 1 University Place, Rensselaer, NY 12144, USA

¢ Department of Epidemiology and Biostatistics, University at Albany, State University of New York, 1 University Place, Rensselaer, NY 12144, USA

4 Department of Health Policy, Management, and Behavior, University at Albany, State University of New York, 1 University Place, Rensselaer, NY 12144, USA

¢ Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA

f The Food Pantries for the Capital District, 32 Essex Street, Albany, NY 12206, USA

8 Radix Ecological Sustainability Center, 153 Grand Street, Albany, NY 12202, USA

HIGHLIGHTS GRAPHICAL ABSTRACT

o The life cycle global warming potential
and cumulative energy demand, of di-

Ztgr;;])c;);lsumptlon, decreased during D|@trary environmental i m@ s of various
e The life cycle eutrophication of dietary "M:Ome gr@u I@S Dre aJan d uri Jg COVI DE 19

consumption slightly increased during

COVID-19 o3 Carbon emission 0-6] Eutrophication
o The lowest-income group had the lowest i; 0.002 %UAJ

dietary environmental impacts during ‘gml / ém |\

COVID-19 \ 5
o The second highest-income group had 8 88 8 8 8 8 8 § 8" =~ L s 3

the highest dietary environmental im- kg CO, eq per capita per year £ e perapi ey

pacts during COVID-19 —— Pt COVID-19 (Overall population) === During COVID-19 ( Household income $50000~99999 / year)

= During COVID-19 (Household income <$25000/ year) Ducifig COVID-19/( Holsehiold isicdiins >8100000 yea)

we==During COVID-19 ( Household income $25000~49999 / year)

ARTICLE INFO ABSTRACT

Editor: Jacopo Bacenetti The COVID-19 pandemic has significantly influenced household food shopping, food consumption, and food
waste generation. However, the dietary environmental impacts for different income groups during COVID-19

Keywords: remain unknown. To analyze dietary environmental impacts for various income groups, a process-based life
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cycle assessment (LCA) was conducted based on two electronic food access surveys implemented in the New York
State’s Capital Region during the COVID-19 pandemic and public and proprietary databases. We found that life
cycle global warming potential, cumulative energy demand, acidification potential, and water resource depletion
of per capital food consumption in the studied area tended to be lower during COVID-19 than pre-COVID-19. In
contrast, life cycle eutrophication during COVID-19 was slightly higher than pre-COVID-19. The environmental
impacts occurring at the food production stage were higher than those at the local transportation and waste
disposal stages. The lowest income group had the lowest dietary environmental impacts due to their lowest food
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consumption of all the food categories. The second-highest income group had the highest dietary environmental
impacts, since they consumed the most red meat which has a high impact intensity. This is the first study to our
knowledge to investigate the differences in dietary environmental impacts among income groups during COVID-

19.

1. Introduction

Food production and consumption exert environmental pressure.
Household food consumption accounts for about 1/3 of households’ life
cycle greenhouse gas emissions and energy use (Jungbluth et al., 2011).
Food production accounts for 70 % of global freshwater withdrawals
and 78 % of global ocean and freshwater eutrophication (FAO, 2011;
Poore and Nemecek, 2018). Different food types have distinct environ-
mental impacts (Jungbluth et al., 2011; Notarnicola et al., 2017). For
example, meat (beef, pork, and poultry) and dairy products (cheese,
milk and butter) have about 14-40 times higher greenhouse gas emis-
sions than fruit and vegetable (Notarnicola et al., 2017; Ritchie and
Roser, 2020). In addition, compared to other food categories, the pro-
duction of red meat, dairy, and seafood exhibits higher impact intensity
for acidification and eutrophication potential (Poore and Nemecek,
2018).

COVID-19 exacerbated food insecurity for many and changed food
access and consumption behaviors, particularly during the early stage of
COVID-19. Numerous studies found that food insecurity among house-
holds increased during COVID-19 compared to prior to COVID-19
(Adams et al., 2020; Chenarides et al., 2021; Kakaei et al., 2022; Niles
et al., 2020). Meanwhile, COVID-19 has impacted food access and
consumption for nearly one-third of Americans (Whetstone, 2021). Ben
Hassen et al. (2022) found that people consumed more fruits and veg-
etables based on their questionnaire, and reduced food waste during
COVID-19 due to not purchasing excessive food. Ammar et al. (2020)
confirmed that people increased their consumption of unhealthy food,
eating out of control, and snacking between meals due to eating out of
anxiety or boredom. As of March to April 2020, household expenditures
were found to be significantly reduced because of reduced frequencies of
dining outside of the home, although the households increased online
grocery shopping (Ellison et al., 2021). All of the above changes may
lead to changes in dietary environmental impacts due to the difference
in the emissions from food production and transportation.

Life cycle assessment (LCA) is a systematic approach for assessing the
environmental effects of a product, process, or activity throughout its
life cycle or lifetime (Roy et al., 2009). Numerous LCAs have been
widely applied to assessing the environmental impacts of food produc-
tion and consumption (Cucurachi et al., 2019; Roy et al., 2009; J. H.
Schmidt et al., 2014). These LCA studies are valuable for quantifying the
environmental impacts of food systems and can suggest effective stra-
tegies capable of reducing the negative environmental effects of food
systems (Cucurachi et al., 2019; Roy et al., 2009; J. H. Schmidt et al.,
2014). An LCA of food access and consumption during COVID-19 is
essential in comprehending the environmental implications of food ac-
cess and consumption during such crises.

To the best of our knowledge, there are only two LCA studies that
have been conducted on food access and consumption during COVID-19
(Batlle-Bayer et al., 2020; Yao, 2022). Batlle-Bayer et al. (2020) reported
a 30 %-36 % increase in diet-related global warming potential, blue
water footprint, and land use in Spain between March and April 2020. In
contrast, Yao (2022) observed reductions in food consumption-related
impacts, including greenhouse gas emissions and energy use, at the U.
S. national level in 2020.

While previous studies have made valuable contributions, there are
still some limitations that need to be addressed. One such limitation is
the dietary environmental impacts of New York State (NYS) during
COVID-19 has not been studied yet. Due to the COVID-19 pandemic,
NYS issued Executive Order No. 202 in March 2020 to declare a state

disaster emergency for the entire state (State of New York, 2020). As
NYS residents were among the most affected during the early spread of
the pandemic, resulting in significant changes to their food provisioning
and consumption behaviors (Babbitt et al., 2021), may subsequently
lead to changes in dietary environmental impacts. Even if the early stage
of COVID-19 is a short period, environmental impacts often have long-
term consequences. For example, global warming is primarily associ-
ated with total cumulative carbon emission (Gillett, 2023; Matthews
et al., 2012). Since NYS Capital Region has over 0.9 million population
(United States Census Bureau, 2022a), the magnitude of total dietary
environmental impacts can be very considerable. The New York Legis-
lature passed the Climate Leadership and Community Protection Act in
2019, which aims for State-wide carbon neutrality by 2050 (Senate Bill
56599, 2019). Nevertheless, COVID-19 may greatly affect this progress
due to limited resources for tackling environmental protection during
the pandemic. However, no study has yet conducted an LCA on dietary
environmental impacts during COVID-19 in the NYS Capital Region.

