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Abstract
We propose a novel approach to estimating the precision matrix of multivariate

Gaussian data that relies on decomposing them into a low-rank and a diagonal compo-
nent. Such decompositions are very popular for modeling large covariance matrices as
they admit a latent factor based representation that allows easy inference. The same is
however not true for precision matrices due to the lack of computationally convenient
representations which restricts inference to low-to-moderate dimensional problems.
We address this remarkable gap in the literature by building on a latent variable
representation for such decomposition for precision matrices. The construction leads
to an e�cient Gibbs sampler that scales very well to high-dimensional problems far
beyond the limits of the current state-of-the-art. The ability to e�ciently explore
the full posterior space also allows the model uncertainty to be easily assessed. The
decomposition crucially additionally allows us to adapt sparsity inducing priors to
shrink the insignificant entries of the precision matrix toward zero, making the ap-
proach adaptable to high-dimensional small-sample-size sparse settings. Exact zeros
in the matrix encoding the underlying conditional independence graph are then de-
termined via a novel posterior false discovery rate control procedure. A near minimax
optimal posterior concentration rate for estimating precision matrices is attained by
our method under mild regularity assumptions. We evaluate the method’s empirical
performance through synthetic experiments and illustrate its practical utility in data
sets from two di↵erent application domains.
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1 Introduction

For multivariate Gaussian distributed data y = (y1, . . . , yd)T ⇠ Nd(0,⌃), all condi-

tional dependence information is contained in the inverse covariance matrix ⌃�1 =

⌦ = ((!j,j0)), or the precision. Two ‘nodes’ yj and yj0 are conditionally independent

given the rest if and only if !j,j0 = 0. The underlying conditional (in)dependence

graph is then obtained by connecting the pairs of nodes {(j, j0) : !j,j0 6= 0} by undi-

rected ‘edges’. Estimating the precision matrix, including especially its sparsity pat-

terns, for such data is therefore an important statistical problem (Lauritzen, 1996;

Koller and Friedman, 2009).

In this article, we model ⌦ via a low-rank and diagonal (LRD) decomposition.

Bhattacharya et al. (2016) introduced a representation for e�cient sampling from

Gaussian distributions with known LRD structured precision matrices. In this arti-

cle, we adapt the representation in a di↵erent way to obtain a novel factor analytic

framework for unknown precision matrices modeled via LRD decompositions with

applications to graphical models. While such decomposition is already a widely used

standard tool for modeling high-dimensional ⌃, to our knowledge, the construction

has not been utilized before for modeling ⌦. Our research addresses this remarkable

gap in the literature. Although any positive definite matrix can always be factorized

this way, the main challenge is to introduce such constructions for ⌦ in a way that

allows e�cient and scalable posterior inference. Going significant steps further, we

also adapt this approach to sparse high-dimensional settings. Noting that any sparse

⌦ can always be represented with a sparse factorization, we impose sparsity in ⌦ by

using sparsity-inducing priors for the factorization.

Existing Methods for Covariance and Precision Matrix Estimation: The

existing literature on sparse covariance and precision matrix estimation is vast. In
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sparse covariance matrix estimation problems, the entire matrix ⌃ is often directly

penalized (Levina et al., 2008; Bien and Tibshirani, 2011). In an alternative approach,

⌃ is assumed to admit a LRD structure ⌃ = e⇤e⇤
T
+ e� where e⇤ is a d ⇥ q order

matrix and e� is a diagonal matrix with all positive entries. In theory, all positive

definite matrices admit such a representation for some 0  q  d, and in practice,

q ⌧ d often su�ce to produce good approximations. Also importantly, this model

admits the latent variable representation y = e⇤eu + ev where eu ⇠ Nq(0, Iq) and

ev ⇠ Nd(0, e�). The formulation allows massive scalability in computation, making

LRD based methods popular in the high-dimensional covariance matrix estimation

literature (Fan et al., 2011, 2018; Daniele et al., 2019), especially in Bayesian settings

(Bhattacharya and Dunson, 2011; Pati et al., 2014; Zhu et al., 2014; Kastner, 2019,

and others). A sparse ⌃, however, does not usually produce a sparse ⌦ and the

strategy of inverting the estimated ⌃ to obtain an estimate of ⌦ tends to exhibit

poor empirical performance (Pourahmadi, 2013).

As in covariance matrix estimation problems, penalized likelihood based methods

that directly penalize the number and/or absolute values of non-zero entries in ⌦ have

also been developed in the frequentist setting (Yuan and Lin, 2007; Banerjee et al.,

2008; Rothman et al., 2008; d’Aspremont et al., 2008; Friedman et al., 2008; Witten

et al., 2011; Mazumder and Hastie, 2012; Zhang and Zou, 2014). Alternatively, Mein-

shausen and Bühlmann (2006); Peng et al. (2009) developed neighborhood selection

methods that learn the edges by regressing each variable on the rest with penalties

on large regression coe�cients.

When the main focus is on estimating the underlying dependence graph, Bayesian

approaches instead rely on defining a hierarchical prior on ⌦ preceded by a prior on

the graph. Choices for the latter include uniform priors over graph sizes (Armstrong
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et al., 2009), priors centered around some informed location (Mitra et al., 2013), priors

with edge inclusions following a binomial distribution (Dobra et al., 2004; Carvalho

and Scott, 2009), a hyper-Markov distribution on decomposable graphs (Dawid and

Lauritzen, 1993), its generalizations to non-decomposable settings (Roverato, 2002;

Khare et al., 2018), etc. However, such hierarchical construction with a separate

model layer for the underlying graph structure makes posterior exploration quite

challenging. Markov chain Monte Carlo (MCMC) algorithms have been designed

specifically for such models (Dellaportas et al., 2003; Atay-Kayis and Massam, 2005;

Carvalho et al., 2007; Dobra et al., 2011; Green and Thomas, 2013; Lenkoski, 2013;

Mohammadi and Wit, 2015, and others) but these strategies still rely on expensive

local exploration moves, often involving trans-dimensional proposals in the graph

space and/or approximations of intractable normalizing constants, hence remaining

computationally infeasible beyond only a few tens of dimensions (Jones et al., 2005).

Bayesian methods that directly penalize ⌦, thereby avoiding to have to specify a

separate prior for the underlying graph, have started to get some attention but the

literature remains sparse. Yoshida and West (2010) proposed a factor model with

complex constraints enforcing identical sparsity patterns in the covariance and preci-

sion matrices which may be restrictive in practice while also having scalability issues.

Banerjee and Ghosal (2015) studied spike and slab type priors (Ishwaran and Rao,

2005) to shrink irrelevant o↵-diagonals to zero. For point mass mixture priors, MCMC

based model space exploration can generally be daunting and may lead to slow mix-

ing and convergence even in simple mean and linear regression problems. Continuous

shrinkage priors (Polson and Scott, 2010) that allow fast and e�cient posterior explo-

ration have also been adapted for precision matrices. Wang (2012); Khondker et al.

(2013) and Li et al. (2019a) designed block Gibbs samplers that allow updating entire
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columns of ⌦ at once. Mohammadi et al. (2021) proposed an approximated sampler

that can scale up to a few hundreds but the problem remains infeasible for modern

applications with many thousands of nodes. More recent developments along these

lines (Gan et al., 2019; Li et al., 2019b; Deshpande et al., 2019) have focused on fast

deterministic Expectation-Maximization (EM) algorithms instead, which scale well

to problems with a few hundred dimensional nodes but only estimate the posterior

mode (MAP) and not the full posterior. Ksheera Sagar et al. (2021) studied both

MCMC and MAP estimation for element-wise horseshoe like priors on the precision

matrix and studied their convergence properties. The approach, however, su↵ers from

similar scalability issues. Also, in many of these approaches (Friedman et al., 2008;

Peng et al., 2009), the estimated ⌦ is not guaranteed to be positive definite, requiring

post-hoc analysis to fix the estimate.

Owing to the lack of computationally tractable hierarchical structures, in high-

dimensions, posterior explorations in existing Bayesian precision matrix and graph

estimation methods thus still remain prohibitively expensive if not entirely impossible.

With the few exceptions, existing Bayesian approaches also do not come with rigorous

theoretical guarantees.

Our Proposed Precision Factor Model: In contrast to covariance matrices, there

are currently no flexible LRD decomposition methods that admit easily tractable la-

tent variable representations for precision matrices, posing significant methodological

and computational challenges, especially for MCMC based Bayesian inference.

In this article, we derive a factor analytic framework building on a representation

for Gaussian distributions with an LRD decomposed precision matrix ⌦ = ⇤⇤T+�

for some d⇥q order matrix⇤ and some diagonal matrix� (Bhattacharya et al., 2016).

The representation is immediately useful in facilitating e�cient posterior simulation
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in Bayesian inference of ⌦ and easily scales to problems with dimensions d far beyond

the limits of the current state-of-the-art.

Since all positive definite matrices admit LRD representations (q = 0 and q = d

being the two extremes), the proposed approach imposes no restrictive assumptions

on the precision matrix or the underlying graph. Additionally, we discuss a construc-

tive approach to find an LRD representation of arbitrary sparse ⌦. In simulation

examples, we show that q ⌧ d often su�ces to produce good approximations of ⌦

even when they do not exactly admit an LRD for such q. Conversely, since the repre-

sentation always produces a positive definite matrix, unlike many existing procedures

such as Meinshausen and Bühlmann (2006); Friedman et al. (2008); Gan et al. (2019),

we obtain positive definite estimates simply by design.

As the o↵-diagonals elements of ⌦ are contributed entirely by ⇤⇤T, a sparse ⇤

is expected to produce a sparse ⌦ (see Figure 3 and Section 2.2.2). A suitably cho-

sen penalty on ⇤ therefore allows to flexibly adapt its non-zero elements such that

insignificant o↵-diagonals of ⌦ are shrunk towards zero. The strategy has been suc-

cessfully employed in high-dimensional sparse covariance matrix estimation literature

in both Bayesian (Pati et al., 2014) and frequentist paradigms (Daniele et al., 2019).

In this article, we adapt the Dirichlet-Laplace shrinkage priors (Bhattacharya

et al., 2015) on ⇤ for their theoretical and computational tractability. As an artifact

of Bayesian methods with continuous shrinkage priors, exact zeroes do not appear in

the posterior samples. Thus, we address the problem of non-zero o↵-diagonal/edge

selection from the posterior MCMC samples through a novel multiple hypothesis

testing approach that allows the posterior false edge discovery rate (FDR) (Chandra

and Bhattacharya, 2019) to be controlled at any desired level. This is another salient

feature of our proposed method that properly accommodates posterior uncertainty in
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reporting a point estimate for the graph.

With our model and prior specifications, we establish near minimax-optimal con-

traction rates of the posterior around the true ⌦ under mild assumptions when the

number of nodes increases exponentially with the sample size. We evaluate the pro-

posed method’s finite sample e�cacy through simulation experiments where it either

outperforms or is competitive with previously existing methods in moderately high-

dimensional problems while also scaling to dimensions far beyond the reach of many

of those methods. We illustrate our method’s practical utility in real data sets from

two di↵erent application domains.

Our Key Contributions: Overall, our main contributions to the literature in-

clude (a) proposing a likelihood based approach built on a low-rank and diagonal

decomposition of the precision matrix, (b) build on a latent factor representation for

such decomposition that provides new interpretations for such models, (c) design-

ing a Gibbs sampling algorithm that exploits this latent factor representation and

scales very well to high-dimensional problems, (d) adapting shrinkage priors for the

low-rank component that further makes the method applicable to high-dimensional

small-sample-size sparse settings, (e) developing a novel FDR control procedure for

graph selection from the posterior samples of the precision matrix, and (f) establishing

rigorous asymptotic properties of the posterior of the proposed approach.

