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Abstract—Recent global estimates suggest that as many as
2.41 billion individuals have health conditions that would benefit
from rehabilitation services. Home-based Physical Therapy (PT),
faces significant challenges in providing interactive feedback and
meaningful observation for therapists and patients. To fill this
gap, we present MicroXercise, which integrates micro-motion
analysis with wearable sensors, providing therapists and patients
with a comprehensive feedback interface, including video, text,
and scores. Crucially, it employs multi-dimensional Dynamic
Time Warping (DTW) and attribution-based explainable meth-
ods to analyze the existing deep learning neural networks in
monitoring exercises, focusing on a high granularity of exercise.
This synergistic approach is pivotal, providing output match-
ing the input size to precisely highlight critical subtleties and
movements in PT, thus transforming complex AI analysis into
clear, actionable feedback. By highlighting these micro-motions in
different metrics, such as stability and range of motion, MicroX-
ercise significantly enhances the understanding and relevance
of feedback for end-users. Comparative performance metrics
underscore its effectiveness over traditional methods, such as
a 39% and 42% improvement in Feature Mutual Information
(FMI) and Continuity. MicroXercise is a step ahead in home-
based physical therapy, providing a technologically advanced and
intuitively helpful solution to enhance patient care and outcomes.

Index Terms—Physical Therapy, Micro-motion Analysis, Wear-
able Sensors, Explainable Al

I. INTRODUCTION

Estimates suggest that, globally, as many as 2.41 billion
individuals have health conditions that would benefit from
rehabilitation services, however, a person’s access to reha-
bilitation, and their ability to adhere to treatment may be
hindered by many factors, including costs, travel needs and
lost worktime to attend multiple on-site visits, and the patient’s
inability to perform their program independently. If a patient
is not independent in their home exercise program, they
may complete exercises incorrectly between on-site visits,
potentially leading to unnecessary pain or slow recovery.
Wearable technology that can monitor the patient’s home
program performance and provide real-time feedback on exer-
cise quality would facilitate adherence and improve treatment
outcomes. Advances in technology are urgently needed to
develop innovative, accessible, and sustainable techniques that
facilitate a person’s participation in rehabilitation.

Existing off-site monitoring systems can only detect the
types of exercise performed or calculate calories burned,
which are insufficient for capturing the quality of the exercise
or assessing the patients’ progress. Moreover, modern deep

learning-based solutions for healthcare often do not explain
their results sufficiently, making it difficult for patients and
therapists to understand and trust the results. Artificial In-
telligence (AI) techniques have seamlessly integrated into
our daily lives, influencing many decisions, from mundane
choices to critical healthcare recommendations. In particu-
lar, the healthcare domain has seen a growing influence of
Al, with systems being developed for recognizing various
diseases such as skin, breast, and brain tumors [1]-[3]. Its
application in healthcare is particularly significant, given the
increasing need for precise and efficient treatments. This is
especially true in the domain of Physical Therapy (PT), where
an intricate understanding of human motion is crucial [4],
[5]. PT interventions—including passive restorative, exercise,
and advice—aim to improve mobility, alleviate pain, and
ultimately enhance patient outcomes. Traditional methods of
evaluating and treating patients in PT often rely on the
clinician’s experience and observational skills, which could
be subjective and lack personalization for large-scale ap-
plications. The COVID-19 pandemic has further intensified
the importance of PT, particularly for at-home exercises and
rehabilitative care. Reflecting this, the PT domain is set to
witness substantial growth, with projections suggesting a 17%
increase in employment over the next decade [6], [7]. This
rising demand further underscores the need for personalized
Al solutions in remote PT.

In light of the expanding PT workforce, human activity
recognition (HAR) has emerged as a key AI component for
personalized treatment [8]. Specifically, utilizing lightweight
sensor technology such as an inertial measurement unit (IMU),
HAR is capable of identifying and categorizing various human
motions and activities [9], [10]. In a PT context, the sensory
data generated by IMU can monitor a patient’s movements
over time to provide quantitative, accurate traits. This can
then inform the treatment plan, offering a more personalized
approach to care and potentially leading to more effective and
faster rehabilitation of patients.

However, the adoption of Al-based HAR in clinical settings
faces challenges, primarily due to the “black box” nature of
many Al algorithms. While these models are effective in mak-
ing predictions or classifications, they often lack transparency
in how they arrive at these conclusions. This opacity can
be a significant drawback in healthcare applications, where
understanding the reasoning behind a diagnosis or treatment



recommendation is crucial [11], [12]. This is where eXplain-
able Al (XAI) comes into the picture. XAl aims to make
the decision-making processes of Al models transparent and
understandable, allowing clinicians and doctors to trust the
technology and better integrate it into their practice.

Various techniques have been developed to achieve this level
of transparency, primarily in the realm of attribution-based
methods. Notable among these are Gradient-weighted Class
Activation Mapping (Grad-CAM) [13], Saliency Maps [14],
and Integrated Gradients (IG) [15]. These methods highlight
the significance of individual input features in determining
the model’s final output. In essence, they offer a mapping
that quantifies the contribution of each input attribute to
the decision-making process. This category of techniques,
often referred to as ‘heatmap visualization’ [16], allows for
more transparent interpretations by revealing what features the
model deems crucial in its computations.

A. Motivation

Two limitations in existing systems impact their utility in
physical therapy applications, particularly, for shoulder PT.
First, current XAI methods, such as heatmap visualization
techniques, are often non-intuitive and not explainable for
end-users, limiting their usefulness in real-world scenarios
[17]. Second, these methods commonly provide a holistic
view of activity but fall short in isolating specific moments
(or micro-motions) that require user modification—such as
raising an arm higher during a shoulder abduction exercise
in the first half of the exercise or asking users to slow
down in the lowering arm part of the exercise [18]. These
limitations necessitate more user-friendly and targeted XAI-
heatmap approaches for enhancing the applicability of HAR
models in shoulder PT [19].