The other limitation of previous research is the lack of studies on the
differences in dietary environmental impacts among income groups
during COVID-19. New York State has implemented several policies
aimed at enhancing nutritional access for its low-income residents
(Billings, 2023; DiNapoli, 2023; Nestle, 2019), particularly given that
14.3 % of the population lives below the poverty line (United States
Census Bureau, 2022b). Concurrently, the New York State Environ-
mental Quality Review Act [SEQRA] (2018) requires all state and local
government agencies to equally exam environmental impacts with so-
cial and economic considerations during discretionary decision-making.
To support these policies, it is imperative to understand the dietary
environmental impacts across different income groups. To the best of
our knowledge, there are only three studies explored food access and
consumption related environmental impacts for different income
groups. Bozeman et al. (2019) investigated the impacts of food con-
sumption across three demographic groups in the US by integrating
socioeconomic status with pertinent LCA findings. Bozeman et al. (2019)
discovered that the environmental impact/dollar spent on food for low-
income households is greater than for high-income households. Jones
and Kammen (2011) used consumption-based life cycle accounting
techniques to measure the carbon footprints of typical US households
across 12 income brackets. Differently, Jones and Kammen (2011) found
that there were little differences in food-related carbon footprints be-
tween low- and high-income households. In addition, Rose et al. (2019)
investigated the greenhouse gas emission from US adults’ diet selections
and found that when divided the demographics groups by income, they
did not reveal significant differences in dietary greenhouse gas emission.
Considering low-income groups are more likely to face to the challenges
of food access (Flores and Amiri, 2019; United States Department of
Agriculture, 2022a), COVID-19’s effects on dietary environmental im-
pacts among the NYS income groups can be different. Still, there is a
knowledge gap as no LCA has been conducted for food access and con-
sumption across income groups during the early stage of COVID-19
pandemic.

To address the aforementioned knowledge gaps, our goals are: (1) to
estimate the dietary environmental impacts in NYS during COVID-19;
(2) to identify the dietary environmental impacts among different in-
come groups during COVID-19.

2. Methods

We performed a process-based LCA to compare the life cycle impacts
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of food consumption, transportation, and waste disposal during COVID-
19 for different income groups. According to the International Organi-
zation for Standardization guidelines (Iso.org, 2010), the LCA frame-
work includes 4 stages: (1) goal and scope definition, (2) life cycle
inventory analysis, (3) life cycle impact assessment, and (4) life cycle
interpretation. Each stage of the LCA study is described below.

2.1. Goal and scope definition

The scope of this LCA study considers food production, trans-
portation for obtaining food, and food waste disposal, as shown in Fig. 1.
The system boundary includes background processes and foreground
processes. The background processes include food production, raw
materials, energy, and infrastructure. The foreground processes include
food consumption, food waste disposal, and associated transportation (i.
e. transportation for obtaining food). Both background and foreground
processes have environmental emissions to air, water, and soil com-
partments. The functional unit sets a reference for comparing the envi-
ronmental impacts of food consumption pre- and during COVID-19, and
for different income groups. In this study, we use yearly food con-
sumption (kg) of 1 person as the functional unit (FU). This choice aligns
seamlessly with the datasets ([dataset] USDA Economic Research Ser-
vice, 2019) employed in our research, allows a straightforward com-
parison of food consumption patterns before and during COVID-19, and
enables the dietary environmental impacts both before and during
COVID-19. Furthermore, this functional unit effectively captures per
capita dietary environmental impacts, thereby illustrating variations
across individuals within different income levels.

In this study, we selected the 5-month period from October 2020 to
February 2021 as the studied period, that was the early stage of COVID-
19 when the food supply chains were disturbed (Vyas et al., 2021). The
studied region is the 11-county Capital Region in NYS. The pre-COVID
period is delineated as the calendar year 2019, chosen as it represents
the most recent year preceding the onset of the COVID-19 pandemic. To
the best of our knowledge, no data exists regarding the food consump-
tion pattern of the NYS Capital region pre-COVID-19. However, Morri-
son et al. (2011) discovered only minor differences exist between the
average food consumption estimates of regional and national datasets,
and discrepancies between national and regional food consumption may
arise when average ages of regional populations significantly differ from
the national average. Given that the NYS Capital region has a similar
median age (40.9 + 0.4) to the U.S. (39 + 0.1) (United States Census
Bureau, 2022c, 2022a), we assume comparable per capita food con-
sumption between the NYS Capital region and the U.S. nationwide pre-
COVID-19. Hence, we opt to utilize food consumption data at the na-
tional level in 2019 as a benchmark for comparing food consumption in
the NYS Capital region during COVID-19. This approach allows us to
illustrate potential shifts in food consumption patterns amid the

""""""""""""""""" System Boundary
Raw materials
Energy
Infrastructure
and others

3

i
' &
i :
/ i Transr;g:tatlon Food Food waste
! ‘ consumption disposal
1| obtaining food H i
/ |
2 i
Efvionmentalilaty Before COVID-19(2019)
EmisSiens . Foreground processes ___During COVID-19(10/2020~02/2021)_

Fig. 1. System boundary for LCA of food production, transportation, and waste
disposal pre- and during COVID-19. The system boundary includes both back-
ground and foreground processes.
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pandemic.

2.2. Life cycle inventory (LCI) analysis

The foreground datasets are composed of three parts: (1) Trans-
portation for obtaining food; (2) Food consumption, including food
intake and the food finally be wasted; and (3) Disposal of wasted food.
The data on individual-level food access and consumption during
COVID-19 was obtained from two online self-administered food access
surveys implemented in the NYS Capital Region. One of these two sur-
veys, UAlbany COVID Food Access Survey, with a sample size of 595,
was administered from October 10, 2020 to January 31, 2021 (Feingold
et al., 2021). The other survey, UAlbany COVID Food Access Minority
Health Disparities (MHD) Survey, with a sample size of 454, was per-
formed from January 5 to February 7, 2021 (Feingold et al., 2021). The
background datasets were obtained from the Ecoinvent v3.10 database
and individual literature. Ecoinvent v3.10 is one of the largest and most
comprehensive LCI databases based on ISO 14040 and 14044. This study
incorporates additional literature values to augment the life cycle in-
ventory of agricultural production. Table 1 summarized the data sources
for the life cycle inventory.

2.2.1. LCI for transportation for obtaining food

To assess transportation for obtaining food pre-COVID-19, we utilize
data on the changes in in-store grocery shopping frequency during
COVID-19, the travel distances to local stores during COVID-19, and
associated transportation modes. The local stores in the study include
grocery stores, supermarkets, large bulk stores, convenience stores,
corner stores, bodegas, ethnic markets, and specialty stores. The trans-
portation modes include bus or public transportation, personal vehicle,
ride from friend/family/neighbor, taxi or Lyft/Uber, walk or bike.

