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Abstract—Recent global estimates suggest that as many as
2.41 billion individuals have health conditions that would benefit
from rehabilitation services. Home-based Physical Therapy (PT),
faces significant challenges in providing interactive feedback and
meaningful observation for therapists and patients. To fill this
gap, we present MicroXercise, which integrates micro-motion
analysis with wearable sensors, providing therapists and patients
with a comprehensive feedback interface, including video, text,
and scores. Crucially, it employs multi-dimensional Dynamic
Time Warping (DTW) and attribution-based explainable meth-
ods to analyze the existing deep learning neural networks in
monitoring exercises, focusing on a high granularity of exercise.
This synergistic approach is pivotal, providing output match-
ing the input size to precisely highlight critical subtleties and
movements in PT, thus transforming complex AI analysis into
clear, actionable feedback. By highlighting these micro-motions in
different metrics, such as stability and range of motion, MicroX-
ercise significantly enhances the understanding and relevance
of feedback for end-users. Comparative performance metrics
underscore its effectiveness over traditional methods, such as
a 39% and 42% improvement in Feature Mutual Information
(FMI) and Continuity. MicroXercise is a step ahead in home-
based physical therapy, providing a technologically advanced and
intuitively helpful solution to enhance patient care and outcomes.

Index Terms—Physical Therapy, Micro-motion Analysis, Wear-
able Sensors, Explainable AI

I. INTRODUCTION

Estimates suggest that, globally, as many as 2.41 billion

individuals have health conditions that would benefit from

rehabilitation services, however, a person’s access to reha-

bilitation, and their ability to adhere to treatment may be

hindered by many factors, including costs, travel needs and

lost worktime to attend multiple on-site visits, and the patient’s

inability to perform their program independently. If a patient

is not independent in their home exercise program, they

may complete exercises incorrectly between on-site visits,

potentially leading to unnecessary pain or slow recovery.

Wearable technology that can monitor the patient’s home

program performance and provide real-time feedback on exer-

cise quality would facilitate adherence and improve treatment

outcomes. Advances in technology are urgently needed to

develop innovative, accessible, and sustainable techniques that

facilitate a person’s participation in rehabilitation.

Existing off-site monitoring systems can only detect the

types of exercise performed or calculate calories burned,

which are insufficient for capturing the quality of the exercise

or assessing the patients’ progress. Moreover, modern deep

learning-based solutions for healthcare often do not explain

their results sufficiently, making it difficult for patients and

therapists to understand and trust the results. Artificial In-

telligence (AI) techniques have seamlessly integrated into

our daily lives, influencing many decisions, from mundane

choices to critical healthcare recommendations. In particu-

lar, the healthcare domain has seen a growing influence of

AI, with systems being developed for recognizing various

diseases such as skin, breast, and brain tumors [1]–[3]. Its

application in healthcare is particularly significant, given the

increasing need for precise and efficient treatments. This is

especially true in the domain of Physical Therapy (PT), where

an intricate understanding of human motion is crucial [4],

[5]. PT interventions—including passive restorative, exercise,

and advice—aim to improve mobility, alleviate pain, and

ultimately enhance patient outcomes. Traditional methods of

evaluating and treating patients in PT often rely on the

clinician’s experience and observational skills, which could

be subjective and lack personalization for large-scale ap-

plications. The COVID-19 pandemic has further intensified

the importance of PT, particularly for at-home exercises and

rehabilitative care. Reflecting this, the PT domain is set to

witness substantial growth, with projections suggesting a 17%

increase in employment over the next decade [6], [7]. This

rising demand further underscores the need for personalized

AI solutions in remote PT.

In light of the expanding PT workforce, human activity

recognition (HAR) has emerged as a key AI component for

personalized treatment [8]. Specifically, utilizing lightweight

sensor technology such as an inertial measurement unit (IMU),

HAR is capable of identifying and categorizing various human

motions and activities [9], [10]. In a PT context, the sensory

data generated by IMU can monitor a patient’s movements

over time to provide quantitative, accurate traits. This can

then inform the treatment plan, offering a more personalized

approach to care and potentially leading to more effective and

faster rehabilitation of patients.

However, the adoption of AI-based HAR in clinical settings

faces challenges, primarily due to the “black box” nature of

many AI algorithms. While these models are effective in mak-

ing predictions or classifications, they often lack transparency

in how they arrive at these conclusions. This opacity can

be a significant drawback in healthcare applications, where

understanding the reasoning behind a diagnosis or treatment



recommendation is crucial [11], [12]. This is where eXplain-

able AI (XAI) comes into the picture. XAI aims to make

the decision-making processes of AI models transparent and

understandable, allowing clinicians and doctors to trust the

technology and better integrate it into their practice.

Various techniques have been developed to achieve this level

of transparency, primarily in the realm of attribution-based

methods. Notable among these are Gradient-weighted Class

Activation Mapping (Grad-CAM) [13], Saliency Maps [14],

and Integrated Gradients (IG) [15]. These methods highlight

the significance of individual input features in determining

the model’s final output. In essence, they offer a mapping

that quantifies the contribution of each input attribute to

the decision-making process. This category of techniques,

often referred to as ‘heatmap visualization’ [16], allows for

more transparent interpretations by revealing what features the

model deems crucial in its computations.

A. Motivation

Two limitations in existing systems impact their utility in

physical therapy applications, particularly, for shoulder PT.

First, current XAI methods, such as heatmap visualization

techniques, are often non-intuitive and not explainable for

end-users, limiting their usefulness in real-world scenarios

[17]. Second, these methods commonly provide a holistic

view of activity but fall short in isolating specific moments

(or micro-motions) that require user modification—such as

raising an arm higher during a shoulder abduction exercise

in the first half of the exercise or asking users to slow

down in the lowering arm part of the exercise [18]. These

limitations necessitate more user-friendly and targeted XAI-

heatmap approaches for enhancing the applicability of HAR

models in shoulder PT [19].