B. Challenges

The first substantial challenge lies in translating attribution-
based methods into actionable insights for end-users. While
these techniques, such as Saliency and IG, offer a way to
“interview” the deep neural network model to understand its
decision-making processes, they often don’t translate easily
into practical, real-world advice. A potential technique is the
comparison of a current workout (referred to as the ‘“signal
exercise”) and an example or ideal exercise (referred to as
the “anchor exercise”), as presented by previous research
utilizing spatiotemporal Siamese Neural Networks (SNN) [20].
However, even with such sophisticated models, given the
heatmap visualization, the challenge remains: how do we
translate these high-level comparisons into clear, actionable
feedback for the end-user?

The second challenge is related to the intricate task of
isolating and understanding micro-motions within physical
activities. While breaking down exercises into smaller, more
manageable components could be beneficial, doing so in a
meaningful way that preserves the context of the overall exer-
cise is not trivial. For example, directing a user to raise their
arm higher during only the first half of a shoulder abduction
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Figure 1. This diagram illustrates the process of exercise performance
and feedback generation using our system. The user performs an exercise
while wearing a smartwatch, which generates a off-site exercise (or “signal
exercise”) sent to the user’s smartphone in (1). The smartphone accesses
the off-site exercise and the on-site exercise (“anchor exercise”), which is
supervised by the therapist in clinics and stored in the cloud, then processes
these two exercises together and sends them to the micro-motion algorithm for
analyzing in cloud (2). This provides explainable feedback, such as the range
of motion and stability, and micro-motion feedback in text and visualization
(3). Next, the user will have access to the generated feedback, as shown in
(4). Additionally, the therapists can view users’ feedback and exercise history,
as shown in (5).

exercise would require an acute focus on that specific micro-
motions without losing sight of the larger activity.

C. Contributions

We create MicroXercise, an innovative system that leverages
a micro-motion algorithm that generates comprehensive and
presentable feedback, demonstrated in multiple modalities,
including text, avatars, and video highlights, utilizing the
capabilities of the existing neural network, particularly, on spa-
tiotemporal SNN, with attribution-based methods for remote
shoulder PT. This approach enriches the user’s understanding
and engagement, overcoming the non-intuitive nature of exist-
ing heatmap visualization techniques.

Our additional technical contribution is the development
of a new multi-dimensional Dynamic Time Warping (DTW)
model that works in synergy with existing attribution-based
methods, specifically tailored to segment and analyze single-
repetition exercise comparison results through existing neural
networks. This fusion allows for the extraction of granular,
micro-motion-level insights, thereby fine-tuning the feedback
and making it more actionable for end-users in the physical
therapy domain.

Our experiment conducted a detailed evaluation of expla-
nation methods using three metrics: monotonicity, feature
mutual information (FMI), and continuity. We compared three
attribution methods, including a modified version against an
unmodified baseline. The results revealed significant improve-
ments with the modified method. On average, FMI improved
by approximately 39% with our modified approach. Regard-
ing continuity, we observed an average decrease (indicating
improvement) of about 42%. These findings demonstrate our
experiment’s enhanced interpretability and fidelity of the mod-
ified attribution methods.



II. SYSTEM OVERVIEW OF MICROXERCISE

Our system aims to elevate adherence to Human Behavior
Physical Therapy (HBPT) by specifically targeting user self-
efficacy and enabling patient-driven care [21]. Self-efficacy
is fundamentally an individual’s confidence in their ability to
successfully carry out actions that yield desired outcomes. In
the context of HBPT, it serves as a pivotal factor influencing a
patient’s adherence to exercise routines and overall treatment.
Our system addresses the prevalent challenge where users
feel unsure in utilizing mobile health (mHealth) solutions.
Leveraging advanced algorithms and micro-motion analysis,
we transform complex sensor data from a deep learning model
into easy-to-understand and actionable feedback. Designed
specifically for shoulder PT patients who are working to
maintain exercise routines developed in close collaboration
with their therapists, our application seeks to support long-
term practices rather than serving as a replacement for acute
care or professional therapy in situations with higher risks.

Our system adopts a three-layered architecture consist-
ing of smartwatches, smartphones, and cloud computing.
Smartwatches are responsible for real-time data collection,
smartphones serve as the user interface providing interactive
feedback, and cloud-based systems handle computational pro-
cessing and algorithmic tasks. Within this system, we have
developed three main modules: MicroXercise Monitoring (Sec.
III-C), Micro-motion Syncing (Sec. III-B), and Generation
of Explainable Feedback (Sec. III-D). These modules are
intricately designed to meet our system’s objectives: delivering
actionable performance guidance and enhancing user self-
efficacy, as visually represented in Figure 1.

In MicroXercise, this module leverages attribution-based
methods, such as IG, Saliency, or DeepLIFT, to interpret
our multitask SNN. It analyzes both the signal and anchor
exercises to produce actionable and transparent outcomes.
Next, acting as the core algorithmic component, Micro-motion
Syncing employs signal processing and spatiotemporal DTW
to scrutinize exercises at the micro-level. It compares user-
generated signals with pre-established anchor exercises, using
this data for subsequent exercise segmentation. Lastly, we
transform the analytical results into both visual and textual
feedback, making extensive use of avatar-generation methods.