To calculate the travel distance (km/capita/year) to local stores pre-
COVID-19 (Sp), we use the formula:

S

P:1,p (€]

Within Eq. (1), p represents the reduction of in-store grocery shop-
ping frequency during COVID-19 (%); S; represents the travel distance
(km) to local stores during COVID-19 (km/capita/year). To calculate the
environmental releases of food shopping by each transportation mode
pre-COVID-19 (Ry;), we use the formula:

Rip =Sp x T x Iy (2)

Tp is the intensity of a transportation mode usage (%) pre-COVID-19,
and Iy is the life cycle impact intensity of a transportation mode usage.
Si, p, and T, are gathered from the two food access surveys (Feingold
et al., 2021). It is obtained from the Ecoinvent v3.10 database.

For assessing transportation for obtaining food during COVID-19, we
use the travel distance to local stores and associated transportation
modes. To calculate the environmental releases of food shopping by
each transportation mode during COVID-19 (R (4), we use the formula:

Rt‘d = Sl X Td X IT (3)

Within Eq. (3), Tq is the intensity of a transportation mode used (%)
during COVID-19 and gathered from the two food access surveys
(Feingold et al., 2021).

2.2.2. LCI for production of food and food waste disposal

For food intake pre-COVID-19, we directly used food intake datasets
from the USDA Food Availability (Per Capita) Data System, which reflect
loss-adjusted food availability ([dataset] USDA Economic Research
Service, 2019). The data collected by the USDA offer valuable insights
into dietary trends by providing an independent measure of food sup-
plies available for consumption in various outlets (United States
Department of Agriculture, 2022b). The data provide good estimates of
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Table 1

Data sources for LCI.

Parameters or processes

Data source

Reference

Background
datasets
(Life cycle
impact
intensities of
food
production, I

Foreground
datasets

Life cycle impact
intensities of food
production (if not
specified)

Life cycle impact
intensities of pork
production

Life cycle impact
intensities of lamb
production

Life cycle impact
intensities of fish
production

Life cycle impact
intensities of ice
cream production
Life cycle impact
intensities of
hazelnut
production

Life cycle impact
intensities of
pistachios
production

Life cycle impact
intensities of milk

Life cycle impact
intensities of beef
production

Per capita food
intake pre-COVID-
19 in terms of kg/
capita/year (Mp,
My, Mp);
vegetable or fruit
intake rate (C,)
pre-COVID-19 in
cups/capita/day,
for conversion
factors calculation
Per capita dairy,
red meat, seafood,
grain, and nut
intake rate (Ty,) in
terms of times/
day, for
conversion factors
calculation.

Per capita food
intake rate during
COVID-19 (Mq)

Per capita food
waste pre-COVID-
19 (Wh, Np)

The percentages of
people who
reported wasting
more food (rpy);
the percentages of
people who
reported wasting
less food (r); the
percentage
reduction (r) in

Ecoinvent v3.10

Individual
literature

Individual
literature

Ecoinvent v3.10
and individual
literature
Individual
literature

Individual
literature

Individual
literature

Ecoinvent v3.10
and individual
literature
Ecoinvent v3.10
and individual
literature

USDA Food
Availability (Per
Capita) Data
System

National Health
and Nutrition
Examination
Survey (NHANES)
Data
Documentation

UAlbany COVID
Food Access
Survey and
UAlbany COVID
Food Access MHD
Survey

EPA 2018 Wasted
Food Report,
United State
Census Bureau
Quick Facts
UAlbany COVID
Food Access
Survey and
UAlbany COVID
Food Access MHD
Survey

individual
literature

Wernet et al.
(2016)

Basset-Mens et al.
(2007); Garcia-
Launay et al.
(2014)

GeB et al. (2020)

Abdou et al.
(2020); Wernet
et al. (2016)
Konstantas et al.
(2019)

Sabzevari et al.
(2015)

Bartzas &
Komnitsas (2017)

Baldini et al.
(2017); Wernet
et al. (2016)

de Vries et al.
(2015); Poore and
Nemecek (2018);
Wernet et al.
(2016)

[dataset] USDA
Economic
Research Service
(2019)

Centers for Disease
Control and
Prevention (CDC)
(2005-2006, 2009-
2010, 2017-2018)

Feingold et al.
(2021)

U.s.
Environmental
Protection Agency
(EPA) (2018)

Feingold et al.
(2021)

Cosgrove et al.
(2021)
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Table 1 (continued)

Parameters or processes Data source Reference

food waste rate
during COVID-19
Life cycle intensity
of landfilling (Iy)
The reduction of
in-store grocery
shopping
frequency during
COVID-19 (p), the
food shopping
kilometers to local
stores during
COVID-19 (S, the
intensity of
transportation

Wernet et al.
(2016)
Feingold et al.
(2021)

Ecoinvent v3.10

UAlbany COVID
Food Access
Survey and
UAlbany COVID
Food Access MHD
Survey

modes used pre-
(Tp) and during
COVID-19 (Tg)
Life cycle impact
intensity of a
transportation
mode usage (I

Wernet et al.
(2016)

Ecoinvent v3.10

per capita availability of basic commodities and allow for testing hy-
potheses on the impact of government and general sources of diet and
health information on consumer food choices (United States Department
of Agriculture, 2022b). Based on the USDA data and our food access
surveys, we included the following food categories: vegetable, fruit,
dairy, red meat, seafood, grains, and nuts. The unit of food intake of each
food category (M) pre-COVID-19 is kg/capita/year. The specific food
species included in each category are listed in Table S1.

To estimate food intake during COVID-19, we use reported food
intake rates from two food access surveys (Feingold et al., 2021). In
these surveys, vegetable and fruit intake rates were measured in cups/
capita/day, while all the other food categories were measured in times/
capita/day. To facilitate comparison with fruit or vegetable intake in
pre-COVID-19, we convert intake rates of each food categories to kg/
capita/year (My) using the following eq:

My:Mde (4)

Within Eq. (4), Mq is food intake rate in terms of cups/capita/day or
times/capita/day. My is obtained from the two food access surveys
(Feingold et al., 2021). f is the conversion factor. The conversion factors
for each food category are calculated individually. For example, the
conversion factor (f;) to convert vegetable intake rates from cups/cap-
ita/day to kg/capita/year is calculated as:

fv =~ 5)

Within Eq. (5), My is the vegetable intake rate in kg/capita/year, and
Cy is the vegetable intake rate in cups/capita/day. Both My and C; are
retrieved from the USDA Food Availability (Per Capita) Data System
([dataset] USDA Economic Research Service, 2019). Similarly, we
calculate the conversion factor for fruit. For another example, the con-
version factor (f,) to convert the red meat intake rate from times/cap-
ita/day to kg/capita/year is calculated as:

M,

Within Eq. (6), My, represents the red meat intake rate in terms of kg/
capita/year, and Ty, represents the red meat intake rate in terms of
times/capita/day. We obtained My, from the USDA Food Availability
(Per Capita) Data System ([dataset] USDA Economic Research Service,
2019) and T, from the National Health and Nutrition Examination
Survey (NHANES) Data Documentation (Centers for Disease Control and
Prevention (CDC), 2006, 2010, 2018). NHANES stands as a distinctive
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program aimed at evaluating the health and nutritional conditions of
adults and children across the United States, blending interviews with
physical examinations (Centers for Disease Control and Prevention,
2023). This survey scrutinizes a nationally representative sample of
approximately 5000 individuals each year (Centers for Disease Control
and Prevention, 2023). We apply the same method to calculate the
conversion factors for dairy, seafood, grain, and nut intake rates from
times/capita/day to kg/capita/year. All the conversion factors are listed
in Table S2(A) and (B).

