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Abstract 24 

What is the role of working memory over the course of non-native speech category learning? 25 

Prior work is mixed with respect to the role of working memory in speech learning and has 26 

focused on how this important cognitive skill might influence learning assessed at a single 27 

timepoint. Here, we substantially extend this prior work by examining the role of working 28 

memory on speech learning performance over time (i.e., over several months) and leverage a 29 

multifaceted approach that provides key insights into how working memory influences learning 30 

accuracy, maintenance of knowledge over time, generalization ability, and decision processes. 31 

We found that the role of working memory in non-native speech learning depends on the 32 

timepoint of learning and whether individuals learned the categories at all. Among learners, 33 

across all stages of learning, working memory was associated with higher accuracy as well as 34 

faster and slightly more cautious decision making. Further, while learners and non-learners did 35 

not have substantially different working memory performance, learners had faster evidence 36 

accumulation and more cautious decision thresholds throughout all sessions. Working memory 37 

may enhance learning by facilitating rapid category acquisition in initial stages and enabling 38 

faster and slightly more careful decision-making strategies that may reduce the effort needed to 39 

learn. These results have important implications for developing interventions to improve learning 40 

in naturalistic language contexts.  41 

Keywords: category learning; working memory; speech perception; language learning; drift 42 

diffusion models 43 
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Categorization involves mapping variable inputs to discrete labels and is an important 46 

process that supports complex cognitive processes, such as object recognition [1] and speech 47 

perception [2]. Humans can learn novel categories throughout the lifespan across different 48 

perceptual modalities. However, there are also large individual differences in the underlying 49 

learning processes and outcomes. As such, there is a need to better understand what contributes 50 

to successful or less successful learning. In this study, we systematically examine the 51 

contributions of an ability that has been linked to category learning in prior work – working 52 

memory capacity. 53 

 Working memory (WM) reflects the resources available for the temporary storage and 54 

manipulation of information relevant for a given task [3,4]. Category learning involves many 55 

processes that are dependent on WM. Learners need to attend to task-relevant features and ignore 56 

task-irrelevant features, maintain features of a stimulus in mind as relevant or irrelevant for a 57 

decision, hold hypotheses in mind about stimulus-category-response mapping, compare 58 

representations of the stimulus to previous stimuli or rules, and incorporate feedback to update 59 

existing category representations and hypotheses about category identity. The ability to learn 60 

categories across sensory modalities has generally been found to be positively associated with 61 

WM [5–10]. WM is thought to support faster initial category learning [5] by allowing learners to 62 

hold multiple hypotheses about category identity at mind and test these hypotheses and 63 

specifically to rapidly and efficiently find a useful hypothesis [11].  64 

Importantly, prior studies have primarily focused on the role of WM in initial learning, 65 

and, as a result, it is unclear how WM may play a role in maintenance of performance or learning 66 

patterns over time. In the earliest stages of learning, learners must be highly flexible with their 67 

behavior and search a large pool of potential hypotheses about category identity. As performance 68 
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improves and becomes more stable over time, WM processes may be less relevant because 69 

learners may be making small refinements to existing rules rather than keeping many competing 70 

hypotheses in mind. As a result, it is necessary to examine learning beyond very initial learning 71 

especially for categories that are difficult or challenging to acquire within a single session. 72 

 In the current study, we examine a specific case of category learning that is an important 73 

skill in second language acquisition – non-native speech category learning. The ability to learn a 74 

new language has been positively associated with individual abilities like WM capacity [12–15]. 75 

Assessed in a single session, the ability to learn sounds of a non-native language in adulthood 76 

has been positively linked to WM capacity [9,10]. However, other studies examining learning 77 

across longer training periods (e.g., multiple sessions across many days) have found that WM 78 

ability does not predict the ability to learn non-native speech categories [16,17]. The role of WM 79 

across the trajectory of non-native speech category learning is not yet clear. It is possible that 80 

WM supports initial, but not later speech learning.   81 

 In the current study, we train participants on non-native Mandarin tone categories. In 82 

Mandarin, distinct pitch patterns are lexically contrastive – the same syllable produced with four 83 

different pitch patterns (e.g., high-flat, low-rising, low-dipping, and high-falling) has four unique 84 

meanings. Learning to distinguish sounds based on these pitch patterns can be difficult for non-85 

native listeners and there are large individual differences in learning [18–23].  86 

 For both speech and artificial perceptual categories, training beyond one session can be 87 

very successful, leading to significant learning and retention over time. In studies not focused on 88 

WM, participants learn through extensive training over several weeks [23–28] and then 89 

sometimes are brought back for a test of retention months later (e.g., [26] – 3 months; [23] – 8 90 
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weeks). Neural representations of categories rapidly emerge within a single session of initial 91 

learning [29,30], but continue developing over time with more experience [23].  92 

The role of WM beyond initial category acquisition is not well understood. Whereas 93 

initial learning involves testing a large range of possible hypotheses about stimulus-response 94 

mapping and using feedback to update these hypotheses, learning beyond the novice stage 95 

involves refining existing hypotheses, learning about idiosyncratic stimuli, and continuing to 96 

develop and refine representations. Additionally, after a delay in experience, learners must 97 

reactivate existing representations and hypotheses to continue refining their category knowledge. 98 

It is possible that these processes rely less on WM than initial testing among multiple hypotheses 99 

as is necessary during initial learning. In the current study, we examine the role of WM in both 100 

an initial learning session and learning sessions after one and three months from the initial 101 

session. 102 

 Our approach involves inviting participants who previously completed a single session of 103 

training on Mandarin tone categories [10] back for additional training sessions. McHaney et al. 104 

[10] demonstrated that WM abilities were related to success in initial non-native speech category 105 

learning across two experiments – one behavioral (revisited here) and one with pupillometry. 106 

Specifically, individuals with higher WM capacity were better at learning, better at finding task-107 

appropriate strategies, and had pupil responses that reflected better stimulus-related attention. 108 

Based on this, McHaney et al. [10] concluded that WM may support learning by enhancing 109 

attention to task-relevant information. Critically, because this prior study tested only a single 110 

session of learning, it is possible this conclusion may only apply to initial learning. In the current 111 

study, we invite participants from Experiment 1 of McHaney et al. [10] back for two additional 112 

sessions – one session one month after their initial training and another session two months after 113 
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the second session. We follow up with the same sample from McHaney et al. [10] to understand 114 

how individual differences in WM relate to individual differences in learning beyond initial 115 

acquisition. 116 

An important aspect of understanding individual differences in learning is the 117 

acknowledgement that many individuals perform at chance levels even after extensive training. 118 

We see two main possibilities that could explain this pattern – (1) these participants are actively 119 

engaged and trying but persistently fail to learn and/or (2) these participants are actively 120 

disengaged and are not trying to learn, so they fail to learn. Disentangling these two possibilities 121 

is challenging. Prior work on category learning takes one of two approaches regarding 122 

participants performing at chance levels. Some studies remove these participants entirely, 123 

typically by removing participants who perform at or below chance levels by the end of learning 124 

[31–34]. Other studies retain these participants in the sample as it is impossible to know if their 125 

performance reflects a true inability to learn or whether they are disengaged [35–38]. The lack of 126 

consistency in these approaches across studies makes it difficult to understand this poor 127 

performing subset of the population. In the current study, we take a hybrid version of these 128 

approaches to better understand the underlying challenges facing less successful performers. We 129 

examine both the entire set of participants and participants who perform at above-chance levels 130 