B. Challenges

The first substantial challenge lies in translating attribution-

based methods into actionable insights for end-users. While

these techniques, such as Saliency and IG, offer a way to

“interview” the deep neural network model to understand its

decision-making processes, they often don’t translate easily

into practical, real-world advice. A potential technique is the

comparison of a current workout (referred to as the “signal

exercise”) and an example or ideal exercise (referred to as

the “anchor exercise”), as presented by previous research

utilizing spatiotemporal Siamese Neural Networks (SNN) [20].

However, even with such sophisticated models, given the

heatmap visualization, the challenge remains: how do we

translate these high-level comparisons into clear, actionable

feedback for the end-user?

The second challenge is related to the intricate task of

isolating and understanding micro-motions within physical

activities. While breaking down exercises into smaller, more

manageable components could be beneficial, doing so in a

meaningful way that preserves the context of the overall exer-

cise is not trivial. For example, directing a user to raise their

arm higher during only the first half of a shoulder abduction

Figure 1. This diagram illustrates the process of exercise performance
and feedback generation using our system. The user performs an exercise
while wearing a smartwatch, which generates a off-site exercise (or “signal
exercise”) sent to the user’s smartphone in (1). The smartphone accesses
the off-site exercise and the on-site exercise (“anchor exercise”), which is
supervised by the therapist in clinics and stored in the cloud, then processes
these two exercises together and sends them to the micro-motion algorithm for
analyzing in cloud (2). This provides explainable feedback, such as the range
of motion and stability, and micro-motion feedback in text and visualization
(3). Next, the user will have access to the generated feedback, as shown in
(4). Additionally, the therapists can view users’ feedback and exercise history,
as shown in (5).

exercise would require an acute focus on that specific micro-

motions without losing sight of the larger activity.

C. Contributions

We create MicroXercise, an innovative system that leverages

a micro-motion algorithm that generates comprehensive and

presentable feedback, demonstrated in multiple modalities,

including text, avatars, and video highlights, utilizing the

capabilities of the existing neural network, particularly, on spa-

tiotemporal SNN, with attribution-based methods for remote

shoulder PT. This approach enriches the user’s understanding

and engagement, overcoming the non-intuitive nature of exist-

ing heatmap visualization techniques.

Our additional technical contribution is the development

of a new multi-dimensional Dynamic Time Warping (DTW)

model that works in synergy with existing attribution-based

methods, specifically tailored to segment and analyze single-

repetition exercise comparison results through existing neural

networks. This fusion allows for the extraction of granular,

micro-motion-level insights, thereby fine-tuning the feedback

and making it more actionable for end-users in the physical

therapy domain.

Our experiment conducted a detailed evaluation of expla-

nation methods using three metrics: monotonicity, feature

mutual information (FMI), and continuity. We compared three

attribution methods, including a modified version against an

unmodified baseline. The results revealed significant improve-

ments with the modified method. On average, FMI improved

by approximately 39% with our modified approach. Regard-

ing continuity, we observed an average decrease (indicating

improvement) of about 42%. These findings demonstrate our

experiment’s enhanced interpretability and fidelity of the mod-

ified attribution methods.



II. SYSTEM OVERVIEW OF MICROXERCISE

Our system aims to elevate adherence to Human Behavior

Physical Therapy (HBPT) by specifically targeting user self-

efficacy and enabling patient-driven care [21]. Self-efficacy

is fundamentally an individual’s confidence in their ability to

successfully carry out actions that yield desired outcomes. In

the context of HBPT, it serves as a pivotal factor influencing a

patient’s adherence to exercise routines and overall treatment.

Our system addresses the prevalent challenge where users

feel unsure in utilizing mobile health (mHealth) solutions.

Leveraging advanced algorithms and micro-motion analysis,

we transform complex sensor data from a deep learning model

into easy-to-understand and actionable feedback. Designed

specifically for shoulder PT patients who are working to

maintain exercise routines developed in close collaboration

with their therapists, our application seeks to support long-

term practices rather than serving as a replacement for acute

care or professional therapy in situations with higher risks.

Our system adopts a three-layered architecture consist-

ing of smartwatches, smartphones, and cloud computing.

Smartwatches are responsible for real-time data collection,

smartphones serve as the user interface providing interactive

feedback, and cloud-based systems handle computational pro-

cessing and algorithmic tasks. Within this system, we have

developed three main modules: MicroXercise Monitoring (Sec.

III-C), Micro-motion Syncing (Sec. III-B), and Generation

of Explainable Feedback (Sec. III-D). These modules are

intricately designed to meet our system’s objectives: delivering

actionable performance guidance and enhancing user self-

efficacy, as visually represented in Figure 1.

In MicroXercise, this module leverages attribution-based

methods, such as IG, Saliency, or DeepLIFT, to interpret

our multitask SNN. It analyzes both the signal and anchor

exercises to produce actionable and transparent outcomes.

Next, acting as the core algorithmic component, Micro-motion

Syncing employs signal processing and spatiotemporal DTW

to scrutinize exercises at the micro-level. It compares user-

generated signals with pre-established anchor exercises, using

this data for subsequent exercise segmentation. Lastly, we

transform the analytical results into both visual and textual

feedback, making extensive use of avatar-generation methods.

Visual and textual feedback are core components of the

MicroXercise app, designed to offer users real-time insights

into their performance and overall well-being. Visual feedback,

demonstrated in Figure 1, utilizes real-time graphs and charts

to display performance metrics. These graphical elements

enable users to track and regulate exercise intensity relative

to their anchor results. Complementing the visuals, textual

feedback provides granular details, such as similarity scores to

anchor exercises and range of motion variations in text. This

information is synthesized to prevent information overload,

translating complex IMU sensor data into actionable insights,

as illustrated in the generated texts on the smartphone.