Outline of the Article: The rest of this article is organized as follows. Section

2 details our matrix decomposition based model. Section 2.1 discusses our novel

factor analytic representation; Section 2.2 discusses how a low-rank approach can

be used to learn arbitrary sparse precision matrices; Section 2.3 discusses the priors;

Section 2.4 describes the posterior sampling algorithm; Section 2.5 presents our graph

selection procedure via FDR control; Section 2.6 discusses the posterior’s asymptotic
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properties. Section 3 summarizes the results of simulation experiments. Section 4

presents the results for two real data sets. Section 5 contains concluding remarks.

2 Gaussian Precision Factor Models

We consider a random sample of n observations assumed to be independently and

identically distributed (iid) d-dimensional random vectors following a multivariate

Normal distribution with mean zero and precision matrix ⌦ as

yi

iid⇠ Nd(0,⌦
�1), i = 1, . . . , n, (1)

where yi = (yi,1, . . . , yi,d)T. The primary goal is to estimate ⌦, especially identifying

its sparsity pattern that characterizes conditional independence relationships between

di↵erent components of y.

To this end, we consider an LRD decomposition of ⌦ as

⌦ = ⇤⇤T +�, (2)

where ⇤d⇥q = ((�r,c)) and � = diag(�21, . . . , �
2
d
). Factorization (2) is completely

flexible in the sense that a matrix is positive definite if and only if it admits such

a representation for some 0  q  d. Any precision matrix ⌦ can therefore be

written as (2) for a su�ciently large value of q. For most practical cases, values of

q ⌧ d su�ce to approximate ⌦ well, resulting in a huge reduction in dimensions and

allowing massive scalability in computation. In model (2), ⇤ is not strictly identifiable

since, for example, ⇤⇤T = ⇤QQT⇤T for any orthogonal matrix Q. Inference on ⌦

being the primary interest, individual identifiability or interpretation of the model

parameters in (2) is, however, not required.

2.1 Factor Analytic Representation

One main advantage of modeling covariance matrices via LRD decompositions is
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the existence of a latent factor representation that greatly facilitates computation.

Tractable latent factor representations are, however, not known to exist for precision

matrices, presenting major barriers against e�cient inference. Recently Bhattacharya

et al. (2016) introduced a representation that greatly facilitates fast sampling from

multivariate Gaussian distributions with known precision matrices with an LRD struc-

ture. We show that, by exploiting this representation in a di↵erent way, a latent factor

model can in fact be obtained for LRD decomposed precision matrices as well that

allows e�cient posterior inference of its unknown components in much the same way

as classical factor models facilitate computation for unknown LRD decomposed co-

variance matrices. The representation, formalized in Proposition 1 below and referred

to in this article as the ‘precision factor model’, also provides novel insights into the

very construction of Gaussian graphical models.

Proposition 1. The model yi

iid⇠ Nd(0,⌦
�1), i = 1, . . . , n, with ⌦ = ⇤⇤T+�, where

⇤ is d⇥ q with q  d and � = diag(�21, . . . , �
2
d
), admits the equivalent representation

yi = ���1⇤(Iq +⇤T��1⇤)�1ui + vi, (3)

where

2

4ui

vi

3

5 iid⇠ Nq+d

0

@0,

2

4Iq +⇤T��1⇤ ⇤T��1

��1⇤ ��1

3

5

1

A . (4)

The proposition follows straightforwardly using Sherman-Woodbury identity for

the covariance matrix ⌃ = ⌦�1 given by

⌦�1 = (⇤⇤T +�)�1 = ��1 ���1⇤(Iq +⇤T��1⇤)�1⇤T��1.

Note that cov(yi,ui) = 0 in (3). A reverse-engineered construction that is par-

ticularly useful for posterior simulation in Bayesian settings utilizes this fact and

generates ui

iid⇠ Nq(0,P) with P = (Iq +⇤T��1⇤) independent of y1:n first and then

sets vi = ��1⇤P�1ui + yi. Clearly then, vi

iid⇠ Nd(0,�
�1). Also,
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2

4ui

yi

3

5 iid⇠ Nq+d

0

@0,

2

4P 0

0 ⌦�1

3

5

1

A then implies

2

4ui

vi

3

5 iid⇠ Nq+d

0

@0,

2

4 P ⇤T��1

��1⇤ ��1

3

5

1

A ,

as in (4) in Proposition 1. Importantly, we can also write

ui = ⇤Tvi + "i, where "i
iid⇠ Nq(0, Iq). (5)

Although mathematically simple, Proposition 1 has far-reaching implications. An

e�cient and highly scalable Gibbs sampler follows immediately from the construction

by first generating the latent vectors ui,vi given ⇤,� and yi as described above, and

then updating the rows of ⇤ given u1:n and v1:n using (5).

Figure 1: Graphical view of the precision factor model: Plots of observed yi, latent
wi = ��1⇤P�1ui and latent vi = wi + yi for a model with dimension d = 3 and
rank q = 2 from di↵erent viewing angles. The d-dimensional vectors w are supported
on a lower q-dimensional plane. Also, u and y are independent of each other. Since
w are linear transformations of u, they are also independent of y. In the plots, w
and the average values of y can be seen to be living on planes that are orthogonal to
each other. The vectors v are more scattered than y and, in obtaining the variance-
covariance of y = v �w, the larger variances of v are perfectly compensated by the
negative covariances between v and w.

Continuing the thread at the beginning of this subsection, parallels can be drawn

with latent factor models for covariance matrices where a similar decomposition ⌃ =

e⇤e⇤
T
+ e� arises from the model yi = e⇤eui + evi with independent latent components

eui and evi, where the latent factors eui

iid⇠ Nq(0, Iq), with q typically ⌧ d, and the
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errors evi

iid⇠ Nd(0, e�). The covariance between the components of yi and a part of the

variance of yi are thus explained by (a) the variance-covariance of the latent factors

eui (b) while the remaining unexplained variance is attributed to the errors evi.

In contrast, for the precision factor model depicted in Figure 1, we have from

model (3) that yi = ���1⇤P�1ui + vi with dependent latent components ui and

vi, where the latent factors ui

iid⇠ Nq(0,P), with q expected again to be ⌧ d, and the

‘errors’ vi

iid⇠ Nd(0,�
�1). The variance-covariance of yi is thus explained by (a) the

variance-covariance of the latent factors ui, (b) the variance of the ‘errors’ vi, and (c)

the covariance between ui and vi.

If independence between the variance contributing components is desired, an al-

ternative view vi = ��1⇤P�1ui+yi of model (3) is to see the latent vi’s be composed

of independent components ui and yi, where the latent factors ui

iid⇠ Nq(0,P), with

q ⌧ d as before, and the ‘errors’ yi

iid⇠ Nd(0,⌃). The vi’s can thus be represented in

an orthogonal decomposition with components wi = ��1⇤P�1ui and yi. The larger

variances ��1 of vi are now being explained by (a) the variance-covariance of the

latent factors ui and (b) the variance-covariance of the ‘errors’ yi, the o↵-diagonal

covariance terms of these components perfectly cancelling each other to produce the

diagonal matrix ��1.

In yet another view based on equation (5), the vectors vi can instead be interpreted

as independent heterogeneous latent factors and ui the associated response vectors

subject to white noises "i. Contrary to the classical factor model, in this view, we

have the factor dimension d � the response dimension q. Clearly, ⌦�1 is now the

conditional variance-covariance of vi given ui, that is, given the response variables

ui, we can study the behavior of the latent factors vi by examining ⌦.

Although the precision factor model described here has immediate practical im-
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plications for Bayesian inference of Gaussian precision matrices considered in this

article, the representation itself is not specific to the chosen inferential paradigm but

is a mathematical identity that may be of broad general interest in understanding the

basic construction of such models.

2.2 Low-rank Modeling of Sparse Precision Matrices

In this section we discuss how a sparse precision matrix can indeed admit an LRD

decomposition. Then we discuss our strategy of inducing sparsity in high-dimensional

precision matrix estimation problems.

2.2.1 LRD Decomposition of Sparse Precision Matrices

We first discuss how a sparse ⌦ can admit an LRD decomposition. To get some

insights, consider the stylized example from Figure 2 where d = 5 and ⌦ has es = 3

non-zero o↵-diagonals. We recall the factor analytic representation of our model from

Section 2.1 where we write u = ⇤Tv + " in equation (5) and interpret ⌦ = ((!j,h))

as the precision matrix of v conditionally on u. Under this representation, !j,h 6= 0

if and only if �T
j
�h 6= 0, that is, if vj and vh are connected to the same u`, 1  `  q.

Figure 2: Constructing an LRD decomposition of a sparse ⌦5⇥5: For each non-zero
!j,h, we connect vj and vh to u`. Notably, y1 is marginally independent to every other
variable and therefore we do not connect v1 to any u`.

Likewise, we can construct a sparse ⇤ as follows
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2
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3

7775
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"

,

subject to �2,1�5,1 = !2,5, �3,2�4,2 = !3,4, �4,3�5,3 = !4,5 and �2
j
+ �T

j
�j = !j,j for

all j = 1, . . . , d. Although this construction is not unique, we see that a sparse LRD

decomposition indeed exists for our concerned ⌦.

We can generalize this argument for arbitrary sparse ⌦ with es number of non-zero

o↵-diagonals. We start with a d⇥q order ⇤ with all entries equal to zero. Let E be the

set of edges in the conditional dependence graph. Note that each edge corresponds

to a partial correlation between Yj and Yh, 1  j, h  d. For an edge !j,h 2 E , we

set �j,`1 and �h,`1 to be non-zero for some `1 so that �T
j
�h 6= 0. For the next edge

!j0,h0 2 E , suppose !j,j0 = !j,h0 = !h,h0 = 0. Then we set �j,`2 and �h,`2 to be non-zero

for some `2 6= `1 so that �T
j0�h0 6= 0 but �T

j
�j0 = �T

j
�h0 = �T

h
�h0 = 0, and so on.

Note that in this construction (which need not be unique), for each edge !j,j0 6= 0, we

need to connect vj and vj0 to a u`. Therefore, we do not need q to be larger than es.

The existence of such a ⇤ and � is subject to the solution of the following system of

quadratic equations on {vec(⇤), �1:d} with dq + d unknowns and d+ es equations

�T
j
�h = !j,h for all !j,h 2 E , �2

j
+ �T

j
�j = !j,j for all j = 1, . . . , d.

In practical high-dimensional applications, even though d is large, the conditional

dependence graph is often sparse, that is, es ⌧ d. Barvinok and Rudelson (2022) noted

that when the number of unknown variables are considerably larger than the number

of equations, a (not necessarily unique) solution to quadratic system of equations

exists under very generic conditions.
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2.2.2 Inducing Sparsity in ⌦ via Sparsity in ⇤

⇥ =
Figure 3: Sparse ⇤ producing a sparse ⇤⇤T. Here, the gray cells represent exact
zeros, and purple to yellow represent smaller (negative) to larger (positive) values.