(i.e., learners vs. non-learners who do not perform at above-chance levels). By examining the 131 

patterns while considering if participants eventually learned or not, we can better understand 132 

behaviors and abilities that lead to success.  133 

We employ a multifaceted approach to understand what WM does or does not do for 134 

initial and later learning of speech categories. Specifically, we assess if WM is related to (1) 135 

performance in initial and later learning sessions, (2) maintenance of category knowledge over 136 
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time, (3) generalization of category knowledge to different talkers, (4) rate of evidence 137 

accumulation and (5) response caution during decision making (Table 1). 138 

 139 

Table 1. Hypothesized role of working memory across measures. 140 

 Hypothesized role of working 
memory 

Relevant measure(s) in current study 

Initial learning 
 
 

Hold multiple hypotheses in mind, 
better and faster learning 

Accuracy in session 1 

Later learning 
 

Enhanced attention and motivation Accuracy in sessions 2 and 3 

Maintenance of 
category 
knowledge 
 

Quickly reactivate and flexibly use 
existing representations 

Accuracy in first block of sessions 2 
and 3 compared to final block of 

sessions 1 and 2 

Generalization 
 
 

Flexibly apply rules to new contexts Accuracy in generalization test with 
different talkers and no feedback 

Evidence 
accumulation 
 
 

More efficient processing, 
mobilization of attentional 

resources 

Evidence accumulation (drift) rate 
parameter from drift diffusion 

modeling 

Response 
caution 

More cautious, gather more 
information and test against 
multiple hypotheses before a 

decision is made 

Decision threshold (boundary) 
parameter from drift diffusion 

modeling 

 141 

Initial and later learning 142 

 Based on prior work, we expect that higher WM will be beneficial to initial acquisition 143 

(i.e., session 1) of non-native speech categories [10]. This prediction stems from prior work that 144 

has demonstrated that higher WM is associated with faster and better initial artificial category 145 

learning [5–7,9,39–41]. We also expect to observe this pattern given that the first session of 146 

training was published in McHaney et al. [10] where among all 195 participants, WM was 147 
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positively related to learning. A subset of these participants (107/195) returned for the current 148 

study.  149 

 Building on the prior study, we will probe the extent to which WM is related to 150 

performance in subsequent learning sessions. It is possible that WM provides benefits only in 151 

initial learning by quickly allowing learners to test many different hypotheses and find the ones 152 

that maximize their performance (e.g., [11]) and that WM is unrelated to learning beyond this 153 

novice stage. This prediction would be consistent with the observation that WM is not related to 154 

speech category learning when assessed after eight days of training [16,17]. However, it is also 155 

possible that WM provides benefits to learning beyond initial acquisition, allowing for enhanced 156 

further refinement of category representations.  157 

Maintenance of category knowledge 158 

 By probing performance after one and two months of no additional exposure or training, 159 

we will examine the maintenance of performance over time. One possibility is that higher WM 160 

may allow learners to quickly reactivate and flexibly use their category representations 161 

developed in prior session(s). However, it is possible that maintenance of performance over time 162 

may be independent of WM and could reflect long-term memory abilities instead.  163 

Generalization 164 

The ability to accurately identify novel category exemplars is a hallmark of 165 

categorization. We will assess generalization in each session by presenting learners with novel 166 

stimuli spoken by novel talkers that they do not encounter during training and never receive 167 

feedback about the correct category. To successfully generalize to these novel talkers, they will 168 

need to apply their existing knowledge flexibly to the new context. It is possible that 169 

generalization relies on WM, as the ability to flexibly apply rules (e.g., cognitive flexibility) is 170 
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correlated with WM capacity [42,43] and generalization to novel contexts is related to individual 171 

differences in WM capacity [44,45].  172 

Decision processes during learning 173 

 Using a drift diffusion modeling (DDM) approach [46,47], we will examine whether 174 

different components of the decision process (e.g., rate of evidence accumulation and response 175 

caution) are related to WM. DDMs are popular tools to understand decision making processes 176 

from accuracy and response time measures [48–52]. DDMs assume that during decision making, 177 

sensory evidence for multiple decision alternatives is accumulated in the human brain at varying 178 

rates, and a decision is made when such evidence reaches a particular boundary [46,47]. In the 179 

case of learning non-native speech sound categories like Mandarin tone categories, as a 180 

participant hears a stimulus, they begin accumulating evidence towards all four response options 181 

(e.g., high-flat, low-rising, low-dipping, high-falling). Each of the four response options has its 182 

own decision threshold, with higher thresholds requiring more evidence to be accumulated 183 

before the decision will be made, reflecting more cautious responding. Evidence is also 184 

accumulated toward each threshold at its own rate, with faster rates reflecting higher quality of 185 

evidence extracted from the stimulus. Below we consider the possibility that WM relates to these 186 

two components of the decision process. 187 

The classical literature on DDMs has focused almost exclusively on binary decision-188 

making in static settings and typically focuses on group-level analyses rather than heterogeneity 189 

across individuals. Recently, Paulon et al. [52] extended these models significantly, accounting 190 

for situations with more than two decision alternatives, heterogeneity across individuals, and 191 

longitudinal evolution of the decision-making processes by considering individual-specific and 192 
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time-varying accumulators of evidence. As such, we will examine decision processes over time 193 

with estimates at both the group and individual subject level.  194 

Rate of evidence accumulation 195 

We predict that more WM resources may enable learners to acquire information from the 196 

stimulus more quickly, thereby reducing the perceived difficulty of the task and effort needed to 197 

learn. The rate of evidence accumulation reflects the quality of information extracted from the 198 

stimulus, with faster rates reflecting a faster evidence accumulation process. The evidence 199 

accumulation process may also reflect efficiency of retrieval or access to categorization 200 

exemplars or other representations in memory. Faster evidence accumulation rates are associated 201 

with motivation and better task performance [53]. Prior work has demonstrated that evidence 202 

accumulation rates are related to WM abilities, with faster evidence accumulation associated 203 

with higher WM capacity [54,55].  204 

Response caution 205 

We predict that more WM resources may allow learners to be more cautious and less 206 

impulsive in their responses and to collect more evidence for a particular category response 207 

before making a decision. Response caution is reflected in the decision threshold. Higher 208 

thresholds reflect more cautious responses that need more evidence before a decision is made, 209 

whereas lower thresholds reflect more impulsive responses based on less evidence [56]. More 210 

difficult tasks result in more cautious response patterns, requiring that participants gather more 211 

information to make decisions [47,57]. Individuals with higher WM capacity may have sufficient 212 

resources to gather and consult more information during decision making. As such, they may be 213 

more cautious in their responses, gathering more information to hold in WM as they learn to 214 

make more accurate decisions. This may ensure that the learner builds up enough of a 215 
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representation of the stimulus before they make a response and, thus, enhance learning. 216 

