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Abstract

What is the role of working memory over the course of non-native speech category learning?
Prior work is mixed with respect to the role of working memory in speech learning and has
focused on how this important cognitive skill might influence learning assessed at a single
timepoint. Here, we substantially extend this prior work by examining the role of working
memory on speech learning performance over time (i.e., over several months) and leverage a
multifaceted approach that provides key insights into how working memory influences learning
accuracy, maintenance of knowledge over time, generalization ability, and decision processes.
We found that the role of working memory in non-native speech learning depends on the
timepoint of learning and whether individuals learned the categories at all. Among learners,
across all stages of learning, working memory was associated with higher accuracy as well as
faster and slightly more cautious decision making. Further, while learners and non-learners did
not have substantially different working memory performance, learners had faster evidence
accumulation and more cautious decision thresholds throughout all sessions. Working memory
may enhance learning by facilitating rapid category acquisition in initial stages and enabling
faster and slightly more careful decision-making strategies that may reduce the effort needed to
learn. These results have important implications for developing interventions to improve learning
in naturalistic language contexts.

Keywords: category learning; working memory; speech perception; language learning; drift

diffusion models
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Categorization involves mapping variable inputs to discrete labels and is an important
process that supports complex cognitive processes, such as object recognition [1] and speech
perception [2]. Humans can learn novel categories throughout the lifespan across different
perceptual modalities. However, there are also large individual differences in the underlying
learning processes and outcomes. As such, there is a need to better understand what contributes
to successful or less successful learning. In this study, we systematically examine the
contributions of an ability that has been linked to category learning in prior work — working
memory capacity.

Working memory (WM) reflects the resources available for the temporary storage and
manipulation of information relevant for a given task [3,4]. Category learning involves many
processes that are dependent on WM. Learners need to attend to task-relevant features and ignore
task-irrelevant features, maintain features of a stimulus in mind as relevant or irrelevant for a
decision, hold hypotheses in mind about stimulus-category-response mapping, compare
representations of the stimulus to previous stimuli or rules, and incorporate feedback to update
existing category representations and hypotheses about category identity. The ability to learn
categories across sensory modalities has generally been found to be positively associated with
WM [5-10]. WM is thought to support faster initial category learning [5] by allowing learners to
hold multiple hypotheses about category identity at mind and test these hypotheses and
specifically to rapidly and efficiently find a useful hypothesis [11].

Importantly, prior studies have primarily focused on the role of WM in initial learning,
and, as a result, it is unclear how WM may play a role in maintenance of performance or learning
patterns over time. In the earliest stages of learning, learners must be highly flexible with their

behavior and search a large pool of potential hypotheses about category identity. As performance



69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

&5

86

87

88

89

90

WORKING MEMORY AND SPEECH CATEGORY LEARNING 4

improves and becomes more stable over time, WM processes may be less relevant because
learners may be making small refinements to existing rules rather than keeping many competing
hypotheses in mind. As a result, it is necessary to examine learning beyond very initial learning
especially for categories that are difficult or challenging to acquire within a single session.

In the current study, we examine a specific case of category learning that is an important
skill in second language acquisition — non-native speech category learning. The ability to learn a
new language has been positively associated with individual abilities like WM capacity [12—15].
Assessed in a single session, the ability to learn sounds of a non-native language in adulthood
has been positively linked to WM capacity [9,10]. However, other studies examining learning
across longer training periods (e.g., multiple sessions across many days) have found that WM
ability does not predict the ability to learn non-native speech categories [16,17]. The role of WM
across the trajectory of non-native speech category learning is not yet clear. It is possible that
WM supports initial, but not later speech learning.

In the current study, we train participants on non-native Mandarin tone categories. In
Mandarin, distinct pitch patterns are lexically contrastive — the same syllable produced with four
different pitch patterns (e.g., high-flat, low-rising, low-dipping, and high-falling) has four unique
meanings. Learning to distinguish sounds based on these pitch patterns can be difficult for non-
native listeners and there are large individual differences in learning [18-23].

For both speech and artificial perceptual categories, training beyond one session can be
very successful, leading to significant learning and retention over time. In studies not focused on
WM, participants learn through extensive training over several weeks [23-28] and then

sometimes are brought back for a test of retention months later (e.g., [26] — 3 months; [23] — 8
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weeks). Neural representations of categories rapidly emerge within a single session of initial
learning [29,30], but continue developing over time with more experience [23].

The role of WM beyond initial category acquisition is not well understood. Whereas
initial learning involves testing a large range of possible hypotheses about stimulus-response
mapping and using feedback to update these hypotheses, learning beyond the novice stage
involves refining existing hypotheses, learning about idiosyncratic stimuli, and continuing to
develop and refine representations. Additionally, after a delay in experience, learners must
reactivate existing representations and hypotheses to continue refining their category knowledge.
It is possible that these processes rely less on WM than initial testing among multiple hypotheses
as is necessary during initial learning. In the current study, we examine the role of WM in both
an initial learning session and learning sessions after one and three months from the initial
session.

Our approach involves inviting participants who previously completed a single session of
training on Mandarin tone categories [10] back for additional training sessions. McHaney et al.
[10] demonstrated that WM abilities were related to success in initial non-native speech category
learning across two experiments — one behavioral (revisited here) and one with pupillometry.
Specifically, individuals with higher WM capacity were better at learning, better at finding task-
appropriate strategies, and had pupil responses that reflected better stimulus-related attention.
Based on this, McHaney et al. [10] concluded that WM may support learning by enhancing
attention to task-relevant information. Critically, because this prior study tested only a single
session of learning, it is possible this conclusion may only apply to initial learning. In the current
study, we invite participants from Experiment 1 of McHaney et al. [10] back for two additional

sessions — one session one month after their initial training and another session two months after
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the second session. We follow up with the same sample from McHaney et al. [10] to understand
how individual differences in WM relate to individual differences in learning beyond initial
acquisition.

An important aspect of understanding individual differences in learning is the
acknowledgement that many individuals perform at chance levels even after extensive training.
We see two main possibilities that could explain this pattern — (1) these participants are actively
engaged and trying but persistently fail to learn and/or (2) these participants are actively
disengaged and are not trying to learn, so they fail to learn. Disentangling these two possibilities
is challenging. Prior work on category learning takes one of two approaches regarding
participants performing at chance levels. Some studies remove these participants entirely,
typically by removing participants who perform at or below chance levels by the end of learning
[31-34]. Other studies retain these participants in the sample as it is impossible to know if their
performance reflects a true inability to learn or whether they are disengaged [35-38]. The lack of
consistency in these approaches across studies makes it difficult to understand this poor
performing subset of the population. In the current study, we take a hybrid version of these
approaches to better understand the underlying challenges facing less successful performers. We
examine both the entire set of participants and participants who perform at above-chance levels
(i.e., learners vs. non-learners who do not perform at above-chance levels). By examining the
patterns while considering if participants eventually learned or not, we can better understand
behaviors and abilities that lead to success.