The o↵-diagonals elements of⌦ = ⇤⇤T+� are contributed entirely by⇤⇤T. This

allows to achieve sparsity in ⌦ by inducing sparsity in ⇤. Following the discussion

in Section 2.2.1, a carefully designed data-adaptive penalty on ⇤ (e.g., a shrinkage

prior on ⇤ that su�ciently increases the probability of obtaining a sparse ⌦) would

induce sparsity in ⇤ in such a (not necessarily unique) way that the sparsity patterns

in ⌦ are also accurately recovered. In this section, we show that by inducing sparsity

in ⇤d⇥q = ((�j,h)), sparsity is also induced in ⌦d⇥d = ((!j,j0)). We begin with the

spike-and-slab prior (Ishwaran and Rao, 2005) that allows exact zeros via a spike at

zero and large nonzero elements via a continuous slab g(·) as

�j,h | ⇡, ✓j,h ⇠ ⇡ {0}(·) + (1� ⇡)g(·), ⇡ ⇠ Beta(a⇡, b⇡),

where ⇡ is the prior probability of observing a zero for �j,h. For such priors ⇧(!j,j0 =

0 | ⇡) can be analytically reduced to a simple form that helps gain insights into how

inducing sparsity in ⇤ can induce sparsity in ⌦ with high probability. Specifically,

since !j,j0 = �j�
T
j0 , where �j is the jth row of ⇤, !j,j0 = 0 can only happen when the

rth entries of �j and �j0 are both not from the slab distribution g() for all r = 1, . . . , q.

Therefore, we have

⇧(!j,j0 = 0|⇡) =
P

q

r=0

��
q

r

�
⇡r(1� ⇡)q�r

 
⇥ ⇡q�r = ⇡q(2� ⇡)q.

13



The behavior of ⇧(!j,j0 = 0 | ⇡) for varying values of ⇡ and q are shown in Figure

4. It can be seen that by controlling ⇡, it is possible to induce any desired level of

sparsity in ⌦. The hierarchical Beta prior on ⇡ allows for data-adaptive learning and

shrink the elements of ⌦ accordingly (Scott and Berger, 2010).

Figure 4: ⇡ versus ⇧(!j,j0 = 0 | ⇡) for di↵erent values of q. Clearly, by controlling
⇡, it is possible to induce desired level of sparsity in ⌦. A hierarchical prior on ⇡
adaptively learns from the data and shrinks the elements of ⌦ accordingly.

Implementation of spike-and-slab type mixture priors is computationally chal-

lenging. Thus, continuous global-local shrinkage priors have gained popularity in the

Bayesian sparse estimation literature as they often greatly simplify posterior compu-

tation (Polson and Scott, 2010) while retaining almost similar statistical properties

of the classical spike-and-slab prior. In particular, we use the Dirichlet-Laplace (DL,

Bhattacharya et al., 2015) prior that has equivalent asymptotic properties with re-

spect to the spike-and-slab in a similar context (Pati et al., 2014, Theorem 5.1) while

being amenable to scalable posterior computation. The results for the spike-and-slab

discussed here provides the intuitions on how continuous shrinkage priors like the DL

induce sparsity in ⌦ by inducing shrinkage on ⇤.
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2.2.3 Advantages of the LRD Decomposition

For high-dimensional sparse covariance matrix estimation, this LRD decomposition

strategy is extensively used in both Bayesian (Pati et al., 2014) and frequentist

paradigms (Daniele et al., 2019) where the associated latent factor formulation al-

lows scalable computation in big data problems (Bhattacharya and Dunson, 2011;

Fan et al., 2011; Sabnis et al., 2016; Fan et al., 2018; Kastner, 2019, and others).

Penalizing ⇤ is thus a sensible approach to induce sparsity in ⌦. It also comes with

many practical advantages described below.

Cholesky factorization based covariance and precision matrix estimation methods

also use a similar strategy and penalize the lower triangular matrix L to induce spar-

sity in ⌦ = LLT (Dallakyan and Pourahmadi, 2020). However, for undirected graphs,

the estimates can vastly di↵er depending on the ordering of the variables (Kang and

Deng, 2020). In contrast, our proposed LRD decomposition based approach with a

penalty on ⇤ is invariant to the ordering of the variables.

In most existing approaches that directly penalize ⌦, frequentist or Bayesian,

ensuring the positive definiteness of ⌦ is also non-trivial, particularly in high dimen-

sional settings. In frequentist regimes, for example, the graphical lasso (Friedman

et al., 2008) does not guarantee positive definiteness of ⌦ (Mazumder and Hastie,

2012); similar behavior has also been observed for neighborhood selection methods

(Meinshausen and Bühlmann, 2006; Peng et al., 2009) and post-hoc treatments are

required for positive definiteness. In Bayesian MAP approaches such as Gan et al.

(2019), special care is needed in designing the optimization algorithm to ensure pos-

itive definiteness. For many existing Bayesian methods relying on MCMC (Wang,

2012; Khondker et al., 2013; Li et al., 2019a), constrained update of ⌦ in each step is

di�cult and expensive. Applications of these methods thus remain fairly limited to
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small to moderate dimensional problems. In contrast, the LRD formulation is always

guaranteed to produce a positive definite estimate by construction.

As also discussed in the Introduction, posterior exploration is extremely chal-

lenging in Bayesian approaches that penalize the underlying the dense graphs first

and then assign a prior on ⌦ conditional on the graph, often requiring restrictive

assumptions on the graph (Dawid and Lauritzen, 1993) while still remaining compu-

tationally infeasible beyond only a few tens of dimensions (Jones et al., 2005). Our

proposed approach on the other hand, works directly in the ⌦ space, albeit via the

LRD decomposition, avoiding having to define separate complex priors on the graph

space thereby also avoiding restrictive assumptions on the graph while also achieving

scalability far beyond such approaches via its latent factor representation.

2.3 Prior Specification

To accommodate high-dimensional data, with d � n, it is crucial to reduce the

e↵ective number of parameters in the d ⇥ q loadings matrix ⇤. A wide variety of

sparsity inducing shrinkage priors for ⇤ can be considered for this purpose. In this

article, we employ a two-parameter generalization of the original Dirichlet-Laplace

(DL) prior from Bhattacharya et al. (2015) that allows more flexible tail behavior.

On a d-dimensional vector ✓, our DL prior with parameters a and b, denoted by

DL(a, b), can be specified in the following hierarchical manner

✓j| ,�, ⌧
ind⇠ N(0, j�

2
j
⌧ 2),  j

iid⇠ Exp(1/2), � ⇠ Dir(a, . . . , a), ⌧ ⇠ Ga(da, b),

where ✓j is the jth element of ✓, � is a vector of same length as ✓, Exp(a) is an

exponential distribution with mean 1/a, Dir(a1, . . . , ad) is the d-dimensional Dirichlet

distribution and Ga(a, b) is the gamma distribution with mean a/b and variance a/b2.

The original DL prior is a special case with b = 1/2. We let vec(⇤) ⇠ DL(a, b).
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The column dimension q of ⇤ will almost always be unknown. Assigning a prior

on q and implementing a reversible jump MCMC (Green, 1995) type algorithm can be

ine�cient and expensive. In this paper, we adopt an empirical Bayes type approach

to set q to a large value determined from the data and let the prior shrink the extra

columns to zeros, substantially simplifying the computation. The strategy is discussed

in greater details later in this section. We show in Section 2.6 that this approach is

su�cient for the recovery of true ⌦ under very mild conditions.

When d � n, d distinct �2
j
’s also result in over-parametrization. To reduce the

number of parameters, we assume the �2
j
’s to comprise a small number of unique

values. To achieve this in a data adaptive way, we use a Dirichlet process (DP) prior

(Ferguson, 1973) on the �2
j
’s as

�2
j
|G iid⇠ G, G|↵ ⇠ DP(↵, G0) with G0 = Ga(a�, b�), ↵ ⇠ Ga(a↵, b↵), (6)

where ↵ is the concentration parameter and G0 is the base measure. Samples drawn

from a DP are almost surely discrete, inducing a clustering of the �2
j
’s and thus

reducing the dimension. Integrating out G, model (6) leads to a recursive Polya

urn scheme illustrative of the clustering mechanism while also being convenient for

posterior computation (Escobar and West, 1995; Neal, 2000). Specifically, we have

�2
j+1|↵, �21:j /

Pkj

`=1 dj,` (�2
j+1 = �⇤2

`
) + ↵G0(�2j+1),

where {�⇤21 , . . . , �⇤2
kj
} denote the unique values among �21:j and dj,r =

P
j

`=1 (c` = r)

denote their multiplicities, c1, . . . , cd being the latent variables such that cj = r if �2
j

belongs to the rth cluster.

Choice of Hyperparameters: To specify the value of the latent dimension q, we

adopt a principal component analysis (PCA) based empirical Bayes type approach

(Bai and Ng, 2008). First, we perform a sparse PCA (Baglama and Reichel, 2005)

on the data matrix y1:n and compute the reciprocals of the singular values. We set q
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to be the number of inverse singular values in decreasing order that adds up to 95%

of the total sum. We set a = 0.5 and b = 2.0 in all our simulation studies and real

data applications. For the prior on the residual variances and the DP concentration

parameter, we set a� = b� = a↵ = b↵ = 0.1.

2.4 Posterior Computation

The latent factor construction discussed in Section 2.1 leads to a novel, elegant Gibbs

sampler that is operationally simple and free of any tuning parameter. There is

also no need for additional constraints to ensure positive definiteness which used

to be a major setback for MCMC based methods for precision matrix estimation.

These features allow the sampler to be applied to dimensions far beyond the reach

of the current state-of-the-art. Scalable posterior computation in LRD decomposed

covariance matrix models is pretty standard in the literature but remained a major

barrier for precision matrix models. The Gibbs sampler described here addresses this

significant gap in the literature.

Starting with some initial values of ⇤,� and other parameters, our sampler it-

erates between the following steps. Other parameters and hyperparameters being

implicitly understood in the conditioning, Step 1 defines a transition for u,v|y,⇤,�;

Step 2 for ⇤|u,v (which is identical to ⇤|y,u,v,�); Step 3 for �|v (which is identi-

cal to �|y,u,v,⇤); and Steps 4 and 5 are standard updates for the parameters and

hyper-parameters of the DL and DP priors, respectively.

Step 1 Generate u1, . . . ,un

iid⇠ Nq(0,P) with P = (Iq + ⇤T��1⇤) independently

from y1:n and let vi = yi +��1⇤P�1ui.

Step 2 We have ui =
P

d

r=1 �rvr,i + "i, where �r = (�r,1, . . . ,�r,q) is the rth row of

⇤ and vi = (v1,i, . . . , vd,i)T. Define u(j)
i

= ui �
P

r 6=j
�rvr,i. Then u(j)

i
= �jvj,i + "i.
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Conditioned on u(j)
i
, vi and the associated hyper-parameters, �j’s can be updated

sequentially for j = 1, . . . , d from the distribution

�j ⇠ Nq{(D�1
j

+
��v(j)

��2Iq)�1wj, (D
�1
j

+
��v(j)

��2Iq)�1},

whereDj = ⌧ 2diag
�
 j,1�2

j,1, . . . , j,q�2
j,q

�
, v(j) = (vj,1, . . . , vj,n)T andwj =

P
n

i=1 vj,iu
(j)
i
.

Step 3 Sample the �2
j
’s through the following steps.

(i) Let dr,�j =
P

6̀=j
(c` = r) and v(�j) to be the collection of all v(`)’s, ` = 1, . . . , d,

excluding v(j). For j = 1, . . . , d, sample the cluster indicators sequentially from

the distribution

p(cj = r) /

8
><

>:

dr,�j

R
N(v(j); 0, �⇤�2

r
)dG0

�
�⇤2
r
|v(�j)

�
for r 2 {c`}`6=j;

↵
R
N(v(j); 0, �⇤�2

r
)dG0(�⇤2r ) for r 6= c` for all ` 6= j.