To estimate food waste amount (XWp, kg/capita/year) during pre-
COVID-19, we use the formula:

W
Sw, :F: )

With Eq. (7), Wy represents household food waste (153.3 kg/
household/year) obtained from the Environmental Protection Agency
(EPA) 2018 Wasted Food Report (United States Environmental Protec-
tion Agency, 2018). N,, represents the number of persons per household
(2.60 persons/household), obtained from the United State Census Bu-
reau (United States Census Bureau, 2022d). In the NYS Capital Region,
the primary waste treatment method is landfill (III Winners Circle,
2014). The environmental releases of landfilling food waste pre-COVID-
19 (Rw,p) are calculated as:

Rup = ZW, x L, ®

Within Eq. (8), I represents the life cycle impact intensity of land-
filling, obtained from the Ecoinvent v3.10 database. The food waste rate
pre-COVID-19 (r,) can be calculated as:

W,

_ - 9
"= W, + =M, ©)

Within Eq. (9), ZM,, represents the total intake of all the food cate-
gories pre-COVID-19 (kg/capita/year).

For assessing food waste rate during COVID-19, we retrieve the
percentages of people who reported wasting more food (rp,) and the
percentages of people who reported wasting less food (r]) from the two
food access surveys (Feingold et al., 2021). We denote the percentage
reduction (r) in food waste rate as a variable depending on the difference
between rj and rp,, and the ration is x:

r=xx(n—ry) (10)

According to Cosgrove et al. (2021)’s study, when r; = 50.8 % and ry,
= 26.5 %, the median percent of household food waste was cut in half (r
= 50 %). We then estimate x = z52%— = 2.06, thus,
r=2.06x (1 —1Im) (11
Using this information, we calculate the food waste rate during
COVID-19 (rq) as:

g =1p x (1-1), 12)
or:

ZWq
" IW,+ M, 13

Within Eq. (13), My represents the total intake of all the food cat-
egories during COVID-19 (kg/capita/year).

And then the food waste amount (XWy, kg/capita/year) during
COVID-19 can be calculated from Eq. (13) as:

XM, x1q

Wy =
d l—rd

(14

The environmental releases of landfilling food waste during COVID-
19 (Ry,q) are calculated as:

Rwda = ZWy4 x I, (15)
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For pre-COVID-19, we assume that the waste rate of each category
(W), kg/capita/year) is proportional to its eaten amount, and then it can
be calculated as:

M, xr,
W, =22 X" 16
P 1 (16)

The environmental releases of production for each food category

(Rg,p) pre-COVID-19 is calculated as:

Rpp = (My +W,) x I a7)

Within Eq. (17), If is the median value of the life cycle impact in-
tensity for producing the food category. The life cycle impact intensity
for each food species within that food category was obtained from
Ecoinvent v3.10 and individual literature.

Similarly, for during COVID-19, the food waste amount of each
category (Wq, kg/capita/year) is calculated as:

Merd

Wq = (18)
1- Trq

The environmental releases of production for each food category
(Rf,q) during COVID-19 in the is calculated as:

Rra = (My+ W) xI 19)

The total dietary environment releases pre-COVID-19 (Rp), in terms
of per capita per year, is calculated as:

Rp = ZR¢p + 2Rep + Rup (20)

Within Eq. (20), XRg,, signifies the combined environmental emis-
sions resulting from the production of all food categories pre-COVID-19;
whileXRy, denotes the cumulative environmental emissions associated
with all transportation modes for food shopping pre-COVID-19.

The total dietary environment releases during COVID-19 (Ry), in
terms of per capita per year, is calculated as:

R4 = ZRfqg+2ZRiqa +Rya 21

Within Eq. (21), ZR¢q represents the cumulative environmental re-
leases from the production of all the food categories during COVID-19;
R4 represents the cumulative environmental releases of all the
transportation modes for food shopping during COVID-19.

2.3. Life cycle impact analysis

The life cycle impacts are determined based on the summation of the
life cycle emission inventories multiplied by corresponding character-
ization factors (CF) for each life cycle impact category (Lee et al., 2020;
Romeiko et al., 2020). CFs for the global warming potentials (GWP) for a
time frame of 20 years were provided by the Intergovernmental Panel on
Climate Change (IPCC 2021) (Masson-Delmotte et al., 2021). GWPs offer
a standardized unit of measurement, enabling analysts to aggregate
emissions estimates across various gases (e.g., for compiling a national
GHG inventory). This standardization also facilitates policymakers in
comparing opportunities for emissions reduction across different sectors
and gases (United States Environmental Protection Agency, 2023). The
unit for dietary GWP is kg CO, eq per capita per year. CFs of the cu-
mulative energy demand (CED) are quantified by the CED impact
assessment method (Frischknecht et al., 2015). The CED of a product
represents direct and indirect energy use throughout the complete life
cycle (Huijbregts et al., 2006). CED has been one of the key indicators
being addressed since the very first LCA studies (Frischknecht et al.,
2015). The unit for dietary CED is MJ per capita per year. CFs of the
acidification potential (AP) and eutrophication potential (EP) are sup-
plied by the Tool for the Reduction and Assessment of Chemical and
other environmental Impacts (TRACI 2.1) (Bare, 2014). TRACI, devel-
oped by the EPA, is capable of estimating CFs in North America. AP is
connected to acid deposition of acidifying contaminants on soil,



T. Mu et al.

groundwater, surface waters, biological organisms, and ecosystems
(Dincer and Bicer, 2018). The unit for dietary AP is mole of H' eq per
capita per year. Eutrophication signifies the accumulation of surplus
nutrients, like nitrogen and phosphorus, in a water body. This accu-
mulation may foster excessive plant growth, such as harmful algal
blooms, leading to a depletion of dissolved oxygen, and occasionally, the
generation of cyanotoxins (Niblick et al., 2018). The unit for dietary EP
is kg N eq per capita per year. The water resource depletion was quan-
tified by the International Reference Life Cycle Data System (ILCD 2.0
2018 midpoint) (Sala et al., 2012). The water footprint is an environ-
mental indicator that measures the volume of fresh water used
throughout the entire production chain of a consumer item or service, as
suggested by the Water Footprint Network and the recent ISO14046
(Vanham and Bidoglio, 2013). The unit for dietary water resource
depletion is m® water per capita per year. Previous literature have uti-
lized the same assessment methods to derive CFs for GWP, CED, AP, EP,
and water resource depletion (Egilmez and Park, 2015; Grabarczyk and
Grabarczyk, 2022; Lee et al., 2020; McAuliffe et al., 2023; Romeiko,
2019; Romeiko et al., 2020; Xue and Landis, 2010). Table 2 outlines the
tools for calculating the life cycle impacts and corresponding impacts.