Figure 2. MicroXercise System Pipeline: A schematic representation of the
exercise analysis pipeline. The process begins with the users performing
several repetitions of an exercise, pre-segmented into individual repetitions
(light blue). The anchor exercise, considered the ground truth, is colored in
orange. The data undergoes a series of processing steps, including primitive
(noise) removal, adaptive DTW, and micro-segmentation. In parallel, utilizing
an existing comparative neural network (such as Siamese Neural Network),
MicroXercise Monitoring produces an attribution map from attribution-based
methods. It aids in the video generation process using inverse kinematics and
in the text generation. The final video emphasizes key features pinpointed by
the attribution map with in-depth, granular feedback on their exercise metrics.

III. EXPLAINABLE EXERCISE PERFORMANCE

QUANTIFICATION

A. Overview

As shown in Fig. 2, initially, users perform repetitions of

an exercise. Each repetition is pre-segmented on the device,

resulting in a set of signal exercises in light blue corresponding

to individual repetitions. Alongside these, we have the anchor

exercise in orange, considered the ground truth. This data

then undergoes micro-motion syncing, involving primitive re-

moval, adaptive DTW, and micro-segmentation. Concurrently,

MicroXercise Monitoring is performed using a deep neural

network, specifically spatiotemporal SNN, with attribution-

based methods, generating an attribution or an importance

heatmap of the two inputs. The output image from this process

is then used for video generation using inverse kinematics and

Levenberg-Marquardt algorithm. Once the video is created,

we extract the important features as highlighted by the attri-

bution score and incorporate them into the generated video,

segmented into different phases of the exercise. This gives the

user detailed, micro-level observational feedback on different

exercise metrics.

B. Micro-motion Syncing Analysis

As illustrated in Fig. 2, this section focuses explicitly on

the purple area of the diagram, representing the stages of



primitive removal, adaptive DTW, and micro-segmentation.

These processes are examined in the context of the overarching

purpose diagram, moving from top to bottom.

1) Primitive Removal: Primitive removal is a critical pro-

cess in our system, aimed at eliminating noise in the data to

enable accurate calculation of various metrics for a given time

series in assigned exercises. This includes removing noise for

precise measurement of metrics like the range of motion. Such

noise can arise from factors such as sensor inaccuracies during

data collection. For this purpose, we adopted two techniques:

Butterworth low-pass filtering and moving average smoothing.

The Butterworth low-pass filter was chosen for its smooth

frequency response, effectively preserving the low-frequency

components crucial to our analysis. High-frequency noise can

significantly distort measurements. By applying this filter with

a threshold frequency of 20 Hz, as suggested by [22], we

ensure the retention of only those frequencies relevant to our

exercise metrics.

Subsequent to the initial noise reduction, we processed

the data further using moving average smoothing [23]. This

method aids in reducing random fluctuations and smoothing

out short-term irregularities in the time series data. Sporadic

spikes or drops that do not represent actual exercise perfor-

mance are eliminated by averaging over a specified window.

2) Adaptive DTW: In this part, we address the challenge

of aligning data from different sources to enhance the inter-

pretability and utility of the outputs from our SNN model. Our

focus is on using DTW as a tool to align signals, particularly

in the context of understanding the network’s attributions.

Our analysis primarily utilizes 6-axis input data, consisting

of accelerometer and gyroscope measurements from a smart-

watch. This decision is influenced by prior research, such as

the studies by Burns et al. [4], and Weiss et al. [24], which

effectively used these data dimensions for activity recognition

and health monitoring. Despite the absence of magnetometer

data, these studies demonstrated robust performance, which

we aim to emulate and build upon.

To align the signals effectively, we adopted DTW for

calculating the distance and path between two time series

shown in Fig. 1, represented as matrices s and t. The algorithm

computes a distance measure between these matrices, sum-

ming the absolute differences between corresponding elements

(across the 6-axis data), and is optimal in temporal data.

The significance of employing DTW in our study lies in

its ability to bridge the gap between the raw input data and

the attributions provided by the SNN. As shown in Figure 3,

it provides a visualization of the algorithm we use for this

purpose and includes a display of attributions heatmap. While

the neural network operates as a black-box model, offering

some insights into its internal workings, DTW provides a

tangible means to understand how the input data correlates

with the attributions generated.

3) Micro-Segmentation: As described in Algorithm 2, this

function applies a centered moving average to both s and t,
computes the path using the DTW algorithm in Algorithm

1 between them, and then segments the aligned t sequence

Algorithm 1 Multi-dim DTW Distance and Path

1: function DTW DIST PATH MULTI(s, t)
2: n,m← length(s), length(t)
3: num axes← number of axes in s
4: Init dtw with (n+ 1)× (m+ 1) elems set to ∞
5: dtw[0][0]← 0
6: for i← 1 to n do
7: for j ← 1 to m do
8: cost←

∑num axes−1

k=0
|s[i− 1, k]− t[j − 1, k]|

9: dtw[i][j] ← cost + min(dtw[i − 1][j], dtw[i][j −
1], dtw[i− 1][j − 1])

10: end for
11: end for
12: Init empty list path
13: i← n, j ← m
14: while i > 0 or j > 0 do
15: Append (i, j) to path
16: if i == 0 then
17: j ← j − 1
18: else if j == 0 then
19: i← i− 1
20: else
21: min idx ← argmin(dtw[i − 1][j], dtw[i][j −

1], dtw[i− 1][j − 1])
22: if min idx == 0 then
23: i← i− 1
24: else if min idx == 1 then
25: j ← j − 1
26: else
27: i← i− 1, j ← j − 1
28: end if
29: end if
30: end while
31: return dtw, path
32: end function

Algorithm 2 Micro-segmentation Algorithm

1: function MICRO-SEGMENTATION(s, t, nseg = 10, N = None)