Visual and textual feedback are core components of the
MicroXercise app, designed to offer users real-time insights
into their performance and overall well-being. Visual feedback,
demonstrated in Figure 1, utilizes real-time graphs and charts
to display performance metrics. These graphical elements
enable users to track and regulate exercise intensity relative
to their anchor results. Complementing the visuals, textual
feedback provides granular details, such as similarity scores to
anchor exercises and range of motion variations in text. This
information is synthesized to prevent information overload,
translating complex IMU sensor data into actionable insights,
as illustrated in the generated texts on the smartphone.
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Figure 2. MicroXercise System Pipeline: A schematic representation of the
exercise analysis pipeline. The process begins with the users performing
several repetitions of an exercise, pre-segmented into individual repetitions
(light blue). The anchor exercise, considered the ground truth, is colored in
orange. The data undergoes a series of processing steps, including primitive
(noise) removal, adaptive DTW, and micro-segmentation. In parallel, utilizing
an existing comparative neural network (such as Siamese Neural Network),
MicroXercise Monitoring produces an attribution map from attribution-based
methods. It aids in the video generation process using inverse kinematics and
in the text generation. The final video emphasizes key features pinpointed by
the attribution map with in-depth, granular feedback on their exercise metrics.

III. EXPLAINABLE EXERCISE PERFORMANCE
QUANTIFICATION

A. Overview

As shown in Fig. 2, initially, users perform repetitions of
an exercise. Each repetition is pre-segmented on the device,
resulting in a set of signal exercises in light blue corresponding
to individual repetitions. Alongside these, we have the anchor
exercise in orange, considered the ground truth. This data
then undergoes micro-motion syncing, involving primitive re-
moval, adaptive DTW, and micro-segmentation. Concurrently,
MicroXercise Monitoring is performed using a deep neural
network, specifically spatiotemporal SNN, with attribution-
based methods, generating an attribution or an importance
heatmap of the two inputs. The output image from this process
is then used for video generation using inverse kinematics and
Levenberg-Marquardt algorithm. Once the video is created,
we extract the important features as highlighted by the attri-
bution score and incorporate them into the generated video,
segmented into different phases of the exercise. This gives the
user detailed, micro-level observational feedback on different
exercise metrics.

B. Micro-motion Syncing Analysis

As illustrated in Fig. 2, this section focuses explicitly on
the purple area of the diagram, representing the stages of



primitive removal, adaptive DTW, and micro-segmentation.
These processes are examined in the context of the overarching
purpose diagram, moving from top to bottom.

1) Primitive Removal: Primitive removal is a critical pro-
cess in our system, aimed at eliminating noise in the data to
enable accurate calculation of various metrics for a given time
series in assigned exercises. This includes removing noise for
precise measurement of metrics like the range of motion. Such
noise can arise from factors such as sensor inaccuracies during
data collection. For this purpose, we adopted two techniques:
Butterworth low-pass filtering and moving average smoothing.

The Butterworth low-pass filter was chosen for its smooth
frequency response, effectively preserving the low-frequency
components crucial to our analysis. High-frequency noise can
significantly distort measurements. By applying this filter with
a threshold frequency of 20 Hz, as suggested by [22], we
ensure the retention of only those frequencies relevant to our
exercise metrics.

Subsequent to the initial noise reduction, we processed
the data further using moving average smoothing [23]. This
method aids in reducing random fluctuations and smoothing
out short-term irregularities in the time series data. Sporadic
spikes or drops that do not represent actual exercise perfor-
mance are eliminated by averaging over a specified window.

2) Adaptive DTW: In this part, we address the challenge
of aligning data from different sources to enhance the inter-
pretability and utility of the outputs from our SNN model. Our
focus is on using DTW as a tool to align signals, particularly
in the context of understanding the network’s attributions.

Our analysis primarily utilizes 6-axis input data, consisting
of accelerometer and gyroscope measurements from a smart-
watch. This decision is influenced by prior research, such as
the studies by Burns et al. [4], and Weiss et al. [24], which
effectively used these data dimensions for activity recognition
and health monitoring. Despite the absence of magnetometer
data, these studies demonstrated robust performance, which
we aim to emulate and build upon.

To align the signals effectively, we adopted DTW for
calculating the distance and path between two time series
shown in Fig. 1, represented as matrices s and ¢. The algorithm
computes a distance measure between these matrices, sum-
ming the absolute differences between corresponding elements
(across the 6-axis data), and is optimal in temporal data.

The significance of employing DTW in our study lies in
its ability to bridge the gap between the raw input data and
the attributions provided by the SNN. As shown in Figure 3,
it provides a visualization of the algorithm we use for this
purpose and includes a display of attributions heatmap. While
the neural network operates as a black-box model, offering
some insights into its internal workings, DTW provides a
tangible means to understand how the input data correlates
with the attributions generated.

3) Micro-Segmentation: As described in Algorithm 2, this
function applies a centered moving average to both s and ¢,
computes the path using the DTW algorithm in Algorithm
1 between them, and then segments the aligned ¢ sequence

Algorithm 1 Multi-dim DTW Distance and Path

1: function DTW_DIST_PATH_MULTI(S, t)

2 n, m < length(s), length(¢)

3 num_axes <— number of axes in s

4: Init dtw with (n + 1) x (m + 1) elems set to oo
5: dtw(0][0] + 0
6:
7
8
9:

for i < 1 ton do
for j < 1 to m do
cost +— S U=t s[i — 1, k] — t[j —
dtw(i][j] « cost + mln(dtw[z — 1], d
1], dtw[i — 1][j — 1])
10: end for
11: end for
12: Init empty list path

L K|
wlillj -

13: 14 Mn,jm

14: while ¢ > 0 or 5 > 0 do

15: Append (7, j) to path

16: if © == 0 then

17: j+—j—1

18: else if j == 0 then

19: i—1—1

20: else

21: min_ide < argmin(dtw[i — 1][j], dtw[i]lj —
1], dtwli — 1][j — 1))

22: if min_idx == 0 then

23: 1+i—1

24: else if min_ide == 1 then

25: j—j—1

26: else

27: i1+i—1,j+<j5—-1

28: end if

29: end if

30: end while
31: return dtw, path
32: end function

Algorithm 2 Micro-segmentation Algorithm

function MICRO-SEGMENTATION(S, t, ngeg = 10, N = None)
N — LIength(t}J

1:

2 P

3 s,t <— centered moving average of s, ¢

4 path < distance and path between s and ¢ using Alg. 1

5: res <— empty list

6: MINg;st < 00

7 for segsar <+ 0 to len(t) with step N do

8 S€Gend <— min(segsarn + N, len(t))

9 ming, ming < —1,—1

0 for ¢, j € path do

1: if j — 1 = seggan and |s[i — 1] — ¢[j — 1]| < mingis:
then

12: Mingse < |s[i — 1] — t[j — 1]
13: ming, min; <1 — 1,5 — 1

14: end if

15: end for

16: Append (min;, min;) to res

17: end for

18: return res

19: end function




Your movement at the start of this
exercise is very similar to what you
did when your thumb was facing
forward in the anchor exercise. Keep
it up!