Alternatively, individuals with higher WM capacity may have sufficient resources to maintain 217 

similar decision thresholds as individuals with lower WM capacity, enabling them to respond 218 

faster without making sacrifices in performance. 219 

Summary 220 

To summarize, we examine the relationship between WM capacity and non-native 221 

Mandarin tone speech category learning in an extended training task with three sessions 222 

separated by one and two months, respectively. To gain mechanistic insights on the putative 223 

relationship between WM and individual differences in category learning over time, we assess 224 

behavior from multiple angles. Specifically, we examine how initial and later learning 225 

performance, maintenance of performance across delays, generalization to novel talkers, rate of 226 

evidence accumulation, and response caution are related to WM capacity (Table 1).  227 

Methods 228 

 Participants completed three sessions of Mandarin tone category learning separated by at 229 

least one and two months (Session 1 to 2: M = 32.1 days, SD = 0.68, range 31.7-35.6 days; 230 

Session 2 to 3: M = 61.4 days, SD = 2.56, range 56.6-70.9 days). Data from the first session 231 

appeared in a previously published study [10], and the second and third sessions have not 232 

appeared elsewhere. 233 

Participants 234 

 Participants were adults ages 18-35 recruited from Prolific (prolific.co) and participated 235 

via Gorilla Experiment Builder [58]. A total of 198 participants completed session 1 (99 Female 236 

(F), 99 Male (M), M = 25.0 years, SD = 4.97). Three participants were excluded because they 237 
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did not follow instructions on the WM task, leaving a total of 195 participants in session 1 (98 F, 238 

97 M, M = 24.9 years, SD = 4.89). There was substantial attrition from session-to-session, and 239 

we excluded participants who did not complete all sessions – 153 completed session 2 (70 F, 83 240 

M, M = 24.9 years, SD = 5.05), and 107 completed session 3 (47 F, 60 M, M = 24.8 years, SD = 241 

5.07). Participants who completed only one or two sessions did not differ in WM or 242 

categorization accuracy compared to those who completed all sessions (Supporting Information, 243 

Figure S1).  244 

 Participants completed a language history questionnaire prior to participating. All 245 

participants were native speakers of non-tonal languages and reported no prior experience with 246 

any tonal languages, including Mandarin. Participants were given a sound check before the start 247 

of each session to ensure they could hear the sounds and were wearing headphones. Participants 248 

received $10/session for their participation (total up to $30 across three sessions). Informed 249 

consent was obtained from all participants. The study protocol was approved by the Institutional 250 

Review Board at the University of Pittsburgh.  251 

Stimuli 252 

 The stimuli were natural speech productions recorded from four native speakers (2 M, 2 253 

F) of Mandarin Chinese (Figure 1A). Each tone category (e.g., high-flat, low-rising, low-dipping, 254 

and high-falling) was produced by each speaker in five syllable contexts (/bu/, /di/, /lu/, /ma/, and 255 

/mi/) for a total of 80 stimuli (20/category). The stimuli from two speakers (1 F, 1 M) were used 256 

during the training blocks and the stimuli from the other speakers (1 F, 1 M) were withheld for 257 

the generalization block. The same 40 generalization stimuli were presented in the generalization 258 

block of each session and participants never received feedback about these stimuli. To reduce 259 

incidental differences in duration across categories, the stimuli were duration-normalized to 440 260 
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ms and RMS-amplitude normalized to 70 dB. The stimuli are shown in Figure 1A in a two-261 

dimensional space (relative pitch, pitch change) that can be used to separate the stimuli into 262 

categories and is linked to neural representations of these categories [59,60].  263 

 264 

Fig. 1. Stimuli and procedure. A. Two-dimensional representation of stimuli used during 265 

category learning and generalization with colors reflecting different tone categories. B. Session 266 

procedure. C. Task procedure.  267 

 268 

Procedure 269 

Category learning 270 

Participants completed three separate sessions of category learning (Figure 1B). Sessions 271 

1 and 2 were separated by one month. Sessions 2 and 3 were separated by two months. In each 272 

session, participants completed six blocks of an identical category learning task and an additional 273 

generalization block with different stimuli and no feedback. The stimuli were the same across 274 

sessions. Participants never received feedback about the generalization stimuli. At the beginning 275 

of the experiment, participants were told that they would be grouping sounds into different 276 

categories based on corrective feedback. They were not given any specific instructions about the 277 

stimuli or what might differentiate the categories from one another. 278 

 In the category learning task, there were six blocks of 40 trials each. In the generalization 279 

task, there was one block of 40 trials. Participants heard the 440 ms duration sound, followed by 280 

a prompt about the category identity (“Which category?”) (Figure 1C). They pressed the 1, 2, 3, 281 

and 4 buttons on the keyboard to respond. Participants received trial-by-trial feedback in the 282 

category learning task where they were informed about whether their decision was ‘Correct’ or 283 
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‘Incorrect.’ The feedback was presented immediately for 750 ms. Participants did not receive 284 

feedback in the generalization task. In both tasks, there was an intertrial interval of 1 sec.  285 

Working memory capacity 286 

In the first session, participants first completed the category learning and generalization 287 

blocks and then completed an operation span task [61] as a measure of WM capacity. 288 

Participants were shown simple arithmetic problems and reported whether the presented 289 

solutions were correct or incorrect (e.g., (1 + 7) x 2 = 16) and were then shown a letter on the 290 

screen (e.g., A). A sequence of these arithmetic problems and letters from three to seven items in 291 

length made up a trial. After a full sequence was presented, participants were instructed to recall 292 

the letters presented in order. There were 15 trials. Participants’ WM capacity was calculated 293 

based on the OSPAN score – the sum of the length of all correctly recalled spans. For example, if 294 

a participant correctly recalled a sequence of four letters (e.g., A, I, D, F), four points were added 295 

to their score. The minimum possible OSPAN score is 0 and the maximum possible OSPAN 296 

score is 75. We did not filter scores based on accuracy on the arithmetic problems [62] and 297 

participants were generally very accurate (M = 85%, SD = 14%; Supporting Information Figure 298 

S2).  299 

Drift diffusion modeling 300 

We applied a variant of the DDMs developed in Paulon et al. [52]. The model estimates 301 

the evidence accumulation rate (i.e., drift) µௗ,௦ for each combination of decision response d and 302 

stimulus category s and decision thresholds (i.e., boundaries) 𝑏ௗ for each decision response 𝑑. 303 

Additionally, the model also fits offset parameters 𝛿௦ for each stimulus category, which 304 

characterize the times taken by the actions that are not directly relevant to the actual decision-305 

making processes (e.g., the time required to encode the s-th stimulus before evidence 306 
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accumulation begins, to press a computer key, to record a response after a decision is reached, 307 

etc.). The model lets the parameters µௗ,௦ 𝑏ௗ and 𝛿௦ to vary between participants, which 308 

accommodates the substantial variability across participants. Importantly, the model also allows 309 

µௗ,௦ and 𝑏ௗ to evolve smoothly over time (across training blocks), explaining the changes in the 310 

decision-making processes as the participants learn over time. We allowed the drift rates to vary 311 

across both stimulus category and response and assume that participants gather evidence towards 312 

each of the four possible response options at different rates depending on the true identity of the 313 

stimulus category. The decisions participants make in this task are tied directly to the sound 314 

category. Exemplars from within a sound category share characteristics and differ from 315 

exemplars from other sound categories. Due to the stimulus characteristics, participants may 316 

accumulate evidence at different rates for the different stimulus-response combinations. 317 