2: N ← + length(t)

nseg
,

3: s, t← centered moving average of s, t
4: path← distance and path between s and t using Alg. 1
5: res← empty list
6: mindist ←∞
7: for segstart ← 0 to len(t) with step N do
8: segend ← min(segstart +N, len(t))
9: mini,minj ← −1,−1

10: for i, j ∈ path do
11: if j− 1 = segstart and |s[i− 1]− t[j− 1]| < mindist

then
12: mindist ← |s[i− 1]− t[j − 1]|
13: mini,minj ← i− 1, j − 1
14: end if
15: end for
16: Append (mini,minj) to res
17: end for
18: return res
19: end function



Figure 3. An illustrative diagram to show the comparison of the explainable AI system with Adaptive DTW and segmentation on signal (top) and anchor
(bottom) exercises, with video recording, in one repetition. This diagram has seven rows: 3 axial accelerometer, 3 axial gyroscope, and reference video
recording. The signals are also shown in blue, and heatmaps are shown in dark blue.

into micro-segments of length N . For each micro-segment, the

function finds the element of s with the minimum distance to

the micro-segment using the argmin function, which selects

the minimum element from a list of distances computed as

the absolute difference between corresponding elements s and

t in multi-dimensions. Finally, the function returns a list res

containing pairs of indices. Each pair corresponds to a point

in s and a point in t that are closest at the beginning of each

segment in t.

C. MicroXercise Monitoring

1) Multi-task Siamese Neural Network (SNN): Though we

are not limited to using only one type of neural network,

to incorporate a complete system, we utilize a comparative

model of SNN to evaluate physical exercise quality. We adopt

and follow the multi-task spatiotemporal SNN structure and

implementation in this work [20]. The architecture of the SNN

is a combination of LSTM, CNN, and attention mechanisms

with two sub-identical networks. LSTM layers handle the

sequential nature of sensor data, while CNN layers extract

relevant features. The attention mechanism focuses on signifi-

cant segments of the data, enhancing the model’s interpretative

capability. The network employs cosine similarity to measure

the closeness of the input exercise to the standard or “anchor”

exercise. Additionally, one sub-identical pipeline from SNN

is outputting a classification score to have an absolute quality

assessment.

For labeling, we rely on annotations from fitness experts.

These labels indicate the correctness of exercise execution

and serve as a reference for supervised learning. The model’s

performance is evaluated using Mean Absolute Error (MAE)

and R-squared metrics, with Mean Squared Error (MSE) and

Cross Entropy as the loss function, focusing on the similarity

of the signal to the anchor exercises. This approach ensures

that the SNN effectively discerns the quality of physical

exercises, providing a reliable tool for fitness assessment.

2) Attribution-based Methods: In our system, we aim to

enhance model transparency and comprehensibility by incor-

porating three distinct attribution techniques, each chosen for

its unique strengths in analyzing and filtering data related to

micro-motions. These methods are IG, Saliency, and Input

X Gradient, and they are employed to assess and refine our

model’s focus on critical movement features.

The Integrated Gradients (IG) method, outlined by [15],

excels in providing a detailed analysis of feature importance,

crucial for examining micro-motions by quantifying each

feature’s contribution to model predictions. In contrast, the

Saliency method, as described by [14], offers rapid evaluation,

efficiently identifying key input features, thereby streamlining

the feature filtering process. Furthermore, the Input X Gradient

method, detailed by [25], is particularly effective in high-

dimensional, sparse datasets, focusing on the most influential

features to enhance the model’s accuracy in micro-motion

analysis.

Collectively, these attribution techniques serve not just to

test the model individually but also to refine the input data

by emphasizing the most influential features for our micro-

motion analysis. This approach ensures that the data fed into



our model is of high quality and relevance, enabling more

accurate evaluations as we further detail in Sec. IV.

3) Attribution Extraction: Attribution extraction uses an

attribution heatmap from attribution-based methods, wherein

a top T threshold percentage is employed to identify the most

important features. Furthermore, we normalize the attribution

derived from both signal and anchor exercises collectively. In

addition, we leverage the outcomes of micro-segmentation to

align the top T percent attribution indices. For instance, if the

top T percent attribution falls within the third segment, we

opt to analyze the third segment rather than the indices.

Additionally, we utilize this result of threshold segmentation

to modify the original attribution as we observe that most

attribution results are noisy, but based on our method of

comparing in the micro-motion, we can signify the signal data

while making the anchor data the ground truth for the current

comparison. We also further evaluate such an approach with

baselines in Sec IV.

Furthermore, from prior knowledge in the context of the

range of motion, the most significant attributions are typically

found in the middle of the data sample. This is because the

middle region represents the highest degree of motion changes

in the supervised learning model, which is logical given that

the range of motion (ROM) model is trained to classify various

motion ranges. However, this is not applicable if the neural

network is trained and evaluated on stability. In this case, we

do not assume the location and consider that multiple areas

could be on the top T percentage of the attribution.

D. Generation of Explainable Micro-Motion Feedback

1) Signal Translation: In signal translation, we convert the

analog value from signal space to physical space to make it

more meaningful to users. For example, in a range of motion

metric, the usefulness of an interpretation is determined by

a degree of motion difference between the signal and anchor

exercise. This implies that the data collected from the current

exercise should be compared to the data collected from the

anchor exercise.

Consequently, Euler angle estimation [26] from accelerom-

eter and gyroscope data is a crucial method to determine

the orientation of an object in 3D space. Accelerometers

can measure linear acceleration, whereas gyroscopes measure

angular velocity. By integrating these measurements, it is

possible to determine the orientation of an object in terms

of Euler angles (roll, pitch, and yaw).