The range of movement in this
exercise shows a 30-degree
difference compared to the
anchor's range.

Figure 3. An illustrative diagram to show the comparison of the explainable Al system with Adaptive DTW and segmentation on signal (top) and anchor
(bottom) exercises, with video recording, in one repetition. This diagram has seven rows: 3 axial accelerometer, 3 axial gyroscope, and reference video
recording. The signals are also shown in blue, and heatmaps are shown in dark blue.

into micro-segments of length N. For each micro-segment, the
function finds the element of s with the minimum distance to
the micro-segment using the argmin function, which selects
the minimum element from a list of distances computed as
the absolute difference between corresponding elements s and
t in multi-dimensions. Finally, the function returns a list res
containing pairs of indices. Each pair corresponds to a point
in s and a point in ¢ that are closest at the beginning of each
segment in t.

C. MicroXercise Monitoring

1) Multi-task Siamese Neural Network (SNN): Though we
are not limited to using only one type of neural network,
to incorporate a complete system, we utilize a comparative
model of SNN to evaluate physical exercise quality. We adopt
and follow the multi-task spatiotemporal SNN structure and
implementation in this work [20]. The architecture of the SNN
is a combination of LSTM, CNN, and attention mechanisms
with two sub-identical networks. LSTM layers handle the
sequential nature of sensor data, while CNN layers extract
relevant features. The attention mechanism focuses on signifi-
cant segments of the data, enhancing the model’s interpretative
capability. The network employs cosine similarity to measure
the closeness of the input exercise to the standard or “anchor”
exercise. Additionally, one sub-identical pipeline from SNN
is outputting a classification score to have an absolute quality
assessment.

For labeling, we rely on annotations from fitness experts.
These labels indicate the correctness of exercise execution

and serve as a reference for supervised learning. The model’s
performance is evaluated using Mean Absolute Error (MAE)
and R-squared metrics, with Mean Squared Error (MSE) and
Cross Entropy as the loss function, focusing on the similarity
of the signal to the anchor exercises. This approach ensures
that the SNN effectively discerns the quality of physical
exercises, providing a reliable tool for fitness assessment.

2) Attribution-based Methods: In our system, we aim to
enhance model transparency and comprehensibility by incor-
porating three distinct attribution techniques, each chosen for
its unique strengths in analyzing and filtering data related to
micro-motions. These methods are IG, Saliency, and Input
X Gradient, and they are employed to assess and refine our
model’s focus on critical movement features.

The Integrated Gradients (IG) method, outlined by [15],
excels in providing a detailed analysis of feature importance,
crucial for examining micro-motions by quantifying each
feature’s contribution to model predictions. In contrast, the
Saliency method, as described by [14], offers rapid evaluation,
efficiently identifying key input features, thereby streamlining
the feature filtering process. Furthermore, the Input X Gradient
method, detailed by [25], is particularly effective in high-
dimensional, sparse datasets, focusing on the most influential
features to enhance the model’s accuracy in micro-motion
analysis.

Collectively, these attribution techniques serve not just to
test the model individually but also to refine the input data
by emphasizing the most influential features for our micro-
motion analysis. This approach ensures that the data fed into



our model is of high quality and relevance, enabling more
accurate evaluations as we further detail in Sec. IV.

3) Attribution Extraction: Attribution extraction uses an
attribution heatmap from attribution-based methods, wherein
a top T threshold percentage is employed to identify the most
important features. Furthermore, we normalize the attribution
derived from both signal and anchor exercises collectively. In
addition, we leverage the outcomes of micro-segmentation to
align the top 7" percent attribution indices. For instance, if the
top T percent attribution falls within the third segment, we
opt to analyze the third segment rather than the indices.

Additionally, we utilize this result of threshold segmentation
to modify the original attribution as we observe that most
attribution results are noisy, but based on our method of
comparing in the micro-motion, we can signify the signal data
while making the anchor data the ground truth for the current
comparison. We also further evaluate such an approach with
baselines in Sec IV.

Furthermore, from prior knowledge in the context of the
range of motion, the most significant attributions are typically
found in the middle of the data sample. This is because the
middle region represents the highest degree of motion changes
in the supervised learning model, which is logical given that
the range of motion (ROM) model is trained to classify various
motion ranges. However, this is not applicable if the neural
network is trained and evaluated on stability. In this case, we
do not assume the location and consider that multiple areas
could be on the top T" percentage of the attribution.

D. Generation of Explainable Micro-Motion Feedback

1) Signal Translation: In signal translation, we convert the
analog value from signal space to physical space to make it
more meaningful to users. For example, in a range of motion
metric, the usefulness of an interpretation is determined by
a degree of motion difference between the signal and anchor
exercise. This implies that the data collected from the current
exercise should be compared to the data collected from the
anchor exercise.

Consequently, Euler angle estimation [26] from accelerom-
eter and gyroscope data is a crucial method to determine
the orientation of an object in 3D space. Accelerometers
can measure linear acceleration, whereas gyroscopes measure
angular velocity. By integrating these measurements, it is
possible to determine the orientation of an object in terms
of Euler angles (roll, pitch, and yaw).