Boundaries only varied across response and different levels of response caution were not 318 

dependent on the true stimulus category. 319 

The data were filtered to exclude very fast and very slow responses by removing the top 320 

and bottom 1% of trials based on reaction time. The remaining data, comprising both correct and 321 

incorrect trials, were used to estimate the parameters. Since gradual improvements in making 322 

correct decisions characterize learning, in our discussions below, we emphasize heavily on 323 

inferring the drift rates associated with successful identification of the stimulus (µௗ,௦ for correct 324 

responses with 𝑠 = 𝑑). Consideration of all responses does not change the overall results (see 325 

Supporting Information).    326 

We adopted a Bayesian framework for these analyses, assigning priors to the parameters 327 

and relying on samples drawn from the posterior using a Markov chain Monte Carlo (MCMC) 328 

algorithm for estimation and inference. The algorithm was run for 6,000 iterations with the initial 329 
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2,000 iterations discarded as burn-in. The remaining samples were further thinned by an interval 330 

of 5 to reduce autocorrelation. MCMC diagnostics such as trace-plots of the parameters, Geweke 331 

test for stationarity of the chains, etc. indicated no convergence or mixing-related issues. 332 

Posterior predictive checks indicated good model fit. Finally, posterior means are reported as 333 

point estimates and pointwise credible intervals are used to assess uncertainty. For more details 334 

on the implementation of these models, see Supporting Information.  335 

Data availability 336 

The stimulus materials, data, and analysis code are publicly available through the Open 337 

Science Framework repository and can be accessed online [64]. Data were visualized and 338 

analyzed using R, version 4.3.1 [65] and the following R packages: tidyverse, version 1.3.2, [66], 339 

ggplot2, version 3.4.3 [67], ggthemes, version 4.2.4 [68], lddmm, version 0.4.2 [69], lme4, 340 

version 1.1.34 [70], lmerTest, version 3.1.3 [71], rstatix, version 0.7.2 [72].  341 

Results 342 

Learning performance 343 

On average, participants learned the Mandarin tone categories with substantial individual 344 

variability in performance (Figure 2A). For context, we also plot the reaction times (Figure 2B). 345 

We note that for visualization of performance across blocks, we grouped participants by their 346 

WM scores based on a median split (Mdn = 46), with values equal to or higher than the median 347 

defined as high WM and values lower than the median being defined as low WM. The analyses 348 

were conducted using raw OSPAN scores as a continuous variable with linear mixed effects 349 

models using the lme4 package in R [70] and are also shown (Figure 2C).  350 

 351 
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Fig 2. Working memory and learning performance across all participants. A. Accuracy and 352 

B. Reaction times after removing the shortest and longest 1% of responses. Error bars reflect 353 

SEM. For purposes of illustration, high and low working memory groups are defined based on a 354 

median split of working memory (OSPAN) scores. C. Relation between OSPAN score and 355 

proportion correct across blocks and sessions for all participants.  356 

 357 

 We examined the extent to which WM capacity, indexed by the OSPAN score, was 358 

associated with performance in the category learning task. We used linear mixed effects models 359 

with session (as categorical variable), block, WM capacity, all possible interactions as fixed 360 

effects, participant (intercept) as a random effect, and average accuracy across a block as the 361 

continuous outcome variable. Session 1 was treated as the baseline session. Full results are 362 

presented in Table 2.  363 

 364 

Table 2. Summary of results on WM capacity and category learning performance. 365 

  SE p 
Intercept  26.0 5.09 < .0001 
OSPAN  -0.011 0.11 .92 
Block 1.84 0.62 .0032 
Session 2 6.51 3.43 .058 
Session 3 14.5 3.43 < .0001 
OSPAN * Block 0.055 0.013 < .0001 
OSPAN * Session 2 0.31 0.074 < .0001 
OSPAN * Session 3 0.22 0.074 .0026 
Block * Session 2 -0.28 0.88 .75 
Block * Session 3 -1.12 0.88 .20 
OSPAN * Block * Session 2 -0.053 0.019 .0057 
OSPAN * Block * Session 3 -0.032 0.019 .095 

 366 

 Overall, accuracy improved linearly across blocks in all sessions (Block = 1.84, SE = 367 

0.62, p = .0032; Block*Session2 = -0.28, SE = 0.88, p = .75; Block*Session3 = -1.12, SE = 0.88, p = .20) 368 
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and improved marginally in session 2 from session 1 (Session2 = 6.51, SE = 3.43, p = .058) and 369 

significantly in session 3 from session 1 (Session3 = 14.5, SE = 3.43, p < .0001). 370 

 Collapsing across blocks, the relationship between WM score and accuracy was not 371 

significant in session 1 (OSPAN = -0.011, SE = 0.11, p = .92), but was significantly stronger in 372 

sessions 2 and 3 (OSPAN*Session2 = 0.31, SE = 0.074, p < .0001; OSPAN*Session3 = 0.22, SE = 0.074, 373 

p = .0026). Importantly, the relationship between WM score and accuracy interacted with both 374 

block and session. In session 1, there was a positive relationship between WM and accuracy that 375 

became stronger across blocks (OSPAN*Block = 0.055, SE = 0.013, p < .0001). A one unit increase 376 

in WM score was associated with an additional 0.055% increase in accuracy in each block. 377 

While in the first block, the relationship between WM score and accuracy was very weak 378 

(0.044%), by the final block, the relationship was clearly positive (0.32%). As a reminder, WM 379 

scores could range from 0 to 75, so even a relatively modest increase in WM score of 10 points 380 

would be associated with an additional increase in accuracy of 3.2% in the final block of session 381 

1. A larger difference in WM score of 30 points would be associated with an additional increase 382 

in accuracy of 9.6% in this block. 383 

 One month later, in session 2, there was a positive relationship between WM and 384 

accuracy. While the relationship between WM and accuracy became stronger across blocks, the 385 

relative change was significantly smaller than in session 1 (OSPAN*Block*Session2 = -0.053, SE = 386 

0.019, p = .0057). In session 2, a one unit increase in WM score was associated with an 387 

additional 0.002% increase in accuracy in each block. Across blocks, the relationship between 388 

WM score and accuracy was similar to session 1 (range 0.30% - 0.31%).  389 

 Two months after session 2, in session 3, there was a positive relationship between WM 390 

and accuracy that became stronger across blocks in a way that was not significantly different 391 
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from session 1 (OSPAN*Block*Session3 = -0.032, SE = 0.019, p = .095). In session 3, a one unit 392 

increase in WM score was associated with an additional 0.023% increase in accuracy in each 393 

block. In the first block, the relationship between WM score and accuracy was 0.24% and by the 394 

final block, the relationship was similar to the final blocks of the other sessions (0.35%). 395 

 Taken together, we found that working memory ability was positively associated with 396 

speech category learning accuracy across training sessions, becoming relatively stronger across 397 

blocks in sessions 1 and 3 and was stable in session 2. While in the very initial stages of learning, 398 

WM score was not significantly related to accuracy (0.044% in first block of session 1), by the 399 

end of session 1 and persisting through the other sessions, WM score was positively related to 400 

accuracy (range 0.24% to 0.35%). The positive relationship between WM ability and 401 

performance emerged within the first session and remained relatively stable throughout follow 402 

up sessions 2 and 3.  403 

Learners and non-learners 404 

Importantly, we also aimed to understand if the relationship between WM capacity and 405 

accuracy was present when considering only participants who learned the categories. We 406 

identified participants who performed at or below chance levels in the final block of session 3 407 