We employ a multifaceted approach to understand what WM does or does not do for
initial and later learning of speech categories. Specifically, we assess if WM is related to (1)

performance in initial and later learning sessions, (2) maintenance of category knowledge over
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time, (3) generalization of category knowledge to different talkers, (4) rate of evidence

accumulation and (5) response caution during decision making (Table 1).

Table 1. Hypothesized role of working memory across measures.

Hypothesized role of working
memory

Relevant measure(s) in current study

Initial learning

Later learning
Maintenance of
category
knowledge
Generalization

Evidence
accumulation

Response
caution

Hold multiple hypotheses in mind,
better and faster learning

Enhanced attention and motivation

Quickly reactivate and flexibly use
existing representations

Flexibly apply rules to new contexts

More efficient processing,
mobilization of attentional
resources

More cautious, gather more

information and test against

multiple hypotheses before a
decision is made

Accuracy in session 1

Accuracy in sessions 2 and 3

Accuracy in first block of sessions 2
and 3 compared to final block of
sessions 1 and 2

Accuracy in generalization test with
different talkers and no feedback

Evidence accumulation (drift) rate
parameter from drift diffusion
modeling

Decision threshold (boundary)
parameter from drift diffusion
modeling

Initial and later learning

Based on prior work, we expect that higher WM will be beneficial to initial acquisition

(i.e., session 1) of non-native speech categories [10]. This prediction stems from prior work that

has demonstrated that higher WM is associated with faster and better initial artificial category

learning [5-7,9,39—41]. We also expect to observe this pattern given that the first session of

training was published in McHaney et al. [10] where among all 195 participants, WM was
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positively related to learning. A subset of these participants (107/195) returned for the current
study.

Building on the prior study, we will probe the extent to which WM is related to
performance in subsequent learning sessions. It is possible that WM provides benefits only in
initial learning by quickly allowing learners to test many different hypotheses and find the ones
that maximize their performance (e.g., [11]) and that WM is unrelated to learning beyond this
novice stage. This prediction would be consistent with the observation that WM is not related to
speech category learning when assessed after eight days of training [16,17]. However, it is also
possible that WM provides benefits to learning beyond initial acquisition, allowing for enhanced

further refinement of category representations.

Maintenance of category knowledge

By probing performance after one and two months of no additional exposure or training,
we will examine the maintenance of performance over time. One possibility is that higher WM
may allow learners to quickly reactivate and flexibly use their category representations
developed in prior session(s). However, it is possible that maintenance of performance over time

may be independent of WM and could reflect long-term memory abilities instead.

Generalization

The ability to accurately identify novel category exemplars is a hallmark of
categorization. We will assess generalization in each session by presenting learners with novel
stimuli spoken by novel talkers that they do not encounter during training and never receive
feedback about the correct category. To successfully generalize to these novel talkers, they will
need to apply their existing knowledge flexibly to the new context. It is possible that

generalization relies on WM, as the ability to flexibly apply rules (e.g., cognitive flexibility) is
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correlated with WM capacity [42,43] and generalization to novel contexts is related to individual

differences in WM capacity [44,45].
Decision processes during learning

Using a drift diffusion modeling (DDM) approach [46,47], we will examine whether
different components of the decision process (e.g., rate of evidence accumulation and response
caution) are related to WM. DDMs are popular tools to understand decision making processes
from accuracy and response time measures [48—52]. DDMs assume that during decision making,
sensory evidence for multiple decision alternatives is accumulated in the human brain at varying
rates, and a decision is made when such evidence reaches a particular boundary [46,47]. In the
case of learning non-native speech sound categories like Mandarin tone categories, as a
participant hears a stimulus, they begin accumulating evidence towards all four response options
(e.g., high-flat, low-rising, low-dipping, high-falling). Each of the four response options has its
own decision threshold, with higher thresholds requiring more evidence to be accumulated
before the decision will be made, reflecting more cautious responding. Evidence is also
accumulated toward each threshold at its own rate, with faster rates reflecting higher quality of
evidence extracted from the stimulus. Below we consider the possibility that WM relates to these
two components of the decision process.

The classical literature on DDMs has focused almost exclusively on binary decision-
making in static settings and typically focuses on group-level analyses rather than heterogeneity
across individuals. Recently, Paulon et al. [52] extended these models significantly, accounting
for situations with more than two decision alternatives, heterogeneity across individuals, and

longitudinal evolution of the decision-making processes by considering individual-specific and
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time-varying accumulators of evidence. As such, we will examine decision processes over time

with estimates at both the group and individual subject level.
Rate of evidence accumulation

We predict that more WM resources may enable learners to acquire information from the
stimulus more quickly, thereby reducing the perceived difficulty of the task and effort needed to
learn. The rate of evidence accumulation reflects the quality of information extracted from the
stimulus, with faster rates reflecting a faster evidence accumulation process. The evidence
accumulation process may also reflect efficiency of retrieval or access to categorization
exemplars or other representations in memory. Faster evidence accumulation rates are associated
with motivation and better task performance [53]. Prior work has demonstrated that evidence
accumulation rates are related to WM abilities, with faster evidence accumulation associated
with higher WM capacity [54,55].

Response caution

We predict that more WM resources may allow learners to be more cautious and less
impulsive in their responses and to collect more evidence for a particular category response
before making a decision. Response caution is reflected in the decision threshold. Higher
thresholds reflect more cautious responses that need more evidence before a decision is made,
whereas lower thresholds reflect more impulsive responses based on less evidence [56]. More
difficult tasks result in more cautious response patterns, requiring that participants gather more
information to make decisions [47,57]. Individuals with higher WM capacity may have sufficient
resources to gather and consult more information during decision making. As such, they may be
more cautious in their responses, gathering more information to hold in WM as they learn to

make more accurate decisions. This may ensure that the learner builds up enough of a
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representation of the stimulus before they make a response and, thus, enhance learning.
Alternatively, individuals with higher WM capacity may have sufficient resources to maintain
similar decision thresholds as individuals with lower WM capacity, enabling them to respond

faster without making sacrifices in performance.