Accelerometer readings are converted to meters per second
squared by multiplying each axis by the standard gravita-
tional acceleration constant (9.81 m/s?). Then trigonometric
functions, specifically arcsine and arctangent, derive the pitch
and roll angles directly from the normalized accelerometer
data. However, the yaw angle cannot be calculated from
accelerometer data alone, as additional information is required,
such as magnetometer or gyroscope. However, this suffices
as it can provide enough insight for exercises involving the
difference in range of motion along the primary axis. By
integrating the angular velocities over time with pitch and
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The degree difference is less than 5.

This looks great, that means the
similarity of the exercises compared
to your anchor is very good!
Keep the way how you did this
repetition and make sure to think
about how you did this repetition.

The similarty of IOM is 0.95 The instability mainly happened in

the beginning in the 1st second

The similarity of STB is 0.92 compared to the anchor.

(a) Overall (b) STB (c) ROM

Figure 4. Visual Explainable Results: This result encapsulates critical
elements such as the user’s similarity score relative to the anchor exercises,
temporal fluctuations in stability, and the discrepancy in range of motion at the
apex of particular movements. These insights are derived from post-processed
attributions generated by our micro-motion analysis.

roll angles, the framework acquires the complete set of Euler
angles utilized for the end users.

Building on existing research, we propose a measure of
stability that takes into account the physical context and
characteristics of exercises. This measure, inspired by the
work of Yan et al. [27], quantifies hand movement jerk over
time, providing a nuanced and physically meaningful measure
of stability. We further refine this measure, adopting the
Normalized Jerk Score (NJS) proposed by Kitazawa et al.
[28], which removes the influence of movement length and
duration. The NIJS, a unit-free metric, has proven effective in
categorizing deviation from a smooth movement [29]. The new
modified NJS is calculated as follows:

3
NJS = —log ‘% Z(jerki)th‘

%

)]

where A is the peak movement amplitude per axis, 7 is the
total duration of the movement, jerk; is the jerk at ¢ time
step, or represents the second derivative of the position with
respect to time, and dt is the one over sampling frequency, or
time step between consecutive samples. By normalizing using
both the movement’s peak amplitude and its total duration,
the jerk score is rendered dimensionless. This dimensionless-
ness is crucial, as it facilitates a direct comparison between
movements of diverse characteristics in stability.

2) Micro Video Generation: Next, we present the micro
video avatar generation system that utilizes IMU data from a
smartwatch to reconstruct micro-motion shoulder movements
during physical therapy exercises to emphasize the result of
micro-motion analysis from attribution maps, as shown in Fig.
4. The system employs inverse kinematics to solve for the
positions of the shoulder and elbow joints in a 3D space. We
then use this information to compute the position of the wrist
in space relative to a fixed reference frame. To reconstruct
the motion of the shoulder and elbow joints in a 3D space,
the avatar generation system utilizes a mathematical model of
the human arm that includes the shoulder, elbow, and wrist
joints. The model assumes that the shoulder joint is a ball-



and-socket joint, while the elbow joint is a hinge joint. The
angles between the segments of the arm are assumed to be
constant, and the lengths of the segments are known.

Using the IMU data and the mathematical model of the
arm, the system employs the Levenberg-Marquardt algorithm
to solve for the positions of the shoulder and elbow joints. The
algorithm minimizes the difference between the actual position
and orientation of the end effector, which in this case is the
wrist, and the desired position and orientation. The Gauss-
Newton algorithm is used to solve for the optimal joint angles
when the error between the actual and desired positions is
small, while the steepest descent method is used when the
error is large. This combination provides a balance between
speed and accuracy in solving for optimal joint angles. The
following equation can describe the algorithm:

JTIAX + MAx = —JTf(x), 2)

where x is the vector of joint angles, f(x) is the vector of
residuals between the measured and predicted joint positions,
J is the Jacobian matrix of partial derivatives of f(x) with
respect to x, Ax is the update vector for x, A is the damping
parameter, and I is the identity matrix.

Lastly, as shown in Fig. 4, our system features three dis-
tinct visualization modes: Overall, Stability (STB), and ROM.
These modes provide users with a side-by-side comparison
of their exercise performance against the original anchor
exercises. In this way, users can immediately look into how
well they are doing in relation to supervised benchmarks.

3) Text Generation: Building on the visual feedback mech-
anism, our system incorporates a sophisticated text generation
strategy to complement the visual insights. Notably, the same
Figure 4 that shows the avatar-based replay also serves as an
interface for real-time textual feedback. Our text generation
leverages a template-based approach, allowing for concise,
modifiable, and quick communication.

Textual feedback in our system serves as an interactive
and intuitive tool designed to guide users constructively. It
acts as a valuable, real-time source of advice, providing
granular insights into how users perform. For instance, as
shown in Fig. 4(c), when a user sees “The degree difference
is less than 57, it highlights the technical part of precision in
their movement, which potentially is useful to the therapists.
Positive reinforcement is equally important as plain language,
and messages such as “This looks great. That means the
similarity of the exercises compared to your anchor is very
good!” encourage and motivate users by acknowledging their
progress. Furthermore, feedback like “No need to modify the
way you do it” provides affirmation and potential improve-
ment, assuring users that their current method is effective.
Overall, our system’s textual feedback is designed to support,
guide, and foster confidence in users, enabling them to make
the most of their exercises and routines.

IV. EVALUATION

Assessing attribution methods is crucial to verify their
effectiveness and applicability. Our MicroXercise system, an

amalgamation of signal processing in micro-motion analysis
and an attribution-based deep learning model, seeks to advance
the saliency heatmap by presenting refined and nuanced attri-
butions. We present a quantitative evaluation that provides an
empirical foundation for our approach with defined metrics
that focus on the objectives of achieving both fidelity and
interpretability in the realm of attribution-based methods [11],
[17], [30], [31].