2.4. Life cycle impact interpretation

2.4.1. Stage contribution

The environmental impacts of each stage (food production, trans-
portation for obtaining food, food waste disposal) are identified to
determine the stage contribution. The results are summarized in Sec-
tions 3.1 and 3.2.

2.4.2. Differences among income groups

The differences in environmental impacts among income groups are
compared. The population is divided into 4 income groups by their
annual household income: (1) Lowest income group: annual household
income less than $25,000; (2) Second-lowest income group: annual
household income from $25,000 to $49,999; (3) Second-highest income
group: annual household income from $50,000 to $99,999; (4) Highest
income group: annual household income is $100,000 or more. The
delineation of these income categories is based on a twofold criterion.
Firstly, it ensures that no category is disproportionately small or large,
maintaining a balanced distribution. Secondly, it approximates the
federal poverty guidelines, with the lowest income category (less than
$25,000) closely aligning with the 2023 federal poverty line (Office of
the Assistant Secretary for Planning and Evaluation, 2023) for a
household of three ($24,860). Notably, households in the second-
highest income group ($50,000 - $99,999) are unlikely to fall below
the poverty line, except in cases where the household size is 8 or more, a
highly improbable scenario within the survey sample (Feingold et al.,
2021).

2.4.3. Variability of dietary environmental impacts of different income
groups

Based on the results of food access surveys, the food choices and
consumption vary at individual level (Table S3), consequently may lead

Table 2
Life cycle impact assessment in this study.
Impact category Methodology Unit Reference
GWP IPCC2021 kg COz-eq/ Masson-Delmotte
kg et al. (2021)
CED Cumulative energy MJ/kg Frischknecht et al.
demand (2015)
Acidification TRACI 2.1 Moles of Bare (2014)
H'-eq/kg
Eutrophication TRACI 2.1 kg N-eq/kg Bare (2014)
Water resource ILCD 2.02018 m® water/ Sala et al. (2012)
depletion midpoint kg
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to various dietary environmental impacts. To assess the variability of
dietary environmental impacts caused by various food consumption,
Monte Carlo (MC) simulation is applied to this study. MC simulation is a
type of simulation that relies on repeated random sampling and statis-
tical analysis to compute the variability of results (Romeiko, 2019). MC
simulation is performed on the environmental impacts of each income
group and stages of food production and transportation for obtaining
food. The tested input food intake parameters include intake of vege-
tables, fruits, red meat, seafood, dairy, nuts, and grains (Table S8). The
tested input transportation parameters include the total travel distances
of food shopping by each transportation mode (Table S9). As showing in
Figs. S1 and S2, the food intake and transportation parameters fit
triangular distributions. The sampling approach is Latin hypercube
sampling (LHS), which is a type of stratified MC that divides the range of
each component for partition sampling region into a specific manner
(Atangana, 2018). The iterations are set to 100,000 to ensure enough
confidence.

2.4.4. Sensitivity analysis

The sensitivity analysis aims to elucidate the relative impacts of
input parameters on overall environmental outcomes, shedding light on
data uncertainty and guiding future data collection efforts. By employ-
ing the one-at-a-time technique for sensitivity assessment (Romeiko,
2019), each parameter was individually perturbed while keeping others
constant. This method facilitates the calculation of sensitivity ranges for
individual parameters, providing insights into their influence on life
cycle impact results. The tested input parameters encompassed per
capita intake rates for each food category, totaling seven parameters for
each environmental impact category. The sensitivity analysis is carried
out the with a + 10 % change (Kim et al., 2020) of food intake rates
derived from the UAlbany COVID Food Access Survey and the UAlbany
COVID Food Access MHD Survey. The specific parameters subjected to
sensitivity analysis are detailed in Table S4.

3. Results

3.1. Comparing of total dietary environmental impacts during COVID-19
to pre-COVID-19

Total dietary environmental impacts during the early COVID-19
period (October 2020-February 2021) were significantly lower than
pre-COVID-19 (calendar year 2019) for GWP, CED, and AP categories. In
comparison, the median value of the total dietary GWP, CED, and AP (in
terms of per capita per year) during COVID-19 was respectively 10 %
(79.2 kg CO5 eq.), 20 % (1713.6 MJ eq.), and 25 % (60 mol of H' eq.)
lower than pre-COVID-19 (Fig. 2A, B, C). The lower consumption of red
meat, dairy, and grain, and lower personal vehicle usage for food
shopping during COVID-19 caused these differences. Specifically, the
median consumption of red meat, dairy, and grains were respectively 43
%, 6 %, and 13 % lower than pre-COVID-19. In terms of transportation,
personal vehicle usage during COVID-19 was also 38 % lower than pre-
COVID-19 (Table S5). Before the pandemic, the production of red meat
and dairy were major contributors (16-44 %) to total dietary GWP, CED,
and AP. In addition, personal vehicle usage for food shopping also
significantly contributed (15-19 %) to dietary GWP and CED. Grain
production contributed 22 % to total dietary CED. This shows the
smaller food production and transportation-related emissions resulted in
lower total dietary GWP, CED, and AP during COVID-19.

The median value of total water resource depletion during COVID-19
was 6 % lower compared to pre-COVID-19 (Fig. 2E). The main con-
tributors to total dietary water resource depletion pre-COVID-19 were
the production of grains (29 %), fruit (24 %), vegetables (17 %), and
dairy (14 %). Although median consumption of fruit was 31 % higher
than pre-COVID-19, consumption of grain, vegetables, and dairy was
lower during COVID-19. The decrease in water resource depletion
associated with grains, dairy, and vegetables consumption during
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Fig. 2. The median values of total dietary (A) GWP, (B) CED, (C) AP, (D) EP, and (E) water resource depletion pre-COVID-19 and during COVID-19. The time frame
for pre-COVID-19 was the calendar year of 2019, and the time frame for during COVID-19 was from October 2020 to February 2021. Food production-related impacts
are represented by solid colors. Food local transportation and waste disposal related impacts are represented by slashes.

COVID-19 outweighed the increase in fruit-related depletion, resulting
in a net decrease in total dietary water resource depletion.