Accelerometer readings are converted to meters per second

squared by multiplying each axis by the standard gravita-

tional acceleration constant (9.81 m/s2). Then trigonometric

functions, specifically arcsine and arctangent, derive the pitch

and roll angles directly from the normalized accelerometer

data. However, the yaw angle cannot be calculated from

accelerometer data alone, as additional information is required,

such as magnetometer or gyroscope. However, this suffices

as it can provide enough insight for exercises involving the

difference in range of motion along the primary axis. By

integrating the angular velocities over time with pitch and

(a) Overall (b) STB (c) ROM

Figure 4. Visual Explainable Results: This result encapsulates critical
elements such as the user’s similarity score relative to the anchor exercises,
temporal fluctuations in stability, and the discrepancy in range of motion at the
apex of particular movements. These insights are derived from post-processed
attributions generated by our micro-motion analysis.

roll angles, the framework acquires the complete set of Euler

angles utilized for the end users.

Building on existing research, we propose a measure of

stability that takes into account the physical context and

characteristics of exercises. This measure, inspired by the

work of Yan et al. [27], quantifies hand movement jerk over

time, providing a nuanced and physically meaningful measure

of stability. We further refine this measure, adopting the

Normalized Jerk Score (NJS) proposed by Kitazawa et al.

[28], which removes the influence of movement length and

duration. The NJS, a unit-free metric, has proven effective in

categorizing deviation from a smooth movement [29]. The new

modified NJS is calculated as follows:

NJS = −log

(

∣

∣

∣

τ3

A2

∑

i

(jerki)
2dt
∣

∣

∣

)

(1)

where A is the peak movement amplitude per axis, τ is the

total duration of the movement, jerki is the jerk at i time

step, or represents the second derivative of the position with

respect to time, and dt is the one over sampling frequency, or

time step between consecutive samples. By normalizing using

both the movement’s peak amplitude and its total duration,

the jerk score is rendered dimensionless. This dimensionless-

ness is crucial, as it facilitates a direct comparison between

movements of diverse characteristics in stability.

2) Micro Video Generation: Next, we present the micro

video avatar generation system that utilizes IMU data from a

smartwatch to reconstruct micro-motion shoulder movements

during physical therapy exercises to emphasize the result of

micro-motion analysis from attribution maps, as shown in Fig.

4. The system employs inverse kinematics to solve for the

positions of the shoulder and elbow joints in a 3D space. We

then use this information to compute the position of the wrist

in space relative to a fixed reference frame. To reconstruct

the motion of the shoulder and elbow joints in a 3D space,

the avatar generation system utilizes a mathematical model of

the human arm that includes the shoulder, elbow, and wrist

joints. The model assumes that the shoulder joint is a ball-



and-socket joint, while the elbow joint is a hinge joint. The

angles between the segments of the arm are assumed to be

constant, and the lengths of the segments are known.

Using the IMU data and the mathematical model of the

arm, the system employs the Levenberg-Marquardt algorithm

to solve for the positions of the shoulder and elbow joints. The

algorithm minimizes the difference between the actual position

and orientation of the end effector, which in this case is the

wrist, and the desired position and orientation. The Gauss-

Newton algorithm is used to solve for the optimal joint angles

when the error between the actual and desired positions is

small, while the steepest descent method is used when the

error is large. This combination provides a balance between

speed and accuracy in solving for optimal joint angles. The

following equation can describe the algorithm:

J
T
J∆x+ λI∆x = −J

T
f(x), (2)

where x is the vector of joint angles, f(x) is the vector of

residuals between the measured and predicted joint positions,

J is the Jacobian matrix of partial derivatives of f(x) with

respect to x, ∆x is the update vector for x, λ is the damping

parameter, and I is the identity matrix.

Lastly, as shown in Fig. 4, our system features three dis-

tinct visualization modes: Overall, Stability (STB), and ROM.

These modes provide users with a side-by-side comparison

of their exercise performance against the original anchor

exercises. In this way, users can immediately look into how

well they are doing in relation to supervised benchmarks.

3) Text Generation: Building on the visual feedback mech-

anism, our system incorporates a sophisticated text generation

strategy to complement the visual insights. Notably, the same

Figure 4 that shows the avatar-based replay also serves as an

interface for real-time textual feedback. Our text generation

leverages a template-based approach, allowing for concise,

modifiable, and quick communication.

Textual feedback in our system serves as an interactive

and intuitive tool designed to guide users constructively. It

acts as a valuable, real-time source of advice, providing

granular insights into how users perform. For instance, as

shown in Fig. 4(c), when a user sees “The degree difference

is less than 5”, it highlights the technical part of precision in

their movement, which potentially is useful to the therapists.

Positive reinforcement is equally important as plain language,

and messages such as “This looks great. That means the

similarity of the exercises compared to your anchor is very

good!” encourage and motivate users by acknowledging their

progress. Furthermore, feedback like “No need to modify the

way you do it” provides affirmation and potential improve-

ment, assuring users that their current method is effective.

Overall, our system’s textual feedback is designed to support,

guide, and foster confidence in users, enabling them to make

the most of their exercises and routines.

IV. EVALUATION

Assessing attribution methods is crucial to verify their

effectiveness and applicability. Our MicroXercise system, an

amalgamation of signal processing in micro-motion analysis

and an attribution-based deep learning model, seeks to advance

the saliency heatmap by presenting refined and nuanced attri-

butions. We present a quantitative evaluation that provides an

empirical foundation for our approach with defined metrics

that focus on the objectives of achieving both fidelity and

interpretability in the realm of attribution-based methods [11],

[17], [30], [31].

A. Dataset and Evaluation Setup

The dataset used in this evaluation is adapted from [20],

which is consists of multiple shoulder physical therapy ex-

ercises. The dataset is collected using consumer-grade iOS

Apple Watches for three exercises. These exercises are chosen

because they demonstrate repetitive nature, have clear start

and end points, can potentially improve the body, and engage

various muscle groups. With the supervision of exercise expert,

the participants perform a number of sets of exercises with

various range of motion and repetitions with variations of

stability. The dataset includes data from 17 male and 14 female

participants, aged between 18 and 44, including 3 participants

with self-reported previous shoulder injuries.