A. Dataset and Evaluation Setup

The dataset used in this evaluation is adapted from [20],
which is consists of multiple shoulder physical therapy ex-
ercises. The dataset is collected using consumer-grade i0S
Apple Watches for three exercises. These exercises are chosen
because they demonstrate repetitive nature, have clear start
and end points, can potentially improve the body, and engage
various muscle groups. With the supervision of exercise expert,
the participants perform a number of sets of exercises with
various range of motion and repetitions with variations of
stability. The dataset includes data from 17 male and 14 female
participants, aged between 18 and 44, including 3 participants
with self-reported previous shoulder injuries.

We train the comparative deep neural networks to compare
and interpret feedback, particularly using two exercises of
shoulder abduction and forward flexion from the dataset,
which contains 1,550 segmented one-repetition exercises. The
shoulder abduction exercise is collected with 5 range of
motions. The forward flexion is collected similarly with same
range of motions.

For the model, every possible pair of inputs was methodi-
cally generated. These pairs are associated with a discrete and
continuous score of quality assessment, sourced from range-
of-motion and stability labels, which established the target for
the SNN. The data are split into 70% for training, 10% for
validation, and 20% for testing in both range-of-motion and
stability metrics.

We refine the attributions map, produced by attribution
methods, using our Micro-Motion Syncing methods to produce
a modified attribution map. As shown in Fig. 5, by integrating
this into the attribution as a layer of prior knowledge, we
essentially amplified the significance within crucial segments
using a signal smoothing factor.

B. Evaluation Metrics

1) Fidelity: Within the realm of fidelity, monotonicity
plays a essential role. The fundamental premise is to ensure
that as the importance of a feature amplifies, so does its
attribution, and vice-versa. This behavior is quantified by com-
puting correlation coefficients, Spearman’s rank correlation
coefficient, between the feature importance and their corre-
sponding attributions. A strong positive correlation implies a
desirable monotonic behavior, attaching to the soundness of
our explanations. Adopted by [32], the monotonicity metric is
defined as

S (rank(a;) — rank(e;))?
n(n? —1)

ps(a,e) =1— 3)
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Figure 5. Signal comparison with raw attribution versus modified attribution in the attribution produced by IG. As shown in the figure, column 1 shows its
original signal exercise. The raw attribution is very noisy and inconsistent in column 2 and 3, but the modified attribution produces more consistent results

as shown in column 4 and 5.

where pg represents the Spearman’s correlation coefficient,
a is a vector containing the absolute values of the attributions
for each feature, denoted as a = (..., |a;|,...), and e is a
vector containing the expected losses when considering each
feature with other features held constant. The rank refers to
the numerical ordering of each element within the flattened
arrays of attributions and expected losses by their size.

2) Interpretability: In transitioning to interpretability, it’s
critical to ensure that our method doesn’t overly focus on
specific features while also confirming that the explanation
isn’t unduly complex. Therefore, in interpretability, we want
to focus on feature mutual information and continuity.

Feature mutual information between the original feature
sets and their corresponding explanations serves as an apt
metric for this purpose. An optimal mutual information score
indicates a harmonious blend of broadness and simplicity in
our explanations [32].

o= ¥ peaog (£ @

ek aen p(z)p(a)

Where p(x,a) is the joint probability distribution of z and
a, p(z) and p(a) are the marginal probability distributions of
them, respectively. A high value of I(z,«) indicates that the
extracted features (in this case, attributions) retain a significant
amount of information from the original input, thus ensuring
fidelity in our system. Lastly, we estimated mutual information
using a histogram-based approach with 200 bins, because
the goal of assessing feature-attribution fidelity is informative
alignment and efficiency in multivariate time series data.

The continuity of an explanation is an another essential
method for understanding its usefulness and reliability. For a
prediction function f(z), which we assume to be continuous,
the continuity of its explanation is defined by ensuring that

similar data points result in closely resembling explanations.
Mathematically, the continuity of the explanation, «, or at-
tribution, is quantified by evaluating the most substantial
variation in the explanations over the input domain [33]. This
is represented as:

P ’ ’ ||a - O/H 1
Continuity(z, ', @, @) = max -——— 5)

rFx! ||17 — ZL‘/HQ
Here, the numerator measures the difference between the ex-
planations for two data points x and z’, while the denominator
captures the difference between the data points themselves.
Additionally, x’ is the given adjacent values around x and
similarly with o’ around «. We set 5 adjacent neighbors
on each side. A low value of this metric indicates that the
explanation is continuous, implying that minor changes in
the input lead to proportionate alterations in the explanation,

providing clarity and consistency in the interpretation.

C. Results

Given the extensive size of our dataset, evaluating the
performance of attribution methods on each sample would
be computationally expensive and time-consuming. This com-
plexity is particularly exacerbated in our case, where the
input data consists of continuous signals. Perturbation-based
attribution methods, which require manipulations at each data
point, significantly increase computational costs.

To mitigate this, we adopted a random sampling strategy
of selecting 100 random sample pairs for each subject under
study. This sub-sampling approach allowed us to perform a
comprehensive yet manageable evaluation.

1) Range-of-Motion: Table 1 presents a comprehensive
evaluation of stability and range of motion metrics for both
shoulder abduction and forward flexion exercises. It compares



Table I
COMPARISON OF METRICS FOR DIFFERENT METHODS AND EXERCISES
(MONOTONICITY (MONO) HIGHER IS BETTER, FMI HIGHER IS BETTER,
AND CONTINUITY (CONT) LOWER IS BETTER, FMI HAS A SCALING
FACTOR OF 10000. XG 1S INPUTXGRADIENT, SA IS SALIENCY, AND IG IS
INTEGRATED GRADIENT. OUR METHOD IS SHOWN ON THE SECOND ROW
FOR EACH METRIC FOR EACH METHOD MODIFIED AS MICROXERCISE,
COMPARED WITH ITS BASELINE.)