The median value of total dietary EP during COVID-19 is only 3 %
higher than pre-COVID-19 (Fig. 2D), mainly due to the higher seafood
consumption and lower red meat consumption. The median consump-
tion amount of seafood during COVID-19 was 126 % higher compared to
pre-COVID-19. The main contributor to the total dietary EP pre-COVID-
19 was the production of red meat (65 %) and seafood (25 %). The
higher seafood-related EP during COVID-19 offset the lower red meat-
related EP, thus making the median value of overall dietary EP fairly
comparable to pre-COVID-19.

3.2. Comparing of dietary environmental impacts among stages during
COVID-19

Food production is the dominating stage for all life cycle environ-
mental impact categories. Specifically, the median value of GWP, CED,
AP, EP, and water resource depletion occurring at the food production

stage respectively contributed 84 %, 79 %, 90 %, 99 %, and 99 % of the
median value of total impacts (Fig. 2). This trend is a result of higher
environmental impacts from food production stage compared to of the
transportation and waste disposal stages.

The magnitudes of environmental impacts from food production
stage during COVID-19 differ from pre-COVID-19. For example, the
median values of GWP, CED, AP, and water resource depletion occurring
at the food production stage were respectively 4 %, 15 %, 24 %, and 5 %
lower than pre-COVID-19. The median value of EP occurring at the food
production stage was 3 % higher than pre-COVID-19. The differences in
food production related impacts between pre- and during COVID-19
were mainly caused by the differences in food consumption discussed
in Section 3.1.

The median values of local transportation and food waste disposal
related GWP, CED, AP, EP and water resource depletion impacts were all
39 % lower than pre-COVID-19. The reduction of personal vehicle usage-
related impacts during COVID-19 resulted in the overall reduction of
food local transportation impacts during COVID-19.
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The median values of GWP, CED, AP, EP, and water resource
depletion impacts associated with food waste disposal were 61 % lower
than pre-COVID-19. The median reduction magnitudes were 0.21 kg
CO;, eq per capita per year, 0.02 MJ per capita per year, 4.4 x 107> mol
of H'eq per capita per year, 1.5 x 1071 kg N eq per capita per year, and
6.2 x 10~ m® water per capita per year for GWP, CED, AP, EP, and
water resource depletion, respectively. This reduction of life cycle im-
pacts were caused by the 61 % reduction of food waste. However, food
waste disposal had only minimal contribution (<0.01 %) to total dietary
environmental impacts.

3.3. Comparing of dietary life cycle impacts during COVID-19 among
income groups

The most likely values, which have the highest probability densities,
of total dietary GWP, CED, AP, EP, and water resource depletion for each
income group are listed in Table S6. Those values are all significantly
different (z score > 3) across income groups during COVID-19 (Fig. 3).
Those differences were mainly caused by the differences in food intake
and waste among income groups.

The lowest income group showed the smallest total dietary impacts
for GWP, CED, AP, EP, and water resource depletion categories. The
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lowest income group had the lowest food intake for the majority of food
categories, including vegetables, fruits, red meat, seafood, grains, and
nuts. Differently, the dairy intake of the lowest income group was
comparable to the highest income group, and even higher than the
second lowest and second highest income groups (Table S8). Addition-
ally, it was noticed that the lowest income group also had the least
amount of food waste (refer to Section 3.5). Overall, the lowest income
group presented the lowest dietary environmental footprints, mainly
due to their lowest intake amount of red meat, seafood, grains, and
vegetable, which with high environmental densities, and their lowest
amount of food waste.

The second-lowest income group ranked as the second lowest for the
dietary GWP, CED, AP, and water resource depletion impacts. This is
mainly attributed to their lower intake amount of vegetables, dairy, and
red meat compared to the second-highest and highest income group.
Furthermore, this group had the second-lowest food waste (refer to
Section 3.5). The combination of relatively small amounts of food intake
and waste led to that the second-lowest income group had the second-
smallest food production-related GWP, CED, AP, and water resource
depletion impacts. However, the second-lowest income group had the
second highest most likely value of total dietary EP among all income
groups due to their highest seafood intake rate among all the income
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Fig. 3. Distributions of total dietary (A) GWP, (B) CED, (C) AP, (D) EP, and (E) water resource depletion during COVID-19 by income groups. The time frame for
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groups. As seafood was the top contributor (56 %) to total dietary EP
during COVID-19 (Fig. 2D), its production substantially contributed to
the total dietary EP of the second-lowest income group.

The second-highest income group demonstrated the highest most
likely values of total dietary GWP, CED, AP, EP, and water resource
depletion among all income groups. This is primarily due to their high
intake of red meat (Table S8). Their intake amount of other food cate-
gories was comparable to either the second-lowest or highest-income
group. As previously discussed in Section 3.1, red meat production
was one of the most important contributors to total dietary emissions.
Furthermore, the second-highest income group reported the highest
food waste compared to all other income groups (refer to Section 3.5).
The combination of high red meat intake amount and food waste
resulted in the second-highest income group having the highest food
production-related dietary GWP, CED, AP, EP, and water resource
depletion. In summary, the second-highest income group’s dietary
environmental impacts are driven by their highest red meat consump-
tion as well as the highest food waste.

The highest income group ranked as the second highest group for the
majority of impact categories. The group’s intake amount of most food
categories was the second highest, with nuts being the highest consumed
(Table S8). However, nut production did not contribute significantly to
total dietary emissions. The highest income group also had the second
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highest amount of food waste (see Section 3.5). Consequently, the
group’s food production-related emissions were responsible for their
second-highest ranking in total dietary GWP, CED, AP, and water
resource depletion among all income groups. The highest income group
ranked as the third highest group in total dietary EP. The total dietary EP
of the highest income group was surpassed by the second-lowest and
second-highest income groups. The second-lowest income group had the
highest consumption of seafood. Meanwhile, the second-highest income
group had the highest consumption of red meat. Production of seafood
and red meat are the top two contributors to total dietary EP either pre-
or during COVID-19. The highest income group ranked the second
highest for all environmental impact categories except eutrophication.

3.4. Comparing of food production stage’s impacts during COVID-19
among income groups

The ranking of income groups for food production’s impacts was
consistent with the ranking of income groups for total impacts (Fig. 4).
For example, the order of the income groups from the lowest to the
highest impacts for GWP, CED, AP, and water resource depletion cate-
gories was the lowest income group, the second-lowest income group,
the highest income group, the second-highest income group (see values
in Table S7). Differently, the order of the income group from the lowest
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to the highest impacts for EP was the lowest income group, the highest-
income group the second-lowest income group, and the second-highest
income group. Food production was the most important contributing
stage to the total dietary environmental impacts.