Summary

To summarize, we examine the relationship between WM capacity and non-native
Mandarin tone speech category learning in an extended training task with three sessions
separated by one and two months, respectively. To gain mechanistic insights on the putative
relationship between WM and individual differences in category learning over time, we assess
behavior from multiple angles. Specifically, we examine how initial and later learning
performance, maintenance of performance across delays, generalization to novel talkers, rate of

evidence accumulation, and response caution are related to WM capacity (Table 1).

Methods

Participants completed three sessions of Mandarin tone category learning separated by at
least one and two months (Session 1 to 2: M = 32.1 days, SD = 0.68, range 31.7-35.6 days;
Session 2 to 3: M = 61.4 days, SD = 2.56, range 56.6-70.9 days). Data from the first session
appeared in a previously published study [10], and the second and third sessions have not

appeared elsewhere.
Participants
Participants were adults ages 18-35 recruited from Prolific (prolific.co) and participated

via Gorilla Experiment Builder [58]. A total of 198 participants completed session 1 (99 Female

(F), 99 Male (M), M = 25.0 years, SD = 4.97). Three participants were excluded because they
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did not follow instructions on the WM task, leaving a total of 195 participants in session 1 (98 F,
97 M, M = 24.9 years, SD = 4.89). There was substantial attrition from session-to-session, and
we excluded participants who did not complete all sessions — 153 completed session 2 (70 F, 83
M, M =24.9 years, SD = 5.05), and 107 completed session 3 (47 F, 60 M, M = 24.8 years, SD =
5.07). Participants who completed only one or two sessions did not differ in WM or
categorization accuracy compared to those who completed all sessions (Supporting Information,
Figure S1).

Participants completed a language history questionnaire prior to participating. All
participants were native speakers of non-tonal languages and reported no prior experience with
any tonal languages, including Mandarin. Participants were given a sound check before the start
of each session to ensure they could hear the sounds and were wearing headphones. Participants
received $10/session for their participation (total up to $30 across three sessions). Informed
consent was obtained from all participants. The study protocol was approved by the Institutional

Review Board at the University of Pittsburgh.

Stimuli

The stimuli were natural speech productions recorded from four native speakers (2 M, 2
F) of Mandarin Chinese (Figure 1A). Each tone category (e.g., high-flat, low-rising, low-dipping,
and high-falling) was produced by each speaker in five syllable contexts (/bu/, /di/, /lu/, /ma/, and
/mi/) for a total of 80 stimuli (20/category). The stimuli from two speakers (1 F, 1 M) were used
during the training blocks and the stimuli from the other speakers (1 F, 1 M) were withheld for
the generalization block. The same 40 generalization stimuli were presented in the generalization
block of each session and participants never received feedback about these stimuli. To reduce

incidental differences in duration across categories, the stimuli were duration-normalized to 440
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ms and RMS-amplitude normalized to 70 dB. The stimuli are shown in Figure 1A in a two-
dimensional space (relative pitch, pitch change) that can be used to separate the stimuli into

categories and is linked to neural representations of these categories [59,60].

Fig. 1. Stimuli and procedure. A. Two-dimensional representation of stimuli used during
category learning and generalization with colors reflecting different tone categories. B. Session

procedure. C. Task procedure.

Procedure

Category learning

Participants completed three separate sessions of category learning (Figure 1B). Sessions
1 and 2 were separated by one month. Sessions 2 and 3 were separated by two months. In each
session, participants completed six blocks of an identical category learning task and an additional
generalization block with different stimuli and no feedback. The stimuli were the same across
sessions. Participants never received feedback about the generalization stimuli. At the beginning
of the experiment, participants were told that they would be grouping sounds into different
categories based on corrective feedback. They were not given any specific instructions about the
stimuli or what might differentiate the categories from one another.

In the category learning task, there were six blocks of 40 trials each. In the generalization
task, there was one block of 40 trials. Participants heard the 440 ms duration sound, followed by
a prompt about the category identity (“Which category?”’) (Figure 1C). They pressed the 1, 2, 3,
and 4 buttons on the keyboard to respond. Participants received trial-by-trial feedback in the

category learning task where they were informed about whether their decision was ‘Correct’ or
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‘Incorrect.” The feedback was presented immediately for 750 ms. Participants did not receive
feedback in the generalization task. In both tasks, there was an intertrial interval of 1 sec.
Working memory capacity

In the first session, participants first completed the category learning and generalization
blocks and then completed an operation span task [61] as a measure of WM capacity.
Participants were shown simple arithmetic problems and reported whether the presented
solutions were correct or incorrect (e.g., (1 +7) x 2 = 16) and were then shown a letter on the
screen (e.g., A). A sequence of these arithmetic problems and letters from three to seven items in
length made up a trial. After a full sequence was presented, participants were instructed to recall
the letters presented in order. There were 15 trials. Participants® WM capacity was calculated
based on the OSPAN score — the sum of the length of all correctly recalled spans. For example, if
a participant correctly recalled a sequence of four letters (e.g., A, I, D, F), four points were added
to their score. The minimum possible OSPAN score is 0 and the maximum possible OSPAN
score is 75. We did not filter scores based on accuracy on the arithmetic problems [62] and
participants were generally very accurate (M = 85%, SD = 14%; Supporting Information Figure
S2).

Drift diffusion modeling

We applied a variant of the DDMs developed in Paulon et al. [52]. The model estimates
the evidence accumulation rate (i.e., drift) pg ¢ for each combination of decision response d and
stimulus category s and decision thresholds (i.e., boundaries) b, for each decision response d.
Additionally, the model also fits offset parameters & for each stimulus category, which
characterize the times taken by the actions that are not directly relevant to the actual decision-

making processes (e.g., the time required to encode the s-th stimulus before evidence
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accumulation begins, to press a computer key, to record a response after a decision is reached,
etc.). The model lets the parameters yg ; by and 8 to vary between participants, which
accommodates the substantial variability across participants. Importantly, the model also allows
Hq s and by to evolve smoothly over time (across training blocks), explaining the changes in the
decision-making processes as the participants learn over time. We allowed the drift rates to vary
across both stimulus category and response and assume that participants gather evidence towards
each of the four possible response options at different rates depending on the true identity of the
stimulus category. The decisions participants make in this task are tied directly to the sound
category. Exemplars from within a sound category share characteristics and differ from
exemplars from other sound categories. Due to the stimulus characteristics, participants may
accumulate evidence at different rates for the different stimulus-response combinations.
Boundaries only varied across response and different levels of response caution were not
dependent on the true stimulus category.