(defined by 95% cumulative binomial probability, 40 trials, 0.25 probability of correct response 408 

= 25% +/- 10%) as ‘non-learners’ and those who performed better than chance as ‘learners’ 409 

(Figure 3A). Even though the non-learners were defined based on their accuracy in the final 410 

block of session 3, non-learners had significantly lower accuracy throughout all blocks 411 

(Bonferroni-corrected pairwise comparisons, p < .001), except for the first block of session 1 (p 412 

= .078). This underlines the necessity of considering learners separately from non-learners.  413 

 414 
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Fig 3. Working memory and learning performance across learners and non-learners. A. 415 

Accuracy and B. Reaction times after removing the shortest and longest 1% of responses. Error 416 

bars reflect SEM. For purposes of illustration, high and low working memory groups are defined 417 

based on a median split of working memory (OSPAN) scores. Groups are additionally separated 418 

into learners and non-learners based on session 3 block 6 accuracy and whether it was greater 419 

(learners) or less than (non-learners) chance performance. C. Relation between OSPAN score 420 

and proportion correct across blocks for learners only. 421 

 422 

A total of 32% (34/107) of participants were classified as non-learners. WM scores for 423 

learners (M = 44.1) were marginally higher than non-learners (M = 36.7; t(65.6) = 1.79, p = .078, 424 

95% CI [-0.84, 15.6]). This may indicate that individuals with lower WM may be more likely to 425 

be non-learners. It is important to note that we cannot completely rule out that non-learners with 426 

seemingly lower WM may have been generally disengaged in the experiment, leading to poorer 427 

performance in both the WM task and the category learning task. If this is the case, WM scores 428 

for these individuals may not reflect their true WM abilities. As post-hoc evidence that some 429 

participants may have been disengaged across tasks, we found that learners (M = 90%) 430 

performed better than non-learners (M = 79%) at identifying the arithmetic equations as correct 431 

or incorrect in the WM task (t(44) = 3.49, p = .0011, 95% CI [4.58, 17.1]; Supporting 432 

Information, Figure S2). In the following analyses, we focus on the remaining 68% (73/107) of 433 

participants who are operationally defined as ‘learners’ in the category learning task. Because the 434 

accuracies of non-learners were within a low and highly restricted range by definition, we 435 

examined the relationship between WM score and accuracy for learners only. 436 



WORKING MEMORY AND SPEECH CATEGORY LEARNING 21 

 To understand if the relationship between WM and category learning performance was 437 

present when examining learners only, we ran the same linear model analysis with learners only 438 

(Figure 3B; Table 3). Session 1 was treated as a baseline.  439 

 440 

Table 3. Summary of results on WM capacity and category learning performance across 441 

groups. 442 

  SE p 
Intercept  27.5 4.94 < .0001 
OSPAN  -0.029 0.10 .78 
Block  3.46 0.71 < .0001 
Session 2 13.0 3.90  .00090 
Session 3 25.0 3.90 < .0001 
OSPAN * Block 0.050 0.015 .00059 
OSPAN * Session 2 0.30 0.081 .00018 
OSPAN * Session 3 0.18 0.081 .023 
Block * Session 2 -0.56 1.00 .58 
Block * Session 3 -1.12 1.00 .26 
OSPAN * Block * Session 2 -0.058 0.021 .0048 
OSPAN * Block * Session 3 -0.043 0.021 .039 

 443 

Of critical interest is whether WM score and accuracy were still positively related when 444 

examining only those who learned the categories. In session 1 ignoring block, the relationship 445 

between WM and accuracy was not significant (OSPAN = -0.029, SE = 0.10, p = .76). However, 446 

this relationship became stronger across blocks (OSPAN*Block = 0.050, SE = 0.015, p = .00059; 447 

OSPAN*Block*NonLearners = -0.043, SE = 0.026, p = .11). A one unit increase in WM score was 448 

associated with an additional 0.050% increase in accuracy in each block for learners. By the final 449 

block of session 1, a one unit increase in WM score was associated with a 0.27% increase in 450 

accuracy for learners. 451 

In session 2, the relationship between WM and accuracy was positive and significantly 452 

stronger than session 1 (OSPAN*Session2 = 0.30, SE = 0.081, p = .00018). Ignoring block, a one unit 453 
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increase in WM was associated with an increase in accuracy of 0.27%. This relationship was 454 

relatively stable, becoming mildly weaker across blocks. The relationship between WM score 455 

and accuracy across blocks was significantly different from session 1 (OSPAN*Block*Session2 = -456 

0.058, SE = 0.021, p = .0048). A one unit increase in WM score was associated with an 457 

additional 0.008% decrease in accuracy in each block. By the final block of session 2, a one unit 458 

increase in WM score was associated with a 0.23% increase in accuracy for learners. 459 

In session 3, the relationship between WM and accuracy was positive and significantly 460 

stronger than session 1 (OSPAN*Session3 = 0.18, SE = 0.081, p = .023). Ignoring block, a one unit 461 

increase in WM was associated with an increase in accuracy of 0.15%. The relationship was 462 

relatively stable, becoming mildly stronger across blocks. The relationship between WM score 463 

and accuracy across blocks was significantly different from session 1 (OSPAN*Block*Session3 = -464 

0.043, SE = 0.021, p = .039). A one unit increase in WM score was associated with an additional 465 

0.007% increase in accuracy in each block for learners. By the final block of session 3, a one unit 466 

increase in WM score was associated with a 0.20% increase in accuracy for learners. 467 

Among learners only, higher WM ability was associated with better non-native speech 468 

category learning performance. This relationship emerged within the first session and was 469 

persistent across sessions 2 and 3 and, unsurprisingly, was slightly weaker than the relationship 470 

including all participants. The slope of the relationship between WM score and accuracy was 471 

0.27% in the final block of session 1, 0.23% in the final block of session 2, and 0.20% in the 472 

final block of session 3.  473 

Maintenance of Category Knowledge Over Time 474 

 By examining learning across several sessions separated by one and two months, 475 

respectively, we can assess the maintenance of categorization performance and category 476 
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knowledge over time. We assessed category knowledge maintenance by comparing adjacent 477 

training blocks that were either separated by no delay (i.e., blocks 5 and 6 of the same session) or 478 

a delay of one or two months (i.e., block 6 of one session and block 1 of the next session). 479 

Performance across these blocks and sessions for learners and non-learners separately is shown 480 

in Figure 4A. Because we are interested in how knowledge is retained over time, we focus our 481 

analyses only on learners. 482 

 483 

Fig 4. Working memory and performance maintenance. A. Error bars reflect SEM. For 484 

purposes of illustration, high and low working memory groups are defined based on a median 485 

split of working memory (OSPAN) scores. Groups are additionally separated into learners and 486 

non-learners based on session 3 block 6 accuracy and whether it was greater (learners) or less 487 

than (non-learners) chance performance. B. Relation between OSPAN score and percent 488 

difference from block 5 to 6 within a session (No Delay) and block 6 to block 1 (Delay) for 489 

learners only.  490 

 491 

 Learners were somewhat able to maintain their category knowledge after a month or 492 

more of no additional training. Between sessions 1 and 2, accuracy fell an average of 7.2% 493 