We train the comparative deep neural networks to compare

and interpret feedback, particularly using two exercises of

shoulder abduction and forward flexion from the dataset,

which contains 1,550 segmented one-repetition exercises. The

shoulder abduction exercise is collected with 5 range of

motions. The forward flexion is collected similarly with same

range of motions.

For the model, every possible pair of inputs was methodi-

cally generated. These pairs are associated with a discrete and

continuous score of quality assessment, sourced from range-

of-motion and stability labels, which established the target for

the SNN. The data are split into 70% for training, 10% for

validation, and 20% for testing in both range-of-motion and

stability metrics.

We refine the attributions map, produced by attribution

methods, using our Micro-Motion Syncing methods to produce

a modified attribution map. As shown in Fig. 5, by integrating

this into the attribution as a layer of prior knowledge, we

essentially amplified the significance within crucial segments

using a signal smoothing factor.

B. Evaluation Metrics

1) Fidelity: Within the realm of fidelity, monotonicity

plays a essential role. The fundamental premise is to ensure

that as the importance of a feature amplifies, so does its

attribution, and vice-versa. This behavior is quantified by com-

puting correlation coefficients, Spearman’s rank correlation

coefficient, between the feature importance and their corre-

sponding attributions. A strong positive correlation implies a

desirable monotonic behavior, attaching to the soundness of

our explanations. Adopted by [32], the monotonicity metric is

defined as

ρS(a, e) = 1−

∑

(rank(ai)− rank(ei))
2

n(n2 − 1)
(3)



Figure 5. Signal comparison with raw attribution versus modified attribution in the attribution produced by IG. As shown in the figure, column 1 shows its
original signal exercise. The raw attribution is very noisy and inconsistent in column 2 and 3, but the modified attribution produces more consistent results
as shown in column 4 and 5.

where ρS represents the Spearman’s correlation coefficient,

a is a vector containing the absolute values of the attributions

for each feature, denoted as a = (. . . , |ai|, . . .), and e is a

vector containing the expected losses when considering each

feature with other features held constant. The rank refers to

the numerical ordering of each element within the flattened

arrays of attributions and expected losses by their size.

2) Interpretability: In transitioning to interpretability, it’s

critical to ensure that our method doesn’t overly focus on

specific features while also confirming that the explanation

isn’t unduly complex. Therefore, in interpretability, we want

to focus on feature mutual information and continuity.

Feature mutual information between the original feature

sets and their corresponding explanations serves as an apt

metric for this purpose. An optimal mutual information score

indicates a harmonious blend of broadness and simplicity in

our explanations [32].

I(x, α) =
∑

x∈X,a∈α

p(x, a) log

(

p(x, a)

p(x)p(a)

)

(4)

Where p(x, a) is the joint probability distribution of x and

α, p(x) and p(a) are the marginal probability distributions of

them, respectively. A high value of I(x, α) indicates that the

extracted features (in this case, attributions) retain a significant

amount of information from the original input, thus ensuring

fidelity in our system. Lastly, we estimated mutual information

using a histogram-based approach with 200 bins, because

the goal of assessing feature-attribution fidelity is informative

alignment and efficiency in multivariate time series data.

The continuity of an explanation is an another essential

method for understanding its usefulness and reliability. For a

prediction function f(x), which we assume to be continuous,

the continuity of its explanation is defined by ensuring that

similar data points result in closely resembling explanations.

Mathematically, the continuity of the explanation, α, or at-

tribution, is quantified by evaluating the most substantial

variation in the explanations over the input domain [33]. This

is represented as:

Continuity(x, x′, α, α′) = max
x ̸=x′

∥α− α′∥1
∥x− x′∥2

(5)

Here, the numerator measures the difference between the ex-

planations for two data points x and x′, while the denominator

captures the difference between the data points themselves.

Additionally, x′ is the given adjacent values around x and

similarly with α′ around α. We set 5 adjacent neighbors

on each side. A low value of this metric indicates that the

explanation is continuous, implying that minor changes in

the input lead to proportionate alterations in the explanation,

providing clarity and consistency in the interpretation.

C. Results

Given the extensive size of our dataset, evaluating the

performance of attribution methods on each sample would

be computationally expensive and time-consuming. This com-

plexity is particularly exacerbated in our case, where the

input data consists of continuous signals. Perturbation-based

attribution methods, which require manipulations at each data

point, significantly increase computational costs.

To mitigate this, we adopted a random sampling strategy

of selecting 100 random sample pairs for each subject under

study. This sub-sampling approach allowed us to perform a

comprehensive yet manageable evaluation.

1) Range-of-Motion: Table I presents a comprehensive

evaluation of stability and range of motion metrics for both

shoulder abduction and forward flexion exercises. It compares



Table I
COMPARISON OF METRICS FOR DIFFERENT METHODS AND EXERCISES

(MONOTONICITY (MONO) HIGHER IS BETTER, FMI HIGHER IS BETTER,
AND CONTINUITY (CONT) LOWER IS BETTER, FMI HAS A SCALING

FACTOR OF 10000. XG IS INPUTXGRADIENT, SA IS SALIENCY, AND IG IS

INTEGRATED GRADIENT. OUR METHOD IS SHOWN ON THE SECOND ROW

FOR EACH METRIC FOR EACH METHOD MODIFIED AS MICROXERCISE,
COMPARED WITH ITS BASELINE.)