The above integrals are analytically available and involves the density of a mul-

tivariate central Student’s t-distribution for G0 = Ga(a�, b�).

(ii) Let the unique values in c1:d be {1, . . . , k}. For r = 1, . . . , k, set dr =

P
j

(cj = r) and Vr =
P

j:cj=r

��v(j)
��2, and independently sample �⇤2

r
⇠

Ga (a� + ndr/2, b� +Vr/2).

(iii) Set �2
j
= �⇤2

cj
.

Step 4 Sample the hyper-parameters in the priors on ⇤ through the following steps.

(i) For j = 1, . . . , d and h = 1, . . . q sample e j,h independently from an inverse-

Gaussian distribution iG (⌧�j,h/|�j,h|, 1) and set  j,h = 1/ e j,h.

(ii) Sample the full conditional posterior distribution of ⌧ from a generalized inverse

Gaussian giG
n
dq(a� 1), 2b, 2

P
j,h

|�j,h|/�j,h

o
distribution.

(iii) Draw Tj,h independently with Tj,h ⇠ giG(a � 1, 1, 2|�j,h|) and set �j,h = Tj,h/T

with T =
P

j,h
Tj,h.
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Step 5 Following West (1992), first generate ' ⇠ Beta(↵+1, d), evaluate ⇡/(1�⇡) =

(a↵ + k � 1)/{d(b↵ � log')} and then generate

↵|', k ⇠

8
><

>:

Ga(↵ + k, b↵ � log') with probability ⇡,

Ga(↵ + k � 1, b↵ � log') with probability 1� ⇡.

Remark 1. Note that the main strategies underlying the algorithm above are not spe-

cific to the DL prior considered here. We are free to choose any other shrinkage prior

that admits a conditionally Gaussian hierarchical representation for the entries of ⇤

and modify Steps 2 and 4 accordingly. This is still a very large class of priors (Polson

and Scott, 2010), including, e.g., horseshoe (Carvalho et al., 2009), multiplicative

gamma (Bhattacharya and Dunson, 2011), etc. For non-conjugate priors, Steps 3

and 4 can also be modified with appropriate Metropolis-Hastings schemes. The other

steps remain the same, making it a very broadly adaptable algorithm. An MCMC

scheme for generic priors is outlined in Section S.1 of the supplementary materials.

Remark 2. In the above sampler, the conditional posterior covariance matrix of �j

is diagonal which allows us to update it with linear complexity. Thus, in each MCMC

iteration, we only need a single small dimensional q ⇥ q order matrix factorization

operation in Step 1 to simulate u1:n. While high-dimensional matrix factorization

operations are usally numerically very expensive, we are able to completely avoid

that, facilitating substantial scalability.

Remark 3. All but Steps 1 and 3 can be divided into parallel operations in a straight-

forward manner. Additionally, in recent versions of many popular statistical software,

including R, matrix operations are inherently parallelized and hence Step 1 is also

highly scalable in any decent computing system.

We implemented the Gibbs sampler in C++ and ported to R using the Rcpp package

(Eddelbuettel and Francois, 2011). In each case considered in this article, synthetic

20



or real, we ran 5, 500 iterations which takes approximately 37 minutes on a system

with an i9-10900K CPU and 64GB memory for a d = 1, 000 dimensional problem

with sample size n = 1, 000. The initial 1, 250 samples were discarded as burn-in

and the remaining samples were thinned by an interval of 5. In all our experiments,

convergence was swift and mixing was excellent. A comparison of the runtimes of our

method and a few other existing methods is presented in Figure 5(c) below.

2.5 Graph Selection

As discussed in Section 2.2.2, the o↵-diagonals of ⌦ are penalized by inducing shrink-

age on ⇤. The theoretical results in Section 2.6 and numerical experiments in Section

3 show that, with our carefully constructed data adaptive shrinkage priors on ⇤, the

inferred sparsity patterns in ⇤ are such that a sparse ⌦ is also accurately recovered

(see Figures S.1 and S.3(a) for estimates of sparse precision matrices obtained by

our method). Exact zero estimates are, however, not obtained even for the insignif-

icant o↵-diagonal elements of ⌦ for finite samples. This is an artifact of continuous

shrinkage priors, since the probabilities of exact zeroes are almost surely null for finite

samples although the posterior probabilities of arbitrary sets around zeroes are very

high.

We address the issue of non-zero edge selection through a novel multiple hypothesis

testing based approach. For i = 1, . . . , d, j = i+1, . . . , d and some ✏ > 0, we consider

testing
H0,i,j : |⇢i,j|  ✏ versus H1,i,j : |⇢i,j| > ✏, (7)

where ⇢i,j is the (i, j)th element of diag(⌦)�1/2 ⌦ diag(⌦)�1/2, the partial correlation

matrix derived from ⌦. Here we follow Berger (1985, Chapter 4, pp. 148) in replacing

the point nulls H0,i,j : ⇢i,j = 0 by reasonable interval nulls H0,i,j : |⇢i,j|  ✏. If H0,i,j is

rejected in favor of H1,i,j, we conclude that there is an edge between nodes i and j.
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We utilize posterior uncertainty to resolve these testing problems. Specifically, we

define di,j = {⇧(H1,i,j|y1:n) > �} as the decision rule which controls the posterior

FDR defined as

FDRy =

P
i,j
di,j⇧(H0,i,j|y1:n)

max(
P

i,j
di,j, 1)

,

at the level 1 � �. Importantly, the decision rule also incurs the lowest false non-

discovery rate (Müller et al., 2004). For a fixed �, the FDRy depends on the choice

of ✏. To obtain the optimal ✏, we compute the FDRy’s on a grid of ✏ values in

(0, 1) and then set ✏ = inf✏0 FDRy(✏0)  1 � �. This way, we have the FDR, that

is, a quantified statistical uncertainty associated with the estimated graph. In all

simulation experiments and real data applications in this paper, we control FDRy at

the 0.10 level of significance.

Remark 4. Although this FDR control procedure is widely applicable, e�cient poste-

rior exploration is crucial for this step and hence may not be achievable or scalable to

high dimensional problems when adapted to previously existing Bayesian approaches.

2.6 Posterior Concentration

Preliminaries and Notation: We let kAk
F
and kAk2 denote the Frobenius and

spectral norms of a matrix A, respectively; s2min(A) be the smallest singular value of

ATA; and �1(A), . . . ,�d(A) be the eigenvalues of A in decreasing order when A is

a d-dimensional diagonalizable matrix. Also, an = o(bn) and an = O(bn) imply that

lim |an/bn| = 0 and lim sup |an/bn| < 1, respectively. Throughout, C,C 0 and eC are

used to denote positive constants whose values might change from one line to the

next but are independent from everything else. A d-dimensional vector ✓ is said to

be s-sparse if only s among the d elements of ✓ are non-zero. We denote the set of

all s-sparse vectors in Rd by `0 [s, d].
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We allow the model parameters to increase in dimensions with sample size n,

indicated by associating them with the su�x n. We let ⇧n(·) denote the prior and

⇧n(·|y1:n) the corresponding posterior given data y1:n, respectively.

Assumptions on the Data Generating Process: We assume that yi

iid⇠ Ndn(0,⌦
�1
0n ), i =

1, . . . , n. In Section 2.2.1 we discussed how an LRD decomposition of a sparse ⌦0n

can be constructed. Hence, we assume that ⌦0n admits the factor representation

⌦0n = ⇤0n⇤
T
0n + �20nIdn , where ⇤0n is a dn ⇥ q0n order sparse matrix and �20n > 0 is

a scalar. To simplify the theoretical analysis, we deviate here slightly from the pro-

posed model and assume that the �2’s all come from a single cluster with the common

value �20n. We show that the precision factor model with an appropriate DL prior can

recover ⌦0n in ultra high-dimensional settings. As discussed in Section 2.3, we fix qn

to a liberal large value and let the prior shrink the extra columns to zeros. We show

that with appropriate sparsity conditions, the posterior of the precision factor model

with the DL prior then concentrates around ⌦0n, even when the data dimension dn

increases in exponential order with n. The requisite conditions are stated below.

(C1) Let {q0n}1n=1 and {sn}1n=1 be increasing sequences of positive integers such that

s2
n
= O(log dn), q0n = O{sn log(dnq0n)} and snq0n log(dnq0n) = o(n).

(C2) ⇤0n is a dn ⇥ q0n order full rank matrix such that each column of ⇤0n belongs

to `0 [sn, dn], lim inf smin (⇤0n) > 0 and k⇤0nk2 = O(1).

(C3) The scalar �20n lies in some compact set [�2min, �
2
max].

Specifics of the Postulated Precision Factor Model: Let {qn}1n=1 be an in-

creasing sequence of positive integers such that q0n  qn = o(n) and snq0n log(dnqn) =

o(n). We assume that y1:n
iid⇠ Ndn(0,⌦

�1
n
), where ⌦n = ⇤n⇤

T
n
+ �2

n
Idn and ⇤n is a
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dn ⇥ qn matrix. We consider a DL(an, bn) prior on vec(⇤n) with an = 1/dnqn and

bn = log3/2(dnqn). We assume a gamma prior on �2
n
⇠ Ga(a�, b�) independent of ⇤n

and truncated to the compact set [�2min, �
2
max].

Condition (C1) specifies the requisite sparsity conditions. It also imposes a con-

dition on dn. Specifically, it can be seen that dn can be of exponential order of n,

allowing the recovery of massive precision matrices based on relatively small sam-

ple sizes. Note that, subject to appropriate orthogonal transformation, marginally

var(yj) = 1/
�
�j
�
⇤T

0n⇤0n

�
+ �20n

 
. Conditions (C2) and (C3) ensure that these vari-

ances lie in a compact set. The prior specification provides a set of su�cient conditions

on the class of proposed models. The true number of latent factors q0n is also assumed

smaller than the number of latent factors qn in the postulated models.

We let P0n denote the class of precision matrices satisfying (C1)-(C3) and Pn de-

note the class of positive definite matrices parametrized by (qn, �2n,⇤n) in our preci-

sion factor model. Notably, P0n can also be parametrized by (q0n, �20n,⇤0n). However,

since q0n  qn, for a fixed qn, Pn may be overparametrized for P0n. In Theorem 1,

we show that with increasing sample size, the posterior distribution supported on Pn

still concentrates around the true ⌦0n from P0n. Using general results from Ghosal

and van der Vaart (2017), we establish a convergence rate in terms of the operator

norm. A rigorous proof is detailed in Section S.2 in the supplementary materials.

Theorem 1. For any ⌦0n 2 P0n, ✏n = (snq0n)4 log(dnqn)
p

q0nsn log(dnqn)/n and any

sequence Mn ! 1,

lim
n!1

E⌦0n
⇧n (k⌦n �⌦0nk2 > Mn✏n|y1:n) = 0.

In Section 2.2.1 we discussed a constructive way to find a sparse LRD decomposi-

tion of arbitrary sparse ⌦0n where the column dimension q0n of ⇤0n need not exceed

the number of non-zero o↵-diagonals of ⌦0n or edges in the conditional dependence
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graph. Theorem 1 implies that the precision matrix is recoverable if (C1) holds among

others. Note that (C1) implies q0n = o(n). Hence, ⌦0n can be learned from the data

using the precision factor model as long as the number of edges is bounded by the

sample size. Such assumptions are required to recover massive dimensional precision

matrices from relatively smaller amount of data (Meinshausen and Bühlmann, 2006;

Ksheera Sagar et al., 2021).