The data were filtered to exclude very fast and very slow responses by removing the top
and bottom 1% of trials based on reaction time. The remaining data, comprising both correct and
incorrect trials, were used to estimate the parameters. Since gradual improvements in making
correct decisions characterize learning, in our discussions below, we emphasize heavily on
inferring the drift rates associated with successful identification of the stimulus (p, ¢ for correct
responses with s = d). Consideration of all responses does not change the overall results (see
Supporting Information).

We adopted a Bayesian framework for these analyses, assigning priors to the parameters
and relying on samples drawn from the posterior using a Markov chain Monte Carlo (MCMC)

algorithm for estimation and inference. The algorithm was run for 6,000 iterations with the initial
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2,000 iterations discarded as burn-in. The remaining samples were further thinned by an interval
of 5 to reduce autocorrelation. MCMC diagnostics such as trace-plots of the parameters, Geweke
test for stationarity of the chains, etc. indicated no convergence or mixing-related issues.
Posterior predictive checks indicated good model fit. Finally, posterior means are reported as
point estimates and pointwise credible intervals are used to assess uncertainty. For more details

on the implementation of these models, see Supporting Information.

Data availability

The stimulus materials, data, and analysis code are publicly available through the Open
Science Framework repository and can be accessed online [64]. Data were visualized and
analyzed using R, version 4.3.1 [65] and the following R packages: tidyverse, version 1.3.2, [66],
ggplot2, version 3.4.3 [67], ggthemes, version 4.2.4 [68], lddmm, version 0.4.2 [69], Ime4,

version 1.1.34 [70], ImerTest, version 3.1.3 [71], rstatix, version 0.7.2 [72].

Results

Learning performance

On average, participants learned the Mandarin tone categories with substantial individual
variability in performance (Figure 2A). For context, we also plot the reaction times (Figure 2B).
We note that for visualization of performance across blocks, we grouped participants by their
WM scores based on a median split (Mdn = 46), with values equal to or higher than the median
defined as high WM and values lower than the median being defined as low WM. The analyses
were conducted using raw OSPAN scores as a continuous variable with linear mixed effects

models using the /me4 package in R [70] and are also shown (Figure 2C).
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Fig 2. Working memory and learning performance across all participants. A. Accuracy and
B. Reaction times after removing the shortest and longest 1% of responses. Error bars reflect
SEM. For purposes of illustration, high and low working memory groups are defined based on a
median split of working memory (OSPAN) scores. C. Relation between OSPAN score and

proportion correct across blocks and sessions for all participants.

We examined the extent to which WM capacity, indexed by the OSPAN score, was
associated with performance in the category learning task. We used linear mixed effects models
with session (as categorical variable), block, WM capacity, all possible interactions as fixed
effects, participant (intercept) as a random effect, and average accuracy across a block as the
continuous outcome variable. Session 1 was treated as the baseline session. Full results are

presented in Table 2.

Table 2. Summary of results on WM capacity and category learning performance.

B SE P
Intercept 26.0 5.09 <.0001
OSPAN -0.011 0.11 .92
Block 1.84 0.62 .0032
Session 2 6.51 343 .058
Session 3 14.5 343 <.0001
OSPAN * Block 0.055 0.013 <.0001
OSPAN * Session 2 0.31 0.074 <.0001
OSPAN * Session 3 0.22 0.074 .0026
Block * Session 2 -0.28 0.88 75
Block * Session 3 -1.12 0.88 .20
OSPAN * Block * Session 2 -0.053 0.019 .0057
OSPAN * Block * Session 3 -0.032 0.019 .095

Overall, accuracy improved linearly across blocks in all sessions (BBiock = 1.84, SE =

062,p = 0032, BBlock*Session2 = -0.28, SE = 088,p = 75, BBlock*Sessi0n3 = -1.12, SE = 088,p = 20)
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and improved marginally in session 2 from session 1 (Bsession2 = 6.51, SE =3.43, p = .058) and
significantly in session 3 from session 1 (PBsessions = 14.5, SE =3.43, p <.0001).

Collapsing across blocks, the relationship between WM score and accuracy was not
significant in session 1 (Bospan=-0.011, SE=0.11, p = .92), but was significantly stronger in
sessions 2 and 3 (Pospan#session2 = 0.31, SE = 0.074, p <.0001; BospaN*session3 = 0.22, SE = 0.074,
p =.0026). Importantly, the relationship between WM score and accuracy interacted with both
block and session. In session 1, there was a positive relationship between WM and accuracy that
became stronger across blocks (Bospan*lock = 0.055, SE = 0.013, p <.0001). A one unit increase
in WM score was associated with an additional 0.055% increase in accuracy in each block.
While in the first block, the relationship between WM score and accuracy was very weak
(0.044%), by the final block, the relationship was clearly positive (0.32%). As a reminder, WM
scores could range from 0 to 75, so even a relatively modest increase in WM score of 10 points
would be associated with an additional increase in accuracy of 3.2% in the final block of session
1. A larger difference in WM score of 30 points would be associated with an additional increase
in accuracy of 9.6% in this block.

One month later, in session 2, there was a positive relationship between WM and
accuracy. While the relationship between WM and accuracy became stronger across blocks, the
relative change was significantly smaller than in session 1 (BospaN*Block*Session2 = -0.053, SE =
0.019, p =.0057). In session 2, a one unit increase in WM score was associated with an
additional 0.002% increase in accuracy in each block. Across blocks, the relationship between
WM score and accuracy was similar to session 1 (range 0.30% - 0.31%)).

Two months after session 2, in session 3, there was a positive relationship between WM

and accuracy that became stronger across blocks in a way that was not significantly different
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from session 1 (fospAaN*Block*Session3 = -0.032, SE = 0.019, p = .095). In session 3, a one unit
increase in WM score was associated with an additional 0.023% increase in accuracy in each
block. In the first block, the relationship between WM score and accuracy was 0.24% and by the
final block, the relationship was similar to the final blocks of the other sessions (0.35%).