(58.0% in block 6 to 50.9% in block 1) and between sessions 2 and 3, accuracy fell an average of 494 

7.0% (65.6% in block 6 to 58.6% in block 1). In contrast, accuracy was relatively stable in the 495 

end of the sessions with accuracy increasing by 1.8% in session 1 (56.0% in block 5 to 57.8% in 496 

block 6) and by 0.3% in session 2 (65.2% in block 5 to 65.5% to block 6).   497 

 The ability to maintain category performance in adjacent blocks both with no delay (i.e., 498 

block 5 vs block 6) and after a one- or two-month delay (i.e., block 6 and block 1 of the next 499 
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session) was unrelated to learners’ WM capacity (Figure 4B, Table S2). We examined the 500 

percent difference between adjacent blocks across sessions using a linear mixed effects model 501 

with time (session 1 to 2 as baseline), delay (delay as baseline), WM score (OSPAN), and all 502 

interactions as fixed effects and participant as a random effect. WM was unrelated to the 503 

retention of performance across sessions 1 to 2 (OSPAN = 0.032, SE = 0.068, p = .64) and 2 and 3 504 

(OSPAN*Sessions 2 to 3 = 0.020, SE = 0.094, p = .83). The relationship between WM and retention did 505 

not depend on whether there was a delay of a month (OSPAN*Delay = 0.012, SE = 0.094, p = .90) 506 

or two months (OSPAN*Delay*Sessions 2 to 3 = -0.14, SE = 0.13, p = .29) 507 

Generalization to Novel Speakers 508 

  By examining how participants respond to new speakers about which they never receive 509 

feedback, we can assess the generalizability of their category knowledge. We first calculated a 510 

generalization score by subtracting the final training block accuracy from the test accuracy. 511 

Overall, learners were successful at generalizing their knowledge to the new speakers (Figure 512 

5A). Once again, we focus our analyses on learners as there is no clear category knowledge for 513 

non-learners to generalize. We examined whether generalization performance across sessions 514 

was related to WM capacity by examining session (session 1 as baseline), WM score (OSPAN), 515 

and the interaction between session and WM score as fixed effects and participant as a random 516 

effect (Figure 5B, Table S3). 517 

 518 

Fig 5. Working memory and category generalization. A. Error bars reflect SEM. For purposes 519 

of illustration, high and low working memory groups are defined based on a median split of 520 

working memory (OSPAN) scores. Groups are additionally separated into learners and non-521 

learners based on session 3 block 6 accuracy and whether it was greater (learners) or less than 522 
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(non-learners) chance performance. B. Relation between OSPAN score and generalization test 523 

score (mean generalization accuracy – mean block 6 accuracy) across sessions for learners only.  524 

 525 

WM ability was not significantly related to learners’ generalization ability in session 1 526 

(OSPAN = 0.080, SE = 0.055, p = .14). There were no significant differences in the relationship 527 

between WM and generalization accuracy in sessions 1 and 2 (OSPAN*Session2 = -0.049, SE = 528 

0.076, p = .52) or sessions 1 and 3 (OSPAN*Session3= -0.085, SE = 0.076, p = .26). Overall, these 529 

results demonstrate that, among learners, WM ability is not significantly related to the ability to 530 

generalize Mandarin tone category knowledge to novel speakers.  531 

Decision processes 532 

 We examined participants’ decision processes based on the parameters from the drift 533 

diffusion models. We focus on the evidence accumulation rate (i.e., drift rate; Figure 6A) and 534 

decision threshold (i.e., boundary; Figure 6C) parameters. As these are Bayesian analyses, we 535 

interpret differences between groups where there is no overlap in the 95% credible intervals. We 536 

estimated the parameters for each individual and block, separately across sessions, with all 537 

subjects together (i.e., both learners and non-learners). As in prior work, we focus on the results 538 

for accumulators where the stimulus category is the same as the response category (i.e., correct 539 

responses) [50]. This allows for examination of decision processes at play on trials where 540 

participants made correct responses. The overall pattern of results does not change when 541 

examining responses from all accumulators (Supporting Information: Figure S3, Table S4).  542 

 543 

Fig 6. Working memory and decision processes. A and C: error bars reflect 95% credible 544 

intervals. For purposes of illustration, high and low working memory groups are defined based 545 
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on a median split of working memory (OSPAN) scores. Groups are additionally separated into 546 

learners and non-learners based on session 3 block 6 accuracy and whether it was greater 547 

(learners) or less than (non-learners) chance performance. B and D: relation between OSPAN 548 

score and evidence accumulation rate and decision threshold for learners only. 549 

 550 

First, we note the difference between learners and non-learners. Learners had higher 551 

evidence accumulation rates and higher decision thresholds than non-learners. In learners, the 552 

evidence accumulation rates increased over time, indicating that they became faster at 553 

accumulating evidence towards the correct decision. In contrast, the evidence accumulation rates 554 

in non-learners were low and flat throughout training, providing evidence of their general 555 

disengagement from the task. The decision thresholds were lower in non-learners than learners 556 

throughout the sessions deviating from one another after the very first block of training, 557 

indicating that non-learners needed less evidence to make their decision. This pattern may 558 

indicate that non-learners’ decisions were based on optimizing speed rather than categorization 559 

accuracy.  560 

Critically, our modeling approach enables estimation of the decision parameters at the 561 

individual participant level, allowing for examination of how these parameters relate to WM 562 

capacity. To understand how decision parameters differed based on WM in learners, we ran 563 

separate linear mixed effects models on the two parameters with block, session, WM score 564 

(OSPAN), and all interactions as fixed effects and participant as a random effect. Session 1 was 565 

treated as a baseline. Full results are shown in Tables 5 and 6. We focus on the results on the 566 

relationship between WM capacity and evidence accumulation rates and decision thresholds.  567 

 568 
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Table 5. Summary of results on WM capacity and evidence accumulation rate. 569 
  SE p 
Intercept  0.15 0.17 .38 
OSPAN  0.00075 0.0035 .83 
Block  0.11 0.021 < .0001 
Session 2 0.47 0.12 < .0001 
Session 3 0.64 0.12 < .0001 
OSPAN * Block 0.0013 0.00044 .0030 
OSPAN * Session 2 0.0064 0.0024 .0084 
OSPAN * Session 3 0.0072 0.0024 .0030 
Block * Session 2 -0.066 0.030 .029 
Block * Session 3 -0.051 0.030 .087 
OSPAN * Block * Session 2 -0.00059 0.00062 .34 
OSPAN * Block * Session 3 -0.00065 0.00062 .29 

 570 

Overall, learners with higher WM capacity accumulated evidence more quickly towards 571 

the correct decision in each session (Figure 6B). In session 1, there was not a significant 572 

relationship between WM and evidence accumulation rate (OSPAN = 0.00075, SE = 0.0035, p = 573 

.83). However, the relationship became significantly stronger across blocks (OSPAN*Block= 574 

0.0013, SE = 0.00044, p = .0030). A one unit increase in WM score was associated with an 575 

increase in evidence accumulation rate of 0.0021 units for learners in the first block of session 1 576 

and 0.0086 units for learners in the final block of session 1.  577 

The strength of the relationship between WM score and evidence accumulation rate also 578 

increased across sessions (OSPAN*Session2= 0.0064, SE = 0.0024, p = .0084; OSPAN*Session3= 579 