Shoulder Abduction Forward Flexion

Method Metric Stability || Range of Motion || Stability || Range of Motion

0.561 0.571 0.624 0.630
0.505 0.465 0.328 0.572

87.915 H 94.137 H 182.091 H 122.859

Mono
Mono (MicroXercise)

XG FMI
FMI (MicroXercise)

127.170 137.868 104.333 172.201

13.833 13.270 13.679 14.992
8.340 5.723 9.992 6.597

0.679 0.685 0.727 0.711
0.582 0.527 0.274 0.591

48.923 H

Cont
Cont (MicroXercise)

Mono
Mono (MicroXercise)

SA FMI
FMI (MicroXercise)

Cont
Cont (MicroXercise)

51.823
68.258

30.106
13.500

0.541
0.514

198.494
282.383

13.049
5.486

58.893

25.592
15.593

Mono 0.299
Mono (MicroXercise) 0.300

1G FMI 182.669 H

62.512

25.916
11.865 16.696

0.415 0.519
0.392 0.309

650.714 H 458.273 H

57.239
26.886 H

44.719 H 69.495 H

FMI (MicroXercise) 268.382

10.988
6.715

924.050 319.074

7.809 11.618
3.455 8.260

Cont
Cont (MicroXercise)

our micro-motion-enhanced method with three baseline at-
tribution methods: inputXgradient (XG), Integrated Gradient
(IG), and Saliency (SA). Noted, these methods require a
‘baseline’ to perturbate against the output; our choice of
baseline value is randomly generated on a normal distribution.
While the table reveals somewhat consistent outcomes across
the methods, a closer look offers nuanced insights in the
range of motion. Specifically, our method shows a reduction
in monotonicity, which might initially suggest decreased per-
formance in the range of motion. However, this reduction in
‘flow’ between the time series data and the modified attribution
is not necessarily a drawback.

As shown in Fig 6(a), the monotonicity merely decreases
from the baseline, which is a good sign as we are attempting
to modify or smooth the attribution to be more representative
to the users. One possible reason to the decrease is we perform
the primitive removal to smooth the data followed by micro-
motion analysis and segmentation. This analysis is based on
the smoothed data which could make the attribution less
correlated with the raw input data. Again, our goal is to present
the users with more expressive explanation. Additionally, as
evidenced by the FMI and Continuity (Cont) metrics, our
approach actually outperforms the baselines consistently. This
could be that the modified attributions in our method provide
richer information, as indicated by higher FMI values, and
greater continuity, making the attributions less noisy and more
consistent, as corroborated by Figure 5.

2) Stability: The micro-motion approach has a notable im-
pact on the stability metric of the attribution. On one hand, our
method successfully attenuates the high noise levels commonly
observed in raw attributions, as indicated by improved stability
scores in the table for both shoulder abduction and forward

flexion exercises. However, it’s important to consider that en-
hanced stability may not always equate to superior attribution
quality. In some instances, the ‘instability’ reflected in the
baseline attribution may be an intentional and informative
characteristic, representing the model’s sensitivity to particular
features in the input. Thus, while our method scores higher in
terms of stability, it could be argued that this might lead to
the removal of certain informative inconsistencies originally
present in the raw attributions.

3) Randomization: To validate that the improvements con-
ferred by our micro-motion segmentation and modification
are methodologically sound and not attributable to random
fluctuations, we devise a comparative experiment. This is crit-
ical to demonstrate that our modifications represent a genuine
enhancement deriving from principles of signal processing,
rather than mere fortuitous events. In this comparative setup,
we focus specifically on the exercise of shoulder abduction
and employed the IG method for attribution.

We select 100 pairs of samples for each subject, maintaining
similar experimental setup to align with previous evaluations.
In addition to applying our micro-motion analysis and segmen-
tation, we also generate a control group by selecting random
segments of the same length—25 timestamps, equivalent to
half a second—which were not part of the segments our system
initially identified as critical. We apply identical modifications
to these randomly selected segments on raw attribution, effec-
tively serving as a baseline for performance comparison.

Our results, illustrated in Figure 7, suggest a convincing
story. In terms of feature mutual information and continu-
ity, our method, represented by the blue curve, distinctly
outperforms both the baseline and the randomly modified
segments. This validates that the information capture and
continuity improvements are not artifacts but are attributable
to our system. It’s important to note that while there is
a similar performance with some declines at times in the
monotonicity metric when using our method (and clearly better
than baseline), this doesn’t impact the overall quality of the
attribution as shown earlier, thereby affirming the robustness
of our approach.

Interestingly, feature mutual information shows a reasonable
trend that by randomly selecting segments in samples, it shows
a significantly lower feature mutual information. But randomly
selected segments in monotonicity and continuity still have
some high level of numeric results, meaning possibly that
monotonicity and continuity emphasize the overall quality of
attribution as feature mutual information focuses more on the
local attribution. These results further demonstrate that the
original authors’ claims on feature mutual information capture
the property of simplicity and broadness in data with respect
to its generated attribution.

V. RELATED WORK
A. Technologies in Remote Physical Therapy Exercise

The landscape of remote health interventions is diverse,
with several promising technologies emerging in recent years.
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Figure 6. Comparison of raw and modified attribution on each subject for shoulder abduction on IG. As shown in the figure, our method performs significantly
better in Feature Mutual Information and Continuity than the baseline.
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Figure 7. Comparison of raw (green), modified (blue), and randomized (orange) attribution on each subject for shoulder abduction on Integrated Gradient.
As shown in the line figure, our method performs better in Feature Mutual Information (higher is better) and Continuity (lower is better) than the baseline.