Taken together, we found that working memory ability was positively associated with
speech category learning accuracy across training sessions, becoming relatively stronger across
blocks in sessions 1 and 3 and was stable in session 2. While in the very initial stages of learning,
WM score was not significantly related to accuracy (0.044% in first block of session 1), by the
end of session 1 and persisting through the other sessions, WM score was positively related to
accuracy (range 0.24% to 0.35%). The positive relationship between WM ability and
performance emerged within the first session and remained relatively stable throughout follow

up sessions 2 and 3.
Learners and non-learners

Importantly, we also aimed to understand if the relationship between WM capacity and
accuracy was present when considering only participants who learned the categories. We
identified participants who performed at or below chance levels in the final block of session 3
(defined by 95% cumulative binomial probability, 40 trials, 0.25 probability of correct response
=25% +/- 10%) as ‘non-learners’ and those who performed better than chance as ‘learners’
(Figure 3A). Even though the non-learners were defined based on their accuracy in the final
block of session 3, non-learners had significantly lower accuracy throughout all blocks
(Bonferroni-corrected pairwise comparisons, p <.001), except for the first block of session 1 (p

=.078). This underlines the necessity of considering learners separately from non-learners.
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Fig 3. Working memory and learning performance across learners and non-learners. A.
Accuracy and B. Reaction times after removing the shortest and longest 1% of responses. Error
bars reflect SEM. For purposes of illustration, high and low working memory groups are defined
based on a median split of working memory (OSPAN) scores. Groups are additionally separated
into learners and non-learners based on session 3 block 6 accuracy and whether it was greater
(learners) or less than (non-learners) chance performance. C. Relation between OSPAN score

and proportion correct across blocks for learners only.

A total of 32% (34/107) of participants were classified as non-learners. WM scores for
learners (M = 44.1) were marginally higher than non-learners (M = 36.7; #65.6) = 1.79, p = .078,
95% CI [-0.84, 15.6]). This may indicate that individuals with lower WM may be more likely to
be non-learners. It is important to note that we cannot completely rule out that non-learners with
seemingly lower WM may have been generally disengaged in the experiment, leading to poorer
performance in both the WM task and the category learning task. If this is the case, WM scores
for these individuals may not reflect their true WM abilities. As post-hoc evidence that some
participants may have been disengaged across tasks, we found that learners (M = 90%)
performed better than non-learners (M = 79%) at identifying the arithmetic equations as correct
or incorrect in the WM task (#44) = 3.49, p = .0011, 95% CI [4.58, 17.1]; Supporting
Information, Figure S2). In the following analyses, we focus on the remaining 68% (73/107) of
participants who are operationally defined as ‘learners’ in the category learning task. Because the
accuracies of non-learners were within a low and highly restricted range by definition, we

examined the relationship between WM score and accuracy for learners only.



437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

WORKING MEMORY AND SPEECH CATEGORY LEARNING 21

To understand if the relationship between WM and category learning performance was
present when examining learners only, we ran the same linear model analysis with learners only

(Figure 3B; Table 3). Session 1 was treated as a baseline.

Table 3. Summary of results on WM capacity and category learning performance across

groups.
§ SE P

Intercept 27.5 4.94 <.0001
OSPAN -0.029 0.10 78
Block 3.46 0.71 <.0001
Session 2 13.0 3.90 .00090
Session 3 25.0 3.90 <.0001
OSPAN * Block 0.050 0.015 .00059
OSPAN * Session 2 0.30 0.081 .00018
OSPAN * Session 3 0.18 0.081 .023
Block * Session 2 -0.56 1.00 .58
Block * Session 3 -1.12 1.00 26
OSPAN * Block * Session 2 -0.058 0.021 .0048
OSPAN * Block * Session 3 -0.043 0.021 .039

Of critical interest is whether WM score and accuracy were still positively related when
examining only those who learned the categories. In session 1 ignoring block, the relationship
between WM and accuracy was not significant (Bospan=-0.029, SE = 0.10, p = .76). However,
this relationship became stronger across blocks (Bospan#Biock = 0.050, SE = 0.015, p = .00059;
BospAN*Block*NonLearners = -0.043, SE = 0.026, p = .11). A one unit increase in WM score was
associated with an additional 0.050% increase in accuracy in each block for learners. By the final
block of session 1, a one unit increase in WM score was associated with a 0.27% increase in
accuracy for learners.

In session 2, the relationship between WM and accuracy was positive and significantly

stronger than session 1 (BospaN*session2 = 0.30, SE = 0.081, p =.00018). Ignoring block, a one unit
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increase in WM was associated with an increase in accuracy of 0.27%. This relationship was
relatively stable, becoming mildly weaker across blocks. The relationship between WM score
and accuracy across blocks was significantly different from session 1 (BospAN*Block*Session2 = -
0.058, SE =0.021, p = .0048). A one unit increase in WM score was associated with an
additional 0.008% decrease in accuracy in each block. By the final block of session 2, a one unit
increase in WM score was associated with a 0.23% increase in accuracy for learners.

In session 3, the relationship between WM and accuracy was positive and significantly
stronger than session 1 (BospaN+*session3s = 0.18, SE = 0.081, p =.023). Ignoring block, a one unit
increase in WM was associated with an increase in accuracy of 0.15%. The relationship was
relatively stable, becoming mildly stronger across blocks. The relationship between WM score
and accuracy across blocks was significantly different from session 1 (BospAN*Block*Session3 = -
0.043, SE =0.021, p = .039). A one unit increase in WM score was associated with an additional
0.007% increase in accuracy in each block for learners. By the final block of session 3, a one unit
increase in WM score was associated with a 0.20% increase in accuracy for learners.

Among learners only, higher WM ability was associated with better non-native speech
category learning performance. This relationship emerged within the first session and was
persistent across sessions 2 and 3 and, unsurprisingly, was slightly weaker than the relationship
including all participants. The slope of the relationship between WM score and accuracy was
0.27% in the final block of session 1, 0.23% in the final block of session 2, and 0.20% in the

final block of session 3.

Maintenance of Category Knowledge Over Time

By examining learning across several sessions separated by one and two months,

respectively, we can assess the maintenance of categorization performance and category
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knowledge over time. We assessed category knowledge maintenance by comparing adjacent
training blocks that were either separated by no delay (i.e., blocks 5 and 6 of the same session) or
a delay of one or two months (i.e., block 6 of one session and block 1 of the next session).
Performance across these blocks and sessions for learners and non-learners separately is shown
in Figure 4A. Because we are interested in how knowledge is retained over time, we focus our

analyses only on learners.

Fig 4. Working memory and performance maintenance. A. Error bars reflect SEM. For
purposes of illustration, high and low working memory groups are defined based on a median
split of working memory (OSPAN) scores. Groups are additionally separated into learners and
non-learners based on session 3 block 6 accuracy and whether it was greater (learners) or less
than (non-learners) chance performance. B. Relation between OSPAN score and percent
difference from block 5 to 6 within a session (No Delay) and block 6 to block 1 (Delay) for

learners only.