Shoulder Abduction Forward Flexion

Method Metric Stability Range of Motion Stability Range of Motion

XG

Mono 0.561 0.571 0.624 0.630
Mono (MicroXercise) 0.505 0.465 0.328 0.572

FMI 87.915 94.137 182.091 122.859
FMI (MicroXercise) 127.170 137.868 104.333 172.201

Cont 13.833 13.270 13.679 14.992
Cont (MicroXercise) 8.340 5.723 9.992 6.597

SA

Mono 0.679 0.685 0.727 0.711
Mono (MicroXercise) 0.582 0.527 0.274 0.591

FMI 44.719 48.923 69.495 51.823
FMI (MicroXercise) 58.893 62.512 57.239 68.258

Cont 25.592 25.916 26.886 30.106
Cont (MicroXercise) 15.593 11.865 16.696 13.500

IG

Mono 0.299 0.415 0.519 0.541
Mono (MicroXercise) 0.300 0.392 0.309 0.514

FMI 182.669 650.714 458.273 198.494
FMI (MicroXercise) 268.382 924.050 319.074 282.383

Cont 10.988 7.809 11.618 13.049
Cont (MicroXercise) 6.715 3.455 8.260 5.486

our micro-motion-enhanced method with three baseline at-

tribution methods: inputXgradient (XG), Integrated Gradient

(IG), and Saliency (SA). Noted, these methods require a

‘baseline’ to perturbate against the output; our choice of

baseline value is randomly generated on a normal distribution.

While the table reveals somewhat consistent outcomes across

the methods, a closer look offers nuanced insights in the

range of motion. Specifically, our method shows a reduction

in monotonicity, which might initially suggest decreased per-

formance in the range of motion. However, this reduction in

‘flow’ between the time series data and the modified attribution

is not necessarily a drawback.

As shown in Fig 6(a), the monotonicity merely decreases

from the baseline, which is a good sign as we are attempting

to modify or smooth the attribution to be more representative

to the users. One possible reason to the decrease is we perform

the primitive removal to smooth the data followed by micro-

motion analysis and segmentation. This analysis is based on

the smoothed data which could make the attribution less

correlated with the raw input data. Again, our goal is to present

the users with more expressive explanation. Additionally, as

evidenced by the FMI and Continuity (Cont) metrics, our

approach actually outperforms the baselines consistently. This

could be that the modified attributions in our method provide

richer information, as indicated by higher FMI values, and

greater continuity, making the attributions less noisy and more

consistent, as corroborated by Figure 5.

2) Stability: The micro-motion approach has a notable im-

pact on the stability metric of the attribution. On one hand, our

method successfully attenuates the high noise levels commonly

observed in raw attributions, as indicated by improved stability

scores in the table for both shoulder abduction and forward

flexion exercises. However, it’s important to consider that en-

hanced stability may not always equate to superior attribution

quality. In some instances, the ‘instability’ reflected in the

baseline attribution may be an intentional and informative

characteristic, representing the model’s sensitivity to particular

features in the input. Thus, while our method scores higher in

terms of stability, it could be argued that this might lead to

the removal of certain informative inconsistencies originally

present in the raw attributions.

3) Randomization: To validate that the improvements con-

ferred by our micro-motion segmentation and modification

are methodologically sound and not attributable to random

fluctuations, we devise a comparative experiment. This is crit-

ical to demonstrate that our modifications represent a genuine

enhancement deriving from principles of signal processing,

rather than mere fortuitous events. In this comparative setup,

we focus specifically on the exercise of shoulder abduction

and employed the IG method for attribution.

We select 100 pairs of samples for each subject, maintaining

similar experimental setup to align with previous evaluations.

In addition to applying our micro-motion analysis and segmen-

tation, we also generate a control group by selecting random

segments of the same length—25 timestamps, equivalent to

half a second—which were not part of the segments our system

initially identified as critical. We apply identical modifications

to these randomly selected segments on raw attribution, effec-

tively serving as a baseline for performance comparison.

Our results, illustrated in Figure 7, suggest a convincing

story. In terms of feature mutual information and continu-

ity, our method, represented by the blue curve, distinctly

outperforms both the baseline and the randomly modified

segments. This validates that the information capture and

continuity improvements are not artifacts but are attributable

to our system. It’s important to note that while there is

a similar performance with some declines at times in the

monotonicity metric when using our method (and clearly better

than baseline), this doesn’t impact the overall quality of the

attribution as shown earlier, thereby affirming the robustness

of our approach.

Interestingly, feature mutual information shows a reasonable

trend that by randomly selecting segments in samples, it shows

a significantly lower feature mutual information. But randomly

selected segments in monotonicity and continuity still have

some high level of numeric results, meaning possibly that

monotonicity and continuity emphasize the overall quality of

attribution as feature mutual information focuses more on the

local attribution. These results further demonstrate that the

original authors’ claims on feature mutual information capture

the property of simplicity and broadness in data with respect

to its generated attribution.

V. RELATED WORK

A. Technologies in Remote Physical Therapy Exercise

The landscape of remote health interventions is diverse,

with several promising technologies emerging in recent years.



(a) Monotonicity (b) Feature Mutual Information (c) Continuity

Figure 6. Comparison of raw and modified attribution on each subject for shoulder abduction on IG. As shown in the figure, our method performs significantly
better in Feature Mutual Information and Continuity than the baseline.

(a) Monotonicity (b) Feature Mutual Information (c) Continuity

Figure 7. Comparison of raw (green), modified (blue), and randomized (orange) attribution on each subject for shoulder abduction on Integrated Gradient.
As shown in the line figure, our method performs better in Feature Mutual Information (higher is better) and Continuity (lower is better) than the baseline.
FMI values are shown factored down by 1× 10

5

A systematic review by Grona et al. [34] examined 17 full-

text articles applying real-time physical therapy interventions

through secure videoconferencing. The results showed gen-

eral patient satisfaction but highlighted the need for more

rigorous study designs. Similarly, Pietrzak et al. [35] revealed

the effectiveness of internet-based technologies in providing

community-based self-management and rehabilitation inter-

ventions for osteoarthritis patients. On the other hand, mHealth

apps for remote health, such as the one proposed by Burns et

al. [4], focus on classifying exercises without considering the

quality of the exercise execution. Mork et al. [36] outlined a

protocol for designing and implementing a decision support

system called selfBACK, which was aimed at promoting self-

management of nonspecific low back pain among patients,

with their system of case-based reasoning technology. Smit-

tenaar et al. [37] investigated the effects of the Hinge Health

12-week digital care program on chronic knee pain, function,

surgery interest, and satisfaction. The care program included

sensor-guided physical exercises, weekly education, activity

tracking, and psycho-social support, such as personal coaching

and cognitive behavioral therapy.