FMI values are shown factored down by 1 x 10°

A systematic review by Grona et al. [34] examined 17 full-
text articles applying real-time physical therapy interventions
through secure videoconferencing. The results showed gen-
eral patient satisfaction but highlighted the need for more
rigorous study designs. Similarly, Pietrzak et al. [35] revealed
the effectiveness of internet-based technologies in providing
community-based self-management and rehabilitation inter-
ventions for osteoarthritis patients. On the other hand, mHealth
apps for remote health, such as the one proposed by Burns et
al. [4], focus on classifying exercises without considering the
quality of the exercise execution. Mork et al. [36] outlined a
protocol for designing and implementing a decision support
system called selfBACK, which was aimed at promoting self-
management of nonspecific low back pain among patients,
with their system of case-based reasoning technology. Smit-
tenaar et al. [37] investigated the effects of the Hinge Health
12-week digital care program on chronic knee pain, function,
surgery interest, and satisfaction. The care program included
sensor-guided physical exercises, weekly education, activity
tracking, and psycho-social support, such as personal coaching
and cognitive behavioral therapy.

While the advancements in digital health interventions are
noteworthy, a significant challenge persists in the form of
transparency and explanation of the provided recommenda-
tions. For instance, the selfBACK system by Mork et al. [36]
doesn’t readily make the reasoning behind its recommenda-
tions apparent to users. Similarly, while the Hinge Health

DCP, as discussed by Smittenaar et al. [37], is effective in
improving pain and function and in decreasing surgery interest,
it fails to offer XAl feedback. Further, reviews of existing apps
underscore the deficiencies in current solutions. For instance,
research by Dantas et al. and Agnew et al. [38], [39] revealed
a dearth of functional, user-centered tools for Systemic Lupus
Erythematosus patients, with most apps offering only partial
solutions. A review by Carvalho et al. [40] found that mHealth
technologies for managing spine disorders in Brazilian online
app stores exhibited acceptable to inadequate quality.

B. Attribution-based Explainable Al

In the domain of XAI, attribution-based methods have
gained significant attention for their ability to interpret com-
plex models by assigning importance to input features. Notable
techniques include Grad-CAM [13], which utilizes gradient-
based localization to highlight significant regions in input im-
ages. Its primary advantage lies in producing high-resolution
and class-discriminative visualization, making it suitable for
tasks where spatial localization is crucial. Integrated Gra-
dient [15] offers a more axiomatic approach, providing a
path integral over the model’s gradients to delineate feature
importance. It adheres to foundational axioms like sensitivity,
implementation invariance, and completeness, which makes it
widely applicable beyond image-based models to even struc-
tured data. DeepLIFT (Deep Learning Important FeaTures)
[41] contrasts the activation of each neuron to a ‘reference



activation’ to compute the ‘contribution’ score of each feature.
Input X Gradient [25] explores the interaction between input
and gradient during backpropagation, identifying features that
significantly contribute to the output. It can be a simpler yet
insightful method, especially when computational resources
are limited.

C. Feedback and Visualization Mechanisms

The application of wearable devices and XAI in healthcare
has demonstrated noteworthy advancements across diverse
medical domains. Frade et al. employed wearable devices and
machine learning to estimate cardiovascular fitness, offering
a modern substitute for traditional cardiopulmonary exercise
testing [42]. Their use of Shapley values for attribute im-
portance brings a layer of interpretability to their models
[43]. Likewise, Arrotta et al. presented DeXAR, an innovative
technique for recognizing activities of daily living in smart-
home settings [44]. They employed attribution methods such
as Grad-CAM [13] based on CNNs to translate chronologi-
cal activities into a spatial representation, demonstrating the
efficacy of white-box XAI methods.

Building on the necessity for transparent decision-making
in healthcare, Biswas et al. argued for explainability in Al
systems when dealing with Autism Spectrum Disorder datasets
[45]. Yang et al. furthered the XAl discourse by proposing a
multi-modal and multi-center data fusion approach for weakly
supervised learning applications in healthcare [46]. Their work
targets the ’black-box’ nature of deep learning algorithms,
advocating for clearer understanding of Al-driven decisions.

Slijepcevic and others conducted a thorough evaluation of
attribution-based methods in clinical gait analysis, aiming to
understand their behavior across various deep learning models
[19]. Their research sheds light on the value of XAI methods
from a clinician’s perspective.

While these advancements signify promising progress, a
common limitation is their focus on global or macro-level ex-
planations. Unlike these approaches, our MicroXercise system
leverages IMUs in the realm of remote physical therapy. By
targeting micro-motions, we aim to provide highly detailed
and personalized feedback, thereby addressing the gaps in
existing XAI methodologies and significantly enhancing the
user’s therapeutic experience.

VI. CONCLUSION AND FUTURE WORK

In this work, we introduced MicroXercise, a mobile applica-
tion leveraging attribution-based methods in synergy with our
multi-dimensional DTW to assist users with their PT exercise
routines at a granular, micro-motion level. This novel inte-
gration shows a step forward in enhancing shoulder exercise
effectiveness and feedback for users.

Though our results show promise for supporting home-
based PT, we also acknowledge that there are limitations of
home-based PT, such as environmental constraints, access to
professional feedback, human interventions, and system scala-
bility, that must be addressed prior to deploying the application
for widespread use. To address these limitations, we plan to

extend the work in the following directions. First, in video
feedback, we will investigate more accurate and sophisticated
algorithms how to visualize users’ exercises, such as real-
world uncertainties. Second, we plan to conduct a series of
user studies to solicit feedback from physical therapists and
patients to improve the usability and design of the applica-
tion, as this will have substantial impact on user adoption,
particularly for a health-related technology. Moreover, we
intend to broaden our scope of work to include other types
of exercises or sports. Furthermore, ensuring scalability and
deployment requires a suite of wearable devices, robust server
infrastructure for algorithm processing, educational materials
for app utilization, and additional support for various PT
exercises. We will also examine the integration of other sensors
or a full-body motion tracking system to provide a more
thorough exercise feedback mechanism, as well as ensure that
the sensitive health data collected by the system is secured
based on HIPAA standards. Finally, we will ensure that
ethical considerations related to Al-based recommendations
in healthcare be considered prior to widespread dissemination
of this research to the public.
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