Learners were somewhat able to maintain their category knowledge after a month or
more of no additional training. Between sessions 1 and 2, accuracy fell an average of 7.2%
(58.0% in block 6 to 50.9% in block 1) and between sessions 2 and 3, accuracy fell an average of
7.0% (65.6% in block 6 to 58.6% in block 1). In contrast, accuracy was relatively stable in the
end of the sessions with accuracy increasing by 1.8% in session 1 (56.0% in block 5 to 57.8% in
block 6) and by 0.3% in session 2 (65.2% in block 5 to 65.5% to block 6).

The ability to maintain category performance in adjacent blocks both with no delay (i.e.,

block 5 vs block 6) and after a one- or two-month delay (i.e., block 6 and block 1 of the next
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session) was unrelated to learners’ WM capacity (Figure 4B, Table S2). We examined the
percent difference between adjacent blocks across sessions using a linear mixed effects model
with time (session 1 to 2 as baseline), delay (delay as baseline), WM score (OSPAN), and all
interactions as fixed effects and participant as a random effect. WM was unrelated to the
retention of performance across sessions 1 to 2 (Bospan= 0.032, SE = 0.068, p = .64) and 2 and 3
(BospaN#Sessions 2 to 3= 0.020, SE = 0.094, p = .83). The relationship between WM and retention did
not depend on whether there was a delay of a month (Bospan*pelay= 0.012, SE = 0.094, p = .90)

or two months (BOSPAN*Delay*Sessions 2t03=-0. 14, SE = 013, p= 29)
Generalization to Novel Speakers

By examining how participants respond to new speakers about which they never receive
feedback, we can assess the generalizability of their category knowledge. We first calculated a
generalization score by subtracting the final training block accuracy from the test accuracy.
Overall, learners were successful at generalizing their knowledge to the new speakers (Figure
5A). Once again, we focus our analyses on learners as there is no clear category knowledge for
non-learners to generalize. We examined whether generalization performance across sessions
was related to WM capacity by examining session (session 1 as baseline), WM score (OSPAN),
and the interaction between session and WM score as fixed effects and participant as a random

effect (Figure 5B, Table S3).

Fig 5. Working memory and category generalization. A. Error bars reflect SEM. For purposes
of illustration, high and low working memory groups are defined based on a median split of
working memory (OSPAN) scores. Groups are additionally separated into learners and non-

learners based on session 3 block 6 accuracy and whether it was greater (learners) or less than
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(non-learners) chance performance. B. Relation between OSPAN score and generalization test

score (mean generalization accuracy — mean block 6 accuracy) across sessions for learners only.

WM ability was not significantly related to learners’ generalization ability in session 1
(Bospan=0.080, SE = 0.055, p = .14). There were no significant differences in the relationship
between WM and generalization accuracy in sessions 1 and 2 (Bospan*session2 = -0.049, SE =
0.076, p =.52) or sessions 1 and 3 (BospaN*Session3= -0.085, SE = 0.076, p = .26). Overall, these
results demonstrate that, among learners, WM ability is not significantly related to the ability to

generalize Mandarin tone category knowledge to novel speakers.

Decision processes

We examined participants’ decision processes based on the parameters from the drift
diffusion models. We focus on the evidence accumulation rate (i.e., drift rate; Figure 6A) and
decision threshold (i.e., boundary; Figure 6C) parameters. As these are Bayesian analyses, we
interpret differences between groups where there is no overlap in the 95% credible intervals. We
estimated the parameters for each individual and block, separately across sessions, with all
subjects together (i.e., both learners and non-learners). As in prior work, we focus on the results
for accumulators where the stimulus category is the same as the response category (i.e., correct
responses) [50]. This allows for examination of decision processes at play on trials where
participants made correct responses. The overall pattern of results does not change when

examining responses from all accumulators (Supporting Information: Figure S3, Table S4).

Fig 6. Working memory and decision processes. A and C: error bars reflect 95% credible

intervals. For purposes of illustration, high and low working memory groups are defined based
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on a median split of working memory (OSPAN) scores. Groups are additionally separated into
learners and non-learners based on session 3 block 6 accuracy and whether it was greater
(learners) or less than (non-learners) chance performance. B and D: relation between OSPAN

score and evidence accumulation rate and decision threshold for learners only.

First, we note the difference between learners and non-learners. Learners had higher
evidence accumulation rates and higher decision thresholds than non-learners. In learners, the
evidence accumulation rates increased over time, indicating that they became faster at
accumulating evidence towards the correct decision. In contrast, the evidence accumulation rates
in non-learners were low and flat throughout training, providing evidence of their general
disengagement from the task. The decision thresholds were lower in non-learners than learners
throughout the sessions deviating from one another after the very first block of training,
indicating that non-learners needed less evidence to make their decision. This pattern may
indicate that non-learners’ decisions were based on optimizing speed rather than categorization
accuracy.

Critically, our modeling approach enables estimation of the decision parameters at the
individual participant level, allowing for examination of how these parameters relate to WM
capacity. To understand how decision parameters differed based on WM in learners, we ran
separate linear mixed effects models on the two parameters with block, session, WM score
(OSPAN), and all interactions as fixed effects and participant as a random effect. Session 1 was
treated as a baseline. Full results are shown in Tables 5 and 6. We focus on the results on the

relationship between WM capacity and evidence accumulation rates and decision thresholds.
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Table 5. Summary of results on WM capacity and evidence accumulation rate.

B SE P
Intercept 0.15 0.17 38
OSPAN 0.00075 0.0035 .83
Block 0.11 0.021 <.0001
Session 2 0.47 0.12 <.0001
Session 3 0.64 0.12 <.0001
OSPAN * Block 0.0013 0.00044 .0030
OSPAN * Session 2 0.0064 0.0024 .0084
OSPAN * Session 3 0.0072 0.0024 .0030
Block * Session 2 -0.066 0.030 .029
Block * Session 3 -0.051 0.030 .087
OSPAN * Block * Session 2 -0.00059 0.00062 34
OSPAN * Block * Session 3 -0.00065 0.00062 .29

Overall, learners with higher WM capacity accumulated evidence more quickly towards
the correct decision in each session (Figure 6B). In session 1, there was not a significant
relationship between WM and evidence accumulation rate (fospan= 0.00075, SE = 0.0035, p =
.83). However, the relationship became significantly stronger across blocks (BospAN*Block=
0.0013, SE =0.00044, p = .0030). A one unit increase in WM score was associated with an
increase in evidence accumulation rate of 0.0021 units for learners in the first block of session 1
and 0.0086 units for learners in the final block of session 1.