Remark 5. We derive a minimax lower bound of

p
sn log dn/n for the precision

matrix estimation problem in Theorem 4 in the supplementary materials when q0n 

qn = O(1) which is a special case of (C1). The rate in Theorem 1 is s4
n
log dn times

the lower bound. If we further let dn = O(nr) for some fixed positive integer r, the

rate attains the minimax lower bound up to a (log n)3 term.

Remark 6. An interesting implication of our theoretical results is the robustness with

respect to the choice of the latent dimension q under very mild conditions. For the

class of our postulated precision factor models, we err on the side of overestimating

q and let the DL prior shrink the extra factors to zero. The theoretical results imply

that this strategy is su�cient to recover ⌦0n e�ciently. The precise recovery rate,

however, naturally depends on the choice of qn, a key parameter that distinguishes the

class of postulated models from the class of true models (Shalizi, 2009). The closer

qn is to q0n, the smaller the space to search for the truth, and the better the rate.

3 Simulation Studies

In this section, we discuss the results of some synthetic numerical experiments. We

evaluate the performance of estimating the precision matrix ⌦ itself as well as the

underlying graph. We simulate data from three di↵erent cases - (i) a Gaussian au-
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toregressive (AR) process of order 2, (ii) a multivariate Gaussian distribution with

banded precision matrix, and (iii) a multivariate Gaussian distribution with randomly

generated arbitrarily structured sparse (RSM) precision matrix. In all these cases, we

take the mean vector to be zero. For plotting purposes in the RSM case, we assume

two nodes to have an edge between them if the absolute value of the associated partial

correlation exceeds 0.1 and refer to this as the ‘true’ graph. We perform experiments

for dimensions d = 50, 100, 200 and 1,000. For d  200 we take n = 100 and for

d = 1, 000 we take n = 1, 000. We plot the true precision matrices and the associated

true graphs for d = 50 in Figure S.1 in the supplementary materials and in Figure

6(a) here in the main paper. For d  200 and d = 1, 000 we consider 50 and 20

independent replications for each scenario, respectively.

We apply our precision factor (PF) model to recover the precision matrices, using

the posterior mean as our Bayesian point estimate. We compare it with the methods

Bayesian graphical model under shrinkage (Bagus, Gan et al., 2019), the graphical

Lasso (Glasso, Friedman et al., 2008) and the neighborhood selection by Meinshausen

and Bühlmann (M&B, 2006). We do not consider any previously existing Bayesian

posterior sampling based methods here as they do not scale well beyond only a few tens

of dimensions. We assess the comparative e�cacy of these methods using qualitative

graphical summaries as well as quantitative performance measures. For the proposed

PF method, the graphs are estimated following the FDR control procedure outlined

in Section 2.5. For Bagus, we follow the prescription in Section 4.3 of Gan et al.

(2019). For d = 1, 000 in the banded case, the codes for Bagus did not work and we

could not consider it as a competitor in that particular setup. For the other methods,

the non-zero entries in the estimated precision matrix are considered as edges.

We compute the Frobenius norm between the true and estimated precision corre-
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lation matrices. To assess the accuracy of the derived graphs, we compute specificity

= TN

TN+FP
and sensitivity = TP

TP+FN
, where TP (true positives), FP (false positives),

TN (true negatives) and FN (false negatives) are based on the detection of the edges

in the estimated graphs and comparing them with the corresponding true graphs. In

Figure 5, the average values of these criteria across the replications are plotted for the

competing methods. We also compare the execution times of the di↵erent methods.

From Figure 5, we see that, for banded precision matrices, the Frobenius norms

obtained by our proposed PF method are very similar to those produced by the

competitors. In the case of the arbitrarily structured precision matrix, however, the

PF method performs much better, especially in higher dimensions. Also, the PF

method yields much higher sensitivity in almost all the scenarios at the expense of

slightly smaller specificity in some cases. This is expected since we are allowing a

small margin of error by controlling the FDR at 0.10. Notably, the PF method is

much more powerful in detecting the true edges. The other methods seem to be quite

conservative in that regard, as seen in Figure 5(b). This explains the high Frobenius

norm produced by the PF method in the AR(2) case with d = 1, 000. The true

precision matrix being extremely sparse with only two o↵-diagonals being non-zero,

the conservative competitors are performing better in recovering the precision matrix

in this particular setup. We see in Figure 5(c) that the PF method is slower than M&B

and Glasso but is much faster than Bagus. Note however that, unlike the competitors,

we are exploring the full posterior, not just providing a point estimate. On a related

important note, since we are able to sample from the full posterior, unlike the other

methods, we are able to provide a natural way of quantifying posterior uncertainty.

Specifically, posterior credible intervals for each element of the precision matrix can

be obtained from the MCMC samples. For d = 50 and sample size n = 100, we plot
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the lower 2.5% and upper 97.5% quantiles of the entry-wise partial correlations along

with the simulation truths in Figure S.1 in the supplementary materials. The plots

indicate that the simulation truths are well-within the confidence bounds.

Circos plots (Gu et al., 2014) of the true and estimated graphs are shown in Figure

6. For the AR(2) case, none of the methods are doing well in recovering the graph. For

the other cases, the proposed PF method outperforms the competitors. Figures S.2

and S.3 in the supplementary materials provide alternate graphical representations

useful in visually discerning the superior performance of the PF method.
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(a) Frobenius norm

(b) Sensitivity and specificity

(c) Execution time

Figure 5: Results of simulation experiments: Panel (a) shows the Frobenius norms
between the true and estimated partial correlation matrices; panel (b) shows the
sensitivity and specificity; and panel (c) shows the execution times in seconds.
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(a) True graphs.
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(b) Estimated graphs by the PF method.
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(c) Estimated graphs by Bagus.
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(d) Estimated graphs by M&B.
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(e) Estimated graphs by Glasso.

Figure 6: Results of simulation experiments: Graph recovery: Panel (a) shows the
true graphs for AR(2), banded and RSM structures from left to right; panels (b),
(c), (d) and (e) show the corresponding estimated graphs for our proposed PF and
Bagus, M&B and Glasso methods, respectively. Positive (negative) associations are
represented by blue (red) links, their opacities being proportional to the corresponding
association strengths. The link widths are inversely proportional to the number of
edges associated with the corresponding nodes. Figure S.2 in the supplementary
materials provides a useful alternative graphical representation.

4 Application

We applied our proposed method to two real data sets from two di↵erent applica-

tion domains, namely genomics and finance. To meet space constraints, the finance

application is presented separately in Section S.4 in the supplementary materials.

Immune cells serve specialized roles in innate and adaptive bodily responses to

eliminate antigens. To understand the cell biology of carcinogenic processes, study of

immune cells and the genes therein are thus of immense importance.

We obtain the data from the Immunological Genome Project (ImmGen) data

browser (Heng et al., 2008). ImmGen is a collaborative scientific research project that

is currently building a gene-expression database for all characterized immune cells in

mice. In particular, we use the GSE15907 microarray dataset (Painter et al., 2011;

Desch et al., 2011) comprising of multiple immune cell lineages which were isolated ex-
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(a) Graph of all genes. (b) Heatmap of the connected genes.
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(c) Graph of the connected genes.

Figure 7: Results for ImmGen microarray data: Panel (a) shows the graph for all
genes; panel (b) shows the heatmap of the partial correlation matrix for the genes hav-
ing at least 5 edges; panel (c) zooms into the graph of these genes. Positive (negative)
associations are represented by blue (red) links, their opacities being proportional to
the corresponding association strengths. The link widths are inversely proportional
to the number of edges associated with the corresponding nodes.

vivo, primarily from young adult B6 male mice and double-sorted to > 99% purity.

The cell population includes all adaptive and innate lymphocytes (B, abT, gdT,

Innate-Like Lymphocytes), myeloid cells (dendritic cells, macrophages, monocytes),
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mast cells and neutrophils. The already normalized dataset has more than 21, 000

gene expressions from n = 653 immune cells. We made a log2 transformation of the

data and filtered the top 2.5% genes with highest variances using the genefilter R

package (Gentleman et al., 2020), resulting in a d = 544 dimensional problem. Since

di↵erent cell-types exhibit very di↵erent gene expression profiles, we centered the

gene-expressions separately within each cell type. The estimated graph corresponding

to all genes is shown in Figure 7(a). We can see clear evidence towards conditional

independence between most of the genes, indicating that only a small subset of genes

are functionally responsible for the variability.

For more insights, we zoom into the connected genes and plot the corresponding

partial correlation matrix and graph, limited to the genes possessing at least 5 edges,

in Figures 7(b) and 7(c) respectively. We notice overall positive partial correlations

between the histone class of genes such as Hist2h3b, Hist1h3h, Hist2h3c1, Hist1h3c,

etc (Wol↵e, 2001). The positive correlations between these protein coding genes

indicate that these genes are generally expressed together in the mechanism. Bcl2a1a

and Bcl2a1d, two functional isoforms of the B cell leukemia 2 family member A1

exerting important pro-survival functions, show strong positive association. We also

observe strong positive association between Ly6c1 and Ly6c2 genes. Lee et al. (2013)

noted these genes to be located adjacent to each other in the mid-section of the

Ly6 complex. They share > 95% similarity in their genomic and protein sequences

and these two genes has been considered synonymous to each other and hence exhibit

strong positive association. Although positive correlations are often observed between

the membrane-spanning 4A class of genes such as Ms4a4c, Ms4a4b, Ms4a6b, etc.

(Liang et al., 2001), we find the genes to be conditionally almost independent in our

analysis. It indicates that their expressions might be regulated by other genes.
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From Figure 7(b), it thus seems that there exist two blocks where within each

block the genes are positively associated whereas between the blocks the genes are

negatively associated. This might again be an indication that either of these blocks

of genes are generally expressed together in immune cells.

5 Discussion

In this article, we proposed a novel flexible statistical model for Gaussian precision

matrices that relies on decomposing them into a low-rank and a diagonal compo-

nent. The decomposition is theoretically and practically highly flexible and is thus

often used in covariance matrix models, arising naturally in their computationally

tractable latent factor based representations. The approach has, however, not been

popular in precision matrix and related graph estimation problems as it poses daunt-

ing computational challenges when applied to such settings. We addressed this issue

in this article by exploring a previously under-utilized latent variable construction,

leading to a highly scalable Gibbs sampler that allows e�cient posterior inference.

The decomposition based strategy also allowed us to use sparsity inducing priors to

shrink insignificant o↵-diagonal entries toward zero while also making the approach

adaptable to high-dimensional sparse settings. We specifically adapted the Dirichlet-

Laplace prior for sparse precision matrix estimation. We developed a novel posterior

FDR control based method to perform graph selection that properly accommodates

posterior uncertainty. We also established theoretical convergence guarantees for the

proposed model in high-dimensional sparse settings. In synthetic experiments, the

proposed method vastly outperformed its competitors in receiving the true underly-

ing graphs. We illustrated the method’s practical utility through real data examples

from genomics and finance.
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Aside from providing fundamentally new probabilistic perspectives on Gaussian

precision matrix and related graph estimation problems, our work also bridges the

gap between frequentist penalized likelihood based strategies and Bayesian shrinkage

prior based ideas for such models. The simple and highly scalable computational al-

gorithms resulting from our latent factor representation should also free up Bayesians

from having to put restrictive assumptions on the graph structures to achieve compu-

tational tractability, opening up new opportunities to adapt the basic models to more

complex and more realistic data structures and study designs. A few such method-

ological extensions we are pursuing as topics of separate ongoing research include

dynamic Gaussian graphical models (Huang and Chen, 2017), covariate dependent

Gaussian graphical models, nonparanormal (Liu et al., 2009) and Gaussian copula

graphical models (Pitt et al., 2006), etc.