0.0072, SE = 0.0024, p = .0030). In session 2, a one unit increase in WM score was associated 580 

with an increase in evidence accumulation rate of 0.0071 units for learners and this relationship 581 

was not significantly different across blocks (OSPAN*Block*Session2 = -0.00059 SE = 0.00062, p = 582 

.34). In session 3, a one unit increase in WM score was associated with an increase in evidence 583 

accumulation rate of 0.0079 units for learners and this relationship was not significantly different 584 

across blocks (OSPAN*Block*Session3 = -0.00065, SE = 0.00062, p = .29).  585 
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Table 6. Summary of results on WM capacity and decision threshold. 586 

  SE p 
Intercept  1.35 0.085 < .0001 
OSPAN  -0.0024 0.0018 .17 
Block  -0.014 0.013 .31 
Session 2 0.0023 0.074 .98 
Session 3 -0.049 0.074 .51 
OSPAN * Block 0.00063 0.00028 .022 
OSPAN * Session 2 0.0047 0.0015 .0022 
OSPAN * Session 3 0.0035 0.0015 .021 
Block * Session 2 -0.0091 0.019 .63 
Block * Session 3 0.035 0.019 .068 
OSPAN * Block * Session 2 -0.00074 0.00039 .058 
OSPAN * Block * Session 3 -0.00066 0.00039 .090 

 587 

 In contrast, there was no clear relationship between WM capacity and decision thresholds 588 

in any session (Figure 6B). In session 1, a one unit increase in WM score was associated with a 589 

non-significant decrease in threshold of 0.0024 units for learners (OSPAN = -0.0024, SE = 0.0018, 590 

p = .17). The relationship between WM and threshold became slightly less negative across 591 

blocks in session 1 (OSPAN*Block= 0.00063, SE = 0.00028, p = .022). A one unit increase in WM 592 

score was associated with a decrease in threshold of 0.0018 units for learners in the first block 593 

but an increase of 0.0014 units in the final block of session 1. Overall, in session 1, there was no 594 

clear relationship between WM score and decision threshold.  595 

The relationship between WM and threshold differed in sessions 2 and 3 compared to 596 

session 1 (OSPAN*Session2= 0.0047, SE = 0.0015, p = .0022; OSPAN*Session3 = 0.0035, SE = 0.0015, 597 

p = .021). However, this difference appears to stem from changing from a negligible negative 598 

relationship in session 1 to a negligible positive relationship in sessions 2 and 3. In session 2, one 599 

unit increase in WM score was associated with an increase in threshold of 0.0023 for learners, 600 

which did not significantly differ across blocks (OSPAN*Block*Session2= -0.00074, SE = 0.00039, p = 601 
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.058). In session 3, a one unit increase in WM score was associated with an increase in threshold 602 

of 0.0011 units for learners, which did not significantly differ across blocks (OSPAN*Block*Session3= 603 

-0.00066, SE = 0.00039, p = .090). In sum, decision thresholds did not strongly relate to WM 604 

capacity in any session.  605 

Overall, learners with higher WM capacity had faster evidence accumulation rates. The 606 

relationship began to emerge in the first session and was clearly present in the second and third 607 

sessions. In contrast, learners’ decision thresholds did not depend on WM capacity. Together, 608 

these results indicate that WM capacity impacts specific elements of decision-making differently 609 

across the trajectory of learning.  610 

Discussion 611 

 We investigated non-native speech category learning in initial learning sessions and in 612 

two follow up sessions with one and two months between each session, respectively. We 613 

examined the extent to which WM capacity was related to initial and later learning sessions and 614 

in which ways (Figure 7). Considering all participants, higher WM was associated with better 615 

speech category learning across learning stages. Participants with higher WM may also have 616 

been more likely to learn the categories than participants with lower WM. When considering 617 

only individuals who performed at above-chance levels (i.e., learners), WM was associated with 618 

better performance by later blocks of initial acquisition (session 1) and in intermediate and later 619 

sessions (session 2-3) becoming somewhat weaker over time. WM ability was generally 620 

unrelated to maintenance of category knowledge over delays or generalization of category 621 

knowledge to new talkers. Finally, among learners, higher WM capacity was associated with 622 

faster evidence accumulation rates across learning sessions and was not associated with decision 623 

thresholds in any session.  624 
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 625 

Fig 7. Role of working memory in different stages of category learning. Visualization of 626 

relationship between behavioral measures and working memory for learners based on the 627 

regression model coefficients. Error bars reflect SEM. 628 

 629 

Learners and non-learners 630 

Our results demonstrate that simply grouping all participants together does not tell a 631 

complete story because some participants clearly do not demonstrate learning, performing at 632 

chance levels even after extensive training. However, swiftly removing these non-learners as is 633 

common practice in the field [31–34] may obscure parts of the story as well. Participants who 634 

performed at or below chance levels at the end of three sessions of training were consistently 635 

poor performers across all blocks and sessions had marginally lower WM scores than learners. 636 

Importantly, it is possible that non-learners with lower WM scores may have been generally 637 

disengaged in the experiment, performing poorly across all measures (Supporting Information, 638 

Figure S2). In support of the interpretation that non-learners were generally disengaged in the 639 

task, they had very low and flat evidence accumulation rates across learning, which may be 640 

indicative of general task disengagement [53,73]. 641 

 Regardless of WM ability, we found that a substantial number of participants (32%) were 642 

classified as non-learners. These individuals returned for three separate sessions of the same task 643 

that they were unable to consistently perform above chance levels. It is important to consider 644 

participants’ goals and motivation for completing the task and compare this with experimenter-645 

defined goals. Whereas we instructed them to respond as accurately as possible, their goal 646 

seemed to be to respond as quickly as possible regardless of accuracy evidenced by non-learners’ 647 
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much lower decision thresholds than learners. Decision thresholds (i.e., response caution) are 648 

related to the speed-accuracy tradeoff [56], with lower decision thresholds reflecting favoring 649 

speed over accuracy. As such, we interpret these low decision thresholds as a mark of these 650 

participants’ disengagement in the category learning task. Importantly, favoring speed over 651 

accuracy is an adaptive strategy if your goal is not to learn the categories, but instead to 652 

complete the experiment as quickly as possible [74].  653 

It is necessary to understand and adapt to the goals of our participants. This study was 654 

conducted using an online population, rather than a more typical convenience sample of college 655 

students leveraged in prior studies. This approach presents challenges, but also highlights that the 656 

goals and motivations to perform a simple experimental task may be different among a broader 657 

population than in student populations often examined in experimental psychology research. 658 

It is important to understand how task disengagement is related to WM ability to 659 

understand potential interventions to improve learning. It is unclear if some non-learners want to 660 

learn, but they are unable to or if they are actively deciding to disengage from the task. Future 661 

work should include dynamic measures of task engagement, such as pupil dilation, to better 662 

understand how task engagement is related to WM and contributes to differences learning 663 

outcomes. If task disengagement is truly related to WM and we want to improve learning for 664 

individuals with lower WM, a first step should be ensuring that they are engaged in the task in 665 

the first place.  666 

Together, these results highlight the importance of consideration of individual differences 667 

in learning. In particular, these results call for the need of special consideration of individuals 668 

who may be disengaged from the task. It is possible that a role that WM plays in learning is 669 

ensuring that resources are available for engagement in complex tasks.  670 
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Initial learning and learning over time 671 