The strength of the relationship between WM score and evidence accumulation rate also
increased across sessions (ospan+session2= 0.0064, SE = 0.0024, p = .0084; BospAN*Session3=
0.0072, SE = 0.0024, p = .0030). In session 2, a one unit increase in WM score was associated
with an increase in evidence accumulation rate of 0.0071 units for learners and this relationship
was not significantly different across blocks (BospaN*Block*Session2 = -0.00059 SE = 0.00062, p =
.34). In session 3, a one unit increase in WM score was associated with an increase in evidence
accumulation rate of 0.0079 units for learners and this relationship was not significantly different

across blocks (BospaN*Block*Session3 = -0.00065, SE = 0.00062, p = .29).
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Table 6. Summary of results on WM capacity and decision threshold.

p SE P
Intercept 1.35 0.085 <.0001
OSPAN -0.0024 0.0018 17
Block -0.014 0.013 31
Session 2 0.0023 0.074 .98
Session 3 -0.049 0.074 51
OSPAN * Block 0.00063 0.00028 .022
OSPAN * Session 2 0.0047 0.0015 .0022
OSPAN * Session 3 0.0035 0.0015 .021
Block * Session 2 -0.0091 0.019 .63
Block * Session 3 0.035 0.019 .068
OSPAN * Block * Session 2 -0.00074 0.00039 .058
OSPAN * Block * Session 3 -0.00066 0.00039 .090

In contrast, there was no clear relationship between WM capacity and decision thresholds
in any session (Figure 6B). In session 1, a one unit increase in WM score was associated with a
non-significant decrease in threshold of 0.0024 units for learners (Bospan=-0.0024, SE = 0.0018,
p = .17). The relationship between WM and threshold became slightly less negative across
blocks in session 1 (Bospan*Biock= 0.00063, SE = 0.00028, p = .022). A one unit increase in WM
score was associated with a decrease in threshold of 0.0018 units for learners in the first block
but an increase of 0.0014 units in the final block of session 1. Overall, in session 1, there was no
clear relationship between WM score and decision threshold.

The relationship between WM and threshold differed in sessions 2 and 3 compared to
session 1 (Pospan*sessionz= 0.0047, SE = 0.0015, p = .0022; BospaN+session3 = 0.0035, SE = 0.0015,
p =.021). However, this difference appears to stem from changing from a negligible negative
relationship in session 1 to a negligible positive relationship in sessions 2 and 3. In session 2, one
unit increase in WM score was associated with an increase in threshold of 0.0023 for learners,

which did not significantly differ across blocks (BospaN*Block*Session2= -0.00074, SE = 0.00039, p =
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.058). In session 3, a one unit increase in WM score was associated with an increase in threshold
of 0.0011 units for learners, which did not significantly differ across blocks (BospAN*Block*Session3=
-0.00066, SE = 0.00039, p = .090). In sum, decision thresholds did not strongly relate to WM
capacity in any session.

Overall, learners with higher WM capacity had faster evidence accumulation rates. The
relationship began to emerge in the first session and was clearly present in the second and third
sessions. In contrast, learners’ decision thresholds did not depend on WM capacity. Together,
these results indicate that WM capacity impacts specific elements of decision-making differently

across the trajectory of learning.

Discussion

We investigated non-native speech category learning in initial learning sessions and in
two follow up sessions with one and two months between each session, respectively. We
examined the extent to which WM capacity was related to initial and later learning sessions and
in which ways (Figure 7). Considering all participants, higher WM was associated with better
speech category learning across learning stages. Participants with higher WM may also have
been more likely to learn the categories than participants with lower WM. When considering
only individuals who performed at above-chance levels (i.e., learners), WM was associated with
better performance by later blocks of initial acquisition (session 1) and in intermediate and later
sessions (session 2-3) becoming somewhat weaker over time. WM ability was generally
unrelated to maintenance of category knowledge over delays or generalization of category
knowledge to new talkers. Finally, among learners, higher WM capacity was associated with
faster evidence accumulation rates across learning sessions and was not associated with decision

thresholds in any session.
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Fig 7. Role of working memory in different stages of category learning. Visualization of
relationship between behavioral measures and working memory for learners based on the

regression model coefficients. Error bars reflect SEM.

Learners and non-learners

Our results demonstrate that simply grouping all participants together does not tell a
complete story because some participants clearly do not demonstrate learning, performing at
chance levels even after extensive training. However, swiftly removing these non-learners as is
common practice in the field [31-34] may obscure parts of the story as well. Participants who
performed at or below chance levels at the end of three sessions of training were consistently
poor performers across all blocks and sessions had marginally lower WM scores than learners.
Importantly, it is possible that non-learners with lower WM scores may have been generally
disengaged in the experiment, performing poorly across all measures (Supporting Information,
Figure S2). In support of the interpretation that non-learners were generally disengaged in the
task, they had very low and flat evidence accumulation rates across learning, which may be
indicative of general task disengagement [53,73].

Regardless of WM ability, we found that a substantial number of participants (32%) were
classified as non-learners. These individuals returned for three separate sessions of the same task
that they were unable to consistently perform above chance levels. It is important to consider
participants’ goals and motivation for completing the task and compare this with experimenter-
defined goals. Whereas we instructed them to respond as accurately as possible, their goal

seemed to be to respond as quickly as possible regardless of accuracy evidenced by non-learners’
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much lower decision thresholds than learners. Decision thresholds (i.e., response caution) are
related to the speed-accuracy tradeoff [56], with lower decision thresholds reflecting favoring
speed over accuracy. As such, we interpret these low decision thresholds as a mark of these
participants’ disengagement in the category learning task. Importantly, favoring speed over
accuracy is an adaptive strategy if your goal is not to learn the categories, but instead to
complete the experiment as quickly as possible [74].

It is necessary to understand and adapt to the goals of our participants. This study was
conducted using an online population, rather than a more typical convenience sample of college
students leveraged in prior studies. This approach presents challenges, but also highlights that the
goals and motivations to perform a simple experimental task may be different among a broader
population than in student populations often examined in experimental psychology research.

It is important to understand how task disengagement is related to WM ability to
understand potential interventions to improve learning. It is unclear if some non-learners want to
learn, but they are unable to or if they are actively deciding to disengage from the task. Future
work should include dynamic measures of task engagement, such as pupil dilation, to better
understand how task engagement is related to WM and contributes to differences learning
outcomes. If task disengagement is truly related to WM and we want to improve learning for
individuals with lower WM, a first step should be ensuring that they are engaged in the task in
the first place.