Supplementary Materials

Supplementary materials discuss a general strategy for posterior computation un-
der broad classes of generic priors, proofs of the theoretical results, some additional
figures, and an application to a NASDAQ-100 stock price dataset.

References

Armstrong, H., Carter, C. K., Wong, K. F. K., and Kohn, R. (2009). Bayesian
covariance matrix estimation using a mixture of decomposable graphical models.
Statistics and Computing , 19, 303–316.

Atay-Kayis, A. and Massam, H. (2005). A Monte Carlo method for computing the
marginal likelihood in nondecomposable Gaussian graphical models. Biometrika,
92, 317–335.

Baglama, J. and Reichel, L. (2005). Augmented implicitly restarted Lanczos bidiag-
onalization methods. SIAM Journal on Scientific Computing , 27, 19–42.

Bai, J. and Ng, S. (2008). Large dimensional factor analysis. Foundations and Trends

in Econometrics , 3, 89–163.

35



Banerjee, O., El Ghaoui, L., and d’Aspremont, A. (2008). Model selection through
sparse maximum likelihood estimation for multivariate Gaussian or binary data.
Journal of Machine Learning Research, 9, 485–516.

Banerjee, S. and Ghosal, S. (2015). Bayesian structure learning in graphical models.
Journal of Multivariate Analysis , 136, 147–162.

Barvinok, A. and Rudelson, M. (2022). When a system of real quadratic equations
has a solution. Advances in Mathematics , 403, 108391.

Berger, J. O. (1985). Statistical decision theory and Bayesian analysis . Springer series
in statistics. Springer-Verlag, New York, 2nd edition.

Bhattacharya, A. and Dunson, D. B. (2011). Sparse Bayesian infinite factor models.
Biometrika, 98, 291–306.

Bhattacharya, A., Pati, D., Pillai, N. S., and Dunson, D. B. (2015). Dirichlet-Laplace
priors for optimal shrinkage. Journal of the American Statistical Association, 110,
1479–1490.

Bhattacharya, A., Chakraborty, A., and Mallick, B. K. (2016). Fast sampling with
Gaussian scale mixture priors in high-dimensional regression. Biometrika, 103,
985–991.

Bien, J. and Tibshirani, R. J. (2011). Sparse estimation of a covariance matrix.
Biometrika, 98, 807–820.

Carvalho, C. M. and Scott, J. G. (2009). Objective Bayesian model selection in
Gaussian graphical models. Biometrika, 96, 497–512.

Carvalho, C. M., Massam, H., and West, M. (2007). Simulation of hyper-inverse
Wishart distributions in graphical models. Biometrika, 94, 647–659.

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2009). Handling sparsity via the
horseshoe. In Artificial Intelligence and Statistics , pages 73–80. PMLR.

Chandra, N. K. and Bhattacharya, S. (2019). Non-marginal decisions: A novel
Bayesian multiple testing procedure. Electronic Journal of Statistics , 13, 489–535.

Dallakyan, A. and Pourahmadi, M. (2020). Fused-lasso regularized Cholesky factors
of large nonstationary covariance matrices of longitudinal data. arXiv 2007.11168 .

Daniele, M., Pohlmeier, W., and Zagidullina, A. (2019). Sparse approximate factor
estimation for high-dimensional covariance matrices. arXiv:1906.05545 .

d’Aspremont, A., Banerjee, O., and El Ghaoui, L. (2008). First-order methods for
sparse covariance selection. SIAM Journal on Matrix Analysis and Applications ,
30, 56–66.

Dawid, A. P. and Lauritzen, S. L. (1993). Hyper Markov laws in the statistical analysis
of decomposable graphical models. The Annals of Statistics , 21, 1272–1317.

36



Dellaportas, P., Giudici, P., and Roberts, G. (2003). Bayesian inference for nonde-
composable graphical Gaussian models. Sankhyā: The Indian Journal of Statistics ,
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S.1 General Strategy for Posterior Computation

In this section, we sketch out a general strategy for posterior inference for the precision factor

model not limited to the prior specifications in Section 2.3.

Sampling model: The data generating mechanism, we recall, is

y1:n
iid⇠ Nd(0,⌦

�1) with ⌦ = ⇤⇤T +�,

where ⇤ is a d⇥ q dimensional matrix with q  d and � = diag(�21, . . . , �
2
d
).

Generic priors: We consider the following broad classes of hierarchical priors on ⇤ and �

with ⇠ and ⇣ being the respective associated hyperparameters

vec(⇤)|⇠ ⇠ Ndq{0, g(⇠)}, ⇠ ⇠ ⇧⇠, �|⇣ ⇠ ⇧�|⇣(�|⇣), ⇣ ⇠ ⇧⇣ .

Varying choices of g(⇠),⇧⇠,⇧�|⇣ ,⇧⇣ then produce a broad class of priors for the

model parameters.

The Gibbs sampler then iterates through the following steps.

Step 1. Sample the latent variables: Generate u1:n
iid⇠ Nq(0,P) withP = (Iq+⇤T��1⇤)

independently from y1:n and let v1:n = y1:n +��1⇤P�1u1:n.

Step 2. Sample the rows of ⇤: We have ui =
P

d

r=1 �rvr,i+"i, where �r = (�r,1, . . . ,�r,q)

is the rth row of ⇤ and vi = (v1,i, . . . , vd,i)T. Define u(j)
i

= ui �
P

r 6=j
�rvr,i. Then

u(j)
i

= �jvj,i + "i. Conditioned on u(j)
i
, vi and the associated hyper-parameters, �j’s

can be updated sequentially j = 1, . . . , d from the following posterior distribution

�j ⇠ Nq{(D�1
j

+
��v(j)

��2Iq)�1wj, (D
�1
j

+
��v(j)

��2Iq)�1},

where Dj is the prior covariance matrix of �j, v(j) = (vj,1, . . . , vj,n)T and wj =P
n

i=1 vj,iu
(j)
i
.

Step 3. Sample �: Sample � from ⇧�|v(1:d),⇣ .

Step 4. Sample the hyperparameters of ⇤: Sample ⇠ from ⇠ ⇠ ⇧⇠|⇤.

Step 5. Sample the hyperparameters of �: Sample ⇣ from ⇣ ⇠ ⇧⇣ |�.

For non-conjugate priors, appropriate Metropolis-within-Gibbs type MCMC algorithms

can be employed in Steps 2, 3, 4 or 5.



SUPPLEMENTARY MATERIALS S.3

S.2 Proofs of Theoretical Results

Notations: In what follows, for an operation ‘⇤’, a ⇤ b is sometimes used for (a ⇤ b). Also,
for two sequences an, bn � 0, an - bn implies that an  Cbn for some constant C > 0;

an ⇣ bn implies that 0 < lim inf |an/bn|  lim sup |an/bn| < 1. |A| denotes the determinant

of the square matrix A. For a set S, |S| denotes its cardinality. Let kxk is the Euclidean

norm of a vector x. We denote the Kullback-Leibler (KL) divergence between two mean

zero Gaussian distributions with precision matrices ⌦ and ⌦0 by KL (⌦ k ⌦0). We borrow

the following result from Pati et al. (2014) (Lemma 1.1. from the supplement). For brevity

of notations, we reuse C, eC, C 00, etc. in the proofs to denote constants and their values may

not be the same throughout the same proof. Nevertheless, we were careful to make sure that

these quantities are indeed constants.

Lemma 1. For any two matrices A and B,

(i) smin (A) kBk
F
 kABk

F
 kAk2kBk

F
.

(ii) smin (A) kBk2  kABk2  kAk2kBk2.

(iii) smin (A) smin (B)  smin (AB)  kAk2smin (B).

Theorem 1. Let Pn = P1,n [ P2,n be an arbitrary partition. Note that,

⇧n (k⌦n �⌦0nk2 > Mn✏n|y1:n)  ⇧n (⌦n 2 P1,n : k⌦n �⌦0nk2 > Mn✏n|y1:n) + ⇧n (P2,n|y1:n) .

To prove the theorem, we show that, as n ! 1, the posterior distribution on P1,n concen-

trates around ⌦0n while the remaining mass assigned to P2,n diminishes to zero. We adopt

a variation of Theorem 8.22 by Ghosal and van der Vaart (2017) on posterior contraction

rates. Define Bn,0(⌦0n, ✏) = {⌦n 2 Pn : KL (⌦0n k ⌦n)  n✏2}. We now formally state the

result tailored towards our application.

Theorem 2. Let Pn be a class of distributions prametrized by ⌦n, P⌦n
the corresponding

distribution and ⌦0n be the true data-generating value of the parameter. Let en be a metric

on Pn and P1,n ⇢ Pn. For constants ⌧n with n⌧ 2
n
� 1 and every su�ciently large j 2 N,

assume the following conditions hold.

(i) For some C > 0, ⇧n {Bn,0(⌦0n, ⌧n)} � e�Cn⌧
2
n;

(ii) Define the set Gj,n = {⌦n 2 P1,n : j⌧n < en (⌦n,⌦0n)  2j⌧n}. There exists tests �n

such that, for some K > 0,

lim
n!1

E⌦0n
�n = 0; sup

⌦n2Gj,n

E⌦n
(1� �n)  exp

�
�Knj2⌧ 2

n

�
.
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Then, ⇧n {⌦n 2 P1,n : en (⌦n,⌦0n) > Mn⌧n|y1:n} ! 0 in P⌦0n
-probability for any Mn ! 1.

We define P1,n = {⌦n : k⌦nk2 < C 00(q0nsn)4 log(dnqn)}, P2,n = Pn\P1,n, en (⌦n,⌦0n) =
k⌦n�⌦0nk

2
C00(q0nsn)4 log(dnqn)

and n⌧ 2
n
= q0nsn log(dnqn) for some large enough constant C 00 > 0. We

verify (i) in Lemma 3 and show the existence of a sequence of test functions satisfying (ii)

in Lemma 4. Hence,

⇧n {⌦n 2 P1,n : en (⌦n,⌦0n) > Mn⌧n|y1:n} ! 0 in P⌦0n
-probability for every Mn ! 1.

Subsequently applying the dominated convergence theorem (DCT), we get limn!1 E⌦0n
⇧n(⌦n 2

P1,n : k⌦n �⌦0nk2 > Mn⌧n|y1:n) = 0. To conclude the proof, we show that the remaining

mass assigned to P2,n goes to 0 in the following theorem.

Theorem 3. limn!1 E⌦0n
⇧n (P2,n|y1:n) = 0.

Theorem 2. The theorem closely resembles Theorem 8.22 from Ghosal and van der Vaart

(2017). In the discussion following equation (8.22) in the book, the authors noted that for

the iid case, simpler theorems are obtained by using an absolute lower bound on the prior

mass and by replacing the local entropy by the global entropy. In particular, (i) implies

Theorem 8.19(i) in the book. Similarly, (ii) is the same condition in Theorem 8.20 and hence

the proof.

Lemma 2. (Kullback-Leibler upper bound) Let ⌦n and ⌦0n be dn⇥dn order positive definite

matrices. Then,

2KL (⌦0n k ⌦n) = � log
��⌦�1

0n⌦n

��+ trace(⌦�1
0n⌦n � Idn)  k⌦0n �⌦nk2Fk⌦0nk2/2�6min.