 The main goal of the current study was to understand the role of working memory in 672 

learning beyond initial acquisition. In line with prior work, we found that WM was positively 673 

related to learning by the end of the first session [5–10]. The benefit of higher WM in initial 674 

learning may stem from the ability to hold in mind many possible hypotheses which helps 675 

learners home in on the best one and use it faster and more efficiently [5,10,11]. Our results are 676 

in line with this prior work and suggest a role for WM in initial non-native speech category 677 

acquisition. 678 

 As a novel contribution, our results extend these findings and demonstrate that among 679 

participants who eventually learn the speech categories, WM was related to learning 680 

performance starting at the end of session 1 and persisting in sessions 2 and 3. This pattern of 681 

results conflicts with other work on speech category learning that demonstrates that given 682 

multiple days of training, there is no clear link between WM and performance [16,17]. However, 683 

these prior studies trained participants on across days separated by very short delays, rather than 684 

delays of over a month or more without additional training. Our results indicate that WM helps 685 

in initial acquisition of category knowledge, but individuals with lower WM may be able to 686 

‘catch up’ given more time. Specifically, our results provide some preliminary evidence that the 687 

relationship between WM and non-native speech category learning may become weaker over 688 

time. Lower WM is not a sentence to poor learning forever. As long as participants remain 689 

engaged, they are able to learn.  690 

This work also connects with prior investigations of learning from initial acquisition in 691 

novices to overtrained performance in experts in both language (e.g., [23]) and other perceptual 692 

contexts (e.g., [75]). While category representations start to emerge within a single session of 693 
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training [29,76], it is clear that further learning continues to shape representations and the 694 

networks supporting learning. For example, as individuals move from initial acquisition to highly 695 

experienced experts, there is a decrease in activation in sensory and frontal brain regions [77,78], 696 

potentially reflecting increased neural efficiency with learning. Research from visual category 697 

learning demonstrates that similar neural networks support initial and well-learned categorization 698 

behavior, but that these networks become more coordinated with extensive practice [79]. 699 

Together, these results highlight the need to understand how learning and the cognitive abilities 700 

and processes that support categorization change from the very initial novice stages of learning 701 

to behavior in overtrained experts. This is particularly relevant for speech and language learning 702 

contexts, where expert or even genuinely stable levels of performance are unlikely to emerge in a 703 

single training session. 704 

Task difficulty and effort 705 

 We found that WM was consistently related to faster evidence accumulation among 706 

learners. These results are in line with prior work that demonstrates that evidence accumulation 707 

rates are linked to individual differences in WM [54,55]. Faster evidence accumulation rates 708 

reflect higher motivation [53], faster mobilization of attentional resources [80], and lower task 709 

difficulty [81–85].  710 

 We then might interpret the persistently higher evidence accumulation rate in learners 711 

with higher WM as reflective of heightened motivation, rapid mobilization of available 712 

attentional resources, and perhaps perceived difficulty of the task. That is, even when accuracies 713 

were similar, learners with higher WM may have achieved that level of performance with lower 714 

perceived difficulty and perceived or exerted effort. Conversely, lower evidence accumulation 715 

rates observed in learners with lower WM may be associated with slower mobilization of 716 
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motivational or attentional resources and more perceived difficulty in the task. Future research 717 

should clarify how WM relates to perceived difficulty and perceived and exerted effort during 718 

learning.  719 

In summary, these results indicate that higher WM capacity is not a guarantee of better 720 

learning. Rather, it reflects better initial acquisition and general performance due to the ability to 721 

hold multiple hypotheses in mind and more rapid decision-making processes throughout 722 

learning. Lower WM also does not doom one to poor performance and, instead, lower WM may 723 

be linked to more time and resource-dependent decision processes which may be more effortful 724 

for the learner. Future work should address the perceived and exerted effort in learning and how 725 

this is related to WM.  726 

Limitations 727 

 We note that there was significant attrition across sessions. Whereas 195 individuals 728 

completed the first session, only 107 returned for both follow up sessions. This is a challenge for 729 

longitudinal designs using online samples but is a necessary challenge to overcome to understand 730 

learning beyond initial acquisition. While we considered non-learners who completed all three 731 

sessions, it is also important to consider participants who failed to complete all parts of the 732 

experiment. In future work, it will be important to understand participants’ reasons for returning 733 

or not returning to better understand what is motivating their performance in the task. 734 

Importantly, we found that WM did not differ based on how many sessions participants 735 

completed (Supporting Information, Figure S1A). This indicates that it was not just lower or 736 

higher WM individuals who failed to return for follow up sessions. There was also no difference 737 

in categorization accuracy based on the number of sessions participants completed. That is, 738 
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within the same session, those who completed one, two, or all three sessions did not differ in 739 

their accuracy (Supporting Information, Figure S1B). 740 

 Another limitation of the current work is that we used a single measure of WM, measured 741 

at a single timepoint [86]. Specifically, we used an operation span measure based on ability to 742 

manipulate and remember a sequence of letters given a mathematical task interference. 743 

Operation span is extensively used and is a highly reliable measure of WM [86,87]. Even still, 744 

one measure likely does not reflect the true complexity of WM. Further, because of the nature of 745 

the complex span task we used to assess WM capacity, it is possible that performance was 746 

influenced by some combination of WM and long-term memory [88]. As a result, the observed 747 

relationship between WM score and speech category learning performance may reflect the ability 748 

to hold onto and manipulate information in WM as well as retrieve exemplars or rules from long-749 

term memory. However, it is important to note that measures that should theoretically be related 750 

to long-term memory or activation of exemplars stored in memory (e.g., maintenance, 751 

generalization) were not significantly related to WM score. Future studies should collect multiple 752 

measures of WM including visuospatial and auditory WM as well as measures of long-term 753 

memory to better understand how speech category learning relies on WM and long-term memory 754 

abilities.  755 

 Finally, participants learned four difficult categories with minimal feedback (e.g., 756 

“correct” or “incorrect”). Because this kind of feedback is ambiguous when the response is 757 

incorrect, it is possible that performance may have improved if we had provided full feedback 758 

(e.g., “correct, that was category 1”). However, prior work has demonstrated that Mandarin tone 759 

learning, as we examined here, is better with minimal feedback relative to full feedback [89]. 760 

Future studies will need to address the role of WM in learning with full and minimal feedback.  761 
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Conclusion 762 

 We examined non-native speech category learning, maintenance of category knowledge 763 

across sessions, generalization to novel talkers, and decision processes involved in learning. The 764 

results demonstrate that higher WM is not a guarantee of learning, nor is lower WM a sentence 765 

to long-term learning difficulties. WM is one important ability in supervised category learning. 766 

Here, we highlight the need for an approach that considers the stage of learning and whether 767 

participants eventually learn. By leveraging a drift diffusion modeling approach and examining 768 

behavior from several angles over time, we conclude that WM may help learners by facilitating 769 

rapid category acquisition in initial stages and enhanced performance during subsequent stages 770 

of learning due to rapid evidence accumulation that may reduce the effort needed to learn. These 771 

results have important implications for developing interventions to improve learning in 772 

naturalistic language contexts and understanding what it means to be engaged in a task.  773 
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