While the advancements in digital health interventions are

noteworthy, a significant challenge persists in the form of

transparency and explanation of the provided recommenda-

tions. For instance, the selfBACK system by Mork et al. [36]

doesn’t readily make the reasoning behind its recommenda-

tions apparent to users. Similarly, while the Hinge Health

DCP, as discussed by Smittenaar et al. [37], is effective in

improving pain and function and in decreasing surgery interest,

it fails to offer XAI feedback. Further, reviews of existing apps

underscore the deficiencies in current solutions. For instance,

research by Dantas et al. and Agnew et al. [38], [39] revealed

a dearth of functional, user-centered tools for Systemic Lupus

Erythematosus patients, with most apps offering only partial

solutions. A review by Carvalho et al. [40] found that mHealth

technologies for managing spine disorders in Brazilian online

app stores exhibited acceptable to inadequate quality.

B. Attribution-based Explainable AI

In the domain of XAI, attribution-based methods have

gained significant attention for their ability to interpret com-

plex models by assigning importance to input features. Notable

techniques include Grad-CAM [13], which utilizes gradient-

based localization to highlight significant regions in input im-

ages. Its primary advantage lies in producing high-resolution

and class-discriminative visualization, making it suitable for

tasks where spatial localization is crucial. Integrated Gra-

dient [15] offers a more axiomatic approach, providing a

path integral over the model’s gradients to delineate feature

importance. It adheres to foundational axioms like sensitivity,

implementation invariance, and completeness, which makes it

widely applicable beyond image-based models to even struc-

tured data. DeepLIFT (Deep Learning Important FeaTures)

[41] contrasts the activation of each neuron to a ‘reference



activation’ to compute the ‘contribution’ score of each feature.

Input X Gradient [25] explores the interaction between input

and gradient during backpropagation, identifying features that

significantly contribute to the output. It can be a simpler yet

insightful method, especially when computational resources

are limited.

C. Feedback and Visualization Mechanisms

The application of wearable devices and XAI in healthcare

has demonstrated noteworthy advancements across diverse

medical domains. Frade et al. employed wearable devices and

machine learning to estimate cardiovascular fitness, offering

a modern substitute for traditional cardiopulmonary exercise

testing [42]. Their use of Shapley values for attribute im-

portance brings a layer of interpretability to their models

[43]. Likewise, Arrotta et al. presented DeXAR, an innovative

technique for recognizing activities of daily living in smart-

home settings [44]. They employed attribution methods such

as Grad-CAM [13] based on CNNs to translate chronologi-

cal activities into a spatial representation, demonstrating the

efficacy of white-box XAI methods.

Building on the necessity for transparent decision-making

in healthcare, Biswas et al. argued for explainability in AI

systems when dealing with Autism Spectrum Disorder datasets

[45]. Yang et al. furthered the XAI discourse by proposing a

multi-modal and multi-center data fusion approach for weakly

supervised learning applications in healthcare [46]. Their work

targets the ’black-box’ nature of deep learning algorithms,

advocating for clearer understanding of AI-driven decisions.

Slijepcevic and others conducted a thorough evaluation of

attribution-based methods in clinical gait analysis, aiming to

understand their behavior across various deep learning models

[19]. Their research sheds light on the value of XAI methods

from a clinician’s perspective.

While these advancements signify promising progress, a

common limitation is their focus on global or macro-level ex-

planations. Unlike these approaches, our MicroXercise system

leverages IMUs in the realm of remote physical therapy. By

targeting micro-motions, we aim to provide highly detailed

and personalized feedback, thereby addressing the gaps in

existing XAI methodologies and significantly enhancing the

user’s therapeutic experience.

VI. CONCLUSION AND FUTURE WORK

In this work, we introduced MicroXercise, a mobile applica-

tion leveraging attribution-based methods in synergy with our

multi-dimensional DTW to assist users with their PT exercise

routines at a granular, micro-motion level. This novel inte-

gration shows a step forward in enhancing shoulder exercise

effectiveness and feedback for users.

Though our results show promise for supporting home-

based PT, we also acknowledge that there are limitations of

home-based PT, such as environmental constraints, access to

professional feedback, human interventions, and system scala-

bility, that must be addressed prior to deploying the application

for widespread use. To address these limitations, we plan to

extend the work in the following directions. First, in video

feedback, we will investigate more accurate and sophisticated

algorithms how to visualize users’ exercises, such as real-

world uncertainties. Second, we plan to conduct a series of

user studies to solicit feedback from physical therapists and

patients to improve the usability and design of the applica-

tion, as this will have substantial impact on user adoption,

particularly for a health-related technology. Moreover, we

intend to broaden our scope of work to include other types

of exercises or sports. Furthermore, ensuring scalability and

deployment requires a suite of wearable devices, robust server

infrastructure for algorithm processing, educational materials

for app utilization, and additional support for various PT

exercises. We will also examine the integration of other sensors

or a full-body motion tracking system to provide a more

thorough exercise feedback mechanism, as well as ensure that

the sensitive health data collected by the system is secured

based on HIPAA standards. Finally, we will ensure that

ethical considerations related to AI-based recommendations

in healthcare be considered prior to widespread dissemination

of this research to the public.
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