Proof. Let H = ⌦�1/2

0n ⌦n⌦
�1/2

0n . Letting  1, . . . , dn be the eigenvalues of H, we note that

2KL (⌦0n k ⌦n) =
dnX

j=1

{( j � 1)� log j} . (S.1)

Consider the function h�(x) = log x � (x � 1) + �(x � 1)2/2 on (0,1) for � > 1. Note

that h�(x) � 0 for all x � 1/�. From (C3) and using Lemma 1,  j � smin (H) �
smin (⌦n) smin

�
⌦�1

0n

�
= �2min/k⌦0nk2. Noting that �2min/k⌦0nk2 < 1, we set � = k⌦0nk2/�2min.

Therefore,

dnX

j=1

{log j � ( j � 1)} � �k⌦0nk2
2�2min

dnX

j=1

( j � 1)2 = �k⌦0nk2
2�2min

kH� Idnk
2
F
. (S.2)
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Again, using Lemma 1 and (C3), we have

kH� IdnkF  k⌦0n �⌦nkF
��⌦�1

0n

��
2
 k⌦0n �⌦nkF/�

2
min. (S.3)

Combing (S.1)-(S.3), we conclude the lemma.

Lemma 3. Define the set Bn,0(⌦0n, ⌧) = {⌦n 2 Pn : KL (⌦0n k ⌦n)  n⌧ 2}. Then,

⇧n {Bn,0(⌦0n, ⌧n)} � e�Cn⌧
2
n for n⌧ 2

n
= snq0n log(dnqn) and some absolute constant C > 0.

Proof. From Lemma 2, we note that

⇧n {Bn,0(⌦0n, ⌧n)} � ⇧n

�
k⌦0n �⌦nk2Fk⌦0nk2/4�6min  n⌧ 2

n

�

� ⇧n

 
��⇤n⇤

T
n
�⇤0n⇤

T
0n

��
F


p
n⌧n�

3
min

k⌦0nk
1/2

2

!
⇧n

 
k�n ��0nkF 

p
n⌧n�

3
min

k⌦0nk
1/2

2

!
. (S.4)

We handle the ⇤ and � parts in (S.4) separately and conclude the proof by showing that

each of the terms individually exceeds e�Cn⌧
2
n for some constant C > 0.

The ⇤ part in (S.4): We define e⇤0n = [⇤0n 0dn⇥qn�q0n ], after augmenting qn � q0n

null columns to ⇤0n. Also e⇤0n
e⇤

T

0n = ⇤0n⇤
T
0n. Invoking (C2) and Lemma 1, we have that���⇤n � e⇤0n

���
F

< ✏ implies that
���⇤n⇤

T
n
� e⇤0n

e⇤
T

0n

���
F

 C✏2 for some C > 0. Note that, from

(C2) and (C3), k⌦0nk2 = O(1). Let AS denote the vector of elements of A corresponding to

an index set S, and S0 denote the set of nonzero elements in e⇤0n . Then, for some absolute

constant eC, we have

⇧n

 
��⇤n⇤

T
n
�⇤0n⇤

T
0n

��
F


p
n⌧n�

3
min

k⌦0nk
1/2

2

!
� ⇧n

⇣���⇤n � e⇤0n

���
F

 eCn1/4⌧
1/2
n

⌘

� ⇧n

⇣��⇤S0
n

�⇤S0
0n

��  eCn1/4⌧
1/2
n /2

⌘
⇧n

⇣���⇤S
C
0

n

���  eCn1/4⌧
1/2
n /2

⌘
(S.5)

The first term in (S.5) ensures that the Bayesian model assigns requisite prior mass around

the signals whereas the second term ensures that appropriate shrinkage is envisaged through

the prior. We show that each of these products exceeds e�Cn⌧
2
n .

The shrinkage part in (S.5): From Bhattacharya et al. (2015, equation (10)), we get

that ⇤n = 2
bn
((�⇤

n,j,h
)) where �⇤

n,j,h
’s are marginally iid random variables with a

priori with pdf ⇧(�n,j,h) = |�n,j,h|(an�1)/2K1�an(
p

2|�n,j,h|)/{2(1+an)/2�(an)} where

K⌫(x) = �(⌫+1/2)(2x)⌫p
⇡

R1
0

cos t
(t2+x2)⌫+1/2dt is the modified Bessel function of the second
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kind. Using Lemma 3.2 of the same paper and letting Hn = bnn1/4⌧
1/2
n , we have

⇧n

⇣���⇤S
C
0

n

���  eCn1/4⌧
1/2
n

/2
⌘
�
⇢
Pr

✓���⇤
n,j,h

��  CHn

|SC

0 |

◆�|SC
0 |

�
(
1� C

�(an)
log

��SC

0

��
Hn

)|SC
0 |

.

Now,
��SC

0

�� = dnqn � snq0n and �(an) = �(1 + an)/an. Since an = 1/(dnqn) and Hn is

an increasing sequence, 1
�(an)

log
|SC

0 |
Hn

= 1
dnqn�(1+an)

log dnqn�snq0n

Hn
 1 and hence

⇧n

⇣���⇤S
C
0

n

���  eCn1/4⌧
1/2
n

/2
⌘
�
(
1� C

�(an)
log

��SC

0

��
Hn

)|SC
0 |

�
⇢
1� C log(dnqn)

dnqn�(1 + an)

�dnqn

� e�C log(dnqn)

⇢
1� C2 log2(dnqn)

dnqn

�
� e�C

0
q0nsn log(dnqn).

The second last inequality in the previous equation follows since, for any n � 1 and

|x|  n, we have
�
1 + x

n

�n � ex
⇣
1� x

2

n

⌘
.

The signal part in (S.5): Let us define vq(r) to be the q-dimensional Euclidean ball of

radius r centered at zero and |vq(r)| denotes its volume. For the sake of brevity, denote

vq = |vq(1)|, so that |vq(r)| = rqvq. Letting ⇤⇤
n
= ((�⇤

n,j,h
))dn⇥qn (�⇤

n,j,h
’s defined earlier)

and tn = bn
⇣
eCn1/4⌧

1/2
n /2 +

��⇤S0
0n

��
⌘
, we have

⇧n

⇣��⇤S0
n

�⇤S0
0n

��  eCn1/4⌧
1/2
n

/2
⌘
= ⇧n

⇣��⇤⇤S0
n

� bn⇤
S0
0n

��  eCbnn
1/4⌧

1/2
n

/2
⌘

�
��v|S0|(tn)

�� inf
v|S0|(tn)

⇧n(⇤
⇤S0
n

).
(S.6)

Note that, |S0| = snq0n and
��⇤S0

0n

�� = k⇤0nkF and using Castillo and van der Vaart

(2012, Lemma 5.3), vq ⇣ (2⇡e)q/2q�q+1/2. Note also that for x > 0, log(1+x)
x

 1p
1+x

which implies that xx  ex
3/2

. Hence,

��v|S0|(tn)
�� = tsnq0n

n
vsnq0n � exp{snq0n log tn � C 0(q0nsn)

3/2/2} � exp{�Csnq0n log(dnqn)}.

The last inequality follows from (C1) and the prior specifications. From Bhattacharya

et al. (2015, Lemma 3.1) we have

inf
v|S0|(tn)

⇧n(⇤
⇤S0
n

) = exp
⇥
�C

�
snq0n log(1/an) + (snq0n)

3/4
p
tn
 ⇤

= exp


�C

⇢
snq0n log(dnqn) + (snq0n)

3/4b
1/2
n

⇣
eCn1/4⌧

1/2
n

/2 + k⇤0nkF
⌘1/2
��

� exp
�
�Csnq0n log dnqn

�
,
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since, bn = log3/2(dnqn), n⌧ 2n = snq0n log dnqn and k⇤0nk2F = O(q0n) from (C2). Hence

from (S.6), ⇧n

⇣��⇤S0
n

�⇤S0
0n

��  eCn1/4⌧
1/2
n /2

⌘
� exp

�
�Csnq0n log dnqn

�
.

The � part in (S.4): Note that, ⇧n

 
k�n ��0nkF 

p
n⌧n�

3
min

k⌦0nk
1/2

2

!
� ⇧n

✓
|�20n � �2

n
| 

p
n⌧n�

3
minq

dnk⌦0nk
2

◆
.

Now, ⇧n(|�20n � �2
n
|  x) � e��

2
0n(1 � e�2x). Using 1 � e�2x � x for x 2 (0, 1/2) and sincep

n⌧n�
3
minq

dnk⌦0nk
2

! 0 as n ! 1, we have for some C 0 > 0

⇧n

 
���20n � �2

n

�� 
p
n⌧n�3minp
dnk⌦0nk2

!
� exp

 
��20 + log

p
n⌧n�3minp
dnk⌦0nk2

!
� exp

�
�C 0snq0n log dnqn

�
.

Corollary 1. For arbitrary e⌧n > n�1/2
, we have ⇧n {Bn,0(⌦0n, e⌧n)} � e�Cq0nsn log(dnqn) for

some constant C > 0.

Following the proof of Lemma 3, it can be seen that the above corollary holds.

Lemma 4. Let ⌦0n 2 P0n and the set Gj,n =
n
⌦n 2 P1,n : j⌧n < 1

⇣n
k⌦n �⌦0nk2  2j⌧n

o

denote an annulus of inner radius j⌧n⇣n and outer radius (j+1)⌧n⇣n, where ⇣n = C 00(q0nsn)4 log(dnqn),

in operator norm around ⌦0n for some integer j > 1. Based on iid samples y1:n from

Ndn(0,⌦
�1
0n ), consider the following hypothesis testing problem

H0 : ⌦n = ⌦0n versus H1 : ⌦n 2 Gj,n.

We simulate u1:n
iid⇠ Nq0n(0,P0n), with P0n = (Iq0n + ⇤T

0n�
�1
0n⇤0n) independently from y1:n

and define vi = yi +��1
0n⇤0nP

�1
0nui. Letting VT = (v1, . . . ,vn), we define the following test

function �n =
���⇤T

0n

�
1
n
VTV ���1

0n

�
⇤0n

��
2
> ⌧n

 
. Then

lim
n!1

E⌦0n
�n = 0; sup

⌦n2Gj,n

E⌦n
(1� �n)  exp

�
�Knj2⌧ 2

n

�
,

for some absolute constant K > 0.

Proof. Type-I error: UnderH0, we have v1:n
iid⇠ Ndn(0,�

�1
0n ). Letting⌅0n = cov

�
⇤T

0nvi

�
=

⇤T
0n�

�1
0n⇤0n, we have, �n 

�
k⌅0nk2

�� 1
n

P
n

i=1 ziz
T
i
� Iq0n

��
2
> ⌧n

�
, where k⌅0nk2 =

O(1) from (C2). From Vershynin (2012, Corollary 5.50), EH0�n  2 exp
⇣
� eCq0nt2n

⌘
for

a universal constant eC > 0 and any sequence tn satisfying q0nt2n  n⌧ 2
n
. Since from

(C1), q0n ! 1 and n⌧ 2
n
/q0n ! 1 as n ! 1, tn can be constructed such that tn % 1

and hence limn!1 EH0�n = 0.
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Type-II error: If y1:n
iid⇠ Ndn(0,⌦n) with ⌦n = ⇤n⇤

T
n
+�n, then v1:n

iid⇠ Ndn(0,�
�1
n

+rn)

wherern = ��1
0n⇤0n(Iq0n+⇤T

0n�
�1
0n⇤0n)�1⇤T

0n�
�1
0n���1

n
⇤n(Iqn+⇤T

n
��1

n
⇤n)�1⇤T

n
��1

n
.