Together, these results highlight the importance of consideration of individual differences
in learning. In particular, these results call for the need of special consideration of individuals
who may be disengaged from the task. It is possible that a role that WM plays in learning is

ensuring that resources are available for engagement in complex tasks.
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Initial learning and learning over time

The main goal of the current study was to understand the role of working memory in
learning beyond initial acquisition. In line with prior work, we found that WM was positively
related to learning by the end of the first session [5—10]. The benefit of higher WM in initial
learning may stem from the ability to hold in mind many possible hypotheses which helps
learners home in on the best one and use it faster and more efficiently [5,10,11]. Our results are
in line with this prior work and suggest a role for WM in initial non-native speech category
acquisition.

As a novel contribution, our results extend these findings and demonstrate that among
participants who eventually learn the speech categories, WM was related to learning
performance starting at the end of session 1 and persisting in sessions 2 and 3. This pattern of
results conflicts with other work on speech category learning that demonstrates that given
multiple days of training, there is no clear link between WM and performance [16,17]. However,
these prior studies trained participants on across days separated by very short delays, rather than
delays of over a month or more without additional training. Our results indicate that WM helps
in initial acquisition of category knowledge, but individuals with lower WM may be able to
‘catch up’ given more time. Specifically, our results provide some preliminary evidence that the
relationship between WM and non-native speech category learning may become weaker over
time. Lower WM is not a sentence to poor learning forever. As long as participants remain
engaged, they are able to learn.

This work also connects with prior investigations of learning from initial acquisition in
novices to overtrained performance in experts in both language (e.g., [23]) and other perceptual

contexts (e.g., [75]). While category representations start to emerge within a single session of
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training [29,76], it is clear that further learning continues to shape representations and the
networks supporting learning. For example, as individuals move from initial acquisition to highly
experienced experts, there is a decrease in activation in sensory and frontal brain regions [77,78],
potentially reflecting increased neural efficiency with learning. Research from visual category
learning demonstrates that similar neural networks support initial and well-learned categorization
behavior, but that these networks become more coordinated with extensive practice [79].
Together, these results highlight the need to understand how learning and the cognitive abilities
and processes that support categorization change from the very initial novice stages of learning
to behavior in overtrained experts. This is particularly relevant for speech and language learning
contexts, where expert or even genuinely stable levels of performance are unlikely to emerge in a

single training session.
Task difficulty and effort

We found that WM was consistently related to faster evidence accumulation among
learners. These results are in line with prior work that demonstrates that evidence accumulation
rates are linked to individual differences in WM [54,55]. Faster evidence accumulation rates
reflect higher motivation [53], faster mobilization of attentional resources [80], and lower task
difficulty [81-85].

We then might interpret the persistently higher evidence accumulation rate in learners
with higher WM as reflective of heightened motivation, rapid mobilization of available
attentional resources, and perhaps perceived difficulty of the task. That is, even when accuracies
were similar, learners with higher WM may have achieved that level of performance with lower
perceived difficulty and perceived or exerted effort. Conversely, lower evidence accumulation

rates observed in learners with lower WM may be associated with slower mobilization of
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motivational or attentional resources and more perceived difficulty in the task. Future research
should clarify how WM relates to perceived difficulty and perceived and exerted effort during
learning.

In summary, these results indicate that higher WM capacity is not a guarantee of better
learning. Rather, it reflects better initial acquisition and general performance due to the ability to
hold multiple hypotheses in mind and more rapid decision-making processes throughout
learning. Lower WM also does not doom one to poor performance and, instead, lower WM may
be linked to more time and resource-dependent decision processes which may be more effortful
for the learner. Future work should address the perceived and exerted effort in learning and how

this is related to WM.

Limitations

We note that there was significant attrition across sessions. Whereas 195 individuals
completed the first session, only 107 returned for both follow up sessions. This is a challenge for
longitudinal designs using online samples but is a necessary challenge to overcome to understand
learning beyond initial acquisition. While we considered non-learners who completed all three
sessions, it is also important to consider participants who failed to complete all parts of the
experiment. In future work, it will be important to understand participants’ reasons for returning
or not returning to better understand what is motivating their performance in the task.
Importantly, we found that WM did not differ based on how many sessions participants
completed (Supporting Information, Figure S1A). This indicates that it was not just lower or
higher WM individuals who failed to return for follow up sessions. There was also no difference

in categorization accuracy based on the number of sessions participants completed. That is,
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within the same session, those who completed one, two, or all three sessions did not differ in
their accuracy (Supporting Information, Figure S1B).

Another limitation of the current work is that we used a single measure of WM, measured
at a single timepoint [86]. Specifically, we used an operation span measure based on ability to
manipulate and remember a sequence of letters given a mathematical task interference.

Operation span is extensively used and is a highly reliable measure of WM [86,87]. Even still,
one measure likely does not reflect the true complexity of WM. Further, because of the nature of
the complex span task we used to assess WM capacity, it is possible that performance was
influenced by some combination of WM and long-term memory [88]. As a result, the observed
relationship between WM score and speech category learning performance may reflect the ability
to hold onto and manipulate information in WM as well as retrieve exemplars or rules from long-
term memory. However, it is important to note that measures that should theoretically be related
to long-term memory or activation of exemplars stored in memory (e.g., maintenance,
generalization) were not significantly related to WM score. Future studies should collect multiple
measures of WM including visuospatial and auditory WM as well as measures of long-term
memory to better understand how speech category learning relies on WM and long-term memory
abilities.

Finally, participants learned four difficult categories with minimal feedback (e.g.,
“correct” or “incorrect”). Because this kind of feedback is ambiguous when the response is
incorrect, it is possible that performance may have improved if we had provided full feedback
(e.g., “correct, that was category 17). However, prior work has demonstrated that Mandarin tone
learning, as we examined here, is better with minimal feedback relative to full feedback [89].

Future studies will need to address the role of WM in learning with full and minimal feedback.
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Conclusion

We examined non-native speech category learning, maintenance of category knowledge
across sessions, generalization to novel talkers, and decision processes involved in learning. The
results demonstrate that higher WM is not a guarantee of learning, nor is lower WM a sentence
to long-term learning difficulties. WM is one important ability in supervised category learning.
Here, we highlight the need for an approach that considers the stage of learning and whether
participants eventually learn. By leveraging a drift diffusion modeling approach and examining
behavior from several angles over time, we conclude that WM may help learners by facilitating
rapid category acquisition in initial stages and enhanced performance during subsequent stages
of learning due to rapid evidence accumulation that may reduce the effort needed to learn. These
results have important implications for developing interventions to improve learning in

naturalistic language contexts and understanding what it means to be engaged in a task.
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