3.5. Comparing of waste disposal stage’s impacts during COVID-19
among income groups

The second-highest income group had the highest estimated median
values of food waste disposal GWP, CED, AP, EP, and water resource
depletion, which were 2 % higher than the highest income group and 77
% ~ higher than the second-lowest and lowest income group (Fig. 5).
The second-highest income group exhibited the highest estimated food
waste median value (25.7 kg per capita per year), closely followed by the
highest income group (25.1 kg per capita per year), while the second
lowest and lowest income groups had estimated food waste amounts of
<14.5 kg per capita per year. Higher income groups may lead to more
household food waste since they face less constrained budgets and less
efficient management of food purchases and allocations (Yu and Jae-
nicke, 2020). Higher food waste amounts made higher income groups
have higher estimated food waste disposal impacts than lower income
groups.
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3.6. Sensitivity analysis

The life cycle impacts were sensitive to the varying ranges of input
parameters for all environmental impact categories (Fig. S3). For total
dietary GWP after COVID-19, per capita intake rates of dairy, seafood,
and red meat emerged as the top three influential factors. The total di-
etary GWP varied by up to +3.0 % when per capita diary intake rates
varied +10 %, or exhibited a variation of +-2.7 % in response to a £10 %
change in per capita seafood consumption rates. When per capita red
meat intake rates varied +10 %, the total dietary GWP fluctuated by
+1.6 %. The changes of GWP were within 0.3 %, when other input
parameters, including per capita intake rates of grains, fruit, vegetables,
and nuts varied £10 %.

For total dietary CED after COVID-19, the per capita intake rate of
diary was the most influential factor. A variation of +2.6 % in total
dietary CED was observed when per capita dairy intake rates varied
+10 %. Following dairy, per capita intake rates of grains also signifi-
cantly influenced total dietary CED. Total dietary CED varied by +2.2 %
when intake rates of grains varied +10 %. The total dietary CED showed
variations of +1.0 % when per capita red meat intake rates varied by
410 %. The changes of total dietary CED were <0.6 %, when per capita
intake rates of seafood, fruit, vegetables, and nuts, varied by +10 %s.

0.014

L (B)

0.01

0.012
0.008
0.006
0.004

i~

0.002

RS

1E-10 |

8E-11 |

I I

4.35E-14
4E-14
3.5E-14
3E-14
2.5E-14
2E-14
1L3E-14
1E-14

m?® water per capita per year

.
0

I During COVID-19 (Household income <$25000 / year)

B During COVID-19 ( Household income $25000~49999 / year)
B During COVID-19 ( Household income $50000~99999 / year)
[] During COVID-19 ( Household income >$100000 / year)

Fig. 5. Waste disposal stage’s (A) GWP, (B) CED, (C) AP, (D) EP, and (E) water resource depletion median values by income groups. The time frame for during

COVID-19 was from October 2020 to February 2021.

10



T. Mu et al.

In the context of total dietary AP after COVID-19, per capita intake
rates of red meat and dairy were the top two influential factors. The total
dietary AP exhibited variations of up to +3.1 % when per capita red
meat intake rates varied by +10 %. Variations of +2.6 % were observed
when per capita dairy intake rates varied by +10 %. The changes of total
dietary AP were no more than +1.0 %, when per capita intake rates of
grains, seafood, fruits, vegetables, and nuts varied by +10 %.

Per capita intake rates of seafood and red meat were identified as the
top two influential factors for total dietary EP after COVID-19. The total
dietary EP displayed variations of up to +5.1 % when per capita seafood
intake rates varied by +10 %. Additionally, variations of up to +£3.3 %
were observed when per capita red meat intake rates varied by +10 %.
Variations in per capita consumption rates of vegetables, fruits, dairy,
grains, and nuts by +£10 % resulted in no more than a 0.4 % change in
the total dietary EP.

For total dietary water resource depletion after COVID-19, per capita
intake rates of fruits and grains were identified as the top two influential
factors. The total dietary water resource depletion varied by up to +3.1
% when per capita intake rates of fruits varied by +10 %. Changes in per
capita intake rates of grains by +10 % resulted in a total dietary water
resource depletion variation of +2.4 %. Variations in per capita con-
sumption rates of vegetables or dairy by +10 % resulted in a variation of
+1.1 % in the total dietary water resource depletion. Variations in the
total dietary water resource depletion remained below 0.5 % in response
to a + 10 % fluctuation in per capita consumption rates of red meat,
seafood, and nuts.

4. Discussion

4.1. Comparing of dietary environmental impacts during COVID-19 to
pre-COVID-19

The differences in dietary environmental impacts between the pre-
COVID-19 and during COVID-19 are fundamentally driven by the dif-
ferences in dietary consumption. Consistent with this study, previous
studies suggested reduction of red meat and dairy consumption due to
the closure of restaurants and food services during early COVID-19
(Janssen et al., 2021; Palmer et al., 2021), and the decrease of meat
supply and associated increase of meat prices (Ijaz et al., 2021). Other
studies also found higher fruit and seafood consumption during COVID-
19 (Bennett et al., 2021; Celorio-Sarda et al., 2021; Zupo et al., 2020).
When both dairy and red meat consumption were reduced, people may
increase seafood consumption to meet their caloric and protein re-
quirements. Additionally, this study along with the existing studies
found that the shopping frequency was reduced, likely due to in-
dividuals’ perceived risk and the threat of COVID-19 (Janssen et al.,
2021; S. Schmidt et al., 2021), eventually reducing the GWP, CED, AP,
EP, and water resource depletion for food shopping.

However, Sharma et al. (2020) and Maestre et al. (2021) presented
contradictory results to this study such as lower fruit consumption and
higher meat consumption during COVID-19. Sharma et al. (2020) con-
ducted a survey in April 2020 in Houston, Dallas, the District of
Columbia, and Southwest Florida among low-income households with
children. They found a 41.4 % decrease in fruit and vegetable intake due
to fear of contracting COVID-19, disruption of employment status,
financial hardship, and exacerbated food insecurity. Maestre et al.
(2021) assessed Spanish food consumption patterns during COVID-19
home confinement (April to May 2020) and found increased consump-
tion of red meat and grain and reduced consumption of fish, which they
attribute to a greater tendency to choose more palatable food due to
stress and social anxiety. However, their geographic, temporal and
population coverage are fundamentally different from our study.
Nevertheless, the changes in food consumption patterns including
change including both amounts and types can fundamentally influence
dietary environmental impacts.

During COVID-19, the food waste from the overall population was

11

Science of the Total Environment 949 (2024) 175037

estimated to be reduced based on the survey responses. This result is
consistent with Cosgrove et al. (2021), which revealed the median
percentage of household food waste reduced by half during the
pandemic, compared with pre-COVID-19. Cosgrove et al. (2021)
observed a higher proportion of home-prepared meals during COVID-19
compared to the pre-COVID-19 period. Consequently, the decrease in
dining out and the increase in home-prepared meals appear to be po-
tential explanations for the reduction in household food waste during
the pandemic (Cosgrove et al., 2021; Li and Roe, 2023).