Notably, ��1
n

���1
0n +rn = ⌦n �⌦0n. Now,

1� �n =

⇢����⇤
T
0n

✓
1

n
VTV ���1

0n

◆
⇤0n

����
2

 ⌧n

�

=

⇢����⇤
T
0n

⇢✓
1

n
VTV ���1

n
�rn

◆
+ (��1

n
���1

0n +rn)

�
⇤0n

����
2

 ⌧n

�


⇢����⇤

T
0n

✓
1

n
VTV ���1

n
�rn

◆
⇤0n

����
2

>
��⇤T

0n(⌦n �⌦0n)⇤0n

��
2
� ⌧n

�


⇢����

⇢
1

n
⇤T

0nV
TV⇤0n �⇤T
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where z1:n
iid⇠ Nqn(0, Iqn). By construction of P1,n,

����1
n

+rn

��
2
 ⇣n for ⌦n 2 P1,n.

Hence, for ⌦n 2 Gj,n, the RHS of (S.7) is bounded below by j⌧n for su�ciently large

j. Using Vershynin (2012, Eqn 5.26) again, we have for all ⌦n 2 Gj,n, E⌦n
(1� �n) 

e�Knj
2
⌧
2
n .

Hence the proof.

Theorem 3. For densities p and q, define V (p k q) =
R n

log p

q
�KL (p k q)

o2

dp. When p

and q are mean zero multivariate Gaussian densities with precision matrices ⌦ and ⌦0, we

simply denote V (⌦ k ⌦0). We define the set Bn,2(⌦0n, ✏) = {⌦n 2 Pn : KL (⌦0n k ⌦n) 
n✏2, V (⌦0n k ⌦n)  n✏2}.

From Banerjee and Ghosal (2015, Theorem 3.1) and the proof of Lemma 2, we have

V (⌦0n k ⌦n) =
1

2�4min
k⌦0n �⌦nk2F and therefore Bn,2(⌦0n, ✏) = {⌦n 2 Pn : k⌦0n �⌦nk2F 

C✏} for some constant C > 0.

Let {tn}1n=1 be an increasing sequence of positive numbers. Then, ⇧n(k⇤nk2 � tn) 
⇧n(k⇤nkF � tn)  ⇧n(kvec(⇤⇤

n
)k

`1
� bntn)  2e�C

p
bntn for some constant C > 0 where

k·k
`1

is the `1 norm. The last inequality follows from Pati et al. (2014, Lemma 7.4). Hence,

for ⇣n = C 00(q0nsn)4 log(dnqn),

⇧n(P2,n)  ⇧n

�
�2max + k⇤nk22 � ⇣n

 
� ⇧n

�
k⇤⇤

n
k22 � K 0C 00(q0nsn log dnqn)

4
 
 e�CC

00
q0nsn log(dnqn).

From Corollary 1, for arbitrary e⌧n > n�1/2, ⇧n {Bn,2(⌦0n, e⌧n)} � e�Cq0nsn log(dnqn). Hence,
⇧n(P2,n)

⇧n{Bn,2(⌦0n,e⌧n)}  e�2Cq0nsn log(dnqn) = o(e�2ne⌧2n) for e⌧n < ⌧n. The last display holds for

suitable large enough choice of C 00, which, however, can be chosen independent of n. Using

Ghosal and van der Vaart (2017, Theorem 8.20) and subsequent application of DCT we
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conclude the proof.

Theorem 4 (minimax rate). If b⌦n is a sequence of estimators of ⌦0n 2 P0n with q0n = O(1),

then for some absolute constant C > 0

inf
c⌦n

sup
⌦0n2P0n

���b⌦n �⌦0n

���
2
� C

r
sn log dn

n
.

Proof. We use Fano’s lemma to derive a lower bound for the minimax risk. Let F =

{⌦(1), . . . ,⌦(mn)}, mn � 2 be a finite subset of P0n and let b⌦n be an estimate of ⌦0n

based on iid samples y1:n. Suppose for all j 6= j0, we have e(⌦(j),⌦(j0)) � emn for some met-

ric e and KL
�
⌦(j) k ⌦(j0)

�
 Kmn . Letting Ej denote the expectation under Ndn(0,⌦

�1
(j)),

Fano’s lemma (Yu, 1997) implies

max
1jmn

Eje(⌦(j),⌦(j0)) 
emn

2

✓
1� Kmn + log 2

logmn

◆
. (S.8)

We now construct the finite class F . Let rn = dn � 1. Define M = {x 2 Rrn : xj 2
{0, 1} for all j,

P
j
xj = sn} to be the collection of all binary vectors of length rn with

exactly sn ones and let hx,yi
H
be the Hamming distance between two binary vectors x and

y. Let gj = (xj, 0) denote the dn-dimensional vector obtained by appending zero at the end

of xj with xj 2 M. With this definitions, set ⌦(j) = �nIdn + �ngjgT
j
+ n"dn"

T
dn

where "dn
is the vector with 1 in the dth

n
coordinate and zero elsewhere, and �n  �n  n are positive

sequences to be chosen below.

Observe that if hgj,gj0iH = sn � pn for j 6= j, then gT
j
gj0 = pn. Note also that ⌦(j) �

⌦(j0) = �n(gjgT
j
� gj0gT

j0). The nonzero eigenvalues of the matrix B = gjgT
j
� gj0gT

j0 are

(
p

s2
n
� p2

n
,�
p

s2
n
� p2

n
), since rank(B) = 2, trace(B) = 0 and trace(B2) = 2(s2

n
� p2

n
).

This implies that
��⌦(j) �⌦(j0)

��
2
= �n(s2n � p2

n
). Since gj 2 M for all j, by symmetry

��⌦(j)

�� =
��⌦(j0)

�� for all j 6= j0. Hence KL
�
⌦(j) k ⌦(j0)

�
= 1

2trace
n
⌦(j)⌦

�1
(j0) � dn

o
. Let

A = �n(A+ tgjgT
j
), where A is a diagonal matrix with the first (dn � 1) diagonals equaling

one and the dth
n

entry being (1 + n/�n). Subsequently, applying the Woodbury matrix

inversion identity, we get (A + tngj0gT
j0)

�1 = A�1 � tn
1+tnsn

gj0gT
j0 so that ⌦(j)⌦

�1
(j0) = Idn �

tn
1+tnsn

gjgT
j
+ tngj0gT

j0 �
t
2
npn

1+tnsn
gjgT

j0 with tn = �n/�n. Observing that trace(gjgT
j
) = sn and

trace(gjgT
j0) = pn, we get KL

�
⌦(j) k ⌦(j0)

�
= 1

2
t
2
n

tnsn+1(s
2
n
� p2

n
).

Now, from Pati et al. (2014, Lemma 5.6), given sn � 6, there exists a subset M0 =

{x1, . . . ,xmn} of M with mn ⇣ exp(Csn log dn) and hxj,xj0iH � sn/3 for all 1  j 6= j0 
mn, where C is a positive constant independent of dn. We set F = {⌦(j) : xj 2 M0}. Using
the aforementioned lemma and preceding discussions, we have that pn is bounded above by

2sn/3 fo all pairs j 6= j0 2 M0. Hence, we can choose emn � c1�nsn and Kmn = (tsn)2 =

(�nsn/�n)2 in (S.8). To obtain emn as a lower bound to the minimax risk up to a constant,

we set Kmn/logmn = C 0 for some C 0 2 (0, 1). Since logmn ⇣ Csn log dn, we obtain by

choosing �n,n ⇣ 1, that e2
mn

= C(�nsn)2 = C sn log dn
n

.
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S.3 Additional Figures

S.3.1 Uncertainty Quantification

(a) Quantiles for the AR(2) case

(b) Quantiles for the banded case

(c) Quantiles for the RSM case

Figure S.1: Results of simulation experiments: Uncertainty quantification: In each panel,
the middle heatmap is the simulation truth of R = diag(⌦)�1/2 ⌦ diag(⌦)�1/2, the left and
the right heatmaps show the lower 2.5% and the upper 97.5% quantiles of R, respectively,
estimated from the MCMC samples.
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S.3.2 Graph Estimation

True and estimated graphs derived from the respective precision matrices as described in

Section 3 of the main paper using the GGally package (Schloerke et al., 2020) in R.

(a) True graphs.

(b) Estimated graphs by the PF method.

(c) Estimated graphs by Bagus.
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(d) Estimated graphs by M&B.

(e) Estimated graphs by Glasso.

Figure S.2: Results of simulation experiments: Graph recovery: Panel (a) shows the true
graphs for AR(2), banded and RSM structures from left to right; panels (b), (c), (d) and
(e) show the corresponding estimated graphs for the our proposed PF and Bagus, M&B
and Glasso methods, respectively. Positive (negative) associations are represented by blue
(magenta) edges and edge-widths are proportional to the association strength. If the absolute
value of a partial correlation coe�cient is greater (less) than 0.5, the corresponding edge is
represented by a solid (dotted) line.
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S.3.3 Precision Matrix Estimation

(a) Results obtained by the proposed PF method.

(b) Results obtained by Bagus.

(c) Results obtained by M&B.
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(d) Results obtained by Glasso.

Figure S.3: Results of simulation experiments: Recovery of the precision matrices: Panels
(a), (b), (c) and (d) show the heatmaps of the estimated scaled precision matrices R =
diag(⌦)�1/2 ⌦ diag(⌦)�1/2 for PF, Bagus, M&B and Glasso, respectively, in left to right
order for the AR(2), banded and RSM model.

S.4 NASDAQ-100 Stock Price Data

Here we apply the precision factor model to a stock price dataset comprising the top 100

companies listed in NASDAQ for the period Jan 2015 - Dec 2019 recorded every week. We

obtained the data from Yahoo finance. After removing missing records, we ended up with

data on 91 companies. First, we removed the trend by linear trend fitting. The estimated

graph shown in Figure S.4 indicates a sparse structure.

We highlight some interesting features observed from the analysis. We observe a

strong positive association between the rival GPU developers AMD and Nvidia Corporation

(NVDA) consistent with the increasing demand of GPU computing. Similarly, a positive

association between Qualcomm (QCOM) and Marvell Technology Group (MRVL), both of

which develop and produce semiconductors and related technology, can be seen. The elec-

tronic design automation company Synopsys (SNPS) and the software company Cadence

Design Systems, Inc. (CDNS) exhibit strong positive associations. Electronic Arts (EA)

and Activision (ATVI) are video game developers and a Positive association is observed be-

tween them. ATVI seem to have strong associations with Amazon.com, Inc. (AMZN) and

Apple Inc (AAPL). The semiconductor manufacturer companies Texas Instruments (TXN)

and Xilinx (XLNX) seem to have a negative association. We observe positive association

between the computer memory and data storage producing company Micron Technology,

Inc. (MU) and Match Group (MTCH). Interestingly, the American semiconductor company

Skyworks Solutions, Inc. (SWKS) exhibit strong negative association with companies like

Microsoft (MSFT), Comcast Corporation (CMCSA), MU, etc. Many of the aforementioned

https://finance.yahoo.com
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Figure S.4: Results for NASDAQ-100 stock price data: Positive (negative) associations
are represented by blue (red) links, their opacities being proportional to the corresponding
association strengths. The link widths are inversely proportional to the number of edges
associated with the corresponding nodes.

stocks exhibit strong positive association with the Meta Platforms, Inc. (FB) previously

known as Facebook Inc. As expected, we observe a strong positive association between

GOOGL and GOOG, which are Google shares with and without voting rights, respectively.

Notably, most of the connected nodes in the NASDAQ-100 listing correspond to tech-

nology companies and electronics manufacturers. This is in accordance with the ushering

in of the ‘digital era’ over the last decade, with technology giants taking over major shares

of the market. Also, the strong negative associations between several companies in similar

domains reflect the competitive nature of the market.
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