4.2. Comparing of dietary environmental impacts during COVID-19
among income subgroups

Although the distributions of dietary environmental impacts among
four income groups overlapped, their distributions and associated most
likely values were significantly different. Total four studies including
this study explored the differences in dietary environmental impacts
among income groups. The different choices of functional units and
study scope made the comparison different. This study found that the
lowest income group and the second highest income group presented the
lowest and highest dietary environmental impacts, respectively.
Different from our study, two studies didn’t find significant differences
in dietary environmental impacts among income groups (Jones and
Kammen, 2011; Rose et al., 2019). Recent studies also showed that low-
income group were more likely to depend on inexpensive but energy-
dense foods, may resulting in higher environmental impacts than
high-income group (Bozeman et al., 2019).

Perhaps surprisingly, the group with the highest incomes didn’t rank
as the highest environmental impact group during COVID-19. Instead,
the group with the second highest incomes had the highest environ-
mental impact during COVID-19. The surveys in our study found that the
second highest income group had the highest red meat consumption and
second highest seafood consumption. The different food choices among
income groups may be due to different nutritional and health perspec-
tives. For example, unlike people with low incomes who may eat less
meat (both red and white) due to poverty, people with high incomes
may reduce meat consumption for a health-conscious lifestyle (Godfray
et al.,, 2018). Therefore, the highest-income group may intentionally
reduce red and white meat intake for health purposes, subsequently
making the second highest-income group to be the one that consumed
red meat the most.

4.3. Strengths and limitations

This study presents several strengths. First, this is one of the few
studies investigating dietary environmental impacts (GWP, CED, AP, EP,
and water resource depletion of food production, shopping, and waste
disposal) during COVID-19. Second, this study is the first study identi-
fied the differences in food-related environmental impacts among in-
come groups during COVID-19. By shedding light on these differences,
the study offers valuable insights into simultaneously promoting envi-
ronmental sustainability and equity.

We also recognize several potential weaknesses associated with
study design. First, in this study, the primary data on food access and
consumption during COVID-19 were provided by self-reported surveys.
The self-report survey is a relatively straightforward way to collect data
from numerous people efficiently and at an affordable cost. However,
self-reporting of dietary behavior has intrinsic limitations, including
social desirability bias and recall bias that are associated with under-
reporting of food consumed or waste. In addition to self-reported sur-
veys, alternative methods for evaluating food access and consumption
include image apps (Dahlman, 2018) and on-site measurements (Kosite
et al., 2019). However, each approach has its limitations. Food con-
sumption recorded by an image app may not be always accurate in
quantifying food intake since participants may under-reporting food
consumption or waste due to social desirability or forgetfulness



T. Mu et al.

(Hochsmann and Martin, 2020). Conducting on-site measurements can
be challenging due to social isolation during the early COVID-19
pandemic (Kosite et al., 2019). In this study, we employed surveys
and computational estimates. We conducted MC analyses to reflect the
individual variability of food choices with the income group and
included sensitivity analyses to reflect data uncertainty in the self-
reporting survey and associated LCA.

Second, we recognized the limitation of using a pre-COVID-19 na-
tional dataset to present the local dietary consumption for the Capital
Region of New York State. To address this limitation, we used a two-
pronged approach. As previous mentioned, Morrison et al. (2011) sug-
gested that there are minimal differences between regional and national
food consumption when the age groups of regional and national pop-
ulations are similar. In addition, we added the sensitivity analyses,
which reflect the lower and upper bounds the food consumption. These
sensitivity analyses aid us in understanding the uncertainty of using
national food consumption to represent regional food consumption pre-
COVID-19. Although it’s ideal to compare food consumption in the
Capital Region before and during COVID-19, the data unavailability
made it impossible.

Additionally, the analyses may only reflect the food access and
associated environmental impacts during the early phase of COVID-19
when the survey took place. Also, the food groups selected for this
analysis (vegetable, fruit, dairy, meat, seafood, grain, and nut) are not
exhaustive groups. For instance, food such as oils, beverages, and con-
diments are not part of this study. So, the results reflect only the con-
sumption of selected food types and not all food types. We recommend
future research to investigate the dietary environmental impacts of more
comprehensive food groups in larger regions or during later phases of
the COVID-19 pandemic.

4.4. Implications for sustainable food systems

Our estimates with bounding uncertainty suggested that life cycle
eutrophication impact highly likely increase during early COVID-19
compared with pre-COVID-19. While future studies are needed to
explore the transitory or permanent impacts of COVID-19 on dietary
choices and impacts, the high possibility of increased eutrophication
impact during pandemic calls for further attention for planning miti-
gating efforts.

Policymakers should consider the disparities among income groups
and simultaneously maximize nutritional and environmental benefits.
The policy should promote reducing dietary environmental impacts for
high-income groups in order to effectively reduce overall environmental
damage from societal food consumption. Meanwhile, the policy should
ensure adequate food access and nutritional security for low-income
groups, while avoiding the potential increases of dietary environ-
mental impacts. Presently, existing policies primarily target improving
nutritional access for the low-income population (Billings, 2023;
DiNapoli, 2023; Nestle, 2019), yet there is a notable absence of measures
aimed at curbing the environmental impacts of high-income groups. To
promote environmental equity amidst efforts to mitigate dietary envi-
ronmental impacts, policymakers should prioritize incentivizing lower
environmental impact food consumption among higher-income groups.
Policymakers should acknowledge the disparities among income groups
when institute policies are tailored to reduce dietary environmental
footprints.

Although food waste disposal has relatively small environmental
impacts, production of the food which finally be wasted has a significant
impact on the environment. The reported change in the amount of food
waste and thus its environmental impact differed across income groups,
with higher-income households having a greater tendency to report
increasing food waste during the pandemic, leading to higher environ-
mental impacts. Consumer food waste occurs at the last stage of the food
supply chain, so that reducing food waste can be an effective strategy for
mitigating dietary environmental impacts overall.
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5. Conclusions

During the early months of COVID-19, residents in the NYS Capital
Region reported changed their eating and shopping habits, and thus,
further changed corresponding environmental impacts. The changes
among environmental impact categories were inconsistent. During the
COVID-19 period, reductions in the consumption of red meat, dairy,
grains, and vegetables led to a decrease in overall dietary GWP, CED, AP,
and water resource depletion. However, there was a slight increase in
dietary EP attributable to higher seafood consumption during this time.
The environmental impacts of food transportation and food waste
management presented lower magnitudes than food production.
Encouraging a shift towards environmentally friendly dietary behaviors
can be a strategic consideration for policymakers, given the potential
impact of dietary changes on environmental outcomes. Lower-income
groups have lower dietary environmental impacts from the small
amount of food consumption, while the second-highest income group
has the highest dietary environmental impacts due to high intake rate of
environmental impacts intense food and the highest food waste. Poli-
cymakers should prioritize encouraging eco-friendly food choices
among higher-income groups. This study highlights the influence of
unpredictable disasters on dietary environmental impacts, emphasizing
the necessity of balancing environmentally sustainable and healthy diets
through tailored strategies for different income groups.
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